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Ground bound state in the fully adiabatic *H,™ ion
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The fully adiabatic*H," ion is considered by using the improved version of our multibox variational
procedurd A.M. Frolov, Phys. Rev. B84, 036704(2001) ]. This procedure has been developed and successfully
tested in highly accurate computations of bound-state spectra of various three-body systems. Note that our
method is not based on the Born-Oppenheimer approximation, i.e., it is a nonadiabatic approach. In this study,
we determine the ground-state energies of the adiabatic, HHI ", and T,™ ions with finite nuclear masses.

The computed variational energies for the HDHT*, and T,* ions are—0.597 897 968 645 036 508 a.u.,
—0.598 176 134669 766 232 a.u., and.599 506 910 111 541 451 13 a.u., respectively. The ground-state en-
ergy and bound-state properties Ufi,” ion are also presented. In general, the observed agreement between
our variational energies and analogous energies determined with the use of pure adiabatic methods can be
considered as very good.
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In this communication, we report the numerical results of 1 N
highly accurate calculations for a number of adiabatic one- W= §(1+ KPZl)Z Ciexpl— aju;— Biuy— y;Us3)
electron H*-like ions. Our results also include the purely =1
adiabatic*H, " ion with two infinitely heavy(i.e., immov- X exp(i uy +ieju,+if us), 2)
able nuclei. To determine the bound states in HDHT™,
T,", and *H," ions, we apply the universal variational Whereuy, Uy, and us are the thrge truly independent _and
multibox approach developed in RéL]. This approach was always positive perimetric coordinates <@; <+ for i
found to be very effective for a large number of three-body=1,2,3). These three are simply related to the three scalar
systems, including Psand H™ ions[2], muonic molecular ~relative (or interparticl¢ coordinates;=|r;—r;|:
ions[3], helium-muonic iong3], and various adiabatic ions
[3,4]. The results obtained in these studies indicate clearly
that the mulybox approach developed in Rif] is an uni- wherer;=r;; andi+j#k=(12,3)[1]. In Eq.(2), the op-
versal variational method that can be used for high-precision M . ) )
bound-state computations of arbitrary three-body system&ratorP2; is the permutation of the two identicel and 3
Briefly, this means that by using the approddh, one can particles in the symmetric systems. In fact, the variational

determine numerically all bound states in such systems t§XPansion, Eq(2), corresponds to the cake=0, whereL is
very high accuracy. the total angular momentum of the considered system. Its

Note that almost all applications of the approdth are generalization to the case pf arbitrdrycan be found, e.g., in
related to the nonrelativistic Coulomb three-body systems ifR€f- [1]. For nonsymmetric systems the facter always
which |p;|<mjc. In atomic unitsfi=1, m,=1, ande=1 equals zero, while for the systems with two identical par-

. s 1 ) ’ . . + © + . _
the nonrelativistic Hamiltonian for an arbitrary Coulomb ficles, i.e., for , and "H," ions, k= *+1. In fact, below,

three-body system can be written in the following form: ~ for all considered symmetric systems, we havel. Note
that all earlier versions of the variational expansign[5—7]

could not provide even approximate accuracy for the adia-
1, 1 _, 1 _, QG 0301 001 batic systemssee results and discussion in Ré&f]). Later, it
H=—5—Vi-5—V5— 3 T + » was shown[4] that the modified variational expansidg)
2m 2m; 2mgz 32 31 21 . . .

(1) can effectively be used in computations of the bound-state
spectra in arbitrary three-body systems, including adiabatic
systems.

wherem,,m,,m; andq,,q,,qs are the particle masses and  In actual computations, the highly accurate trial functions
charges. Our present goal is to determine the solutions of th& can be constructed, e.g., by using a complete optimization
corresponding Schdinger equation for the bound-state of the nonlinear parametews;, S8, v, &, €, andf; (i
spectraH¥ =EWV, where E<0. The approachl] allows =1,... N) in Eq. (2). However, this procedure is not very
one to obtain such solutions to arbitrarily high, in principle, effective, if the total number of basis functions in E@)
accuracy. Moreover, it was also showh-4] that such an exceeds 500. In Refl], we have developed an alternative
accuracy does not depend on the particle masses or thepproach with relatively small number of actual nonlinear
charges. parameterg28). In this study(as well as in Ref[1]), the
The approachl] is based on the use of exponential varia-choice of the nonlinear parameters in E8) proceeds as
tional expansion in perimetric coordinatas, u,, andus, follows. Leti be the numbefor indeX of basis functions in
which can be written in the forri] Eq. (2) (1=<i=<N) and k=mod(i,3)+1, where modi,3)

Ui:%(rik+rij_rjk), and rij:Ui+Uj, (3)
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designates the modular divisigne., an integer remainder is related to very poor numerical accuracy, which is currently
after division ofi by 3). The number 3 corresponds to the observed in computations of the contact nuclear-nuclear
three-box version that was used successfully in variationgbroperties. For instance, the best-to-date deviations between
calculations of various three-body systeftis-4]. The same  the predicted and computed nuclear-nucléafunctions in
version is applied in all present calculations. Now, thethe H,*-like ions exceed 23—30 orders of magnitude. Such

parameterse;, i, vi, di S vfik are ckhos?(n quafiran(k:iomly huge deviations must be explained in the course of further
from the six intervald A{?, A7, [BYY,BY], [G{,G], studies(for more details, see Reff4]).

[D9,DS], [E{,EL], and[F{9,FH: The second remaining problem is related to the use of
nonadiabatic methods for computations of bound states in
i =((3i(i+1)V2)) (AL~ AR + ALY, 4 the fully adiabaticH," ion [13]. Both the nuclei in the
one-electron”H, " ion are assumed to be infinitely heavy,
Bi=((3i(i+1)3))(BY—B{))+B{, (5)  and therefore, immovable. This ion was considered by Hyl-
leraas[14] and otherqsee, e.g., Refd15-17 in terms of
yi=((3i(i +1)\/§>>(G(2k)_(3(1k))+@(1k), (6)  the rigorous Born-Oppenheimer approximation. In these pa-
pers, a number of adiabatic two-center expansions were de-
5=((}i(i+1) \/7>>(D(2k)_D§Lk))+Dg-k), @) veloped and used. An accurate numerical result for the

ground-state(adiabati¢ energy in the“H," ion can be
found, e.g., in Ref.[17], E=—0.6026342 a.u. For our
present purposes this result can be considered as the “exact”
energy. Below, our goal is to approximate this Born-

fi=((3i(i+1)VI3)(FP - F{) +F, (9 Oppenheimer energy to good accuracy by using the present

_ nonadiabatic approach described above. In addition to the

wherek=1,2,3 and the symbdk- - -)) designates the frac- energy, we also want to obtain some expectation values for a
tional part of a real number. As easy to understand the, ,mper of bound-state properties in this ion.

b(()gnd(ell(gies %f) (ks)ix mentioned intervals, i€, Note that all earlier attempts to compute the ground state
Afl 'r']AZ . hzl Tl;2 are the actua_l nonlinear parameters;, yhe fully adiabatic*H,” ion by using various nonadia-
of the method. € parameters in exponedB (i.e., batic procedures have failed, since even the best energies

@.Bi.7,0,8,fi, =1, ... N) are chosen quasirandomly Fomputed with these procedures were not sufficiently accu-
and not varied in calculations. Note that the total number o . L
ate. For instance, our best result for this ion \Eas—0.602

actual nonlinear parameters used in this stage of the proc 5 In f h . btained with th ¢ i
dure equals 36 (263 for the considered three-box ver- a.u_. n fact, the energ|e+s_0 tained with the L!SG of nona
sion). dlabat.lc methods for théH,™ ion were never published due
The second stage of our procedyt is essentially a t© their very poor accuracy. Moreover, it is commonly as-
scaling of the lattice points chosen in the first step. The scasumed tha(1) the bound states in this ion cannot be com-
ing itself is performed as follows. The families of the param-puted even approximately by using the nonadiabatic methods
etersa;,Bi,v,0;,€ ,f; (which correspond to the same and (2) the nonzero “correlation” energy will always sepa-
are multiplied by the positive factox, (k=1,2,3). Then, rate the exact adiabatic energy from the computed nonadia-
this parametei, is also varied. The total number of such batic energies. In general, by using only a few quite approxi-
additional parameters equals 3X3). Also, one additional mate energies, one cannot confirm such conclusions.
variational parameter is used to perform a scaling for all In general, the recent progress achieved for the adiabatic
lattice points in Eq.(2). Finally, this method produces a systems allows one to perform extremely accurate calcula-
properly balanced wave function which represents the contions for many adiabatic three-body systef@gt], including
sidered bound state very accurately. Note that the total numhe heavy adiabatic ions DTand T, [4]. In terms of the
ber of actual nonlinear parameters in th_is version of the progclear masses, the DTand T," ions are close to the lim-
cedure equals 40. These 40 actual nonlinear parameters Wq{ﬁ":'g case of the fully adiabati€H," ion. However, the

optimized in calculations with relatively small number of _ . . .
basis functions used. For the considered adiabatic ions, Waedlabanc(or Born-Oppenheimgrparameterr [13] for an

e=((H+DVID)EP-EQ+EP, @

usedN'=1000, 1200, and 1500 in EQ) arbitrary X *X"e~ ion is 7=4/m,/My=1A/My, rather than
1 1 - . o 72 +
In fact, our present main interest is related to the adiabatid/Mx - The numerical value of~1.35<10 “ for the T,
three-body systems with unit charges, i.e., to XieY*z~ ion is significantly larger than the inverse nuclear mass

ions, where minfi,m,)>m,. In the Hamiltomian, Eq(1), 1/My~1.82x 10 *. In general, the adiabatic parametente-

in this case we have;=q,=+1, ga= —1, my>my(=1), termines the ability of heavy nuclei to move. This means that
andm,>mj;. Here the notations 1, 2, and 3 stand for e, the positions of both tritium nuclei in heavy adiabatig"T
Y*, andZ~ particles, respectively. As mentioned above, re-ion are not really fixed, i.e., these nuclei are mov+ing. This
cently, significant progress has been achieved in theoreticg&implifies the highly accurate computations for the" Tion
study of the bound-state spectra in such systg8n8-13.  with the use of nonadiabatic methods. In contrast with this,
However, a few problems for the adiabatic three-body systhe fully adiabatic*H," ion is a system with the two infi-
tems remain unsolved. The first group of unsolved problemsitely heavy(i.e., fixed nuclei. Obviously, the adiabatic pa-
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TABLE I. The total energie& (in atomic unitsm,=1, A=1, e=1) for the ground states of the adiabatic
HD*, HT*, and T," ions.N designates the number of basis functions used inEBgThe binding energies
e (in eV) are also presented.

N HD™* HT* T,"

2000 —0.597897968645033686 —0.598176134669761820 —0.59950691011154144648
2600 —0.597897968645036217 —0.598176134669765745 —0.59950691011154145069
3000 —0.597897968645036428 —0.598176134669766097 —0.59950691011154145101
3500 —0.597897968645036508 —0.598176134669766232 —0.59950691011154145113
E? —0.597897968645(12] —0.598176134410]

e (eV) —2.6676461793872477 —2.6739843865228183  —2.7101966441891162848

®E, are the best variational energies known from earlier calculation by other groups.

rameter in this case is zero, i.e:=0. Formally, the nona- well as the Ps and “H™ ions). Furthermore, the highly ac-
diabatic methods, including E€), cannot be applied to the cuyrate variational solution obtained for this ion can be used
“H," ion. for better understanding of the nuclear motion in heavy adia-
This means that highly accurate computations of this iorpatic ions and molecules. Note also, that for many years the
can include a few additional troubles. In particular, we eX-fully adiabatic “H, " ion was a very important test system

pected that there is a nonzero correlation energy, which \(vil|=0r various newly developed nonadiabatic methods and ap-
always separate our result from the value obtained by Win roaches. In general, the adiabatig'Hike ions are of great

[17]. Such a conclusion was essentially confirmed in ou interest in numerous actual applications. In particular, the
earlier computations performed for the ground state in thef . P ' par '
aboratory sources of H ions are currently available for

) SRR . .

fully adiabatic “H," ion. However, in those computations g}esearch and cancer treatmeése, e.g.. Ref19] and refer-

T," ion. Later, all nonlinear parameters have been reopti€nces therein Astrophysical applications for H ions are

mized for the adiabati€H," ion. Such a reoptimization of discussed in Ref§20-22. _ o

the nonlinear parameters has significantly increased the ac- 1€ computed energies for the considered adiabatic HD

tual convergence of the computed variational energies. ThET", T,", and”H," ions are presented in Tables | and Il.

quality of the variational wave functions has also been in-Table I contains highly accurate variational energies obtained

creased. Finally, by comparing our best results with the exador the adiabatic HD, HT", and T," ions. All nuclear

adiabatic energy17], we can now make the correct conclu- masses in these ions are finite. In the present calculations for

sion about the overall accuracy of nonadiabatic variationathe nuclei of hydrogen isotopes we used the following

expansion, Eq(2), in the case of fully adiabati€H, " ion. massesm,=1836.152 70th,, my=3670.483 01, and

In particular, it is shown below that now the ground-statem,=5496.921 58, [23]. The same nuclear masses were

energy of the”H," ion is reproduced quite accurately. used in our earlier workésee, e.g., Refd§3,4]). In fact, the
Note that the fully adiabati€H,* ion is of a great inter- energies from Table | are significantly more accurate than

est in a number of applications, including the general theonanalogous results presented in Rgf]. The energies and

of bound states in three-body systems with unit chafj8s  other properties for the adiabattel,” , D,”, and DT ions

In this theory, the®H," ion plays a very important role, have been determined in R¢8] (for the bound-state prop-

being one of the three fundamental reference syst@ms erties, see Refl4]). Table | also contains the energies ob-

TABLE II. The total energie€ and some bound-state propertig§) (in atomic unitsm,=1, =1, e
=1) for the ground states of the fully adiabatiel,” ion. N designates the number of basis functions used

in Eq. (2).

N E (X) (X)
2000 —0.602 630862 02 (rgll) 0.852928 72 (rgj} 3.38921878
2600 —0.602 632254 14 (gt 0.500 006 51 (r2) 3.999 907 06
3000 —0.60263285112 (ray) 1.657558 31 (- %V%) 0.602631 12
3500 —0.602 63351130 (8(r3p) 0.210 046 (cosfairsn)) 0.259957 63
E? —0.6026342 var —1.000731 (cosfairsn)) 0.507 261 48

The “exact” adiabatic(or Born-Oppenheimerenergy of the”H,* ion from Ref.[17].
bThe predicted value for the electron-nucleus cu@ is —1.0 (see, e.g., Ref$26,27)).
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tained in earlier computations for HDand HT" ions by  ©Of all 40 nonlinear parameters is a very costly procedure for
other groups. This Table includes the binding energies of alN>2000. An alternative idea is to guess an explicit form of
considered iongin eV). To compute the binding energies, the N dependence for each of the actual nonlinear param-
the conversion factor 27.211 396 1 is used. To perform all ougters. This idea can be very successful in highly accurate
present calculations, we used the speE@XTRAN pretrans-  thrée-body calculations. _

lator written by D.H. Bailey[24,25. The variational energies N trgle) pr(as)ent (g;'i‘sey(;)““ (?e'e)penden(%()a of the six param-
presented in Table | determine the “standar@@t ‘refer-  €t€rsFi’, F3°, Fy™, F37, F1™, andF;" was crucial. The
ence” level of numerical accuracy, which is currently avail- KNown optimal values of these parameters determined for

- . 0 ; L N=400, 500...,1500 allow us to produce some simple
ble for the adiabat -lik th the finit I . ] i .
?naiseosr e adiabatic 4 -like ions wi € finite nuciear interpolational formulas for thEk(')(N) dependencies. The

i 1 ) @) @) g0) (3)
In the case of fully adiabati¢H, " ion both the nuclei are interpolated values df; °, F5 ', Fy™, F5°, Fi™, andF3

assumed to be infinitely heavy. The variational energies Comg_)arameters were used in actual calculations with the large

puted for this system with the use of Eg) are presented in nhumber of basis func_tlonBI, whereN=2000. Finally, the
. ; overall accuracy obtained for the ground-state energy of the

Table II. A number of bound-state properties determined forfuII adiabatic *H.* ion has been drastically improved
this ion can also be found in Table Il. Note that the nuclear- }I/'h i thi t2 d h ; q thy h'phl ) i
nuclear contact properties are not presented in Table Il, since | IUS_' n f|s study V\t')e a}/e gert)ormg ?t' '9T+y accclijra €
their exact values equal zero identically. Such contact prop(-:a+CLI ations for:a num Er ot a |a+ "’_lt'c lons HDHT”, ant
erties usually include the nuclear-nuclediunction, nuclear- 12 and for the fully adiabatic’H, "~ ion. Our present varia-
nuclear cusp, triplé function, etc. tional approach is completely nonadiabatic. Nevertheless, the

In general, the observed convergence rate for the Variapbtameq variational energies |nd|<_;ate clearly that th_|s ap-
tional energiesE(N) is very high for the adiabatic HD, proach is a very pqwerfgl tool \_/vh|ch can be _useful in the
HT*, and T," ions. This allows us to apply the three-box study of various adiabatic atomic systems. It is shown that

l 2 .

version of our proceduriel]. However, for the fully adiabatic e fully adiabatic™H," ion can be considered by using the
“H," ion, a few modifications have been made in the pro-Same nonadlabatl_c methods that are successfully used for
cedure. In particular, the explicit dependence of actual non9ther three-body ions. In p-artlcglar, +0l.” present computa-
linear parameters upon the total number of basis functions tional results for the fully adiabati€H, ™ ion can be recog-

in Eq. (2) has been included in the consideration. Note thatized as sufficiently accurate. Obviously, further improve-
in general, the optimized values of Ment of the variational energies is also possible.

A0 A0 F M K parameters depend upoN. It is a pleasure to thank David H. Bailéiawrence Ber-
This means that the optimal values of such parameters detekeley National Laboratory, Berkeley, Califorpifor his valu-
mined forN=N; in Egs.(3)—(8) are not optimal parameters able help and discussions and the Natural Sciences and En-
in the calculations with foN=N,>N,. The reoptimization gineering Research Council of Canada for financial support.
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