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Spin squeezing and pairwise entanglement for symmetric multiqubit states

Xiaoguang Wang and Barry C. Sanders
Department of Physics and Australian Centre of Excellence for Quantum Computer Technology, Macquarie University, Sydn

New South Wales 2109, Australia
~Received 3 February 2003; published 2 July 2003!

We show that spin squeezing implies pairwise entanglement for arbitrary symmetric multiqubit states. If the
squeezing parameter is less than or equal to 1, we demonstrate a quantitative relation between the squeezing
parameter and the concurrence for the even and odd states. We prove that the even states generated from the
initial state with all qubits being spin down, via the one-axis twisting Hamiltonian, are spin squeezed if and
only if they are pairwise entangled. For the states generated via the one-axis twisting Hamiltonian with an
external transverse field for any number of qubits greater than 1 or via the two-axis countertwisting Hamil-
tonian for any even number of qubits, the numerical results suggest that such states are spin squeezed if and
only if they are pairwise entangled.

DOI: 10.1103/PhysRevA.68.012101 PACS number~s!: 03.65.Ud, 03.67.2a
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I. INTRODUCTION

The spin squeezed states@1–20# are quantum correlate
states with reduced fluctuations in one of the collective s
components, with possible applications in atomic interfero
eters and high-precision atomic clocks. It is found that s
squeezing is closely related to and implies quantum
tanglement@21–23#. As there are various kinds of entangl
ment, a question naturally arises: what kind of entanglem
does spin squeezing imply? Recently, it has been found
for a two-qubit symmetric state, spin squeezing is equiva
to its bipartite entanglement@24#, i.e., spin squeezing implie
bipartite entanglement and vice versa. Here, we genera
the above result to the multiqubit case, and study relati
ships between spin squeezing and quantum entangleme

Specifically, we first show that spin squeezing impli
pairwise entanglement for arbitrary symmetric multiqu
states. If the squeezing parameterj2<1 ~defined below!, we
give a quantitative relation between the squeezing param
and the concurrence@25# for the even and odd states, whe
the concurrence is a measure of the degree of two-qubit
tanglement and even~odd! states refer to those where on
even ~odd! excitations contribute. We further consider th
multiqubit states dynamically generated from the initial st
with all qubits being spin down via~i! the one-axis twisting
Hamiltonian @1,26#, ~ii ! the one-axis twisting Hamiltonian
with an external transverse field@27#, and ~iii ! the two-axis
countertwisting Hamiltonian@1#. We prove that the state
generated via the first Hamiltonian are spin squeezed if
only if they are pairwise entangled. For the states gener
via the second Hamiltonian and third Hamiltonian with ev
number of qubits, numerical results for the squeezing par
eter and concurrence suggest that the spin squeezing im
pairwise entanglement and vice versa.

II. SPIN SQUEEZING AND PAIRWISE ENTANGLEMENT

A collection of N qubits is represented by the collectiv
operators
1050-2947/2003/68~1!/012101~6!/$20.00 68 0121
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s ia

2
, aP$x,y,z%, ~1!

wheres ia are the Pauli operators for thei th qubit. The col-
lective operators satisfy the usual angular-momentum c
mutation relations. Following Kitagawa and Ueda’s criteri
of spin squeezing, we introduce the spin squeezing param
@1#

j25
2~DSnW'

!2

J
5

4~DSnW'
!2

N
. ~2!

Here the subscriptnW' refers to an axis perpendicular to th
mean spin^SW &, where the minimal value of the varianc
(DS)2 is obtained,J5N/2, andSnW'

5SW •nW' . The inequality

j2,1 indicates that the system is spin squeezed.
To find the relation between spin squeezing and quan

entanglement, we first give the following lemma.
Lemma 1. For a symmetric separable state ofN qubits,

the correlation function̂s inW'
^ s jnW'

&>0, wherei and j can
take any values from 1 toN as long as they are different, an
s inW'

5sW i•nW'.

Proof.We first note that the expectation values^s inW'
& and

the correlation function̂s inW'
^ s jnW'

& ; iÞ j are independen
of indices due to the exchange symmetry. The symme
separable state is given by

rsep5(
k

pkr
(k)

^ r (k)
^ •••^ r (k) ~3!

with (kpk51. The correlation function̂s inW'
^ s jnW'

& over
the separable state can be obtained from the two-qubit
duced density matrix

r i j 5Tr$1,2, . . . ,N%\$ i , j %~rsep!5(
k

pkr
(k)

^ r (k), ~4!

yielding
©2003 The American Physical Society01-1
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^s inW'
^ s jnW'

&5(
k

pkTri j @~r (k)
^ r (k)!~s inW'

^ s jnW'
!#

5(
k

pk^s inW'

(k)
&^s jnW'

(k)
&

5(
k

pk^s inW'

(k)
&2>0. ~5!

j

From Lemma 1, we immediately have the followin
proposition.

Proposition 1. For an arbitrary symmetric multiqubi
state, spin squeezing implies pairwise entanglement.

Proof. Due to the exchange symmetry, we may write t
expectation valuêSnW'

2
& as

^SnW'

2
&5

1

4
@N1N~N21!^s inW'

^ s jnW'
&#. ~6!

Substituting the above equation into Eq.~2! leads to

j25
4^SnW'

2
&

N
511~N21!^s inW'

^ s jnW'
&. ~7!

The above equation shows that spin squeezing is equiva
to the negative pairwise correlation (^s inW'

^ s jnW'
&,0) @24#.

This equivalence relation and the above lemma directly le
to the proposition. j

Having shown the close relation between spin squeez
and pairwise entanglement, we now proceed to give a qu
titative relation between the squeezing parameter and
concurrence@25#. We consider an even~odd! pure or mixed
stater. The even~odd! state refers to the state for whic
only the Dicke states@28# un&J[uJ,2J1n& with even~odd!
n contribute. For examples, the pure even and odd states
given by

uC&e5 (
even n

cnun&J , uC&o5 (
odd n

cnun&J , ~8!

respectively. As we will see in the following section, the
states can be dynamically generated via a large clas
Hamiltonians, and can also be obtained as a superpositio
spin coherent states@20#.

For the even and odd states, we immediately have
following property:

^Sb&5^SzSb&5^SbSz&50, bP$x,y%. ~9!

Therefore, the mean spin is along thez direction. We assume
that the mean spin satisfies^Sz&Þ0.

With the mean spin along thez direction, we havenW'

5(cosu,sinu,0), and thus the operatorSnW'
can be written as

Su5SW •nW'5cosuSx1sinuSy . ~10!

So, the squeezing parameter becomes
01210
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j25
4

N
min

u
^Su

2&

5
2

N
min

u
@^Sx

21Sy
2&1cos~2u!^Sx

22Sy
2&

1sin~2u!^@Sx ,Sy#1&#

5
2

N
@^Sx

21Sy
2&2A^Sx

22Sy
2&21^@Sx ,Sy#1&2#

511
N

2
2

2

N
@^Sz

2&1u^S1
2 &u#, ~11!

where S65Sx6 iSy are the ladder operators, and@A,B#1

5AB1BA is the anticommutator for operatorsA andB.
From Eq. ~11!, we see that the squeezing parameter

determined by a sum of two expectation values^Sz
2& and

^S1
2 &, and hence the calculations are greatly simplified. T

larger the sum the deeper the spin squeezing. We also
that the squeezing parameter is invariant under the rota
along thez direction, i.e., the squeezing parameter forr is
the same as that fore2 iuSzreiuSz.

Since the inequalitŷSz
2&<N2/4 always holds, we obtain a

lower bound for the squeezing parameter

j2>12
2

N
u^S1

2 &u. ~12!

From the above equation, we read that ifu^S1
2 &u50, then the

squeezing parameterj2>1, which implies that a necessar
condition for spin squeezing of the even and odd state
u^S1

2 &uÞ0. A direct consequence of this necessary condit
is that the Dicke stateun&J exhibits no spin squeezing sinc
u^S1

2 &u50. The associated squeezing parameter is given

j2511
2n~N2n!

N
>1. ~13!

However, the Dicke states can be pairwise entangled@29#
even though they are not spin squeezed.

Spin squeezing is related to pairwise correlations, a
negative pairwise correlation is equivalent to spin squeez
@24#. Then, for our even and odd states, we have the follo
ing proposition.

Proposition 2. A necessary and sufficient condition fo
spin squeezing of even and odd states is given by

uuu2y5u^s i 1 ^ s j 1&u1
^s iz^ s jz&

4
2

1

4
.0, ~14!

where

u5^s i 1 ^ s j 1&, y5
1

4
~12^s iz^ s jz&!. ~15!

Proof. By considering the exchange symmetry, we hav

^S1
2 &5N~N21!u, ^Sz

2&5
N2

4
2N~N21!y. ~16!
1-2
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Substituting the above equation into Eq.~11!, we rewrite the
squeezing parameter as

j25122~N21!~ uuu2y!5122~N21!F u^s i 1 ^ s j 1&u

1
^s iz^ s jz&

4
2

1

4G . ~17!

We see that spin squeezing is determined by the two co
lation functionŝ s iz^ s jz& and^s i 1 ^ s j 1&. From Eq.~17!,
we obtain the proposition. j

The two correlation functionŝ s iz^ s jz& and ^s i 1
^ s j 1& can be obtained from the reduced density ma
r i j 5Tr$1,2, . . . ,N%\$ i , j %(r). The reduced density matrix with
the exchange symmetry is given by@29#

r i j 5S v1 x1* x1* u*

x1 y y x2*

x1 y y x2*

u x2 x2 v2

D ~18!

in the standard basis$u00&,u01&,u10&,u11&%. The following
lemma on the reduced density matrix is useful for later d
cussions.

Lemma 2. The matrix elements ofr i j can be determined
by

v65
N222N14^Sz

2&64^Sz&~N21!

4N~N21!
,

x65
~N21!^S1&6^@S1 ,Sz#1&

2N~N21!
,

y5
N224^Sz

2&
4N~N21!

, u5
^S1

2 &
N~N21!

. ~19!

Proof. The matrix elements can be represented by the
pectation values of Pauli spin operators of the two qubits.v6

andx6 are given by

v65
1

4
~162^s iz&1^s iz^ s jz&!,

x65
1

2
~^s i 1&6^s i 1 ^ s jz&!, ~20!

andu andy are given by Eq.~15!.
Due to the exchange symmetry, we have

^s ia&5
2^Sa&

N
, ^s i 1&5

^S1&
N

, ^s ias j a&5
4^Sa

2&2N

N~N21!
,

^s ixs jy&5
2^@Sx ,Sy#1&

N~N21!
, ^s i 1s jz&5

^@S1 ,Sz#1&
N~N21!

.

~21!
01210
e-
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From Eqs.~20! and ~21!, we may thus express the matr
elements ofr12 in terms of the expectation values of th
collective operators. j

The concurrence quantifying the entanglement of a pai
qubits can be calculated from the reduced density matrix
is defined as@25#

C5l12l22l32l4 , ~22!

where the quantitiesl i are the square roots of the eigenva
ues in descending order of the matrix product

%125r12~s1y^ s2y!r12* ~s1y^ s2y!. ~23!

In Eq. ~23!, r12* denotes the complex conjugate ofr12. Note
that we did not use the max function in the above definit
of the concurrence@25#. Therefore, the negative concurren
implies no entanglement here.

Both the squeezing parameter and the concurrence
determined by some correlation functions. So, they may
related to each other. The quantitative relation is given b

Proposition 3. If j2<1 (uuu>y) for even and odd
states, then

j2512~N21!C. ~24!

Proof. For our stater, from Eq. ~9! and Lemma 2, it is
found thatx650. Therefore, the reduced density matrix b
comes

r i j 5S v1 0 0 u*

0 y y 0

0 y y 0

u 0 0 v2

D . ~25!

For this reduced density matrix~25!, the associated con
currence is given by@29#

C5H 2~ uuu2y! if 2 y<Av1v21uuu,

2~y2Av1v2! if 2 y.Av1v21uuu.
~26!

If uuu>y, we have

2y<2uuu<uuu1Av1v2, ~27!

where we have used the fact

v1v2>uuu2, v6>0. ~28!

Then, the concurrence~26! simplifies to

C52~ uuu2y!. ~29!

By comparing Eqs.~17! and~29!, we obtain the proposition
j

1-3
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According to Proposition 3, we have

C5H 0 if j251

12j2

N21
.0 if j2,1,

~30!

from which we read that~i! if the squeezing parameterj2

51 ~no squeezing! for even and odd states, then the conc
rence is zero~no entanglement!; and ~ii ! if j2,1, there is
squeezing, then we have a one-to-one relation between
spin squeezing and the pairwise entanglement. However
the case ofj2.1, the concurrence can be positive, and
cannot haveC,0 as exemplified earlier by the Dicke stat
~Dicke states are simplest cases of even and odd states!. Al-
though the squeezing parameterj2.1 implies C,0 is not
valid in general, in the following section we will observe th
for some even and odd states the squeezing parametej2

.1 does implyC,0, thereby establishing an equivalen
between the pairwise entanglement and the spin squeez

III. HAMILTONIAN EVOLUTION

Now we consider a class of states dynamically genera
from u0&J via the following Hamiltonian (\51):

H5mSx
21xSy

21g~SxSy1SySx!1 f ~Sz!, ~31!

with f being a function ofSz . When

x5g5 f ~Sz!50 ~32!

and

m5x5 f ~Sz!50, ~33!

the Hamiltonian reduces to the one-axis twisting Ham
tonian @1,26# and the two-axis countertwisting Hamiltonia
@1#, respectively. When

x5g50, f ~Sz!5VSz , ~34!

Hamiltonian H reduces to the one considered in Re
@27,30–34#, namely, the one-axis twisting Hamiltonian wit
a transverse field. The one-axis twisting Hamiltonian@1# may
be realized in various quantum systems including quan
optical systems@26#, ion traps@35#, quantum dots@36#, cav-
ity quantum electromagnetic dynamics@37#, liquid-state
nuclear magnetic resonance system@38#, and Bose-Einstein
condensates@11,21#. Experimentally, it has been imple
mented to produce four-qubit maximally entangled state
an ion trap@39#.

The Hamiltonian exhibits a parity symmetry,

@eipSz,H#5@~21!N,H#50, ~35!

whereN5Sz1J is the ‘‘number operator’’ of the system an
(21)N is the parity operator. In other words, the Ham
tonian is invariant underp rotation about thez axis. The
symmetry can be easily seen from the transformation
01210
-

he
or

g.

d

-

.

m

in

eipSz~Sx ,Sy ,Sz!e
2 ipSz5~2Sx ,2Sy ,Sz!. ~36!

We assume that the initial density operator is chosen to

r~0!5u0&J^0u, ~37!

where u0&J5u1& ^ u1& ^ •••^ u1& and stateu1& denotes the
ground state of a qubit. The density operator at timet is then
formally written as

r~ t !5e2 iHtr~0!eiHt . ~38!

The parity symmetry ofH in Eq. ~35! leads to the usefu
property given by Eq.~9!. For example,

^Sx&5Tr@Sxe
2 iHtr~0!eiHt #

5Tr@Sxe
2 iHte2 ipSzr~0!eipSzeiHt #

5Tr@eipSzSxe
2 ipSzr~ t !#

52^Sx&. ~39!

From another point of view, the stater(t) is an even state
since the Hamiltonian is quadratic in generatorsSx and Sy
and the initial state is an even state. Then, Eq.~9! follows
directly. Since stater(t) is an even state, we may apply th
results in the preceding section. Next, we consider three
resentative model Hamiltonians for generating spin sque
ing, which are special cases of HamiltonianH.

A. One-axis twisting Hamiltonian

We first examine the well-established one-axis twisti
model @1,26#,

H15mSx
2 , ~40!

for which we have the following lemma.
Lemma 3. For the state dynamically generated fromu0&J

via the one-axis twisting Hamiltonian, we always havej2

<1.
Proof. From the results of Refs.@1,29#, we have the fol-

lowing expectation values (m̄52mt):

^Sx
2&5N/4,

^Sy
2&5

1

8
@N21N2N~N21!cosN22m̄#,

^Sz
2&5

1

8
@N21N1N~N21!cosN22m̄#. ~41!

Then, we obtain a useful relation for density operatorr(t) at
any timet,

^Sx
22Sy

2&5^Sz
2&2N2/452N~N21!y, ~42!

where we have used Eq.~19!. From the above equation, w
obtain
1-4
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uuu25
1

N2~N21!2
~^Sx

22Sy
2&21^@Sx ,Sy#1&2!>

^Sx
22Sy

2&2

N2~N21!2

5y2, ~43!

which implies uuu>y at any time~note thaty>0). There-
fore, the squeezing parameter always satisfiesj2<1. j

Then, from Proposition 3 and Lemma 3, we obtain t
following proposition.

Proposition 4. For the state dynamically generated fro
u0&J via the one-axis twisting Hamiltonian, it is spi
squeezed if and only if it is pairwise entangled. Hence s
squeezing and pairwise entanglement are equivalent for
a state.

At times for whichC50, the state vector is either a prod
uct state or anN-partite (N>3) maximally entangled stat
@35,39# which has no pairwise entanglement, and thus
spin squeezing.

B. One-axis twisting Hamiltonian with a transverse field

We consider the one-axis twisting model with an exter
transverse field described by the Hamiltonian

H25mSx
21VSz , ~44!

whereV.0 is the strength of the transverse field. In gene
this model cannot be solved analytically. Numerical resu
show that the squeezing parameterj2<1 for the dynamically
generated state exp(2iH2t)u0&J @27#. We perform numerical
calculations forN from 2 to 100 qubits, for different value
of V and m51, which indeed display the inequalityj2

<1. Therefore, according to Proposition 3, these numer
results suggest that spin squeezing implies pairwise entan
ment and vice versa for states generated fromu0&J via Hami-
tonianH2. In the limit of V→0, the result of this section, o
course, reduces to that of the preceding one.

C. Two-axis countertwisting Hamiltonian

Finally, we examine the two-axis countertwisting mod
described by Hamiltonian

H35
g

2i
~S1

2 2S2
2 !. ~45!

For the state generated fromu0&J via HamiltonianH3, the
squeezing parameter can be larger than 1. The nume
results forN from 2 to 100 andg51 suggest that the relatio
~24! holds for evenN,

C55
0 if j251,

12j2

N21
.0 if j2,1,

12j2

N21
,0 if j2.1.

~46!
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The above equation displays an equivalence relation betw
spin squeezing and pairwise entanglement for states ge
ated fromu0&J via HamiltonianH3 with evenN. The case of
N56 is demonstrated in Fig. 1, where the plots of the s
squeezing parameter and the concurrence against timet are
shown. We make a conjecture that the spin squeezing
pairwise entanglement are equivalent for the states gener
via the one-axis twisting Hamiltonian with an external tran
verse field for any numberN>2 or via the two-axis coun-
tertwisting Hamiltonian for any even number of qubits.

IV. CONCLUSIONS

In conclusion, we have shown that spin squeezing imp
pairwise entanglement for arbitrary symmetric multiqu
states. We have identified a large class of multiqubit sta
i.e., the even and odd states, for which the quantitative r
tion of the spin squeezing parameter and the concurrenc
given. We have proved that spin squeezing implies pairw
entanglement and vice versa for the states generated
u0&J via the one-axis twisting Hamiltonian. For the stat
dynamically generated fromu0&J via the one-axis twisting
Hamiltonian with a transverse field for anyN>2 and the
two-axis countertwisting Hamiltonian with any evenN, nu-
merical results suggest that spin squeezing implies pairw
entanglement and vice versa. As these three model Ham
nians have been realized in many physical systems, the c
relations between the spin squeezing and pairwise entan
ment are meaningful and help to understand quantum co
lations in these systems.
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FIG. 1. The spin squeezing parameter and the concurre
against timet for six qubits. The parameterg is chosen to be 1.
1-5
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