RAPID COMMUNICATIONS

Zero-temperature damping of Bose-Einstein condensate oscillations
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We investigate vortex-antivortex pair creation in a supersonically expanding and contracting quasi-two-
dimensional Bose-Einstein condensate at zero temperature. For sufficiently large-amplitude condensate oscil-
lations, pair production provides the leading dissipation mechanism. The condensate oscillations decay in a
nonexponential manner, and the dissipation rate depends strongly on the oscillation amplitude. These features
allow one to distinguish the decay due to pair creation from other possible damping mechanisms. An experi-
mental observation of the predicted oscillation behavior of the superfluid gas provides a direct confirmation of
the hydrodynamical analogy of quantum electrodynamics and quantum vortex dynamics in two spatial dimen-
sions.
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The process of electron-positron pair creation is well es<loud is always supersonic and, according to the Landau cri-
tablished in quantum electrodynamics since the seminakrion for superfluidity, can host instabilities. Vortices are
work of Schwingef1]. Later on, it became apparent that the nonlinear excitations above the superfluid ground state, so
hydrodynamics of vortices in two-dimensiond@D) super-  that they are not protected by the scaling symmetry, which
fluids can be mapped ontot2D electrodynamics with vor- holds for linear excitations. Spontaneous vortex-antivortex
tices playing the role of charged particles, and phonons thgaijr creation, analogous to the Schwinger process, is-an
role of photons[2]. In this analogy, the superfluid density insic instability mechanism and constitutes a source of dis-

and the_supercurrent'act as the. magnetic and electric fie]ds Qipation already at zero temperature, without any need for a
the vortices whose circulation is the charge. The SChW'ngeéymmetry—breaking external perturbation.

vacuum breakdown is a phenomenon occuring whenever the In the following, we explicitly analyze the Schwinger in-

electric field exceeds the magnetic fild cgs unit3, which .stability of a supersonically expanding and contracting BEC

corresponds in the analogy to the instability qf a supersonic. " time-dependent quasi-2D harmonic trap. We show that
flow with respect to the spontaneous creation of VOrteXgoy sufficiently large condensate oscillations, vortex-

ant\|>/otr.tex paers frorgthei ;uperfl(;ﬂd va}[cuuhm. b b antivortex pair production provides the dominant dissipation
dort'cg.sc'in 0se- mstellln qotn ensla es thave eten N slerv echanism. Furthermore, the condensate oscillations decay
and studied experimentally intensely in the past couple of, o nonexponential manner and the dissipation rate depends

years, ?'gs'g Ref$3—7§. Herg, we sugges;.t ant?]xpen_mtent n sgongly on the oscillation amplitude. These features allow
a quasi- 0se-condensed gas revealing the existence gfq ¢, distinguish experimentally the decay due to pair cre-

irreversible conde.nsate dynamigs at. Zero ju.amperature as t%’ﬁon from the previously studied damping mechanisms. We
result of th_e Schwmger pair-creation msta_blhty. To argue th.atnote that the suggested zero temperature damping mecha-
vortex-antivortex pair creation is the dominant source of dls-nism is intrinsically different from that discussed 0]

sipation, we use the fact that a quasi-2D Bose-Einstein con- i
densate(BEC) in a time-dependent harmonic trap has a per_‘/vhere the dissipation is due to the energy transfer from the

liar feature: There is a time dependent transformaftioe radial condensate motion to the longitudinal modes in an
culia ea? €. 'Nereis atime eee jent transfo elongated cylindrically symmetric condensate. This mecha-
so-called “scaling transformation; using which the prob-

a}ﬁm can only work if the condensate is sufficiently long,

) o . ereas we confine ourselves to the case of a quasi-2D
effelquvely be tremloveﬂ flzjorr} th? Hamlltgnle[S—t;()]. Tdh's .bsample, for which any motion along theaxis is suppressed.
scaling property also holds for linéarized equations describ- g analogy of 2D vortex dynamics with electrodynamics

ing thg evolution.of s.mall densi_ty and phage perturbation% most easily established by noting that the expression for
(Bogoliubov quasiparticle excitationjgpropagating on top of _ :
the moving superfluid. Therefore, initial perturbations cannot® 2D Magnus forcery =2mp€, X (X—vs) leads to the

grow and the instability mechanisms known from classicaldentification of E=puvsxe, andB=—pe, with the *elec-
hydrodynamics play no rolfL1]. This stability against per- tric” and magngtlc fields, by comparing with the Lorentz
turbations implies that at very low temperatures, condensatérce F . =q(E+XXxB). Here,X andv are vortex and local
oscillations are practically undampéid has been measured superflow velocities, respectively, apds the local density.
that the quality factoQ=2000[12]). The circulation (2r in our units withA=m=1) is the
On the other hand, the superfluid velocity in the scaling‘charge” q (cf., e.g., Refs[13-15). The self-energy of a
solution grows linearly towards the condensate border, whiléwidely separatedsingle vortex pair is E2=2mpA, with
the local density decreases. Therefore, the outer region of th&=In(R/a.), whereR is the size of the pair. We will use in
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this expression for the pair energy that the vortex core size in R R(t)

a dilute superfluid is given by.=1/cg, wherecg is the

speed of sound. The inertial rest mass of a vortex, stemming

from compressibilitym, = ES/cg, is (for large condensatgs

of “electrodynamical” origin: It stems from the self-

interaction of a moving vortex, with the long-range flow and

density fields it induces inside the surrounding superfluid H(t)

medium. Since the “electromagnetic” fieldthe density and >

velocity perturbations represent “relativistic” particles

(phonong, the vortex mass diverges if the velocity of the  FiG. 1. An oscillating, cylindrically symmetric quasi-2D con-

accelerated vortex approaches the speed of sound, in thensate. The shaded region designates the region of space in which

same manner in which the mass of a charged ultrarelativistithe speed of sound is exceeded by the oscillating condensate, and

particle diverges in conventional electrodynamics. We asvortex pair creation takes placet=H(t) is the horizon location

sume in what follows that other possible contributions to theandR=R(t) the Thomas-Fermi radius of the condensate.

vortex mass(see, e.g., the backflow mass contribution dis-

cussed if16]) remain regular if the local superfluid velocity the Kosterlitz-Thouless temperatiyréhe initial state of the

approaches the speed of sound. These contributions ageiperfluid contains bound vortex-antivortex pairs, i.e., topo-

therefore subdominant for relativistically moving vortices. logical excitations, which can be unbound by the action of
We consider a quasi-2D superfluid Bose gas in a timethe Magnus force in thétime dependentsupersonic flow

dependent isotropic harmonic trapping potentha(x,t) region. Indeed, for an oscillating condensate, there exists a

:%Q,Z(t)(XZerZ), with x=(x,y). It is a well-established region, the border of which is called horizdof. Fig. 1),

fact that the hydrodynamic solution for density and velocitywhere the superfluid velocity magnitude is larger than the

of motion in a harmonic potential with arbitrary time depen- local sound velocitycs=\/gp. The speed of sound is ex-

dence may be obtained from a given initial solution by aceeded at th&orizon radius

scaling procedur§8,9]. Defining the scaled coordinate vec-

t

tor r,=x/b, the rescaled density and velocity are given by Ht) = b(t)Rg 5
1 (2 VA +1'
pxt)= oty = o| 1- & .
b2 b2 R3 where y= \2bb/ w;, .

Beyond the horizon, the vortices and antivortices get ac-
celerated during condensate evolution and separate at local

vs(X )= px. (2)  superflow velocities larger than that of sound. This is analo-
gous to the Schwinger pair-creation process in quantum elec-

Here, we assume the superfluid to be described initiallfrodynamics. It is important to recognize that the flow we
within the Thomas-Ferm{TF) approximation(that is, the consider is inhomogeneous and time dependent by default.
condensate is large enough to neglect the quantum prgssur€onsequently, the argument that there is no pair-creation
po is the initial central density, an, the initial TF radius, possible because one can always use the underlying Galilean

such thaR=R(t) =b(t)R, is the instantaneous TF radius of invariance to “transform away” the background flow, does

the cloud. The energy functional has in the TF approximatiornot apply to our situation.
the form In a simple model of the 21D vacuum pair-creation in-

stability, which exploits directly the analogy to Schwinger

) 1 h?2 pair-creation in quantum electrodynamics, the pair produc-
&(b,b)= EI d?ry| | w?+ E) b*rfo+go®|, (3  tion ratel’ per unit area can be written &%9]
with g the interaction strength, which depends in the present . _ 1 Fy (—1)”+lex B mn(Ep)? ®
quasi-2D case on the tight confinement in #direction and 477205 = n372 \/7: ’
on the density of the condensdfier]. This leads to an effec-
tive Hamiltonian for the dynamical variable where we have definefi=E?cZ—B2c? and set, within loga-
rithmic accuracy, the vortex pair size E‘U) equal to the
&(b b)= 3b2+ sz(t)b2+ ﬁ (4) Thomas-Fermi radius of the condensate. The above relation
’ 2 2 2b holds for locally supersonic motion, i.e., [E|/|B|>cs (F

>0). The value of the prefactor in front of the exponential in
where a= mpoRy/6 and 8= mp3gRS/3. the above expression is subject to changes which are due to
Consider a situation in which the external trap frequencythe microscopic details of vortex motion. We display its
is changed fromw;, to ws<wj,, on a time scale much less value, stemming from taking literally the analogy to quantum
than the inverse initial trap frequency. As a consequence, thelectrodynamics also on the level of quantum fluctuatioms
gas undergoes a large-amplitude monopole oscillation wittone loop order for numerical concreteness. However, the
frequency 2v; [18]. At sufficiently low temperaturegbelow  behavior ofl" for |E|/|B|=c, is dominated by the hydrody-
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namical exponent, whose value is independent of micro- R ,

scopic physics, and specifically by the=1 term in the R01o , R

above sum. e

Assuming that the vortex density is low, the energy dissi-
pation ratee is obtained by multiplying Eq(6) by the rest ‘
energy of the widely separated vorticeEf? and integrating
over the area of the TF domain. This results in
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where we introduced the function ) = e s o >
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F()\)_E ﬂfld 3/4(1_ )9/4
n ns? 0 K g FIG. 2. Damping of condensate oscillations due to vortex-
antivortex pair creation, wittN=10*, g=1, and w;=0.1wj,,
xexd —mn\y(1-1n)/n]. 8 where the radiuR is in units of the original Thomas-Fermi sigy.
The black solid line is the envelogg,,, from Eq. (14). The gray
Sincey is proportional tdbb, the Schwinger dissipation rate solid line is the damped breathing mode oscillation obtained from
(7) can give rise to a measurable effect only if the condensatgumerically solving Eq(10). For comparison, the dashed line rep-
oscillation amplitude is sufficiently large, which implies resents the oscillation of the superfluid gas without pair creation
<wi,. In order to provide some analytical results, we con-taking place.
sider a simple quasistationary perturbation-theory approach.
Consequently, we assume that the dissipation rate is small i
and therefore the energy of the system in B).is a slowly Eg(bmax): ?l E- (13
varying function within each oscillation period. Then, the
equation of motion for the scaling paramekecan be found Thus, one obtains for the oscillation peak value the following
from expression:

bmax0)
[1+ Db (0) wst ]V

%g(b,b): —e. 9) Brmas(t) = (14)

In the absence of dissipatior£0), the range ob is be- where D’ =25 (w¢/w;,)*D. Our perturbation-theory ap-
tweenbyn=1 and b= wi,/®;. SINCEbyn=1<bnay, We  proach is valid as long dsio,(0)D' <1.

can approximately seb,,,=0. One can then writey? The damping of condensate oscillations due to vortex-
=2(w?l w?)b?(b?,—b?. In a dilute gas, in the TF limit, the antivortex pair creation is represented in Fig. 2, where we
argument ofF is large, A2>g+/y?+1, and the dynamical Show the numerical solution of the dynamical equatib)

equation(9) for b takes the simpler form (gray solid ling, the approximate solution for the peak am-
plitude (black solid ling, and for comparison the free oscil-
) w2 ] lation without pair creationdashed ling The parameters
b+ w?b— —';= - —b'b*, (100  used in the numerical integration for the plot ae=10%,
b Win g=1, and for the final trapping frequency;=0.lw;,.
These parameters are consistent with the argumeht k-
where the constant ing large, A2>g\72+ 1, so that Eqs(10—(14) hold. The
envelopeb,,.,(t) is seen to decay very slowly and in a non-
_ f 97/4‘/9_'\' (-t (11) exponential manner, governed by the TF expongrin Eq.
w® (IN[4gN/7])*2 5 né (14). For realistic parameters, we conclude from Fig. 2 that

an observable damping effect for the condensate oscillations

Using Eq.(10), bb can be expressed in terms bfonly, s obtained. . .
b2b2=wfb2(b§1ax—b2). The oscillation energy lost in a pe- The scaling parameter evqlutlon can be described _by Eq.
S . (9) only for sufficiently short times when the total density of
riod is then given by . . . ;

vortices produced is still low. At later times, the vortex-

7 antivortex plasma can decrease the superfluid current in the
le . (12) same way as the electron-positron plasma can screen the
1024" o3 "M electric field. This is an interesting collective effect, which

however requires a more elaborate treatment.
The energy decrease rate oy, is obtained from the equa- We described an intrinsic damping mechanism for large-

tion amplitude condensate oscillations in a quasi-2D Bose gas at
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zero temperature. The dissipation originates from spontane- The outlined mechanism for dissipation is not confined to
ous creation of vortex-antivortex pairs and depends on thquasi-2D samples. In strong elongated 3D condensates, the
shape and dynamics of the supersonic flow region. The rescaling solution also applies, and the vorticity is generated in
sults we presented therefore depend strongly on the oscillahe form of vortex rings, with the total vorticity integrated
tion amplitude. This feature can be used to distinguish theyver the sample volume still zero. However, as already men-
effects of pair production from other possible dissipationtioned above, for a 3D condensate the effect of vortex ring
mechanisms. The scaling solution not only exists for the disgreation can be masked by possibly stronger damping

cussed monopole modes, but also for quadrupole oscillgnechanisms, such as the parametric resonance discussed in
tions, so that, e.g., effects resulting from a rotating superfluigy ¢ [10].

on the pair-creation process may be studied. Observation of

the predicted oscillation behavior of the superfluid gas pro-

vides a direct confirmation of the hydrodynamical analogy of \ye thank L. P. Pitaevskiand G. E. Volovik for critical
quantum electrodynamics and quantum vortex dynamics ifamarks and helpful comments on the manuscript, and P.
two spatial dimensions, and would put this analogy 10 its first; o) e, tor giscussions. P.O.F. has been supported by the Aus-

real experimental test. Such confirmation would, then, giVetrian Science Foundation FWF and the Russian Foundation
further motivation to the program of studying analogies be(-{gr Basic Research, U.R.F. by the FWF, and A.R. by the

tween high-energy physics, cosmology, and condense : T i
matter systemE20]. uropean Union under Contract No. HPRN-CT-2000-00125.
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