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Energy-band structure and intrinsic coherent properties in two weakly linked
Bose-Einstein condensates
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The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-
Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of
Bose-Josephson junction~BJJ! were investigated in terms of energy splitting. ForEC /EJ!1, the energy
splitting is small and the system is globally phase coherent. In the opposite limit,EC /EJ@1, the energy
splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the
coherence phenomena of BJJ in proper condition such asEC /EJ;1.
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I. INTRODUCTION

Two weakly linked Bose-Einstein condensates~BECs! be-
have as the superconductor Josephson junction. This rem
able feature has been investigated both theoretically@1–7#
and experimentally@8–12#. The existence of a Josephso
current through a potential barrier between two superc
ductors or between two superfluids is a direct manifesta
of macroscopic quantum coherence@13#. The experimental
realization of Bose-Einstein condensation~BEC! of weakly
interacting alkali atoms@8# has provided a route to stud
neutral superfluids in a controlled and tunable environm
@9#. The possibility of loading a BEC in a one-dimension
periodic potential has allowed the observation of quant
phase effects on a macroscopic scale such as quantum
ference@10#, superfluidity on a local scale@11# and an oscil-
lating atomic current in Josephson-junction arrays@12#.

The analogy of the voltage-current characteristic in sup
conductor Josephson junction was proposed theoreticall
Bose-Josephson junction~BJJ! @2–5#. The macroscopic
BEC’s coherence has been demonstrated by interference
periments@14#, and the evidence of the coherent tunneling
an atomic array, related to the ‘‘ac’’ Josephson effect,
been reported@10#. A ‘‘dc’’ current-biased Bose-Josephso
junction can be simulated by a tunneling barrier moving w
constant velocity across the trap@3#. At a critical velocity of
the barrier~proportional to the critical tunneling current!, a
sharp transition between the ‘‘dc’’ and ‘‘ac’’ Josephson r
gimes was predicted. Thus, two weakly linked condensa
exhibit the analog of the resistively shunted supercondu
Josephson junctions. The ‘‘secondary’’ quantum macrosco
effects in small capacitance Josephson junction had attra
much attention both from theorists and experimentalists
decades@15–18#. These phenomena manifest the quant
behavior of a Josephson junction as a macroscopic objec
contrast with such ‘‘primary’’ quantum macroscopic ph
nomena as the Josephson junction itself@15#. In these cases
quantum fluctuations of the phase differencew across the
junctions become important. This necessitates treating
phase as a quantum operatorŵ, which is canonically conju-
gate to the operatorN̂. Novel macroscopic quantum phe
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nomena, such as ‘‘Bloch’’ oscillation, had been reported
current-biased Josephson junctions@15#. To understand these
effects and present a general picture of the low-tempera
dynamics of Josephson junctions, a simple theory@16–18#
has been suggested based on the extended coordinatw
P@2`,1`#.

More recently, the first experiment of BJJ has been re
ized in a purely magnetic double-well potential@24#. It will
stimulate the further study on the BJJ. Then, can we inve
gate the secondary quantum macroscopic effects@15# in two
weakly linked BECs? It was argued in Refs.@2,3,6# that the
dynamics of the phase of this system can be mapped onto
sine-Gordon quantum mechanical Hamiltonian~1!. In this
paper, we calculated the energy-band structure, Bolch w
and the energy splitting of the Bose-Josephson junction
to the quantum tunneling using the instanton method@21#. As
a simple application, we investigate the coherent proper
of the Bose-Josephson junction. The results from this met
agree exactly with the prediction of Stringari@6#.

II. MODEL AND ITS INSTANTONS SOLUTION

All quantities describing the junction should be cons
ered as operators rather than the classical variables. The
erators corresponding to the main variables, the phase di
encew and the particle numberN of the Bose-Josephso
junction, satisfy the commutation relation:@w,N#5 i , so that
w and N are related by the Heisenberg uncertainty relat
which was disregarded by the ‘‘classical’’ theory of the Bos
Josephson junction@2#.

The idealization of two weakly linked BECs can be d
scribed as a two-mode bosonic system@2,22#. In the ‘‘phase’’
representation, the relevant quantum observables are the
ference of phases and number of atoms between the
condensates in each trap. The Hamiltonian can be writte
terms of a ‘‘quantum pendulum’’~Mathieu! equation

Ĥ52
EC

2

]2

]f2
1EJ cosf. ~1!

The ‘‘charging energy’’EC and the ‘‘Josephson coupling en
ergy’’ EJ can be calculated as overlap integrals@2,3#,
©2003 The American Physical Society01-1
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EC52gE dr F1
4~r !52gE dr F2

4~r !,

EJ5NE dr F1* ~r !F2
\2

2m
¹21Vext

1
gN

2
@F1

2~r !1F2
2~r !#GF2~r !, ~2!

with the one-body wave functionsF1(r ),F2(r ) localized in
the trap 1,2; and*dr F1* (r )F2(r )50, *dr F1,2* (r )F1,2(r )
51, g5(4p\2a/m); a is the scattering length andm the
atomic mass;N5â1

†â11â2
†â2 is the total number of atoms

For convenience, we modify the potential asUJ(f)
5EJ(11cosf). Then, the HamiltonianĤ in Eq. ~1! can be
considered as one-dimensional quantum particles with m
mf5\2/EC moving along thef axis in sine-Gordon poten
tial UJ(f). Due to the translational symmetry (f→f
12p) of Hamiltonian ~1!, the set of the eigenfunction
should include the Bloch wave functions

cn~f!5un,q~f!exp~ iqf!, n50,1,2, . . . ,

un,q~f!5un,q~f12p!, 2`,q,`, ~3!

whereq is an arbitrary~real! constant vector. Substitution o
the wave function~3! in the Schro¨dinger equation leads im
mediately to the picture of band energy spectrum and rela
well-known effects in solid-state theory. From Refs.@17,18#,
this is nothing but Mathieu equation, so that these functi
can be readily calculated. Some of their asymptotic prop
ties ~in tight-binding limit and weak-binding limit! can be
expressed analytically.

The energy-band structure and energy splitting for
sine-Gordon potential can be calculated alternatively by
instanton method@19,20#. The advantage of this nonpertu
bative method, as presented here, is that it gives not on
more accurate description of the tunneling phenomena
also a comprehensive physical understanding in the con
of quantum-field theory.

The effective Lagrangian is

L5
1

2
mfS df

dt D
2

2UJ~f!. ~4!

The classical solution that extremizes the action is see
satisfy the equation of motion

1

2
mfS dfc

dt D 2

1UJ~fc!52Ecl , ~5!

where the Wick rotationt5 i t has taken the system into Eu
clidean time. Equation~5! can be regarded as the equation
motion of a pseudoparticle with the classical energyEcl
>0, which is a constant of integration. WithEcl being con-
fined to a region 0<Ecl<EJ , the configurationfc becomes
periodic such thatfc(t1T )5fc(t), which now corre-
sponds to the periodic boundary condition in the space c
dinate@19#. The classical solution is
06560
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fc52 arcsin@k sn„v0~t1t0!…#, ~6!

wherev05AEJEc/\ is the classical plasma frequency@6#,
sn is the Jacobian elliptic function with modulusk
5A12Ecl/2EJ. The elliptic function sn„v0(t1t0)… has a
period 4K(k) with K(k) the complete elliptic integral of firs
kind. For zero energyEcl50 (k→1), the periodic solution
reduces to the vacuum instanton configurationfc
→2 arcsin$tanh@v0(t1t0)#%.

III. ENERGY-BAND STRUCTURE AND THE TRANSITION
AMPLITUDE FOR QUANTUM TUNNELING

The sine-Gordon potential has an infinite number of d
generate vacua. Quantum tunneling between neighbo
vacua leads to the level splitting, while the levels extend
bands due to the translational symmetry expressed
UJ(f12p)5UJ(f). In the narrow-band approximatio
one finds, for the energy, the expression

E5Ei1(
n

J~Rm2Rn!eiq(Rm2Rn), ~7!

whereEi denotes thei th eigenvalue of the energy in eac
well for the harmonic-oscillator potentialU(f)5 1

2 (f
2Rn)2, Rn52np is the position of thenth minimum,
J(Rn82Rn)[*c i* (f2Rn8)@UJ(f)2U(f)#c i(f2Rn)df
is the overlap integral,c i is the eigenfunction correspondin
to eigenvalueEi , andq is the Floquet parameter associat
with the Bloch wave function. If only the contribution from
the nearest neighbors is taken into account, i.e.,J(Rn8
2Rn) for un82nu.1 is taken to be zero, the energy-ban
formula reduces to

E5Ei12J cos~2pq!. ~8!

The parameterJ is just the level splitting resulting from
quantum tunneling~the wave functions are periodic forq
50). We will consider the case of potential wells su
rounded by very high potential barriers with correspondin
small tunneling contribution to the eigenvalues. They are
most those of degenerate harmonic oscillators, and in
asymptotic case, we are not concerned with the entire ba
but only with their edges that correspond to alternately e
and odd states. Then, we supposeu i &R,u i &L are degenerate
eigenstates in neighboring wells, respectively, with the sa
energy eigenvalueEi such thatH0u i &R,L5Ei u i &R,L , where
H0 is the Hamiltonian of the harmonic oscillator as the ze
order approximation of the system. The degeneracy will
removed by the small tunneling effect which leads to t
level splitting. The eigenstates of the HamiltonianH become

u i &o5
1

A2
~ u i &R2u i &L), u i &e5

1

A2
~ u i &R1u i &L), ~9!

with eigenvaluesEi6DEi , respectively.DEi denotes the
shift of one oscillator level. It is obvious thatR^ i uH
2H0u i &L52J5DEi . In the following, we calculate this en
1-2
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ergy shift DEi as resulting from periodic instantons an
instanton-antiinstanton pairs.

The amplitude for a transition from one well to its neig
boring well at the energyEi due to instanton tunneling ca
be written as

A1,251^Ei ue22(ĤT/\)uEi&2.6e22(Ei /\)T sinhS 2
DEiT

\ D ,

~10!

where we neglect overlap of the wave functions that do
nate over either well. The amplitude~10! can also be calcu
lated with the help of the path-integral method,A1,2

5*cE,1* (f f)K(f f ,t f ;f i ,t i)cE,2(f i)df f df i , where the
Feynman kernel is defined as usual by

K~f f ,t f ;f i ,t i !5E
f i

f fD@f#e2S/\, ~11!

with f f[f(t f), f i[f(t i), andt f2t i52T. What we are
interested in is this expression in the limitsf i→2a, f f
→a (6a are the turning points!, namely, the tunneling
propagator through one of the barriers.S

5*t i

t f@ 1
2 mf(df/dt)21UJ(f)#dt is the Euclidean action o

the pseudoparticle andcEi ,1(f i) @cEi ,2(f i)# is the wave
function of the right-~left-! hand wells.

The functional integralK(f f ,t f ;f i ,t i) can be evaluated
with the stationary method by expandingf(t) about the
classical trajectoryfc(t) and thus we setf(t)5fc(t)
1x(t), wherex(t) is the small fluctuation with boundar
conditionsx(t i)5x(t f)50. Substitution off(t) into Eq.
~11! and keeping only terms containingx(t) up to
the one-loop approximation yieldsK(f f ,t f ;f i ,t i)
5exp@2Sc(t)/\#I, whereI 5*x(t i )50

x(t f )50D@x#e2dS/\ is the fluc-

tuation function integral with the fluctuation actiondS
5*t i

t fxMxdt, where M52mfd2/dt21V9„fc(t)… is the

second variational operator of the action. The classical ac
Sc(t) is evaluated along the trajectoryfc(t) so that

Sc~t!5E
t i

t f Fmf

2 S dfc~t!

dt D 2

1V„fc~t!…Gdt

52ET1
8EJ

v0
@E~k!2k82K~k!#, ~12!

whereE(k) denotes the complete elliptic integral of the se
ond kind andk82512k2. Following the standard procedur
of the periodic instanton calculation in Refs.@19,20#, the
functional intergalI can be written as

I 5
1

A2p
FN~t i !N~t f !E

t i

t f dt

N2~t!
G21/2

,

where N(t)5dfc(t)/dt, is the zero eigenmode ofM. To
obtain the desired results, the contributions from the infin
number of the instantons and antiinstanton pairs have to
taken into account. The total amplitude is found to be
06560
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A1,25e22(Ei /\)T sinhS v0T

2K~k8!
e2W/\D , ~13!

with W5(8EJ /v0)@E(k)2k82K(k)#. Comparing Eqs.~13!
and~10! leads toDE5@\v0/4K(k8)#exp(2W/\). Rescaling
this formula in the unit ofEJ , we arrive at our final result,

DE

EJ
5AEC

EJ

1

4K~k8!
expF28AEJ

EC
@E~k!2k82K~k!#G .

~14!

Formula~14! shows that the widths of the energy ban
are very sensitive to the dimensionless parameter ofEC /EJ ,
which is a critical parameter characterizing the dynami
properties of the system such as the coherence@6# and the
transition@15#. A direct application of this energy splitting i
to investigate the coherence properties of BJJ. Quantum
herence requires that the relative phase of the order pa
eter should be preserved over times of the order ofG21,
which is just the tunneling amplitude@23#. From the above
calculation, we know that the energy splittingDE is propor-
tional to G. Therefore, the energy splitting describes the c
herent properties of the system.

Figure 1 shows the energy splittingDE/EJ as a function
of the ratioEC /EJ in the ground state (Ecl50). The figure
shows that for values ofEJ smaller thanEC the energy split-
ting is significantly increased, indicating the occurrence o
continuous transition to the phase dissipation~the number
squeezed regime! @6,7#. In the limit EC /EJ!1, the system
undergoes small oscillations around the equilibrium. In t
limit, the correlation between the neighboring wells is sma
One can regard the systems as a globally coherent ob
described by a unique order parameter. On the cont
EC /EJ@1, the behavior of the system is very different. T
quantum fluctuation is enhanced due to the increasing of
tunneling between the neighboring wells in phase spa
showing that the relative phase between two condensate
distributed in a random way. At the same time, the fluctu
tion of the relative number of atoms in two traps becom
smaller and smaller.

FIG. 1. Ground-state energy splitting as a function of the ra
EC /EJ .
1-3
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It is interesting to investigate the properties of the syste
under the excited states (EclÞ0) which may be excited by
the thermal fluctuations or other reasons. We plotted the
ergy splitting as a function of the dimensionless parame
Ecl /EJ for two different values ofEC /EJ in Fig. 2. One
clearly observes that even if quantum effects are small
decoherence due to higher excited states may become im

FIG. 2. Energy splitting as a function of the ratioE/EJ for
EC /EJ51 ~solid line!, EC /EJ53 ~dashed line!.
cs
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tant. It is interesting that the response of the system to
decoherence performs a total different behavior. States w
small quantum effects are more sensitive to the decohere
fluctuations than those with relatively large vaules
EC /EJ . The system with little higherEC /EJ state should be
a good candidate to investigate the quantum coherence
nomena, inEC /EJ;1. Because in this case, the system w
a good coherence will preserve its coherence for a rela
large range of the energy perturbation.

Energy spectrum and energy splitting due to quantum t
neling in BJJ have been calculated by means of instan
method. Based on this energy splitting formula, we also
vestigated the coherence property of BJJ. Our results a
exactly with that in Ref.@6#. This analysis makes it possibl
to investigate the secondary quantum phenomena in BJJ~see,
for instance, Ref.@18#! and presents a general picture of low
temperature dynamics of Josephson junctions in BEC.
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