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Zero-temperature damping of Bose-Einstein condensate oscillations
by vortex-antivortex pair creation
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We investigate vortex-antivortex pair creation in a supersonically expanding and contracting quasi-two-
dimensional Bose-Einstein condensate at zero temperature. For sufficiently large-amplitude condensate oscil-
lations, pair production provides the leading dissipation mechanism. The condensate oscillations decay in a
nonexponential manner, and the dissipation rate depends strongly on the oscillation amplitude. These features
allow one to distinguish the decay due to pair creation from other possible damping mechanisms. An experi-
mental observation of the predicted oscillation behavior of the superfluid gas provides a direct confirmation of
the hydrodynamical analogy of quantum electrodynamics and quantum vortex dynamics in two spatial dimen-
sions.
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The process of electron-positron pair creation is well
tablished in quantum electrodynamics since the sem
work of Schwinger@1#. Later on, it became apparent that t
hydrodynamics of vortices in two-dimensional~2D! super-
fluids can be mapped onto 211D electrodynamics with vor-
tices playing the role of charged particles, and phonons
role of photons@2#. In this analogy, the superfluid densi
and the supercurrent act as the magnetic and electric field
the vortices whose circulation is the charge. The Schwin
vacuum breakdown is a phenomenon occuring whenever
electric field exceeds the magnetic field~in cgs units!, which
corresponds in the analogy to the instability of a superso
flow with respect to the spontaneous creation of vort
antivortex pairs from the superfluid vacuum.

Vortices in Bose-Einstein condensates have been obse
and studied experimentally intensely in the past couple
years, e.g., in Refs.@3–7#. Here, we suggest an experiment
a quasi-2D Bose-condensed gas revealing the existenc
irreversible condensate dynamics at zero temperature a
result of the Schwinger pair-creation instability. To argue t
vortex-antivortex pair creation is the dominant source of d
sipation, we use the fact that a quasi-2D Bose-Einstein c
densate~BEC! in a time-dependent harmonic trap has a p
culiar feature: There is a time dependent transformation~the
so-called ‘‘scaling transformation’’!, using which the prob-
lem can be exactly solved, because the time dependence
effectively be removed from the Hamiltonian@8–10#. This
scaling property also holds for linearized equations desc
ing the evolution of small density and phase perturbati
~Bogoliubov quasiparticle excitations!, propagating on top of
the moving superfluid. Therefore, initial perturbations can
grow and the instability mechanisms known from classi
hydrodynamics play no role@11#. This stability against per-
turbations implies that at very low temperatures, conden
oscillations are practically undamped~it has been measure
that the quality factorQ*2000 @12#!.

On the other hand, the superfluid velocity in the scal
solution grows linearly towards the condensate border, w
the local density decreases. Therefore, the outer region o
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cloud is always supersonic and, according to the Landau
terion for superfluidity, can host instabilities. Vortices a
nonlinear excitations above the superfluid ground state
that they are not protected by the scaling symmetry, wh
holds for linear excitations. Spontaneous vortex-antivor
pair creation, analogous to the Schwinger process, is anin-
trinsic instability mechanism and constitutes a source of d
sipation already at zero temperature, without any need fo
symmetry-breaking external perturbation.

In the following, we explicitly analyze the Schwinger in
stability of a supersonically expanding and contracting B
in a time-dependent quasi-2D harmonic trap. We show t
for sufficiently large condensate oscillations, vorte
antivortex pair production provides the dominant dissipat
mechanism. Furthermore, the condensate oscillations d
in a nonexponential manner and the dissipation rate depe
strongly on the oscillation amplitude. These features all
one to distinguish experimentally the decay due to pair c
ation from the previously studied damping mechanisms.
note that the suggested zero temperature damping me
nism is intrinsically different from that discussed in@10#,
where the dissipation is due to the energy transfer from
radial condensate motion to the longitudinal modes in
elongated cylindrically symmetric condensate. This mec
nism can only work if the condensate is sufficiently lon
whereas we confine ourselves to the case of a quas
sample, for which any motion along thez axis is suppressed

The analogy of 2D vortex dynamics with electrodynam
is most easily established by noting that the expression
the 2D Magnus forceFM52prez3(Ẋ2vs) leads to the
identification ofE5rvs3ez and B52rez with the ‘‘elec-
tric’’ and ‘‘magnetic’’ fields, by comparing with the Lorentz
forceFL5q(E1Ẋ3B). Here,Ẋ andvs are vortex and local
superflow velocities, respectively, andr is the local density.
The circulation (2p in our units with \5m51) is the
‘‘charge’’ q ~cf., e.g., Refs.@13–15#!. The self-energy of a
~widely separated! single vortex pair is 2Ev

052prL, with
L5 ln(R/ac), whereR is the size of the pair. We will use in
©2003 The American Physical Society02-1
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this expression for the pair energy that the vortex core siz
a dilute superfluid is given byac51/cs , where cs is the
speed of sound. The inertial rest mass of a vortex, stemm
from compressibility,mv5Ev

0/cs
2 , is ~for large condensates!

of ‘‘electrodynamical’’ origin: It stems from the self
interaction of a moving vortex, with the long-range flow a
density fields it induces inside the surrounding superfl
medium. Since the ‘‘electromagnetic’’ fields~the density and
velocity perturbations! represent ‘‘relativistic’’ particles
~phonons!, the vortex mass diverges if the velocity of th
accelerated vortex approaches the speed of sound, in
same manner in which the mass of a charged ultrarelativ
particle diverges in conventional electrodynamics. We
sume in what follows that other possible contributions to
vortex mass~see, e.g., the backflow mass contribution d
cussed in@16#! remain regular if the local superfluid velocit
approaches the speed of sound. These contributions
therefore subdominant for relativistically moving vortices

We consider a quasi-2D superfluid Bose gas in a tim
dependent isotropic harmonic trapping potentialV(x,t)
5 1

2 v2(t)(x21y2), with x5(x,y). It is a well-established
fact that the hydrodynamic solution for density and veloc
of motion in a harmonic potential with arbitrary time depe
dence may be obtained from a given initial solution by
scaling procedure@8,9#. Defining the scaled coordinate ve
tor rb5x/b, the rescaled density and velocity are given b

r~x,t !5
1

b2
s~rb!5

r0

b2 S 12
r b

2

R0
2D , ~1!

vs~x,t !5
ḃ

b
x. ~2!

Here, we assume the superfluid to be described initi
within the Thomas-Fermi~TF! approximation~that is, the
condensate is large enough to neglect the quantum press!,
r0 is the initial central density, andR0 the initial TF radius,
such thatR5R(t)5b(t)R0 is the instantaneous TF radius
the cloud. The energy functional has in the TF approximat
the form

E~b,ḃ!5
1

2b2E d2rbF S v21
ḃ2

b2D b4r b
2s1gs2G , ~3!

with g the interaction strength, which depends in the pres
quasi-2D case on the tight confinement in thez direction and
on the density of the condensate@17#. This leads to an effec
tive Hamiltonian for the dynamical variableb,

E~b,ḃ!5S a

2
ḃ21

a

2
v2~ t !b21

b

2b2D , ~4!

wherea5pr0R0
4/6 andb5pr0

2gR0
2/3.

Consider a situation in which the external trap frequen
is changed fromv in to v f!v in , on a time scale much les
than the inverse initial trap frequency. As a consequence
gas undergoes a large-amplitude monopole oscillation w
frequency 2v f @18#. At sufficiently low temperatures~below
01160
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the Kosterlitz-Thouless temperature!, the initial state of the
superfluid contains bound vortex-antivortex pairs, i.e., to
logical excitations, which can be unbound by the action
the Magnus force in the~time dependent! supersonic flow
region. Indeed, for an oscillating condensate, there exis
region, the border of which is called horizon~cf. Fig. 1!,
where the superfluid velocity magnitudevs is larger than the
local sound velocitycs5Agr. The speed of sound is ex
ceeded at thehorizon radius

H~ t !5
b~ t !R0

Ag2~ t !11
, ~5!

whereg5A2ḃb/v in .
Beyond the horizon, the vortices and antivortices get

celerated during condensate evolution and separate at
superflow velocities larger than that of sound. This is ana
gous to the Schwinger pair-creation process in quantum e
trodynamics. It is important to recognize that the flow w
consider is inhomogeneous and time dependent by def
Consequently, the argument that there is no pair-crea
possible because one can always use the underlying Gal
invariance to ‘‘transform away’’ the background flow, doe
not apply to our situation.

In a simple model of the 211D vacuum pair-creation in-
stability, which exploits directly the analogy to Schwing
pair-creation in quantum electrodynamics, the pair prod
tion rateG per unit area can be written as@19#

G5
1

4p2cs
2
F 3/4(

n51

`
~21!n11

n3/2
expS 2

pn~Ev
0!2

AF D , ~6!

where we have definedF5E2cs
22B2cs

4 and set, within loga-
rithmic accuracy, the vortex pair size inEv

0 equal to the
Thomas-Fermi radius of the condensate. The above rela
holds for locally supersonic motion, i.e., ifuEu/uBu.cs (F
.0). The value of the prefactor in front of the exponential
the above expression is subject to changes which are du
the microscopic details of vortex motion. We display
value, stemming from taking literally the analogy to quantu
electrodynamics also on the level of quantum fluctuations~to
one loop order!, for numerical concreteness. However, t
behavior ofG for uEu/uBu*cs is dominated by the hydrody

FIG. 1. An oscillating, cylindrically symmetric quasi-2D con
densate. The shaded region designates the region of space in w
the speed of sound is exceeded by the oscillating condensate
vortex pair creation takes place;H5H(t) is the horizon location
andR5R(t) the Thomas-Fermi radius of the condensate.
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namical exponent, whose value is independent of mic
scopic physics, and specifically by then51 term in the
above sum.

Assuming that the vortex density is low, the energy dis
pation rateė is obtained by multiplying Eq.~6! by the rest
energy of the widely separated vortices 2Ev

0 , and integrating
over the area of the TF domain. This results in

ė5
g1/2Lr0

3R0
2

2b4

g8

~g211!13/4
FS L2

g

1

Ag211
D , ~7!

where we introduced the function

F~l!5(
n

~21!n11

n3/2 E
0

1

dhh3/4~12h!9/4

3exp@2pnlA~12h!/h#. ~8!

Sinceg is proportional toḃb, the Schwinger dissipation rat
~7! can give rise to a measurable effect only if the condens
oscillation amplitude is sufficiently large, which impliesv f
!v in . In order to provide some analytical results, we co
sider a simple quasistationary perturbation-theory appro
Consequently, we assume that the dissipation rate is s
and therefore the energy of the system in Eq.~3! is a slowly
varying function within each oscillation period. Then, th
equation of motion for the scaling parameterb can be found
from

d

dt
E~b,ḃ!52 ė. ~9!

In the absence of dissipation (ė50), the range ofb is be-
tween bmin51 and bmax5vin /v f . Sincebmin51!bmax, we
can approximately setbmin.0. One can then writeg2

52(v f
2/v in

2 )b2(bmax
2 2b2). In a dilute gas, in the TF limit, the

argument ofF is large,L2@gAg211, and the dynamica
equation~9! for b takes the simpler form

b̈1v f
2b2

v in
2

b3
52

D
v in

5
ḃ7b4, ~10!

where the constant

D5
48

p8

g7/4AgN

~ ln@4AgN/p#!11/2 (
n

~21!n11

n8
. ~11!

Using Eq. ~10!, bḃ can be expressed in terms ofb only,
b2ḃ25v f

2b2(bmax
2 2b2). The oscillation energy lost in a pe

riod is then given by

I E5
7p

1024
D

v f
7

v in
5

bmax
12 . ~12!

The energy decrease rate forbmax is obtained from the equa
tion
01160
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-
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dt
E~bmax!5

v f

p
I E . ~13!

Thus, one obtains for the oscillation peak value the followi
expression:

bmax~ t !5
bmax~0!

@11D8bmax
10 ~0!v f t#

1/10
, ~14!

where D85 35
512(v f /v in)

5D. Our perturbation-theory ap
proach is valid as long asbmax

10 (0)D8!1.
The damping of condensate oscillations due to vort

antivortex pair creation is represented in Fig. 2, where
show the numerical solution of the dynamical equation~10!
~gray solid line!, the approximate solution for the peak am
plitude ~black solid line!, and for comparison the free osci
lation without pair creation~dashed line!. The parameters
used in the numerical integration for the plot areN5104,
g51, and for the final trapping frequencyv f50.1v in .
These parameters are consistent with the argument ofF be-
ing large,L2@gAg211, so that Eqs.~10!–~14! hold. The
envelopebmax(t) is seen to decay very slowly and in a no
exponential manner, governed by the TF exponent1

10 in Eq.
~14!. For realistic parameters, we conclude from Fig. 2 th
an observable damping effect for the condensate oscillat
is obtained.

The scaling parameter evolution can be described by
~9! only for sufficiently short times when the total density
vortices produced is still low. At later times, the vorte
antivortex plasma can decrease the superfluid current in
same way as the electron-positron plasma can screen
electric field. This is an interesting collective effect, whic
however requires a more elaborate treatment.

We described an intrinsic damping mechanism for lar
amplitude condensate oscillations in a quasi-2D Bose ga

FIG. 2. Damping of condensate oscillations due to vorte
antivortex pair creation, withN5104, g51, and v f50.1v in ,
where the radiusR is in units of the original Thomas-Fermi sizeR0.
The black solid line is the envelopebmax from Eq. ~14!. The gray
solid line is the damped breathing mode oscillation obtained fr
numerically solving Eq.~10!. For comparison, the dashed line re
resents the oscillation of the superfluid gas without pair crea
taking place.
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zero temperature. The dissipation originates from sponta
ous creation of vortex-antivortex pairs and depends on
shape and dynamics of the supersonic flow region. The
sults we presented therefore depend strongly on the osc
tion amplitude. This feature can be used to distinguish
effects of pair production from other possible dissipati
mechanisms. The scaling solution not only exists for the d
cussed monopole modes, but also for quadrupole osc
tions, so that, e.g., effects resulting from a rotating superfl
on the pair-creation process may be studied. Observatio
the predicted oscillation behavior of the superfluid gas p
vides a direct confirmation of the hydrodynamical analogy
quantum electrodynamics and quantum vortex dynamic
two spatial dimensions, and would put this analogy to its fi
real experimental test. Such confirmation would, then, g
further motivation to the program of studying analogies b
tween high-energy physics, cosmology, and condens
matter systems@20#.
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The outlined mechanism for dissipation is not confined
quasi-2D samples. In strong elongated 3D condensates
scaling solution also applies, and the vorticity is generated
the form of vortex rings, with the total vorticity integrate
over the sample volume still zero. However, as already m
tioned above, for a 3D condensate the effect of vortex r
creation can be masked by possibly stronger damp
mechanisms, such as the parametric resonance discuss
Ref. @10#.
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