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Unambiguous discrimination of mixed states
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We present the conditions under which probabilistic error-free discrimination of mixed states is possible, and
provide upper and lower bounds on the maximum probability of success for the case of two mixed states. We
solve certain special cases exactly, and demonstrate how the problems of state filtering and state comparison
can be recast as problems of mixed state unambiguous discrimination.
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I. INTRODUCTION The ability to unambiguously discriminate a pair of mixed
states has many applications. Indeed, several recently studied

A characteristic feature of quantum mechanics is that if doroblems can be recast as special cases of UD of mixed

states, then there is no measurement that can yield an errdi@"ison[9] (determining whether two systems are described
free determination of which state was prepared. Nonetheles y the same or different pure stateand state filtering

it is possible to achieve probabilistic error-free discrimina- 10,11 (discriminating one pure state from a set of pure
P ar tate$. We find that for the state comparison problem, our

tion, that is, one which sometimes fails, but when SPCFeS$fLﬁpper and lower bounds coincide, and thus automatically
never gives an erroneous result. This sort of dlscrlmlnatloryiem the optimal solution. For the state filtering problem, we
procedure is generally referred to asambiguous discrimi-  find that our lower bound is equal to the optimal solution
nation (UD). The UD of twopure states prepared with equal found in Refs.[10,11]. Given that our lower bound has a
prior probabilities was considered by Ivanovic and Digks  simple geometric interpretation, it serves to clarify the nature
and the optimal procedure was given by Pd@JsThis was  of the optimal state filtering procedure. In particular, it shows
generalized to the case of unequal prior probabilities by Jaghat the eigenbases of the optimal positive-operator valued
ger and Shimony3]. The problem of three pure states was Measure(POVM) elements depend only on the subspace

analyzed in Ref[4], while multiple pure states were consid- SPanned by the states against which one is trying to filter, and
ered in Refs[5,6] not on the specific states themselves. In addition, our ap-

It is a common misconception that the unambiguous disproach ggnerqhzes na stra|ghtforward.way to more compli-
TR . S . . cated estimation tasks, such as state filtering and state com-
crimination of mixed states is impossiblg7,8]. Indeed, in  arison when the unknown states are themselves mixed.
Ref. [7] it is explicitly stated that “one cannot unambigu- ~ |t should be noted that our results apply not only to mix-
ously discriminate mixed states.” That such a claim cannotyres that arise from ignorance about which of several differ-
be correct for an arbitrary mixed-state ensemble is proverent pure state descriptions applies, but also to those arising as
however, by the following counterexample: any setoof  the reduced density operator of an entangled state. As such,
thogonalmixed states can always be discriminated with zeroour results can be applied to the task of achieving an UD of
probability of error. two entangled states of a composite system given access to

What is less obvious is that there exist setaafiorthogo-  Only one of the subsystems. It is also worth noting that our
nal mixed states for which UD is possible. The critical fea- [0Wer bound is obtained by making implicit use of the CS

ture of such sets is that their elements do not have identic@neococl)é?rﬁ)cl)iﬂgg?’alwg'tfrg ;ggsctzlrgégfcaall Sﬁoxvsrgjrl]aﬁf&mn?om
supports: In fact, all that is required for there to be a non- g 9 '

our knowledge, this is the first application of the CS decom-
zero probability of error-free discrimination is that one of the g bp

! X X osition inquantumsignal analysis.
density operators have a nonzero overlap with the intersec-
tion of the kernels of the others. Il. GENERAL FORMULATION
In this paper, we consider the problem of determining the ] S )
optimal UD procedure for an arbitrary pair of mixed states. Ve consider the task of discriminating unambiguously be-
We derive strong upper and lower bounds on the probabilitfV€€n two mixed states, andp, with prior probabilitiesp,

of a conclusive result, and we provide an exact solutiorAnd P1- The meqsuremgnt_proc_ed_ure can have up to three
in the special case where both states have kernels of dimeﬁ/gtcomes, associated with identifying the statpgsidenti-

sion 1. /ing the state ag,, and failing to identify the state conqlu—
sively. The most general three-outcome measurement is rep-
resented in quantum mechanics by a three-element POVM,
which we denote byEy,E;,E,}. Because the identification

1 . . . . ) N
The supportof a mixed state is the space spanned by its eigeNi st never be in error, we require that

vectors with nonzero eigenvalues; tkernelis the space orthogonal
to its support. Tr(poE1)=Tr(p1Eq)=0. D
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The probabilityP of successful UD is For convenience, we defirteto be the angle in Hilbert space
between the one-dimensional kernels,
P=poTr(poEo) + pP1Tr(p1E1). 2
CO§05|<k0|kl>|2. (6)

We shall denote the kernel gf, by K, (b=0,1). It is
clear that any intersection &, and K, is not useful for the
purposes of discriminating, and p, since neither state has
any overlap with this subspace. We shall therefore assume, in 1
what follows, that the Hilbert space is equal to the span of Slatp+ V(a—pB)*+4aBcosf]<1. (7)
the supports op, andp;. A necessary and sufficient condi-
tion for satisfying Eq(1) is that the POVM elemeri, (E;)  Solving for P™ under this constraint, we find that if o#s
have support only in the subspaki (Ko). It follows that < /A /A, . then a®®'=(1— JA, /A cos6)/sirts, BoP'=(1

for there to be a nonzero probability of success, at least one. \/a /A cos6)/si?d; otherwise a®”=1, Byu=0 (A;
of Ko andC; must be nonzero. This occurs if and only if the <A,) or a®=0, B%®=1 (A,<A,). This yieldsp

support ofpg is not equal to the support @f; .

Taking the minimum eigenvalue of the left hand side of Eq.
(5), we can reexpress this inequality as

We seek to maximize Ed2) subject to Eq.(1) and the Ag+A;—2C0SOVAA; A
constraint thate,, E;, andE, be positive and sum to the max_ - if cosf< -
identity. It suffices to vary over positivE, and E;, which PT= Sir o max
satisfy Amax otherwise.

8
| —Eo—E;=0. 3

Here, Ao=pofKilpolK1), A1:p1<'fo|P1|ko_>, and Anin
This optimization problem is an instance of a semidefinite_mm{AO’A]}’ Ama=max{fo At This solution, considered

programming problem for which there exist efficient numeri—;‘i?n a furilctlon of |ko) and |ky), wil be denoted as
cal algorithms(See Ref[6] for applications of semidefinite 1 (ko) {Ky)). . o
programming to UD of pure states, and Ré#8] for appli- The problem of unamb|guous!y dlscr|m|.nat|ng two non-
cations to the problem of optimizing the discrimination prob-Orthogonal pure statehy), |4:) is a special case of the
ability between mixed states for a fixed error rate, which®n€-dimensional kernel problem. Although b defined

interpolates between maximum likelihood estimation and® Pe the overlap of the one-dimensional kernels, clearly

uD.) (ol 1)| =cos6, and Eq.(8) becomes
. Pmi
lll. SOLUTIONS IN CERTAIN SPECIAL CASES — 1=2poPal{wol )| it [(wolwa)| </ pm'n
- max
A. Mixed states with orthogonal kernels Prmas 1= tol 1//1>|2) otherwise,
If Kol KC;, the optimal POVM which satisfies E¢R) is 9)

clearlyEo=K, E; =Ko, whereK is the projector ontdt, ., agreement with Ref[3]. In the case of equal prior

This yields a probability of succes®™=p,Tr(poK;) iti h max_ 1 _ f
+p1Tr(p1Kp). Note that this solution also applies when one%ﬁb?g tties, we have? {oly2)l, as expected from

of the kernels is zero. Note also that commuting mixed states
necessarily have orthogonal kernels. It follows that this result

specifies the maximum probability of UD for overlapping IV LOWER BOUND

classical probability distributions. We consider a strategy that achieves UD of an arbitrary
pair of mixed states and which is strongly dependent on the
B. Mixed states with one-dimensional kernels geometrical relationship between the two subspak@gs

We now turn to the special case wherein the kernels ar8ndX1: _ . .
both one-dimensional—that is, the states and p; have Theorem Consider two arbitrary mixed statpg and p;.

rankn— 1, and the span of their supports ismdimensional D€note the dimensionality of their kermnels and K, by ro
space. Denoting by|k,)(k,| the projector onto Ky, andrq, anol assume that,=r,. There exist orj[honormal
the POVM must be of the form{Eo=alk,)(k,|,E, DPases{[ky)};®; for Ky(b=0,1) such that for &j<ro, 1
= Blko)(Ko|,E>=1—a|Kki)(ki|— B|Ko){Ko|}. Our task there- <i<ry,
fore becomes to compute

P™®=max apo(kil polk1) + Bp1(kolp1lko)). (4)
a,B

<k£)|ki1>:5ij005(0j)y (10
where thed; are the canonical angles betwekg and Ky

[13]. In this case,

where the maximization is subject to the constraint L

"o
max< max | i i J i
1~ afku) kol Blko) (ko =0. © P P M) 2 Gllke) @
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expresses a lower bound on the maximum probability of dis-
criminating unambiguously betweegr andp;.

Proof. The proof is constructive. LeX,, be anynXry
dimensional matrix whose orthonormal columns span Pmad 1—F(po.p1)?]  otherwise,
Define anry,Xry, unitary matrixUy,, and anroXr, matrix S (14)

via a singular-value decompositi¢t3], whereF (pg.p1) = Trlpaypa| is the fidelity.
Proof. Let |i,,) be a purification ofp, [14]. Clearly, UD
X{X1=UoSUL. (120 of [o),| 1) with priorspg, p; can be achieved with a maxi-
mal probability of success that is greater than or equal to the
o _C . . maximum probability of success in the UD pf, p; with
The .matrle IS of the form_S—.[o], whereC is a diagonal the same priors. This follows from the fact that any discrimi-
matrix of the form C=diag(cos, ... ’Cosefl)' O nation procedure for the latter task serves also as a discrimi-
€[0,7/2], while O'is an (o—r4) X1y matrix of 0's. Defin-  npation procedure for the former task. Thus,
ing 6;=/2 for j>r,, and denoting byky) theith column
of X,U,, we have constructedanonicalbases fork, and P™popo,p1ip1)< min P po| o) ¢ol,p1lr1){t1l),
K1, that is, bases satisfyirig)|Ky) = 6;;cosé, as required in |Yo)-w1)

the theorem. L e
The measurement achieving the lower bound is associatq\(ﬁhere the m|n|m|zat|%r; is over all pur|f|cat|o.ns PE' we
: o i\ sl now, however, thaP™{pq|yo)#ol.p1¥2)¢al) is given by
with the POVM that hasEq=Z2i1 ailki)(ki| and E;  Eq (9). Minimizing either of the expressions on the right-
=3 Bilkp)(kp|. Constraint(3) takes the form hand side of Eq(9) requires maximizing (| #1)|. Uhl-
mann’s theorenf14] states that the maximum overlap be-
tween purifications of two density operators is equal to the
= ai|ki1><ki1|_2 Bi|kio><kio|>0- (13) fidelity between the density operators. Applying this obser-
vation yields the desired upper bound. |
In the case of equal prior probabilities, the upper bound
Since the two-dimensional subspace spannedkjy and has the simple forlP™*<1—F(po,p). Numerical studies of
k) for 1<j<r, is orthogonal to all other such subspacesr"fmk'z mixed states in a four-dimensional Hilbert space in-
and is orthogonal tdkl) for r,<j<r,, constraint(13) re-  dicate that even for randomly chospp andp,, our upper

duces to constraints of the fortd) for 1<j=<r,, and con- and lower bounds are generally very close.
straints of the forml — B;|kb)(k}|=0 for ry<j=<r,. In this
manner, we have reduced the problent {separate optimi- V1. SOME APPLICATIONS
zations of the form already considered in Sec. Il B. Solving A. State comparison
each of these yields the first term on the right-hand side of
Eqg. (11) in the theorem. The remaining—r 4 optimizations
are achieved by taking;=1, which yields the second term
on the right-hand side of Eq11).

In order to understand the geometry of the eigenbases f
the POVM elements in this lower bound, it is helpful to
realize that the canonical angleés form the unique geo-
metrical invariants describing the relationship between tw
subspaces. They can be defined iterativélyis the smallest
angle between any pair of vectors drawn frdty and K,

) Pmi
1-2VpoPiF(po.p1)  if F(pg,p1)< \/ —,

PM< Pm

In Ref.[9], Barnett, Chefles, and Jex introduced the fol-
lowing problem: given two systems, each of which is in one
of two (generally nonorthogonglstates{|#1),|,)}, with
d/yhat probability can one determine whether the two systems
are in the same state or in different states? Here, we consider
the case where this determination must be made without er-
Jor, if at all. Assuming equal likelihood for either possibility,
we can clearly interpret the problem as one of achieving UD
of the two mixed states

and|k3),|k}) are the corresponding pair of vectogs.is the po= 2t Y by s | + 3| otho ) ot
smallest such angle after these two vectors are removed, and
so on. In this way, one obtains a simple geometrical picture p1= 3 o)W ibo| + 3 hotp ) (Wpia], (15)

of the measurement achieving the lower bound. We note that

we have not found any example of UD wherein this loweras was recognized by the authors of Héi.

bound is not optimal. Nonetheless, given that the eigenbases These are rank-2 mixed states in a four-dimensional
for Eq,E; depend only on the subspaces spanne@fy;,  space; as such, their kernels are also two-dimensional. We let
and not on the states themselves, there is no reason to eXPEFL) pe the state orthogonal tg;), and choose phases such

it to be optimal in the general case. that (¢41]i,) is real. It is clear thatk, is spanned by

{|J1$2>,|J2$1>}1 while K, is spanned bYIJJD,I@@}-
V. UPPER BOUND Using the techniques of Sec. IV, we find that the canonical

; ; W\ TN 2

TheoremAn upper bound on the maximum probability of basis vectors inKo _ are [ko)=[v1y2) +| ‘/’21‘/’1>’_ |£0>
unambiguously discriminating two mixed stateg,andp;, = |¥1¥2)—[#2t1), while those of K, are [ky)=|i14n)
s +Wata), [KD)=[v1)— [24h) (all suitably normalizel
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Since(kj|k3)=0, these two states can be included in theirThis coincides precisely with the optimal solution derived in
respective POVM elements with weight 1, i.e,=1=8,. Ref.[10]. Thus, our lower bound is found to be optimal in
The remaining pair of states have overlap ap's(k(l)|ki>, and this case.
we can use the solution for one-dimensional kernels. Per- By recasting state filtering as an instance of UD of a pure
forming this calculation, we find that our lower bound is 1 state and a mixed state, it has become apparent that the par-
—F(po.p1). Since this is equal to our upper bound, we au-ticular ensemble of states from which the mixed state is
tomatically know that this is optimal, and we have the opti-formed(in this case|y,) and|s) with priors 77, and 7s) is
mal POVM by construction. not significant. As such, our analysis applies also to the case
wherein the second set of states contains an arbitrary number
of elements, in agreement with the solution found in Ref.
) [11]. Moreover, the mixed state need not even arise as a
A problem that has been considered recently by Sun, Befresylt of ignorance of the pure state, but rather may arise as
gou, and Hillery[10] is that of unambiguously discriminat- 5 result of the system being entangled with another degree of
ing whether a state i$y,) or whether it is in the set freedom. This is confirmed by the fact that the probability of
{l#2).143)} when the prior probabilities of the three statessyccess depends only gn. The problem of UD between
are 771,72, and »s, respectively. This task has been called myltiple sets of pure statdd5] is a straightforward gener-

state filtering It is straightforward to see that it is an instance gjization of state filtering that can be recast as a problem of
of UD of mixed states. Specifically, it is the problem of un- yp of mixed states in a similar way.

ambiguously discriminating

B. State filtering

72
M2t 713

[ o) (o] + L|¢3><¢3|, VIl. CONCLUSION

po=la) (¥l p1= 72+ 73

We have shown that UD of a pair of mixed states is pos-
with prior probabilitiespo= 7,,p1= 7.+ 73. It is easy to sible when these have distinct supports. We have provided
find our lower bound for this problem. Sindé, is one di- the maximum probability of success for the case of mixed
mensional, we associate it with a unique vedioy). The  states with orthogonal or one-dimensional kernels. In the
kernel Ky is two-dimensional, and so there is flexibility in general case, we have determined an upper bound based on

the basis that diagonaliz&s. Our lower bound dictates that the probability of UD for purifications of the states, and a
we use the basiskd), |k3), where|k}) is the vector in lower bound based on the geometrical invariants between

K, that is maximally parallel tdk,) and|k§> is the vector their kernels. In addition to the tasks discussed here, there are
in K, that is orthogonal to bothk,) and |k3). Our lower likely to be many others for which UD of mixed states may

o maxl ;o . be useful, such as quantum random access codes, quantum
bound isP, = P1§X(|k0>,|kl)z+(k§|pl|k§). Defining the canoni- 1o transfer, and entanglement distillation, to name a
cal angled by cosf=(ki|k;) and appealing to the geometry

. few.
of the problem, we find Ay=py(l—-cos6)
and A;=p;F(pg.p1)’tarfs. Finally, defining F
=F(pg,p1)/VPo/p1, the lower bound takes the following ACKNOWLEDGMENTS
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