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Spin squeezing and pairwise entanglement for symmetric multiqubit states
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We show that spin squeezing implies pairwise entanglement for arbitrary symmetric multiqubit states. If the
squeezing parameter is less than or equal to 1, we demonstrate a quantitative relation between the squeezing
parameter and the concurrence for the even and odd states. We prove that the even states generated from the
initial state with all qubits being spin down, via the one-axis twisting Hamiltonian, are spin squeezed if and
only if they are pairwise entangled. For the states generated via the one-axis twisting Hamiltonian with an
external transverse field for any number of qubits greater than 1 or via the two-axis countertwisting Hamil-
tonian for any even number of qubits, the numerical results suggest that such states are spin squeezed if and
only if they are pairwise entangled.
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I. INTRODUCTION

N
Oia
Saz_z 7' ae{x,y,z}, (1)
The spin squeezed statgs-20] are quantum correlated =1

states with reduced fluctuations in one of the collective SPNyhere o, are the Pauli operators for thigh qubit. The col-

components, with possible applications in atomic interferomyg tiye gperators satisfy the usual angular-momentum com-
eters and high-precision atomic clocks. It is found that spinyation relations. Following Kitagawa and Ueda’s criterion

squeezing is closely related to and implies quantum engt 5nin squeezing, we introduce the spin squeezing parameter
tanglemen{21-23. As there are various kinds of entangle- [1]

ment, a question naturally arises: what kind of entanglement

does spin squeezing imply? Recently, it has been found that, 2(AS; )2 4(AS;)?

for a two-qubit symmetric state, spin squeezing is equivalent &= 3 —= N S (2

to its bipartite entanglemef24], i.e., spin squeezing implies

bipartite entanglement and vice versa. Here, we generghz'g'ere the subscript, refers to an axis perpendicular to the

the above result to the multiqubit case, and study relation- s o ,

ships between spin squeezing and quantum entanglement.M€an SPIN(S), where the minimal value of the variance
Specifically, we first show that spin squeezing implies(AS)? is obtained J=N/2, andS; =S-n, . The inequality

pairwise entanglement for arbitrary symmetric multiqubit £2<1 indicates that the system is spin squeezed.

states. If the squeezing paramefée 1 (defined beloy, we To find the relation between spin squeezing and quantum

give a quantitative relation between the squeezing parameté&htanglement, we first give the following lemma.

and the concurrend@5] for the even and odd states, where Lemma 1. For a symmetric separable stateMfqubits,

the concurrence is a measure of the degree of two-qubit edbe correlation functiofei; ® o5 )=0, wherei andj can

tanglement and evefodd) states refer to those where only take any values from 1 tN as long as they are different, and

even (odd) excitations contribute. We further consider the g—iﬁl:&i.ﬁl.

multiqubit states dynamically generated from the initial state  pgof. We first note that the ex

with all qubits being spin down viéi) the one-axis twisting

Hamiltonian[1,26], (ii) the one-axis twisting Hamiltonian

with an external transverse fie]@7], and (iii) the two-axis

countertwisting Hamiltoniarj1]. We prove that the states

generated via the first Hamiltonian are spin squeezed if and

only if they are pairwise entangled. For the states generated psei= > PrpM@pW@ ... @p® 3

via the second Hamiltonian and third Hamiltonian with even K

number of qubits, numerical results for the squeezing param-

eter and concurrence suggest that the spin squeezing impligvs',th ZiP=1. The correlation funCt'Omgirﬁ@UJﬁJ over

pairwise entanglement and vice versa. the separable state can be obtained from the two-qubit re-
duced density matrix

pectation valyes, ) and
the correlation functiorqm,i(@oj,t) Vi+| are independent

of indices due to the exchange symmetry. The symmetric
separable state is given by

II. SPIN SQUEEZING AND PAIRWISE ENTANGLEMENT Pij :Tr{l2 NI i j}(Psep):E pkp(k)®p(k), (4)
2, , -

A collection of N qubits is represented by the collective
operators yielding
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4
<0'iﬁi®0'jri>:2k pTrii[(pM @ p®) (oin ® a5 )] §2=Nmin<8§)
0
2
=2 ployy Xoi?) = NMinl(S+ ) + cog260)(S{— )
0
= poly)?=0. ©) Fomz0S S]]

2
= LS+ S = V(Si— 5P+ ([S. Sy 14)7]

From Lemma 1, we immediately have the following
proposition. 2

Proposition 1. For an arbitrary symmetric multiqubit =1+E—N[<S§>+|<SZ+>|], (11)
state, spin squeezing implies pairwise entanglement.

Proof. Due to the exchange symmetry, we may write theyyhere S.=S,*+iS, are the ladder operators, afé,B].
expectation valuésﬁ )y as =AB+BA is the anticommutator for operatofsandB.
. From Eq.(11), we see that the squeezing parameter is

&2 1 i ) determined by a sum of two expectation valy&s) and

( ﬁ): 2N+ N(N=1)(oir, @05 )] ©) (S2), and hence the calculations are greatly simplified. The
larger the sum the deeper the spin squeezing. We also see

Substituting the above equation into Eg) leads to that the squeezing parameter is invariant under the rotation

5 along thez direction, i.e., the squeezing parameter fors
AS;) the same as that fa 'Szpe' 7%,
£2= N 1+(N=1)(0i5 ®aj5 ). (7) Since the inequalityS?)<N?/4 always holds, we obtain a

lower bound for the squeezing parameter

The above equation shows that spin squeezing is equivalent 2

to the negative pairwise correlationo(i,;i®(rjﬁl><0) [24]. £=1- N|<Si>|' (12

This equivalence relation and the above lemma directly leads

to the proposition. B From the above equation, we read thg{ 82 )|=0, then the

Having shown the close relation between spin squeezinggueezing parameté?=1, which implies that a necessary
and pairwise entanglement, we now proceed to give a quansondition for spin squeezing of the even and odd states is
titative relation between the squeezing parameter and th|§52+>|¢0_ A direct consequence of this necessary condition
concurrencg25]. We consider an evefodd pure or mixed g that the Dicke statn); exhibits no spin squeezing since

statep. The even(odd state refers to the state for which S2)|=0. The associated squeezina parameter is given b
only the Dicke statef28] |n),=|J,—J+n) with even(odd (S2)1=0. g gp g y

n contribute. For examples, the pure even and odd states are ) 2n(N—n)
given by &=1+ N =1. (13

_ _ However, the Dicke states can be pairwise entan{gs]
¥)e= e%,ncnlrm’ |\If)0—c%;,ncn|n)J, ®) even though they are not spin squeezed.

Spin squeezing is related to pairwise correlations, and
respectively. As we will see in the following section, thesenegative pairwise correlation is equivalent to spin squeezing
states can be dynamically generated via a large class §24]. Then, for our even and odd states, we have the follow-
Hamiltonians, and can also be obtained as a superposition @fg proposition.
spin coherent statd20]. Proposition 2. A necessary and sufficient condition for

For the even and odd states, we immediately have thepin squeezing of even and odd states is given by
following property:
—y= +M — _>O

(8)=(S:85)=(SsS)=0, pefxyl. () ul=y=Kew @0+ === -2>0,
Therefore, the mean spin is along thdirection. We assume where
that the mean spin satisfiéS,)#0.

N 1
With the mean spin along the direction, we haven, u=(0i1®0j;), Y=-(1-(0,®0j,)). (15
=(cos#,sin6,0), and thus the operat§; can be written as 4

(14

o Proof. By considering the exchange symmetry, we have
Sp=S-n; =cosfS,+sinds, . (10 5

N
2\ _ _ 2\ _
So, the squeezing parameter becomes (Si)=N(N-Dju, (S,) 4 N(N=1)y. (1§
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Substituting the above equation into Efjl), we rewrite the From Egs.(20) and (21), we may thus express the matrix

squeezing parameter as elements ofp4, in terms of the expectation values of the
collective operators. |
The concurrence quantifying the entanglement of a pair of
2_1__ _ _ -1 — — X . . . .
E=1-2(N-1)(Jul-y)=1-2(N=-1)| (oj, ® 0} )| qubits can be calculated from the reduced density matrix. It

is defined ag25]
+<0'iz®(7jz> _ E

4 a4l (7

C=N1=Np—A3— Ay, (22

We see that spin squeezing is determined by the two corrggnere the quantities; are the square roots of the eigenval-

lation functions(ci,® aj,) and(ei @ oj.). From Eq.(17),  yes in descending order of the matrix product
we obtain the proposition. |

The two correlation functions(oi,®cj,) and (o,
®0cj,) can be obtained from the reduced density matrix
pii =Tl .. nnii(p). The reduced density matrix with
the exchange symmetry is given p39]

010= 1A T1y® 02y) pTA T1y® Opy). (23

In Eq. (23), p}, denotes the complex conjugate mf,. Note
that we did not use the max function in the above definition
* of the concurrencg25]. Therefore, the negative concurrence
implies no entanglement here.

Both the squeezing parameter and the concurrence are

vy X§i xiou
X,y y X
' \ (18)

Pii= X, y y Xt determined by some correlation functions. So, they may be
related to each other. The quantitative relation is given by
u X X- v- Proposition 3. If ¢2<1 (Ju/=y) for even and odd

tates, th
in the standard basi§00),/01),/10),]11)}. The following states, then

lemma on the reduced density matrix is useful for later dis-

. £=1-(N-1)C. (24)
cussions.
Lemma 2. The matrix elements qf;; can be determined o
by Proof. For our statep, from Eq.(9) and Lemma 2, it is
found thatx..=0. Therefore, the reduced density matrix be-
N2—2N+4(S2) = 4(S,)(N—1) comes
Ui - _ y
4AN(N—1) b, 0 0 u*
C(N=1)(S)*([S, .S, o y v O 25
== 2N(N—1) ’ PiTlo y y o
u 0 0 v_
N?—4(S}) (s%) 19
= U= ————. i ) . i
y 4AN(N—-1) N(N—1) For this reduced density matri25), the associated con-
currence is given by29]
Proof. The matrix elements can be represented by the ex-
pectation values of Pauli spin operators of the two qubits. 2(lul— it 2v=\o.0 +
andx.. are given by C= (Jul=y) it 2y=yv,o_lul (26)
2(y—+v,v_) if 2y>\v, v_+]|ul.
1
Ut:Z(1i2<0iz>+<‘7iz®0'jz>)a If lu=y, we have
1 2y<2|u|<=|u|+ v, v_, (27
Xe =5 ((012) =011 @ y)), (20 :
where we have used the fact
andu andy are given by Eq(15).
Due to the exchange symmetry, we have viv_=|ul? v.=0. (28
2(S,) (S4) 4(S2)—N Then, the concurrend@6) simplifies to
<Uia>_ N <0-i+>_ N <0-ia0-ja>_ N(N_l) '
C=2([u[-y). (29)
ooy XSS L ([S:S0)
Ty T TN(N=1) T T ON(N=L) By comparing Eqs(17) and(29), we obtain the proposition.
(21 |
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According to Proposition 3, we have e™%(S,,S,,S)e "=(-S,,-S,.S,). (36)
0 if &=1 We assume that the initial density operator is chosen to be
c={1-¢ . 30
S 50 p(0)=10)(0l, 37

_ o _ where |0);=|1)®|1)® - - -®|1) and state|1) denotes the
from which we read thati) if the squeezing parametéf  ground state of a qubit. The density operator at tirigsthen
=1 (no squeezingfor even and odd states, then the concur-formally written as

rence is zerdno entanglemeit and (i) if £€2<1, there is . ,

squeezing, then we have a one-to-one relation between the p(t)y=e Hip0)ett, (38
spin squeezing and the pairwise entanglement. However, for

the case of?>1, the concurrence can be positive, and we The parity symmetry oH in Eq. (35 leads to the useful
cannot have’<0 as exemplified earlier by the Dicke states Property given by Eq(9). For example,

(Dicke states are simplest cases of even and odd stétes _ imt iHt

though the squeezing paramet&r>1 implies C<0 is not (So=TrSe ™ p(0)e™]

valid in general, in the following section we will observe that _ iHt a7, 7S, it

for some even and odd states the squeezing pararg@ter =T Se e ™p(0)e e ]
>1 does implyC<0, thereby establishing an equivalence _ i7S,c aeinS,

between the pairwise entanglement and the spin squeezing. =Trle™=Se "p(1)]

lIl. HAMILTONIAN EVOLUTION =—(S0- (39

Now we consider a class of states dynamically generateli'om another point of view, the stajgt) is an even state

from |0); via the following Hamiltonian =1): since the Hamiltonian is quadratic in generat8fsand S,

and the initial state is an even state. Then, &.follows
H =M5>2<+XS§+ ¥(S,S,+S,S)+1(Sy, (32) directly. Since state(t) is an even state, we may apply the

results in the preceding section. Next, we consider three rep-

with f being a function ofS,. When resentative model Hamiltonians for generating spin squeez-
ing, which are special cases of Hamiltonien

x=y=1(S5,)=0 (32)
A. One-axis twisting Hamiltonian

and We first examine the well-established one-axis twisting

p=x=1(S,)=0, (33  Modelll26]

o o _ Hi=uS2, 40
the Hamiltonian reduces to the one-axis twisting Hamil- 1= 1S (40
tonian[1,26] and the two-axis countertwisting Hamiltonian ¢4, \which we have the following lemma.

[1], respectively. When Lemma 3. For the state dynamically generated frédj;
via the one-axis twisting Hamiltonian, we always hagfe
X=7=0! f(SZ)=QSZ! (34) gl

. . . . Proof. From the results of Ref$1,29], we have the fol-
Hamiltonian H reduces to the one considered in Refs.I . . lueSd— 2 i_ ]
[27,30—34, namely, the one-axis twisting Hamiltonian with 'OWing expectation valuesuy(=2ut):

a transverse field. The one-axis twisting Hamiltorliahmay

2
be realized in various quantum systems including quantum (S =N/,
optical system$26], ion traps[35], quantum dot$36], cav-
ity quantum electromagnetic dynamid87], liquid-state (S@: 1[N2+N—N(N—1)co§“‘2;]
nuclear magnetic resonance systg38], and Bose-Einstein 8 '

condensated11,21]. Experimentally, it has been imple-

mented to produce four-qubit maximally entangled states in 1 o

an ion trap|39]. (S;)=g[N*+N+N(N-1)cos' 2u]. (41)
The Hamiltonian exhibits a parity symmetry,

, v Then, we obtain a useful relation for density operait) at
[e7%,H]=[(-1)",H]=0, (39  any timet,

whereN=S,+J is the “number operator” of the system and (Si—S}y=(S2)—N?/4=—N(N-1)y, (42
(—1)V is the parity operator. In other words, the Hamil-

tonian is invariant underr rotation about thez axis. The where we have used E(L9). From the above equation, we
symmetry can be easily seen from the transformation obtain
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(Si—S)? ' ' R
N?(N—1)2 N?(N—1)2
=vy? (43) g

(S=S0?+([Sc.S,]+)D) =

Jul?=

which implies|u|=y at any time(note thaty=0). There- T doY /
fore, the squeezing parameter always satisffes1. | o b )
Then, from Proposition 3 and Lemma 3, we obtain theq- * « g f
following proposition. J oy TN /\
Proposition 4. For the state dynamically generated from + o VoY
|0); via the one-axis twisting Hamiltonian, it is spin v <N ,
squeezed if and only if it is pairwise entangled. Hence spin ~
squeezing and pairwise entanglement are equivalent for suc °
a state. c
At times for whichC=0, the state vector is either a prod- . . .
uct state or arN-partite (N=3) maximally entangled state : t

[35,39 which has no pairwise entanglement, and thus no
spin squeezing. FIG. 1. The spin squeezing parameter and the concurrence

against timet for six qubits. The parameter is chosen to be 1.

B. One-axis twisting Hamiltonian with a transverse field

[The above equation displays an equivalence relation between

spin squeezing and pairwise entanglement for states gener-

ated from|0), via HamiltonianH ; with evenN. The case of

> N=6 is demonstrated in Fig. 1, where the plots of the spin
Ho=uS+QS,, (44 squeezing parameter and t?le concurrence r?algainstttiime P

shown. We make a conjecture that the spin squeezing and

where()>0 is the strength of the transverse field. In generalpairwise entanglement are equivalent for the states generated

this model cannot be solved analytically. Numerical resultsjia the one-axis twisting Hamiltonian with an external trans-

show that the squeezing paramegés 1 for the dynamically  verse field for any numbeX=2 or via the two-axis coun-

generated state exp{H.t)|0); [27]. We perform numerical tertwisting Hamiltonian for any even number of qubits.

calculations forN from 2 to 100 qubits, for different values

of Q and =1, which indeed display the inequalit?

We consider the one-axis twisting model with an externa
transverse field described by the Hamiltonian

=1. Therefore, according to Proposition 3, these numerical IV. CONCLUSIONS
results suggest that spin squeezing implies pairwise entangle- _ _ S
ment and vice versa for states generated f{®jy via Hami- In conclusion, we have shown that spin squeezing implies

tonianH,. In the limit of Q—0, the result of this section, of Pairwise entanglement for arbitrary symmetric multiqubit
course, reduces to that of the preceding one. states. We have identified a Iarge class of multhublt states,
i.e., the even and odd states, for which the quantitative rela-
tion of the spin squeezing parameter and the concurrence is
given. We have proved that spin squeezing implies pairwise
Finally, we examine the two-axis countertwisting model entanglement and vice versa for the states generated from
described by Hamiltonian |0); via the one-axis twisting Hamiltonian. For the states
dynamically generated frorfD); via the one-axis twisting
Y o Hamiltonian with a transverse field for arly=2 and the
H325(3+_S—)- (49 two-axis countertwisting Hamiltonian with any evéh nu-
merical results suggest that spin squeezing implies pairwise
] o entanglement and vice versa. As these three model Hamilto-
For the state generated frof@), via HamiltonianHs, the  nians have been realized in many physical systems, the close
squeezing parameter can be larger than 1. The numericgl|ations between the spin squeezing and pairwise entangle-
results forN from 2 to 100 andy=1 suggest that the relation ent are meaningful and help to understand quantum corre-
(24) holds for everN, lations in these systems.

C. Two-axis countertwisting Hamiltonian

0 if  £2=1,
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