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Comment on “Quantitative wave-particle duality in multibeam interferometers”
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In a recent paper, Du[Phys. Rev. 464, 042113(2001)] proposed an interesting multibeam generalization

of the quantitative formulation of interferometric wave-particle duality, discovered by Englert for two-beam
interferometers. The proposed generalization is an inequality that relates a generalized measure of the fringe
visibility to certain measures of the maximum amount of which-way knowledge that can be stored in a
which-way detector. We construct an explicit example where, with three beams in a pure state, the scheme
proposed by Dir leads to the possibility of an ideal which-way detector that can achieve a better path
discrimination at the same time as a better fringe visibility. In our opinion, this seems to be in contrast with the
intuitive idea of complementarity, as it is implemented in the two-beams case, where an increase in path
discrimination always implies a decrease of fringe visibility, if the beams and the detector are in pure states.
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I. INTRODUCTION generalization of the concept of path predictabiley pro-
vided by the quantityP defined in Eq.(1.16) of Ref. [1],
As it is well known, the Einstein-Bohr debate on Bohr’s Durr was able to derive an inequality analogous to that found
Principle of Complementarityhas helped to shape the basic by Greenberger and Ya Sjd] for two beams:
concepts of quantum mechanics. The central issue was the P2y \2<1 @
possibility of detecting, as proposed by Einstein, “which -
way” individual quantum systems‘quantons,” for shork  Similar to Eq.(1), the above inequality becomes an equality
take, in double-slit interference experiments. However, thisf the beams are in a pure state, which ensures the existence
early discussion on the duality between fringe visibility andof a general see-saw relation betweaéandP. SinceV and
which-way information, as it is called today, was essentiallyp undoubtedly measure, respectively, wavelike and particle-
semiclassical in nature. The history of the attempts of formutike attributes of the interfering quantons, we thus think that
lating such a duality, for the two-beams case, within the fullgq. (2) can be correctly interpreted as expressing a form of
framework of quantum mechanics, has been quite long, peiyave-particle duality in the multibeam case.
haps surprisingly long, and has found, it seems fair to say, a However interesting, an inequality like E€R) does not
satisfactory conclusion in 1996 in a paper by Engl@t  convey yet the concept of wave-particle duality, as it is in-
Following a suggestion present in the pioneering work ofyolved, say, in the famous ideal experiment with two moving
Wootters and ZureK3], Englert was able to establish a sjits, conceived by Einstein. Indeed, the quanfityabove
complementarity relationship between thistinguishability  does not represent any real knowledge of the paths followed
D, which gives a quantitative estimate of the ways, and theyy individual quantons, but only constitutes some measure of
visibility V, which measures the quality of the interferenceone’sa priori ability to predict them, based on unequal popu-
fringes: lations of the beams. The relevant schemes for a discussion
of wave-particle duality as conceived by Einstein are those in
D2+V2<1. (1) which one actually tries to obtain which-way knowledge, by
placing detectors along the paths of the quantons. In order to
An important feature of EqJ) is that it becomes aequality = measure the amount of which-way information, which can be
when the beams and the detector are prepared in a pure stadétained by measuring the detector’'s observaldl@fter the
when this is the case, E(l) implies that a larger visibility is  passage of each quanton,defines the which-way knowl-
necessarily accompanied by a smaller path distinguishabilityedgeK (W) as a weighted average of the generalized predict-
It is interesting to explore if an analogous form of inter- abilities P of the sorted subensembles of quantons, for which
ferometric duality can be formulated for more than twoa certain result of the measurement is obtaiGEds. (2.3
beams of interfering quantons. An important step toward theind (2.4) of Ref. [1]). (Actually, Dur also introduces an
understanding of this question has been made by [1f; he  alternative measuréy,, of the which-way information, in
argued that an appropriate multibeam generalization of thgq. (6.6) of Ref.[1]. For the sake of simplicity, in this Com-
usual concept of fringe visibility’ is provided by theprop-  ment, we will refer only to the first one and we address the
erly normalized rms spreadv of the fringes intensity from interested reader to Rdf5], where an extensive discussion
its mean valugEq. (1.10 of Ref. [1]). By a corresponding of the problem is given.Then, the multibeam analo® of
Englert’s path distinguishabilityD is defined as the maxi-
mum value ofK(W), over the set of all detector’s observ-
*Electronic address: Bimonte@na.infn.it ables(Eq. (2.11) of Ref.[1]). By using this definition, Dtr
"Electronic address: Musto@na.infn.it is able to prove an inequality analogous to Englert’s @&g.

1050-2947/2003/6%)/0661014)/$20.00 67 066101-1 ©2003 The American Physical Society



COMMENTS PHYSICAL REVIEW A 67, 066101 (2003

D2+ V2<1. 3) 1pmeem.

This generalization of Eqg(l) to the multibeam case isan 0.8 RN

interesting relation, which can be tested, in principle, by ex- RS ~

periments. However, there exists a difference between the o g

two beams and the multibeam case. In fact, different from =T

Egs. (1) and (2), the inequality(3) cannot be saturated in

general, even if the beams and the detector are prepared in”™ "

pure stategin Ref.[5], we actually prove that in the multi-

beam case the above inequality can be saturated only if the0 -

visibility V is either equal to one or equal to zgrdherefore,

one may conceive the possibility of designing two which- NG 1 G > 55 3

way detectordD; andD,, such thatv,>V,, while, at the ’ ’ ’

same timeD;>D,. FIG. 1. Plots of the quantitie® (solid line), V (dotted ling, and
It is the purpose of this Comment to show that this pos.D2+V2 (dashed ling as functions ofg, in an ideal three-beam

sibility actually occurs, as will be seen in the following sec- interference experiment.

tion, by an explicit example. In the final considerations that

close this Comment, we argue that such a behavior risegyis, we can make the vectoy coincide with thez axis and

doubts on the possibility of interpreting E(B) as a state-

ment of wave-particle duality.
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G

N

the vectorsn. lie in the x-z plane, such that

Il. A THREE-BEAM EXAMPLE No=(0,0,1), n.=(*sing,0,cosh). v

In this section, the problem announced in the precedingipon using the well-known formula |<Xi|Xj>|2

section is presented in an example with three beams of quan:(q 4 ﬁi . ﬁj)/2 in Durr's definition for the generalized fringe

tons in a pure state. So, we consider a three-beam imerfe\rﬁsibility V, Eq. (1.12 of Ref.[1], one gets the following
ometer with equally populated beams, described by the PUrgxpression fol, as a function of:

state

3 1 I 1+ cosf+ coLo
p=§121|¢i><¢j|- (4) V(e):\/EZ ;(“”r”j):\/f
o ®

.If a detector, initially prgpareq in some pure initial stptg). .. We notice that the value of the visibility is equal to one, for
IS place_d a'o_”g the trajectories f_oIIo_vved_by the guantons, 'tsﬁ=0 and gradually decreases whens increased, until it
interaction with the quantons will give rise to an entangledread']es its minimum fof=2 7/3. Afterwards. it s"[arts i

stateppg g Of the form creasing and keeps on increasing ufitd 7 (see Fig. 1

13 The next step is to evaluate the generalized path distin-
=_ Myil® |, 5 guishability D as a function ofd. This requires that we
Prad=3 i,jzl o)l @l vl ® determine the observabM/,, in Hp that maximizes the

multibeam generalization of the which-way knowledge
where|x;) are normalized, but not necessarily orthogonal,K (W). We briefly recall the definition oK (W) proposed
detector’s states. Suppose, for simplicity, that the detector't Ref. [1]. Consider any detector's observabW¥, and
Hilbert spaceHy, is two dimensional. In order to further |et II, (I=+,—) the projector onto the subspace of

specify the statepy;), it is then convenient to use the Bloch Hp, relative to the eigenvalua,. For anyW, we let m

parametrization, to represent rays ®fp by unit three-  —(singcosy,singsiny,cosp) being the unigque unit three-
vectors,n=(n*,n¥,n?), via the map vector such that
1+n-o 1+m-¢ 1-m-o

whereo = (oy,0y,07) is any representation of the Pauli ma- Now we letp;, the conditioned probability to find a quanton
trices inHp . We shall denote byn){n| the ray correspond- in beami, provided that the measurementwfon the which-

ing to the vectorn. We require that the directions way detector gave the outcomg. According to Bayes’ for-
A, ,N_ .o associated with stately;), are coplanar, and Mula

such thatn, and n_ both form an angled with n,. We -
imagine thatf can be varied at will, by acting on the detec- _ _ﬂ (10)
tor. By properly choosing the orientation of the coordinate
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whereq;; is the probability of getting the outconvg , when  pected from the wave-particle duality, we see that in the
the quanton occupies with certainty the bewhile ; are  interval 7/2< #<r, V andD decrease and increase simulta-
the populations of the beams, apg is the totala priori  neously If we pick two value®, and 6, in this region, we
probability for obtaining the resutt;, p;=Z%;{; q;,. Recall  obtain two which-way detectors, which precisely realize the
that, in the above equation, we have to &et 1/3, because sjtuation described at the end of the Introduction. It can also
we are considering three equally populated beams. Accorthe seen from the Fig. lthe dashed linethat the sumD?

ing to Ref.[1], the which-way knowledg& (W) delivered | v js significantly less than one, for most valuesfofwe

by Wis the weighted average(W)=2,pK, of the partial  have checked that these problems persist if, rather Ban
predictabilitiesK for the sorted subensembles of quantons: one yses the alternative measure of which-way information

I5, provided by Eq(6.16) of Ref.[1], since it turns out that
1\2 the optimal observable fdr, coincides with that relative to
(pill_ ﬁ) (12) D, in the interval G< < 2/3 .
In the literature on the quantum detection problem, it has
Now, using the well known formula been argued that it is sometimes possible to achieve a larger
amount of information on an unknown quantum state, by
A including an auxiliary quantum system, called ancilla, in the
Gire = O T | i) = 1=m-n, (12) read out apparatus of a quantum detef8oT]. This question
il= T AN X 2 has a negative answer in the example above, but we do not
touch upon this problem here and we refer the interested
it is easy to verify that reader to Ref[5] for details.

>

Kl: n—-1%5
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cosB sinz(g

o0
Sl 2 Ill. DISCUSSION

13 In conclusion, the inequalities discovered byrDin his
For all values ofg, the which-way information is maximum analysis of multibeam interferometers are very. interesting,
if cosy=+1, i.e., if the vectorn, lies in the same plane as because they represent a set of testable relations be_tween
S ot ; measurable quantities, which follow directly from the first
the vectorsn; . As for the optimal value oB, it depends on  principles of quantum mechanics. However, there is an im-
0. For O< 6<2m/3, the best choice i8=* /2, and so for  portant difference between the two-beam relation, @,
the optimal observabl&V,,, we can take any operator such ang its multibeam generalization, E§). As we pointed out

+3sirfB cosy co§(g)

that above, the two-beam relation becomes an equality whenever
the beams and the detector are prepared in pure states, and
1*oy this entails the existence of a see-saw relation betvizaend
.= 2 for 0=<6@<2ml3, (14) V. We think that this behavior expresses the intuitive idea of

wave-particle duality, according to which.". .the more
which delivers an amount of which-way knowledBesqual clearly we wish to observe the wave natur. . themore in-
to formation we must give up abou. . particle properties]3].
In other words Eq(1) conveys the basic idea of interfero-
metric duality, for which, in an ideal interference experiment
D(6)= isin 0 for O=o<2/3w. (15) (namely, one involving pure stajes quantum mechanic§}
J3 andV exhibit a dual behavior. Any departure from this be-
havior, occurring for mixed states in the two-beam case, may
For larger values o#, the maximum information is reached be attributed to the presence of extra sources of uncertainty,
for =0 and then the optimal operators are those for whichin addition to the unavoidable one entailed by quantum me-
chanics.
1+q, In contrast, the inequality, Eq3), is almost never satu-
.= for 2#w/3<6<m, (16)  rated, even for pure statfs|. So, while Eq(3) sets an upper
2 bound for either quantity, when the other takes a fixed value,
it is not strong enough to prevent the behavior exhibited in
the example presented in the preceding section. According to
it, even in an ideal experiment with pure states, one can
easily have cases whéhandV both increase or decrease at
the same time. In the light of this, it seems to us difficult to
regard Eq(3), as a statement of interferometric duality, simi-
lar to Englert’s inequality for the two-beam case. It is our
A plot of the quantitiesv, D, andD?+V? is shown in the opinion that the issue of giving a complete quantum-
Fig. 1. We see that something unexpected happens; while imechanical formulation of the interferometric duality in
the interval 0< §<w/2, V decreases and increases, as ex- multibeam experiments deserves further analysis.

which deliver an amounD(#) of which-way information
equal to

2 6
D(a)zgsinz 5) for 23w<o<m. (17
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