PHYSICAL REVIEW A 68, 012103 (2003

Normal forms and entanglement measures for multipartite quantum states
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A general mathematical framework is presented to describe local equivalence classes of multipartite quan-
tum states under the action of local unitary and local filtering operations. This yields multipartite generaliza-
tions of the singular value decomposition. The analysis naturally leads to the introduction of entanglement
measures quantifying the multipartite entanglem@stgeneralizations of the concurrence for two qubits and
the 3-tangle for three qubjtsand the optimal local filtering operations maximizing these entanglement mono-
tones are obtained. Moreover, a natural extension of the definition of Greenberger-Horne-Zeilinger states to,
e.g., 2X2XN systems is obtained.
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[. INTRODUCTION We then proceed to show that all quantities exhibiting
some kind of invariance under the considered SLOCC opera-
One of the major challenges in the field of quantum in-tions are entanglement monotori€d. It is shown that the
formation theory is to get a deep understanding of how locafoncurrence for two qubits and the 3-tangle for three qubits,
operations assisted by classical communicatid®@CC) per-  introduced by Wootterst al.[10,11], belong to this class of
formed on a multipartite quantum system can affect the enentanglement measures. Therefore, a natural generalization
tanglement between the spatially separated systems. In thf these measures is obtained to systems of arbitrary dimen-
paper, we investigate this problem in the case where onlygions and an arbitrary number of parties.
operations on one copy of the system are allowed. This is A subsequent part of the paper is concerned with finding
different from the general setup of entanglement distillationOf the optimal filtering operations for a given multipartite
where global operations on a lar¢efinite) number of cop- ~ State. It is shown that the SLOCC operations bringing a state
ies are performed to concentrate the entanglement in a felt0 its unique normal form maximize all the introduced en-
copies. The main motivation of this work was to characterizd@nglement monotones. This was expected in the light of the
the optimal filtering operationéSLOCO to be performed on  Work by Nielsen about majorizatidri2]; the notion of local
one copy of a multipartite system such that, with a nonzerdlisorder is intimately connected to the existence of entangle-
chance, a state with maximal possible entanglement is onent.
tained. In other words, we want to design the optimal filter- ~ Finally, the Appendix presents some results on the char-
ing operations for a given state, such that with a certairCterization of local unitary equivalence classes, yielding a
chance we prepare the optimal attainable one. Of course, thig@tural and constructive but nonunique generalization of the
leads to the introduction of local equivalence classes. singular value decomposition into the multilinear setting.
In the case of a pure state of two qubits, this optimal
filtering procedurg is commonly knpyvn as the Prog:rustean Il. NORMAL FORMS UNDER SLOCC OPERATIONS
method[1]. Following the work of Gisir2], Horodecki[ 3],
Linden et al. [4], and Kentet al. [5,6], the optimal filtering Let us first consider the case of pure states. The main goal
procedure for mixed states of two qubits was recently deis to study equivalence classes under general local transfor-
rived in Ref.[7]. In this paper, we extend these ideas to puremations of the kindy')=A;® - - - @ A, | ) with {A;} being
and mixed multipartite systems of qudits of an arbitrary di-arbitrary matrices. These kind of transformations are called
mension. SLOCC transformationi3] (from stochastic local operations
The optimal filtering operations in Reff7] were derived — assisted by classical communicatipand are also called lo-
by proving the existence of a decomposition of a mixed stateal filtering operations. It will turn out very useful to restrict
of two qubits as a unique Bell diagonal state multiplied leftourselves to SLOCC transformations where{&|]} are full
and right by a tensor product representing local operations. Aank (remark that entanglement is lost wheneverars not
Bell diagonal state is special in the sense that one party alorfall rank). For convenience, we will consider g} to be-
cannot acquire any information at all about the state; itdong to SL(n,C), the group of square complex matrices hav-
local-density operator is equal to the identity. This caning determinant equal to 1, and consider unnormalized states.
readily be generalized to multipartite systems of arbitrary Let us formulate the following central theorem.
dimensions, and the existence of local operations transform- Theorem 1.Consider anN;XNyX--- XN, pure multi-
ing a generic state to a unique state with all local-densitypartite statgor tensoy. Then this statétensoj can construc-
operators equal to the identity will be proved. In the case otively be transformed into a normal form by determinant 1
pure states, this decomposition leads to a transparent meth&L.OCC operations. The local-density operators of the nor-
of deriving essentially different states such as Greenbergemal form are all proportional to the identity and the normal
Horne-Zeiliger(GHZ) and W stateq 8]. form is unique up to local unitory transformations. More-
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over, the state connected to the original one by determinant hermitian. The following lemma shows that the normal form

SLOCC operations with the minimal possible nofire., is robust against perturbations or noise.
trace of the unnormalized density operat@s in normal Lemma 1If the SLOCC operations bringing the state into
form. the normal form introduced in Theorem 1 are chosen to be

Proof. We will give a constructive proof of this theorem Hermitian, and if they turn out to be finite, then the normal
that can directly be translated into matlab code. The idea iform is continuous with respect to the entries of the state.
that the local determinant 1 operatdksbringing ¢ into its Proof. Let us considerp=(A1®---®A;)0(A;®---
normal form can be iteratively determined by a procedure®Ap)‘r and a perturbatiop resulting in{A;} and . The
where at each step the trace|gH(y|=p is minimized by a  following formula is readily verified:
local filtering operation of one party. Consider therefore the
partial tracep1=Tr2 _____ p(p).. If p, is full rank, tr?ire exisTts (AL®--- ®Ap)71b(Al®' . -®Ap)’T
an operatorX with determinant 1 such thgb;=XpX
~Iy,. Indeed,X=|det(py)|"™1(\/p;) ~* does the jol{18],

p

. .-
. = E e . . o o +H.c.|.
and we havep;=det(p;)N1l, . We also have the relation U+i=1 [(A@ - XATAX- @)+ H.C]

As all {A;} are Hermitian and have determinant 1,A&]1*A,
Tr(p')=Ndetp) ™M=Tr(py), (1) are skew Hermitian and the second term is in another sub-

spaceS, than the first terms that is in subspac8;. o can
wherep’ = (X&1X - - 1)) (| (X1 X - - .®|)T_ This in-  therefore be obtained by projecting the left-hand side parallel
equality follows from the fact that the geometric mean isto S, onto S;. As p is finite and alfA;} have determinant 1
always smaller than the arithmetic mean, with equality if andand are finite, this projection is, of course, also finite. This

only if (iff) p, is proportional to the identity. Therefore, the proofs thato is of the same order of magnitude aswhich
trace ofp decreases after this operation. We can now repeaings the proof. [

this procedure with the other parties, and then repeat every- Note that we have also proven continuity with respect to
thing iteratively over and over again. After each iteration, themixing. Let us now discuss some peculiarities. The fact that
trace ofp will decrease unless all partial traces are equal tqpe algorithm can converge to zero despite the fact tha;all
the identity. Because the trace of a positive definite operatofaye determinant equal to 1 is a consequence of the fact that
is bounded from below, we know that the decrements beg n ¢) is not compact. There exist states that can only be
come arbitrarily small and following Eq1) this implies that  poyght into their respective normal form by infinite trans-
_aII partial traces converge to operators arbitrarily close to th‘?ormations, although the class of states with this property is
identity. clearly of measure zero. As an example, consideitsate

We still have to consider the case where we encounter a [g] | ) =|001) +|010) +|100). The following identity is eas-
that is not full rank. Then, there exists a seriesxofvhose iy checked:

norm tends to infinity but has determinant 1 such that

Xp;XT=0, leading to a normal form identical to zero, clearly 1k 0)®3
the positive operator with minimal possible trace. This ends Iim( ) |W)=0.
the proof of the existence of the normal form. el O

Consider now a state that is in normal form; then due to
the construction of the proof, the trace can always be deThe normal form corresponding to thW state is therefore
creased by determinant 1 SLOCC operations, unless the stagégual to zero, clearly the state with the minimal possible
is in normal form. As pointed out by Briand, Luque, and trace. This is interesting, as it will be shown that a normal
Thibon[13], the normal form is unique up to local unitaries: form is zero iff a whole class of entanglement monotones is
the Kemp-Ness criterion proves the result in the case of @qual to zero. Therefore, the states with normal form equal to
closed orbit, and there is always a unique closed orbit in theero are fundamentally different from those with finite nor-
closure of an arbitrary orb(t19]. [ | mal form, and this leads to the generalization of Whelass

Let us now return to the general Theorem 1. This theorento arbitrary dimensions.
is very fundamental in that it states that each pure multipar- It thus happens that some states have normal form equal
tite state can be transformed into a unique state with théo 0. This also happens if the state does not have full support
property that all local-density operators are proportional toon the Hilbert space in that one partial trageis rank defi-
the identity. States in the normal form are clearly expected tgient. Note that states which do not have full support on the
be maximally entangled states. As we will argue later, theHilbert space, such as pure states from which one party is
normal form is the state with the maximal amount of en-fully separable, all have normal form equal to zero. It will
tanglement that can be created locally and probabilisticallindeed turn out that the amount of multipartite entanglement
from the original state. present in a state can be quantified by the trace of the ob-

Let us next prove that the normal form is continuous withtained normal form, which is clearly zero in the case of sepa-
respect to perturbations of the entries of the original densityable states. On the other hand, the only normalized states
matrix p. First of all, note that the nonuniqueness due to thethat are already in normal form are precisely the maximally
local unitaries can be circumvented by imposing/alto be  entangled states. In the case of three qubits, for example, the
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only state with the property that all its local-density operatorsquantities under determinant 1 SLOCC operations. These
are proportional to the identity is the GHZ state. guantities seem to be related to hyperdeterminfh®sly,

As a last remark, we give an example of a state that isand latter seem to be a subclass of the quantities considered
brought into a nonzero normal form by SLOCC operatorshere.

that are unbounded: Consider, for example, the case of two qubits. The quan-
tity
|#)=a(|0000 +|111D) +|01)(|10)+]01).  (2)
The normal form is just given by the GHZ statfQ00 iljlzizjz P15 Vi, €000,€0 0,

+/1111), but as can be derived from the results presented

in Ref. [14], infinite SLOCC transformations are needed tojs clearly of the considered class, and it happens to be the
reach this. celebrated concurrence entanglement meafldg In the

case of three qubits, the simplest nontrivial homogeneous

[1l. ENTANGLEMENT MONOTONES quantity invariant under determinant 1 SLOCC operations is

. ) given by
Until now we contented ourselves to characterize the or-

bits generated by local unitary or SLOCC operations, but we |, J.
have not tried to quantify the entanglement present in a state. '
The SLOCC normal form introduced in the preceding sec{Note that we use the Einstein summation conventidhis
tion, however, gives us a strong hint of how to do this. Notehappens to the square root of the 3-tangle for three qubits

that all separable states have a normal form equal to zergatroduced by Wootterst al. [10], which quantifies the true
and that the known maximally entangled states such as Beffipartite entanglement.

states and GHZ states are the Only ones of their class which More genera”y, as the considered entang|ement mono-
are in normal form. This suggests a very general way Otones are invariant under the determinant 1 SLOCC opera-
constructing entanglement monotones. tions, the number of independent entanglement monotones is
Theorem 2.Consider a linearly homogeneous positive equal to the degrees of freedom of the normal form obtained
function of a pure(unnormalizedl stateM (p=|#)(#|) that  in the case of a pure state minus the degrees of freedom
remains invariant under determinant 1 SLOCC operationsinduced by the local unitary operations. Indeed, this is the
ThenM(|#)(¢]) is an entanglement monotone. amount of invariants of the whole class of states connected
Proof. A quantity M(p) is an entanglement monotone iff by SLOCC operations. It is then easily proven that a normal
its expected value does not increase under the action of evefgrm is equal to zero if and only if all the considered en-
local operation. It is therefore sufficient to show that for tanglement monotones are equal to zero. The entanglement

12
ky Y11 ko Wi gka ¥ 44k 4 i 1o €i5i4 €11 2 €151 4 €k kg €k2k4| '

every IocaIAlslNl, Kl: \ /|N1_A1A1, it holds that monotones are homogeneous functions of the normal form,
and if the normal form is not equal to zero, there always
M(p)=Tr(A;@)p(A;2D)T), exists an SLOCC invariant quantity that is different from
zero.
T In the case of four qubits, for example, parameter count-
| Tr((Ar@Dp(Ar@1)Y), ing leads to (X 2*—2)—4X6=6 (a state has 32 degrees of
Tr(Ar@)p(Ar®1)7) freedom —two to an irrelevant phase and the four SCY2,

matrices have each six degrees of freegflamdependent en-

(A1) p(Ao)T tanglement monotones. The simplest monotone is given by

Tr(A@1)p(Ar@1)")

|1 kgl W1 ol 1415 €l41, €k €11 (3

If A, is full rank, it can be transformed into a determinant
1 matrix by dividing it by detf;)*Nt. Due to the homoge-
neity of M (ap)=aM/(p), the previous inequality is equiva-

lent to V2|9 dakaly Yigi kol o Yii gkal s i 4 gkl
M(p)=[| et A)|?M1+] detAy)[*MIM (p). X € i, €i

and the other five entanglement monotones can be obtained
by including more factors; an example is

3i46'1'26'3'461113612j46k1k36k2k4|1/2' )

As the arithmetic mean always exceeds the geometric meafyese are clearly generalizations of the concurrence for two
this inequality is always satisfied. This argument can be eag;ypits and the 3-tangle for three qubits to four parties. Note,
ily completed to the cases whe#g is not full rank due to  powever, that the situation here is more complicated due to
continuity. The same argument can then be repeated for aghe existence of multiple independent entanglement mono-
otherA;, which ends the proof. B tones. Note also that there exist biseparable states that can be

Entanglement monotones of the above class can readilyrought into a nonzero normal form by determinant 1

be constructed using the completely antisymmetric tenso§| 0CC operations. Consider, for example, the tensor prod-

i Indeed, it holds thalA; j Ai,i ---Aij €,.--jy  uct of two Bell states; all local-density operators are propor-
=det(A)e ..., and as de#)=1, this leads to invariant tional to the identity, the value of the entanglement mono-
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tones(11) and(12) is, respectively given by 1 and 2 [as Let us finally give a nontrivial example of an entangle-
opposed to 1 and 1 for the GHZ state]0G00 ment monotone of the considered class in the case of three
+]1112)/4/2], and, nevertheless, no true 4-partite entanglequtrits:
ment is present.

If the subsystems happen to be of unequal dimensions,
then the respective subdimensions should be chosen not V2 2 i i g Vi Visisks Vi o
larger than the maximal allowed dimension such that all 113
local-density operators remain full rank. In &2 XN sys-
tem, for example, a pure state can only have full support on
the 2x2X 4 subspace, and therefore it makes no sense to 3 ,
calculate the normal form withN>4. One can always first The other (2¢3°-1)—(3x16)-1=4 independent en-
transform theN-dimensional system into a four-dimensional ©&nglément monotones can again be constructed by including
one by local unitary operations, and proceed by calculating°re factors.
the normal form for the X2x 4 system. More generally, if
the dimension of the largest subsystem does not exceed the IV. OPTIMAL FILTERING
product of all the other ones then generically the normal
form will not be equal to zero, leading to nontrivial entangle-
ment monotones. As an example, consider>a2x 4 sys-
tem; there are more local SLOCC parameters than the nu
ber of degrees of freedom, so there will be only one
entanglement monotonés is the case in the 2 and
2X2X2 cases The 2<X2X 4 tangle is given by

€i1i5i3€1 4516111214 €151 51 6 k1kske Ekoksky

A natural question now arises: characterize the optimal
SLOCC operations to be performed on one copy of a multi-
rTP_artite system such that, with a nonzero chance, a state with
maximal possible multipartite entanglement is obtained. This
question is of importance for experimentalists as in general
they are not able to perform joint operations on multiple
copies of the system. Therefore, the procedure outlined here
often represents the best entanglement distillation procedure

4 . . -
- . . - . that is practically achievable.
\[3 2 e Yo iises i In the preceding section, a whole class of entanglement
2 monotones that measures the amount of multipartite en-
X € tanglement were introduced. The following theorem can eas-

li26i3i4ej1]36j2j4€k1k2k3k4 : - -
ily be proved using the techniques of Theorem 1.

o ) Theorem 3.Consider a pure multipartite state, then the

The factor\/4/3 is included to ensure that the state in normaljgeg) filtering operations that maximize all entanglement
form monotones introduced in Theorem 2 are represented by op-
erators proportional to the determinant 1 SLOCC operations

(1000 +[01D)+[102 +113)/2 (5 that transform the state into its normal form.

) ) ) Proof. The proof of this theorem is surprisingly simple.
has tangle given by 1. Indeed, as will be shown in the fol-ndeed, all the quantities introduced in Theorem 2 are invari-
lowing section, the maximal value of the tangle is alwaysant under determinant 1 SLOCC operations if the states do
obtained for states in normal form, and this is the uniquenot get normalized. The value of an entanglement monotone,
state(up to local unitarieshaving all its local-density opera- however, only makes sense if defined on normalized states,

tors proportional to the identity. Note that this state is therexng due to the linear homogeneity of the entanglement
fore the generalization of the GHZ state t&2X4 systems.  monotones, the following identity holds:

For completeness, let us also give a formula for the
2X2X 3 tangle:

\BF 2 iy ki g o

a 11,01,k P15,00,kyPin,ja,k

4 P e e The optimal filtering operators are then obtained by{thg
X, ia ki e ksPi i o ke minimizing

13 Tr((®A)p(2iA)D). @)

114151561316 €i114 €205 €316 Ekakoks Chaksks

(®A)p(®iA)!
Tr(®;A)p(®;A)T)

_ M(p)
Tr(®A)p(®A))

X €;
But this problem was solved in Theorem 1, where it was
proved that thg A;} bringing the state into its normal form

The state maximizing this entanglement monot@the num- ~ Minimize this trace. _ u
ber is bounded by)lis the generalization of the GHZ state to |t IS therefore proved that thgeversiblg procedure of
the 2x 2% 3 case: washing out the local correlations maximizes the multipartite

entanglement as measured by the generalization of the
1 tangle. This is in complete accordance with the results of
_ (6) majorization[12], where it is shown that the notion of local

1
= 1112. _ 1onL.-
V3 disorder is intimately connected to the amount of entangle-

V3

1

J6

1

3

|000)+ —|01)+ —|101) +
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ment present. Therefore, we have supporting evidence to cdliree qubits. We have proven how to maximize the 3-tangle
pure states in normal form maximally entangled with relationfor three qubits, although we do not know how to calculate
to their SLOCC orbit. it.
Note that this optimal filtering procedure produces non-
trivial results even in the case of two qubits. It proves that
V. THE MIXED STATE CASE the concurrence for two qubits and therefore the entangle-
ment of formation of a mixed state of two qubits is maxi-

The normal form derived in Theorem 1 can readily be'" d by the SLOCC . brinai h . .
generalized to the case where the state is mixed, i.e., the caized by the SL operations bringing the state into its

where the density operator is a convex sum of pure statesnique(Bell diagona) normal form.
Indeed, nowhere in the proof of the theorem it was used that
the statep was pure; the same holds for the continuity for the VI. CONCLUSION

normal form. We have therefore proven. : . .
In conclusion, we presented a constructive way of bring-

Theorem 4Consider am; X NpX - - - XN mixed multi- 0" Ginoie copy of a quantum state into normal form under
partite state. Then this state can be brought into a norm;spg 9 by d

form by determinant 1 SLOCC operations, where the norm ocal filtering operations. This normal form is such that all

form has all local-density operators proportional to the iden-Ocal information is washed ou.e., the local-density opera-

tity and is unique up to local unitaries. Moreover, the trace oftorS are maximally mixed We presented qualitative and

. e : guantitative arguments why the amount of entanglement of
the normal form is the minimal one that can be obtained by : .
. . . “states in normal form cannot be enlarged by local operations,
determinant 1 SLOCC operations. If the SLOCC operations ;
. ; .~ "and introduced a whole class of entanglement measures

are chosen to be Hermitian, then the normal form is continu-

ous with respect to perturbations of the original state. which are a direct generalization of concurrence for two qu-

Note that if o is full rank. its normal form will never bits and 3-tangle for three qubits to systems of an arbitrary
p ' dimension. This sheds some light on the difficulty encoun-

converge to zero. The determinant of the density operator Bred in classifying, understanding, and unravelling the mys-

constant under SLOCC operations. . s
It is also possible to adopt the results of entanglementterles of multipartite quantum entanglement.

monotones. First of all, we extend the definition of an en-
tanglement monotong.,, which is defined on pure states ACKNOWLEDGMENTS
and is linearly homogeneous jnby the convex roof formal-

sm We are very grateful to E. Briand, J.-G. Luque, and J.-Y.

Thibon for pointing out the uniqueness of the normal form.

o= min S puo(lv) (8 APPENDIX: NORMAL FORMS UNDER LOCAL UNITARY
Hm(P — Pirtpl¥i7)- OPERATIONS

2 pil i) (wil=p I

i Consider a general multipartite state with parties de-
fined on an;®n,X - - - Xny, dimensional Hilbert space:

Here the optimization has to be done over all pure state de-
compositions of the state. The fact that the pure state en- lp)= > i li)]ig)- - |im). (A1)
tanglement monotone is linearly homogeneoug iensures TR im "
that ., is, on an average, not increasing under local opera-
tions, and therefore assures that, is an entanglement  In this appendix, we try to solve the following natural
monotone. Moreover, it is obvious that these entanglemeruestion: is there a method to verify if two statels) and
monotones are again invariant under determinant 1 SLOC@/»,) are equivalent up to local unitary transformations? In
operations. The results on optimal filtering for mixed stateghe bipartite case, this problem can readily be solved using
also readily apply, and therefore we arrive at the followingthe singular value decompositig®VD), and we therefore
very powerful result. ask for some kind of generalization of this diagonal normal
Theorem 5.The local filtering operations bringing a form. Let us state the following theorefsee also Carterett
mixed state into its normal form are exactly the ones thagl. [16]), which is a weak generalization of the SVD:
maximize the entanglement monotones that remain invariant Theorem 6.Given a general complex tensef
under determinant 1 SLOCC operations. with dimensionsi;=n,=- - - =n,,=n, then there exist local
This result is remarkable, because typically there does najinitariesU; such that all the following entries in the tensor
exist a way of actually calculating the value of an entangle-y’ =U,® .- - @U . are set equal to zero:
ment monotone defined on a mixed state. Finding the opti- ! "
mal pure state decomposition of a state unrelation to the
convex roof formalism for a given entomglement monotone
is excessively difficult and has until now only been proven ,
possible for the concurrence for two qubits. So, although we bij, k=0
cannot calculate the entanglement monotone, we know how
to maximize it. This particularly applies to mixed states of

V1$J$n, Vk>J(ﬂ],’]’ ’M’k=0,
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lﬁj’ ki =0 which indeed corresponds to the(n?—n) degrees of free-
R dom as the zeros are “complex.” The nonuniqueness of the
Yij.. =0 normal form obtained is surprising but can readily be verified

by implementing the algorithm on a generic tensor; typically,
Moreover, all entriesf;, , . in .. n.i=n, can be made the algorithm converges to one out of a finite number of
real and positive. If the number of parties exceeds two, thepossible different normal forms. |
the normal form is typically not unique up to permutations, As a first example, consider a system of three qubits. Un-
but there exist a discrete number of different normal formsolding the 2x2X 2 tensor in two Z 2 matrices, the follow-
with the aforementioned property. The number of zeros howing entries can always be made equal to zero:
ever can generically not be increased by further local unitary

operations. x 0\/0 x
Proof. Unlike the proof in Ref[16], this proof is con- ( 0 x) « x) ) (A3)
structive and can readily be translated into matlab code to
calculate the normal form numerically. First consider all en- , , o
tries with at leastn— 1 times 1 in its indices, and define the _ €ré.xis used to denote a nonzero entry. In this case, it is
m easy to see that four of the remaining five entries can be

vectors X—¢|11 et X—¢1.1 ETRR
=i, . . Define now a recursive algorlthm that goes as
follows. Rotatex to |[x*[1,0, . ..,0 by a unitary transfor-
mation, apply the same transformtion on the full tensor, an
definex®=y;; . ,with ¢ the transformed tensor. Now do
the same thing witx2, . . . x™ and then again witt, until
the algorithm converges This algorithm will certainly con-

made real by multiplying with appropriate diagonal local
unitaries. This is equivalent to the normal form obtained by
d’kcm et al. [17].

A more sophisticated example is th&«3 X 3 case, whose
normal form looks like

verge because at each step the (1,1,1) entry of ¢ be- x 0 0\ /0 x x\ [0 x X
comes larger and larger, unless all entries 0 x X x x 0 x 0 x . (A4)
(3,1,...,1,1,...,1) areequal to zero; moreover, its value 0 x x x 0 x < X X

is bounded above because the unitary group is compact. Next

exactly the same algorithm can be applied to the subtensor of Itis al traightf dt lize th ding th
¢ defined as the one with all entries larger than or equal to IS aiso straightforward to generalize the preceding theo-

two (it is easy to check that the zeros obtained in the fwst(rjem (and construccti\;e gga)flto ls%/s]'fems with (tjifferent sub-
step will remain zero by this kind of actibnNext we can imensions(see Cartereét al. [16] for an existence progf
again do the same thing with anoth@malle) subtensor, the algorithm of the preceding proof can readily be extended

proving that indeed all zeros quoted in the theorem can b o this case. Let us, for example, consider the normal form of
theNX2X2 case:
made.
It is straightforward to prove that the entries
Uon . nin ... nd=n, can all be made real and positive by
further diagonal unitary transformations.
Let us finally prove that no more zeros can be made by
whatever unitariegin the generic case This follows from

o O O O X
O X X X O
O O X X O
O O O x X

the fact that a unitaryyXn matrix hasn? continuous real (A5)
degrees of freedom, but that omiy—n of them can be used
to produce zeros as the otherdegrees of freedom can be
embedded in a diagonal unitary with just phases. Counting of
the number of zeros produced indeed leads to 0 0 0 0
m me
2 2 max(n—k,0) = n(n— 1 ' (A2) This case is of particular interest as it describes a state of two
=1 k= 2 qubits entangled with the rest of the world.
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