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The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-
Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of
Bose-Josephson junctiofBJ) were investigated in terms of energy splitting. A& /E;<1, the energy
splitting is small and the system is globally phase coherent. In the opposite Egit;>1, the energy
splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the
coherence phenomena of BJJ in proper condition sudb-d&;~1.
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I. INTRODUCTION nomena, such as “Bloch” oscillation, had been reported in
current-biased Josephson juncti¢hs§]. To understand these

Two weakly linked Bose-Einstein condensatBECS be-  effects and present a general picture of the low-temperature
have as the superconductor Josephson junction. This remarflynamics of Josephson junctions, a simple thgd§—18
able feature has been investigated both theoretidahy7] ~ has been suggested based on the extended coordigates,
and experimentallyf8—12). The existence of a Josephson €[ —%,+>].
current through a potential barrier between two supercon- More recently, the first experiment of BJJ has been real-
ductors or between two superfluids is a direct manifestatiofed in @ purely magnetic double-well potentjah]. It will
of macroscopic quantum coherends]. The experimental stimulate the further study on the BJJ. Then, can we investi-
realization of Bose-Einstein condensatitBEC) of weakly ~ 92t€ the secondary quantum macroscopic effeicisin two
interacting alkali atomg8] has provided a route to study weakly_lmked BECS? It was argued in Rel8,3,6) that the
neutral superfluids in a controlled and tunable environmeng.ynarmcS of the phase of this system can be mapped onto the

[9]. The possibility of loading a BEC in a one-dimensional s:eérG?A:gogalgﬂzr;;%nlhrgzcnhezinlgilarljgr;l;:hocr:gz. :goltgrgswave
periodic potential has allowed the observation of quantu per, 9y '

phase effects on a macroscopic scale such as quantum int%rJd the energy splitting of the Bose-Josephsonﬂjﬁu‘njction due
ference[10], superfluidity on a local scald.1] and an oscil- the quantum tunneling using the instanton me - AS

lating atomic current in Josephson-junction arrEy2). a simple application, we investigate the coherent properties

The analoav of the voltage-current characteristic in su er9f the Bose-Josephson junction. The results from this method
9y /oltag Sup .agree exactly with the prediction of Stringgéi.

conductor Josephson junction was proposed theoretically in

Bose-Josephson junctiofBJ) [2-5]. The macroscopic

BEC's coherence has been demonstrated by interference ex- Il. MODEL AND ITS INSTANTONS SOLUTION
perimentd14], and the evidence of the coherent tunneling in Al quantities describing the junction should be consid-
an atomic array, related to the “ac” Josephson effect, hagred as operators rather than the classical variables. The op-
been reported10]. A “dc” current-biased Bose-Josephson erators corresponding to the main variables, the phase differ-
junction can be simulated by a tunneling barrier moving withence ¢ and the particle numbeN of the Bose-Josephson
constant velocity across the tr&p). At a critical velocity of junction, satisfy the commutation relationg,N]=i, so that

the barrier(proportional to the critical tunneling currén&  , and N are related by the Heisenberg uncertainty relation
sharp transition between the “dc” and “ac” Josephson re-\hich was disregarded by the “classical” theory of the Bose-
gimes was predicted. Thus, two weakly linked condensategosephson junctiof2).

exhibit the analog of the resistively shunted superconductor The jdealization of two weakly linked BECs can be de-
Josephson junctions. The “secondary” quantum macroscopigcriped as a two-mode bosonic systgr22]. In the “phase”
effects in small capacitance Josephson junction had attract@gpresentation, the relevant quantum observables are the dif-
much attention both from theorists and experimentalists foference of phases and number of atoms between the two
decadeq15-18. These phenomena manifest the quantumcondensates in each trap. The Hamiltonian can be written in

behavior of a Josephson junction as a macroscopic object, igrms of a “quantum pendulumMathiey equation
contrast with such “primary” quantum macroscopic phe-

nomena as the Josephson junction it&H]. In these cases, R Ec &2
qguantum fluctuations of the phase differengeacross the H=— o o2 +E;cose. (1)
junctions become important. This necessitates treating the a$

phase as a quantuonperat}arWhich is canonically conju-  The “charging energy’Ec and the “Josephson coupling en-
gate to the operatoN. Novel macroscopic quantum phe- ergy” E; can be calculated as overlap integrids3],
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Ec=29J' drd)‘l‘(r)=29f dr (1), do=2 arcsifik sn(wqy( 7+ 79))], (6)

where wg= VE;E. /% is the classical plasma frequenp§,

. h? 5 sn is the Jacobian elliptic function with moduluk
EJ:NJ dr @7 (r) —%V *Vext =\1-E/2E;. The elliptic function stwq(7+ 7)) has a

period 4C(k) with (k) the complete elliptic integral of first
gN_ 2 kind. For zero energ¥, =0 (k—1), the periodic solution
+ 7[<Dl(r)+d>2(r)] Pa(1), 2) reduces to the vacuum instanton configuratiog,
— 2 arcsiftant wo(7+ ) I}

with the one-body wave functionB(r),®,(r) localized in

the trap 1,2; and'dr ®I(r)®,(r)=0, fdr ®T7Ar)®1Ar) |11 ENERGY-BAND STRUCTURE AND THE TRANSITION

=1, g=(47-rﬁ2a/m); a is the scattering length anah the AMPLITUDE FOR QUANTUM TUNNELING

atomic massN=ala,+ala, is the total number of atoms.
For convenience, we modify the potential &k()

=E;(1+cos¢). Then, the Hamiltoniam in Eq. (1) can be
considered as one-dimensional quantum particles with ma
m¢=ﬁ2/EC moving along thep axis in sine-Gordon poten-
tial Uj(¢). Due to the translational symmetry¢p ¢
+2) of Hamiltonian (1), the set of the eigenfunctions
should include the Bloch wave functions

(//n((ﬁ):un,q((ﬁ)exqiqd’)a n=0,12...,

Ung( @) =Upq(p+2m), —oo<q<ce, (3)  whereE; denotes thdth eigenvalue of the. energy irl1 each
well for the harmonic-oscillator potential(¢)=35(¢

whereq is an arbitrary(rea) constant vector. Substitution of —R.)?, R,=2ns is the position of thenth minimum,
the wave function(3) in the Schrdinger equation leads im- J(R, —R.)= [’ (¢—R,)[U;($)—U($)1¢i(d—Ry)dep
mediately to the picture of band energy spectrum and relatives the overlap integraly; is the eigenfunction corresponding
well-known effects in solid-state theory. From Rdfs7,18,  to eigenvalueE;, andq is the Floquet parameter associated
this is nothing but Mathieu equation, so that these functionsyith the Bloch wave function. If only the contribution from
can be readily calculated. Some of their asymptotic properthe nearest neighbors is taken into account, ¥R,

The sine-Gordon potential has an infinite number of de-
generate vacua. Quantum tunneling between neighboring
vacua leads to the level splitting, while the levels extend to
$rands due to the translational symmetry expressed by
Uj(¢p+2m)=Ujy(¢). In the narrow-band approximation
one finds, for the energy, the expression

E=E;+ >, J(Ry,—R,)edFmRo), @)
n

ties (in tight-bindi_ng limit and weak-binding limjitcan be  —R) for |n’ —n|>1 is taken to be zero, the energy-band
expressed analytically. formula reduces to

The energy-band structure and energy splitting for the
sine-Gordon potential can be calculated alternatively by the E=E;+2Jcoq2mq). (8

instanton method19,20. The advantage of this nonpertur-

bative method, as presented here, is that it gives not only a The parameted is just the level splitting resulting from
more accurate description of the tunneling phenomena bquantum tunnelingthe wave functions are periodic far
also a comprehensive physical understanding in the context0). We will consider the case of potential wells sur-

of quantum-field theory. rounded by very high potential barriers with correspondingly
The effective Lagrangian is small tunneling contribution to the eigenvalues. They are al-

2 most those of degenerate harmonic oscillators, and in this

=_m _¢) —U,(¢). (4) asymptotic_ case, we are not concerned with the entire bands

2790 dt but only with their edges that correspond to alternately even

) ) _ o and odd states. Then, we suppdbg,|i), are degenerate
Thg- classical so!utmn that_extrem|zes the action is seen t@igenstates in neighboring wells, respectively, with the same
satisfy the equation of motion energy eigenvalué; such thatH|i)g, =Ej|i),, where

2 HY is the Hamiltonian of the harmonic oscillator as the zero-
1 doc o :
—my| ——| +Us(¢p)=—Eq, (5)  order approximation of the system. The degeneracy will be
2 dr removed by the small tunneling effect which leads to the

. . . . level splitting. The eigenstates of the Hamiltontdrbecome
where the Wick rotatiom=it has taken the system into Eu- P g g

clidean time. Equatiofb) can be regarded as the equation of 1 1

motion of a pseudoparticle with the classical enekgy N = (liVe— i iV =——(li i

=0, which is a constant of integration. Wi, being con- Do JE(MR D0, [i)e ﬁ(|I>R+|I>L)' ®
fined to a region &E; <E;, the configurationp. becomes

periodic such thatg.(7+7)=¢.(7), which now corre- with eigenvaluesk; = AE;, respectively.AE; denotes the
sponds to the periodic boundary condition in the space cooshift of one oscillator level. It is obvious thag(i|H
dinate[19]. The classical solution is —HYi), =2J=AE;. In the following, we calculate this en-
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ergy shift AE; as resulting from periodic instantons and
instanton-antiinstanton pairs.
The amplitude for a transition from one well to its neigh-
boring well at the energ¥; due to instanton tunneling can
AET

be written as
A, = +<Ei|e—2(ﬁT/h)| E) =+ e 2 MT sinl-( ZT) ,

(10

where we neglect overlap of the wave functions that domi-

nate over either well. The amplitud&0) can also be calcu-
lated with the help of the path-integral method,, _
=[ g (d)K(bs, 75, i ,71) Ye,—(¢i)dd¢ dgy, where the

Feynman kernel is defined as usual by

b1
K(ormidm= [ "Dote ™,y

with = ¢ (71), di=¢(7), and 7i— 7;,=2T. What we are
interested in is this expression in the limits— —a, ¢
—a (*a are the turning poinjs namely, the tunneling
propagator  through one of the barriers.S
=[T[3m,(d¢/d7)?+U;(¢)]dr is the Euclidean action of
the pseudoparticle angte, . (i) [¢e ()] is the wave
function of the right-(left-) hand wells.

The functional integraK (¢, 7 ; ¢;,7;) can be evaluated
with the stationary method by expanding(r) about the
classical trajectory¢.(7) and thus we setp(7)= ¢d.(7)
+x(7), where x(7) is the small fluctuation with boundary
conditions y(7;) = x(7s) =0. Substitution of¢(7) into Eq.
(1)) and keeping only terms containing(7) up to
the one-loop approximation yieldsK(¢s,7s;¢i,7)
= ex —S(n)/h]l, wherel = [0~ D[ x]e™*9" is the fluc-
tuation function integral with the fluctuation actiodS
=/TxMxd7, where M=—m,d*dr*+V"(¢(7)) is the
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FIG. 1. Ground-state energy splitting as a function of the ratio

0)0T

—W/h
—ZIC(k’) e ) , (13

A, =e 2EMT sin?—(
with W= (8E;/wo)[ E(k) —k'2K(k)]. Comparing Eqs(13)
and(10) leads toAE=[#A wy/4KC(K") Jexp(—W/H). Rescaling
this formula in the unit oE;, we arrive at our final result,

EC \/EJ ’
\/E—J p[—s ek 2kC(K) ]

Formula(14) shows that the widths of the energy bands
are very sensitive to the dimensionless paramet&diE;,
which is a critical parameter characterizing the dynamical
properties of the system such as the coherdft¢eand the
transition[15]. A direct application of this energy splitting is
to investigate the coherence properties of BJJ. Quantum co-
herence requires that the relative phase of the order param-
eter should be preserved over times of the ordel of,

AE
E

1
ex
4KC(k")

(14)

second variational operator of the action. The classical actiofnich is just the tunneling amplitud®3]. From the above

S.(7) is evaluated along the trajectoty,(7) so that
7 d
s ( Pel7)

dr
8E; 5
=2ET+ w—[é’(k)—k’ K(k)],
0

2

+V(de(7))

My

5 dr

12

where&(k) denotes the complete elliptic integral of the sec-
ond kind andk’?=1—k?. Following the standard procedure
of the periodic instanton calculation in Refgdl9,20, the
functional intergall can be written as

-1/2
Tf

Ti NZ(T)

V2w

where N(7)=d¢.(7)/dr, is the zero eigenmode dfl. To

N(7)N(7¢)

calculation, we know that the energy splittinde is propor-
tional toI". Therefore, the energy splitting describes the co-
herent properties of the system.

Figure 1 shows the energy splittilgE/E; as a function
of the ratioE/E; in the ground stateE;=0). The figure
shows that for values d&; smaller thark: the energy split-
ting is significantly increased, indicating the occurrence of a
continuous transition to the phase dissipatitine number
squeezed regimd6,7]. In the limit Ec/E;<1, the system
undergoes small oscillations around the equilibrium. In this
limit, the correlation between the neighboring wells is small.
One can regard the systems as a globally coherent object
described by a unique order parameter. On the contrary
Ec/E;>1, the behavior of the system is very different. The
guantum fluctuation is enhanced due to the increasing of the
tunneling between the neighboring wells in phase space,
showing that the relative phase between two condensates is

obtain the desired results, the contributions from the infinitedistributed in a random way. At the same time, the fluctua-
number of the instantons and antiinstanton pairs have to bgon of the relative number of atoms in two traps becomes

taken into account. The total amplitude is found to be

smaller and smaller.
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FIG. 2. Energy splitting as a function of the ratiE; for
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tant. It is interesting that the response of the system to the
decoherence performs a total different behavior. States with
small quantum effects are more sensitive to the decoherence
fluctuations than those with relatively large vaules of
Ec/E;. The system with little higheE . /E; state should be

a good candidate to investigate the quantum coherence phe-
nomena, irEc/E;~1. Because in this case, the system with

a good coherence will preserve its coherence for a relative
large range of the energy perturbation.

Energy spectrum and energy splitting due to quantum tun-
neling in BJJ have been calculated by means of instanton
method. Based on this energy splitting formula, we also in-
vestigated the coherence property of BJJ. Our results agree
exactly with that in Ref[6]. This analysis makes it possible
to investigate the secondary quantum phenomena indgé]
for instance, Refl18]) and presents a general picture of low-
temperature dynamics of Josephson junctions in BEC.
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