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Unambiguous discrimination of mixed states
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We present the conditions under which probabilistic error-free discrimination of mixed states is possible, and
provide upper and lower bounds on the maximum probability of success for the case of two mixed states. We
solve certain special cases exactly, and demonstrate how the problems of state filtering and state comparison
can be recast as problems of mixed state unambiguous discrimination.
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I. INTRODUCTION

A characteristic feature of quantum mechanics is that
system is prepared in one of a set of nonorthogonal p
states, then there is no measurement that can yield an e
free determination of which state was prepared. Nonethe
it is possible to achieve aprobabilisticerror-free discrimina-
tion, that is, one which sometimes fails, but when succes
never gives an erroneous result. This sort of discriminat
procedure is generally referred to asunambiguous discrimi-
nation ~UD!. The UD of twopurestates prepared with equa
prior probabilities was considered by Ivanovic and Dieks@1#
and the optimal procedure was given by Peres@2#. This was
generalized to the case of unequal prior probabilities by J
ger and Shimony@3#. The problem of three pure states w
analyzed in Ref.@4#, while multiple pure states were consid
ered in Refs.@5,6#.

It is a common misconception that the unambiguous d
crimination of mixed states is impossible@7,8#. Indeed, in
Ref. @7# it is explicitly stated that ‘‘one cannot unambigu
ously discriminate mixed states.’’ That such a claim can
be correct for an arbitrary mixed-state ensemble is prov
however, by the following counterexample: any set ofor-
thogonalmixed states can always be discriminated with z
probability of error.

What is less obvious is that there exist sets ofnonorthogo-
nal mixed states for which UD is possible. The critical fe
ture of such sets is that their elements do not have iden
supports.1 In fact, all that is required for there to be a no
zero probability of error-free discrimination is that one of t
density operators have a nonzero overlap with the inter
tion of the kernels of the others.

In this paper, we consider the problem of determining
optimal UD procedure for an arbitrary pair of mixed state
We derive strong upper and lower bounds on the probab
of a conclusive result, and we provide an exact solut
in the special case where both states have kernels of dim
sion 1.

1The supportof a mixed state is the space spanned by its eig
vectors with nonzero eigenvalues; thekernelis the space orthogona
to its support.
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The ability to unambiguously discriminate a pair of mixe
states has many applications. Indeed, several recently stu
problems can be recast as special cases of UD of m
states. We shall focus on two tasks of this sort:state com-
parison @9# ~determining whether two systems are describ
by the same or different pure states! and state filtering
@10,11# ~discriminating one pure state from a set of pu
states!. We find that for the state comparison problem, o
upper and lower bounds coincide, and thus automatic
yield the optimal solution. For the state filtering problem, w
find that our lower bound is equal to the optimal soluti
found in Refs.@10,11#. Given that our lower bound has
simple geometric interpretation, it serves to clarify the nat
of the optimal state filtering procedure. In particular, it sho
that the eigenbases of the optimal positive-operator val
measure~POVM! elements depend only on the subspa
spanned by the states against which one is trying to filter,
not on the specific states themselves. In addition, our
proach generalizes in a straightforward way to more com
cated estimation tasks, such as state filtering and state c
parison when the unknown states are themselves mixed

It should be noted that our results apply not only to m
tures that arise from ignorance about which of several diff
ent pure state descriptions applies, but also to those arisin
the reduced density operator of an entangled state. As s
our results can be applied to the task of achieving an UD
two entangled states of a composite system given acces
only one of the subsystems. It is also worth noting that o
lower bound is obtained by making implicit use of the C
decomposition, which constitutes a powerful tool in bo
modern linear algebra and classical signal analysis@12#. To
our knowledge, this is the first application of the CS deco
position inquantumsignal analysis.

II. GENERAL FORMULATION

We consider the task of discriminating unambiguously b
tween two mixed statesr0 andr1 with prior probabilitiesp0
and p1. The measurement procedure can have up to th
outcomes, associated with identifying the state asr0, identi-
fying the state asr1, and failing to identify the state conclu
sively. The most general three-outcome measurement is
resented in quantum mechanics by a three-element PO
which we denote by$E0 ,E1 ,E?%. Because the identification
must never be in error, we require that

Tr~r0E1!5Tr~r1E0!50. ~1!
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The probabilityP of successful UD is

P5p0Tr~r0E0!1p1Tr~r1E1!. ~2!

We shall denote the kernel ofrb by Kb (b50,1). It is
clear that any intersection ofK0 andK1 is not useful for the
purposes of discriminatingr0 andr1 since neither state ha
any overlap with this subspace. We shall therefore assum
what follows, that the Hilbert space is equal to the span
the supports ofr0 andr1. A necessary and sufficient cond
tion for satisfying Eq.~1! is that the POVM elementE0 (E1)
have support only in the subspaceK1 (K0). It follows that
for there to be a nonzero probability of success, at least
of K0 andK1 must be nonzero. This occurs if and only if th
support ofr0 is not equal to the support ofr1 .

We seek to maximize Eq.~2! subject to Eq.~1! and the
constraint thatE0 , E1, and E? be positive and sum to th
identity. It suffices to vary over positiveE0 and E1, which
satisfy

I 2E02E1>0. ~3!

This optimization problem is an instance of a semidefin
programming problem for which there exist efficient nume
cal algorithms.~See Ref.@6# for applications of semidefinite
programming to UD of pure states, and Refs.@7,8# for appli-
cations to the problem of optimizing the discrimination pro
ability between mixed states for a fixed error rate, wh
interpolates between maximum likelihood estimation a
UD.!

III. SOLUTIONS IN CERTAIN SPECIAL CASES

A. Mixed states with orthogonal kernels

If K0'K1, the optimal POVM which satisfies Eq.~3! is
clearlyE05K1 , E15K0, whereKb is the projector ontoKb .
This yields a probability of success,Pmax5p0Tr(r0K1)
1p1Tr(r1K0). Note that this solution also applies when o
of the kernels is zero. Note also that commuting mixed sta
necessarily have orthogonal kernels. It follows that this re
specifies the maximum probability of UD for overlappin
classical probability distributions.

B. Mixed states with one-dimensional kernels

We now turn to the special case wherein the kernels
both one-dimensional—that is, the statesr0 and r1 have
rankn21, and the span of their supports is ann-dimensional
space. Denoting byukb&^kbu the projector onto Kb ,
the POVM must be of the form$E05auk1&^k1u,E1
5buk0&^k0u,E?5I 2auk1&^k1u2buk0&^k0u%. Our task there-
fore becomes to compute

Pmax5max
a,b

~ap0^k1ur0uk1&1bp1^k0ur1uk0&!, ~4!

where the maximization is subject to the constraint

I 2auk1&^k1u2buk0&^k0u>0. ~5!
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For convenience, we defineu to be the angle in Hilbert spac
between the one-dimensional kernels,

cos2u[u^k0uk1&u2. ~6!

Taking the minimum eigenvalue of the left hand side of E
~5!, we can reexpress this inequality as

1

2
@a1b1A~a2b!214abcos2u#<1. ~7!

Solving for Pmax under this constraint, we find that if cosu
,AAmin/Amax then aopt5(12AA1 /A0cosu)/sin2u, bopt5(1
2AA0 /A1cosu)/sin2u ; otherwise aopt51, bopt50 (A1
,A0) or aopt50, bopt51 (A0,A1). This yields

Pmax5H A01A122cosuAA0A1

sin2u
if cosu,AAmin

Amax

Amax otherwise.
~8!

Here, A05p0^k1ur0uk1&, A15p1^k0ur1uk0&, and Amin
5min$A0,A1%, Amax5max$A0,A1%. This solution, considered
as a function of uk0& and uk1&, will be denoted as
P1D

max(uk0&,uk1&).
The problem of unambiguously discriminating two no

orthogonal pure statesuc0&, uc1& is a special case of the
one-dimensional kernel problem. Although cosu is defined
to be the overlap of the one-dimensional kernels, clea
u^c0uc1&u5cosu, and Eq.~8! becomes

Pmax5H 122Ap0p1u^c0uc1&u if u^c0uc1&u,Apmin

pmax

pmax~12u^c0uc1&u2! otherwise,
~9!

in agreement with Ref.@3#. In the case of equal prio
probabilities, we havePmax512u^c0uc1&u, as expected from
Ref. @2#.

IV. LOWER BOUND

We consider a strategy that achieves UD of an arbitr
pair of mixed states and which is strongly dependent on
geometrical relationship between the two subspacesK0
andK1:

Theorem. Consider two arbitrary mixed statesr0 andr1.
Denote the dimensionality of their kernelsK0 andK1 by r 0
and r 1, and assume thatr 0>r 1. There exist orthonorma
bases$ukb

j &% j 51
r b for Kb(b50,1) such that for 1< j <r 0 , 1

< i<r 1,

^k0
j uk1

i &5d i j cos~u j !, ~10!

where theu j are the canonical angles betweenK0 and K1
@13#. In this case,

Pmax<(
j 51

r 1

P1D
max~ uk0

j &,uk1
j &)1 (

j 5r 111

r 0

^k0
j ur1uk0

j & ~11!
1-2
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expresses a lower bound on the maximum probability of d
criminating unambiguously betweenr0 andr1.

Proof. The proof is constructive. LetXb be anyn3r b
dimensional matrix whose orthonormal columns spanKb .
Define anr b3r b unitary matrixUb , and anr 03r 1 matrix S
via a singular-value decomposition@13#,

X0
†X15U0SU1

† . ~12!

The matrixS is of the formS5@O
C#, whereC is a diagonal

matrix of the form C5diag(cosu1, . . . ,cosur1
), u i

P@0,p/2#, while O is an (r 02r 1)3r 1 matrix of 0’s. Defin-
ing u j5p/2 for j .r 1, and denoting byukb

i & the i th column
of XbUb , we have constructedcanonicalbases forK0 and
K1, that is, bases satisfyinĝk0

j uk1
i &5d i j cosui , as required in

the theorem.
The measurement achieving the lower bound is associ

with the POVM that hasE05( i 51
r 1 a i uk1

i &^k1
i u and E1

5( i 51
r 0 b i uk0

i &^k0
i u. Constraint~3! takes the form

I 2( a i uk1
i &^k1

i u2( b i uk0
i &^k0

i u>0. ~13!

Since the two-dimensional subspace spanned byuk0
j & and

uk1
j & for 1< j <r 1 is orthogonal to all other such subspac

and is orthogonal touk0
j & for r 1, j <r 0, constraint~13! re-

duces to constraints of the form~5! for 1< j <r 1, and con-
straints of the formI 2b j uk0

j &^k0
j u>0 for r 1, j <r 0. In this

manner, we have reduced the problem tor 1 separate optimi-
zations of the form already considered in Sec. III B. Solvi
each of these yields the first term on the right-hand side
Eq. ~11! in the theorem. The remainingr 02r 1 optimizations
are achieved by takingb j51, which yields the second term
on the right-hand side of Eq.~11!. j

In order to understand the geometry of the eigenbases
the POVM elements in this lower bound, it is helpful
realize that the canonical anglesu i form the unique geo-
metrical invariants describing the relationship between t
subspaces. They can be defined iteratively:u1 is the smallest
angle between any pair of vectors drawn fromK0 and K1,
anduk0

1&,uk1
1& are the corresponding pair of vectors.u2 is the

smallest such angle after these two vectors are removed
so on. In this way, one obtains a simple geometrical pict
of the measurement achieving the lower bound. We note
we have not found any example of UD wherein this low
bound is not optimal. Nonetheless, given that the eigenb
for E0 ,E1 depend only on the subspaces spanned byr0 ,r1,
and not on the states themselves, there is no reason to e
it to be optimal in the general case.

V. UPPER BOUND

Theorem. An upper bound on the maximum probability o
unambiguously discriminating two mixed states,r0 andr1,
is
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Pmax<H 122Ap0p1F~r0 ,r1! if F~r0 ,r1!,Apmin

pmax
,

pmax@12F~r0 ,r1!2# otherwise,
~14!

whereF(r0 ,r1)5TruAr0Ar1u is the fidelity.
Proof. Let ucb& be a purification ofrb @14#. Clearly, UD

of uc0&,uc1& with priorsp0 , p1 can be achieved with a maxi
mal probability of success that is greater than or equal to
maximum probability of success in the UD ofr0 , r1 with
the same priors. This follows from the fact that any discrim
nation procedure for the latter task serves also as a discr
nation procedure for the former task. Thus,

Pmax~p0r0 ,p1r1!< min
uc0&,uc1&

Pmax~p0uc0&^c0u,p1uc1&^c1u!,

where the minimization is over all purifications ofrb . We
know, however, thatPmax(p0uc0&^c0u,p1uc1&^c1u) is given by
Eq. ~9!. Minimizing either of the expressions on the righ
hand side of Eq.~9! requires maximizingu^c0uc1&u. Uhl-
mann’s theorem@14# states that the maximum overlap b
tween purifications of two density operators is equal to
fidelity between the density operators. Applying this obs
vation yields the desired upper bound. j

In the case of equal prior probabilities, the upper bou
has the simple formPmax<12F(r0,r1). Numerical studies of
rank-2 mixed states in a four-dimensional Hilbert space
dicate that even for randomly chosenr0 and r1, our upper
and lower bounds are generally very close.

VI. SOME APPLICATIONS

A. State comparison

In Ref. @9#, Barnett, Chefles, and Jex introduced the f
lowing problem: given two systems, each of which is in o
of two ~generally nonorthogonal! states$uc1&,uc2&%, with
what probability can one determine whether the two syste
are in the same state or in different states? Here, we cons
the case where this determination must be made withou
ror, if at all. Assuming equal likelihood for either possibility
we can clearly interpret the problem as one of achieving
of the two mixed states

r05 1
2 uc1c1&^c1c1u1 1

2 uc2c2&^c2c2u

r15 1
2 uc1c2&^c1c2u1 1

2 uc2c1&^c2c1u, ~15!

as was recognized by the authors of Ref.@9#.
These are rank-2 mixed states in a four-dimensio

space; as such, their kernels are also two-dimensional. W
uc̄ i& be the state orthogonal touc i&, and choose phases suc
that ^c̄1uc̄2& is real. It is clear thatK0 is spanned by

$uc̄1c̄2&,uc̄2c̄1&%, while K1 is spanned by$uc̄1c̄1&,uc̄2c̄2&%.
Using the techniques of Sec. IV, we find that the canoni
basis vectors in K0 are uk0

1&5uc̄1c̄2&1uc̄2c̄1&, uk0
2&

5uc̄1c̄2&2uc̄2c̄1&, while those of K1 are uk1
1&5uc̄1c̄1&

1uc̄2c̄2&, uk1
2&5uc̄1c̄1&2uc̄2c̄2& ~all suitably normalized!.
1-3
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Since^k0
2uk1

2&50, these two states can be included in th
respective POVM elements with weight 1, i.e.,a2515b2.
The remaining pair of states have overlap cosu1[^k0

1uk1
1&, and

we can use the solution for one-dimensional kernels. P
forming this calculation, we find that our lower bound is
2F(r0 ,r1). Since this is equal to our upper bound, we a
tomatically know that this is optimal, and we have the op
mal POVM by construction.

B. State filtering

A problem that has been considered recently by Sun, B
gou, and Hillery@10# is that of unambiguously discriminat
ing whether a state isuc1& or whether it is in the se
$uc2&,uc3&% when the prior probabilities of the three stat
are h1 ,h2, and h3, respectively. This task has been call
state filtering. It is straightforward to see that it is an instan
of UD of mixed states. Specifically, it is the problem of u
ambiguously discriminating

r05uc1&^c1u, r15
h2

h21h3
uc2&^c2u1

h3

h21h3
uc3&^c3u,

with prior probabilitiesp05h1 ,p15h21h3. It is easy to
find our lower bound for this problem. SinceK1 is one di-
mensional, we associate it with a unique vectoruk1&. The
kernel K0 is two-dimensional, and so there is flexibility i
the basis that diagonalizesE1. Our lower bound dictates tha
we use the basisuk0

1&, uk0
2&, where uk0

1& is the vector in
K0 that is maximally parallel touk1&, and uk0

2& is the vector
in K0 that is orthogonal to bothuk1& and uk0

1&. Our lower
bound isPL5P1D

max(uk0
1&,uk1&)1^k0

2ur1uk0
2&. Defining the canoni-

cal angleu by cosu5^k1uk0
1& and appealing to the geometr

of the problem, we find A05p0(12cos2u)
and A15p1F(r0 ,r1)2tan2u. Finally, defining F̃
[F(r0 ,r1)/Ap0 /p1, the lower bound takes the followin
form:

Pmax>5 12p0cos2u2
p1

cos2u
F~r0 ,r1!2, F̃<cos2u

122Ap0p1F~r0 ,r1!, cos2u<F̃<1

p1@12F~r0 ,r1!2#, F̃>1.
nt
se
h
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This coincides precisely with the optimal solution derived
Ref. @10#. Thus, our lower bound is found to be optimal
this case.

By recasting state filtering as an instance of UD of a p
state and a mixed state, it has become apparent that the
ticular ensemble of states from which the mixed state
formed~in this case,uc2& anduc3& with priorsh2 andh3) is
not significant. As such, our analysis applies also to the c
wherein the second set of states contains an arbitrary num
of elements, in agreement with the solution found in R
@11#. Moreover, the mixed state need not even arise a
result of ignorance of the pure state, but rather may arise
a result of the system being entangled with another degre
freedom. This is confirmed by the fact that the probability
success depends only onr1. The problem of UD between
multiple sets of pure states@15# is a straightforward gener
alization of state filtering that can be recast as a problem
UD of mixed states in a similar way.

VII. CONCLUSION

We have shown that UD of a pair of mixed states is p
sible when these have distinct supports. We have provi
the maximum probability of success for the case of mix
states with orthogonal or one-dimensional kernels. In
general case, we have determined an upper bound base
the probability of UD for purifications of the states, and
lower bound based on the geometrical invariants betw
their kernels. In addition to the tasks discussed here, there
likely to be many others for which UD of mixed states m
be useful, such as quantum random access codes, qua
oblivious transfer, and entanglement distillation, to name
few.
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