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Ground bound state in the fully adiabatic `H2
¿ ion

Alexei M. Frolov
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 25 February 2003; published 11 June 2003!

The fully adiabatic`H2
1 ion is considered by using the improved version of our multibox variational

procedure@A.M. Frolov, Phys. Rev. E64, 036704~2001!#. This procedure has been developed and successfully
tested in highly accurate computations of bound-state spectra of various three-body systems. Note that our
method is not based on the Born-Oppenheimer approximation, i.e., it is a nonadiabatic approach. In this study,
we determine the ground-state energies of the adiabatic HD1, HT1, and T2

1 ions with finite nuclear masses.
The computed variational energies for the HD1, HT1, and T2

1 ions are20.597 897 968 645 036 508 a.u.,
20.598 176 134 669 766 232 a.u., and20.599 506 910 111 541 451 13 a.u., respectively. The ground-state en-
ergy and bound-state properties of`H2

1 ion are also presented. In general, the observed agreement between
our variational energies and analogous energies determined with the use of pure adiabatic methods can be
considered as very good.

DOI: 10.1103/PhysRevA.67.064501 PACS number~s!: 31.15.Ar, 02.70.2c, 31.25.Eb
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In this communication, we report the numerical results
highly accurate calculations for a number of adiabatic o
electron H2

1-like ions. Our results also include the pure
adiabatic `H2

1 ion with two infinitely heavy~i.e., immov-
able! nuclei. To determine the bound states in HD1, HT1,
T2

1 , and `H2
1 ions, we apply the universal variationa

multibox approach developed in Ref.@1#. This approach was
found to be very effective for a large number of three-bo
systems, including Ps2 and H2 ions @2#, muonic molecular
ions @3#, helium-muonic ions@3#, and various adiabatic ion
@3,4#. The results obtained in these studies indicate cle
that the multibox approach developed in Ref.@1# is an uni-
versal variational method that can be used for high-precis
bound-state computations of arbitrary three-body syste
Briefly, this means that by using the approach@1#, one can
determine numerically all bound states in such system
very high accuracy.

Note that almost all applications of the approach@1# are
related to the nonrelativistic Coulomb three-body system
which upi u!mic. In atomic units,\51, me51, ande51,
the nonrelativistic Hamiltonian for an arbitrary Coulom
three-body system can be written in the following form:

H52
1

2m1
¹1

22
1

2m2
¹2

22
1

2m3
¹3

21
q3q2

r 32
1

q3q1

r 31
1

q2q1

r 21
,

~1!

wherem1 ,m2 ,m3 andq1 ,q2 ,q3 are the particle masses an
charges. Our present goal is to determine the solutions o
corresponding Schro¨dinger equation for the bound-sta
spectraHC5EC, where E,0. The approach@1# allows
one to obtain such solutions to arbitrarily high, in princip
accuracy. Moreover, it was also shown@1–4# that such an
accuracy does not depend on the particle masses or
charges.

The approach@1# is based on the use of exponential var
tional expansion in perimetric coordinatesu1 , u2, and u3,
which can be written in the form@1#
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N

Ciexp~2a iu12b iu22g iu3!

3exp~ id iu11 ieiu21 i f iu3!, ~2!

where u1 , u2, and u3 are the three truly independent an
always positive perimetric coordinates (0<ui,1` for i
51,2,3). These three are simply related to the three sc
relative ~or interparticle! coordinatesr i j 5ur i2r j u:

ui5
1
2 ~r ik1r i j 2r jk!, and r i j 5ui1uj , ~3!

wherer i j 5r j i and iÞ j Þk5(1,2,3) @1#. In Eq. ~2!, the op-
erator P̂21 is the permutation of the two identical~1 and 2!
particles in the symmetric systems. In fact, the variatio
expansion, Eq.~2!, corresponds to the caseL50, whereL is
the total angular momentum of the considered system.
generalization to the case of arbitraryL can be found, e.g., in
Ref. @1#. For nonsymmetric systems the factork always
equals zero, while for the systems with two identical p
ticles, i.e., for T2

1 and `H2
1 ions, k561. In fact, below,

for all considered symmetric systems, we havek51. Note
that all earlier versions of the variational expansion~2! @5–7#
could not provide even approximate accuracy for the ad
batic systems~see results and discussion in Ref.@6#!. Later, it
was shown@4# that the modified variational expansion~2!
can effectively be used in computations of the bound-s
spectra in arbitrary three-body systems, including adiab
systems.

In actual computations, the highly accurate trial functio
C can be constructed, e.g., by using a complete optimiza
of the nonlinear parametersa i , b i , g i , d i , ei , and f i ( i
51, . . . ,N) in Eq. ~2!. However, this procedure is not ver
effective, if the total number of basis functions in Eq.~2!
exceeds 500. In Ref.@1#, we have developed an alternativ
approach with relatively small number of actual nonline
parameters~28!. In this study~as well as in Ref.@1#!, the
choice of the nonlinear parameters in Eq.~2! proceeds as
follows. Let i be the number~or index! of basis functions in
Eq. ~2! (1< i<N) and k5mod(i ,3)11, where mod(i ,3)
©2003 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW A67, 064501 ~2003!
designates the modular division~i.e., an integer remainde
after division of i by 3!. The number 3 corresponds to th
three-box version that was used successfully in variatio
calculations of various three-body systems@1–4#. The same
version is applied in all present calculations. Now, t
parametersa i ,b i ,g i ,d i ,ei , f i are chosen quasirandom
from the six intervals@A1

(k) ,A2
(k)#, @B1

(k) ,B2
(k)#, @G1

(k) ,G2
(k)#,

@D1
(k) ,D2

(k)#, @E1
(k) ,E2

(k)#, and@F1
(k) ,F2

(k)#:

a i5^^ 1
2 i ~ i 11!A2&&~A2

(k)2A1
(k)!1A1

(k) , ~4!

b i5^^ 1
2 i ~ i 11!A3&&~B2

(k)2B1
(k)!1B1

(k) , ~5!

g i5^^ 1
2 i ~ i 11!A5&&~G2

(k)2G1
(k)!1G1

(k) , ~6!

d i5^^ 1
2 i ~ i 11!A7&&~D2

(k)2D1
(k)!1D1

(k) , ~7!

ei5^^ 1
2 i ~ i 11!A11&&~E2

(k)2E1
(k)!1E1

(k) , ~8!

f i5^^ 1
2 i ~ i 11!A13&&~F2

(k)2F1
(k)!1F1

(k) , ~9!

wherek51,2,3 and the symbol̂̂ •••&& designates the frac
tional part of a real number. As easy to understand
boundaries of six mentioned intervals, i.e
A1

(k) ,A2
(k) , . . . ,F1

(k) ,F2
(k) are the actual nonlinear paramete

of the method. The parameters in exponents~2! ~i.e.,
a i ,b i ,g i ,d i ,ei , f i , i 51, . . . ,N) are chosen quasirandom
and not varied in calculations. Note that the total numbe
actual nonlinear parameters used in this stage of the pr
dure equals 36 (23633 for the considered three-box ve
sion!.

The second stage of our procedure@1# is essentially a
scaling of the lattice points chosen in the first step. The s
ing itself is performed as follows. The families of the para
etersa i ,b i ,g i ,d i ,ei , f i ~which correspond to the samek)
are multiplied by the positive factorlk (k51,2,3). Then,
this parameterlk is also varied. The total number of suc
additional parameters equals 3 (331). Also, one additional
variational parameter is used to perform a scaling for
lattice points in Eq.~2!. Finally, this method produces
properly balanced wave function which represents the c
sidered bound state very accurately. Note that the total n
ber of actual nonlinear parameters in this version of the p
cedure equals 40. These 40 actual nonlinear parameters
optimized in calculations with relatively small number
basis functions used. For the considered adiabatic ions
usedN51000, 1200, and 1500 in Eq.~2!.

In fact, our present main interest is related to the adiab
three-body systems with unit charges, i.e., to theX1Y1Z2

ions, where min(mX ,mY)@mZ . In the Hamiltomian, Eq.~1!,
in this case we haveq15q2511, q3521, m1@m3(51),
andm2@m3. Here the notations 1, 2, and 3 stand for theX1,
Y1, andZ2 particles, respectively. As mentioned above,
cently, significant progress has been achieved in theore
study of the bound-state spectra in such systems@3,4,8–12#.
However, a few problems for the adiabatic three-body s
tems remain unsolved. The first group of unsolved proble
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is related to very poor numerical accuracy, which is curren
observed in computations of the contact nuclear-nuc
properties. For instance, the best-to-date deviations betw
the predicted and computed nuclear-nucleard functions in
the H2

1-like ions exceed 23–30 orders of magnitude. Su
huge deviations must be explained in the course of furt
studies~for more details, see Ref.@4#!.

The second remaining problem is related to the use
nonadiabatic methods for computations of bound state
the fully adiabatic `H2

1 ion @13#. Both the nuclei in the
one-electron`H2

1 ion are assumed to be infinitely heav
and therefore, immovable. This ion was considered by H
leraas@14# and others~see, e.g., Refs.@15–17# in terms of
the rigorous Born-Oppenheimer approximation. In these
pers, a number of adiabatic two-center expansions were
veloped and used. An accurate numerical result for
ground-state~adiabatic! energy in the `H2

1 ion can be
found, e.g., in Ref.@17#, E520.602 634 2 a.u. For ou
present purposes this result can be considered as the ‘‘ex
energy. Below, our goal is to approximate this Bor
Oppenheimer energy to good accuracy by using the pre
nonadiabatic approach described above. In addition to
energy, we also want to obtain some expectation values f
number of bound-state properties in this ion.

Note that all earlier attempts to compute the ground s
in the fully adiabatic`H2

1 ion by using various nonadia
batic procedures have failed, since even the best ene
computed with these procedures were not sufficiently ac
rate. For instance, our best result for this ion wasE'20.602
45 a.u. In fact, the energies obtained with the use of no
diabatic methods for the`H2

1 ion were never published du
to their very poor accuracy. Moreover, it is commonly a
sumed that~1! the bound states in this ion cannot be co
puted even approximately by using the nonadiabatic meth
and ~2! the nonzero ‘‘correlation’’ energy will always sepa
rate the exact adiabatic energy from the computed nona
batic energies. In general, by using only a few quite appro
mate energies, one cannot confirm such conclusions.

In general, the recent progress achieved for the adiab
systems allows one to perform extremely accurate calc
tions for many adiabatic three-body systems@3,4#, including
the heavy adiabatic ions DT1 and T2

1 @4#. In terms of the
nuclear masses, the DT1 and T2

1 ions are close to the lim-
iting case of the fully adiabatic`H2

1 ion. However, the
adiabatic~or Born-Oppenheimer! parametert @13# for an
arbitraryX1X1e2 ion is t5A4 me /MX51/A4 MX, rather than
1/MX . The numerical value oft'1.3531022 for the T2

1

ion is significantly larger than the inverse nuclear ma
1/MX'1.8231024. In general, the adiabatic parametert de-
termines the ability of heavy nuclei to move. This means t
the positions of both tritium nuclei in heavy adiabatic T2

1

ion are not really fixed, i.e., these nuclei are moving. T
simplifies the highly accurate computations for the T2

1 ion
with the use of nonadiabatic methods. In contrast with th
the fully adiabatic`H2

1 ion is a system with the two infi-
nitely heavy~i.e., fixed! nuclei. Obviously, the adiabatic pa
1-2
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TABLE I. The total energiesE ~in atomic unitsme51, \51, e51) for the ground states of the adiabat
HD1, HT1, and T2

1 ions.N designates the number of basis functions used in Eq.~2!. The binding energies
« ~in eV! are also presented.

N HD1 HT1 T2
1

2000 20.597897968645033686 20.598176134669761820 20.59950691011154144648
2600 20.597897968645036217 20.598176134669765745 20.59950691011154145069
3000 20.597897968645036428 20.598176134669766097 20.59950691011154145101
3500 20.597897968645036508 20.598176134669766232 20.59950691011154145113

Ep
a 20.5978979686450@12# 20.5981761344@10#

« ~eV! 22.6676461793872477 22.6739843865228183 22.7101966441891162848

aEp are the best variational energies known from earlier calculation by other groups.
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rameter in this case is zero, i.e.,t50. Formally, the nona-
diabatic methods, including Eq.~2!, cannot be applied to the
`H2

1 ion.
This means that highly accurate computations of this

can include a few additional troubles. In particular, we e
pected that there is a nonzero correlation energy, which
always separate our result from the value obtained by W
@17#. Such a conclusion was essentially confirmed in o
earlier computations performed for the ground state in
fully adiabatic `H2

1 ion. However, in those computation
we used the nonlinear parameters optimized for the he
T2

1 ion. Later, all nonlinear parameters have been reo
mized for the adiabatic`H2

1 ion. Such a reoptimization o
the nonlinear parameters has significantly increased the
tual convergence of the computed variational energies.
quality of the variational wave functions has also been
creased. Finally, by comparing our best results with the ex
adiabatic energy@17#, we can now make the correct concl
sion about the overall accuracy of nonadiabatic variatio
expansion, Eq.~2!, in the case of fully adiabatic`H2

1 ion.
In particular, it is shown below that now the ground-sta
energy of the`H2

1 ion is reproduced quite accurately.
Note that the fully adiabatic`H2

1 ion is of a great inter-
est in a number of applications, including the general the
of bound states in three-body systems with unit charges@18#.
In this theory, the`H2

1 ion plays a very important role
being one of the three fundamental reference systems~as
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well as the Ps2 and `H2 ions!. Furthermore, the highly ac
curate variational solution obtained for this ion can be us
for better understanding of the nuclear motion in heavy ad
batic ions and molecules. Note also, that for many years
fully adiabatic `H2

1 ion was a very important test syste
for various newly developed nonadiabatic methods and
proaches. In general, the adiabatic H2

1-like ions are of great
interest in numerous actual applications. In particular,
laboratory sources of H2

1 ions are currently available fo
research and cancer treatment~see, e.g., Ref.@19# and refer-
ences therein!. Astrophysical applications for H2

1 ions are
discussed in Refs.@20–22#.

The computed energies for the considered adiabatic HD1,
HT1, T2

1 , and `H2
1 ions are presented in Tables I and

Table I contains highly accurate variational energies obtai
for the adiabatic HD1, HT1, and T2

1 ions. All nuclear
masses in these ions are finite. In the present calculation
the nuclei of hydrogen isotopes we used the followi
massesmp51836.152 701me , md53670.483 014me , and
mt55496.921 58me @23#. The same nuclear masses we
used in our earlier works~see, e.g., Refs.@3,4#!. In fact, the
energies from Table I are significantly more accurate th
analogous results presented in Ref.@4#. The energies and
other properties for the adiabatic1H2

1 , D2
1 , and DT1 ions

have been determined in Ref.@3# ~for the bound-state prop
erties, see Ref.@4#!. Table I also contains the energies o
ed

TABLE II. The total energiesE and some bound-state properties^X& ~in atomic unitsme51, \51, e

51) for the ground states of the fully adiabatic`H2
1 ion. N designates the number of basis functions us

in Eq. ~2!.

N E ^X& ^X&

2000 20.602 630 862 02 ^r31
21& 0.852 928 72 ^r31

2 & 3.389 218 78
2600 20.602 632 254 14 ^r21

21& 0.500 006 51 ^r21
2 & 3.999 907 06

3000 20.602 632 851 12 ^r 31& 1.657 558 31 ^2
1
2 ¹3

2& 0.602 631 12
3500 20.602 633 511 30 ^d(r31)& 0.210 046 ^cos(r31r32)& 0.259 957 63

Ea 20.6026342 n31
b 21.000 731 ^cos(r31r21)& 0.507 261 48

aThe ‘‘exact’’ adiabatic~or Born-Oppenheimer! energy of the`H2
1 ion from Ref.@17#.

bThe predicted value for the electron-nucleus cuspn31
(b) is 21.0 ~see, e.g., Refs.@26,27#!.
1-3
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BRIEF REPORTS PHYSICAL REVIEW A67, 064501 ~2003!
tained in earlier computations for HD1 and HT1 ions by
other groups. This Table includes the binding energies o
considered ions~in eV!. To compute the binding energie
the conversion factor 27.211 396 1 is used. To perform all
present calculations, we used the specialFORTRAN pretrans-
lator written by D.H. Bailey@24,25#. The variational energies
presented in Table I determine the ‘‘standard’’~or ‘‘refer-
ence’’! level of numerical accuracy, which is currently ava
able for the adiabatic H2

1-like ions with the finite nuclear
masses.

In the case of fully adiabatic`H2
1 ion both the nuclei are

assumed to be infinitely heavy. The variational energies c
puted for this system with the use of Eq.~2! are presented in
Table II. A number of bound-state properties determined
this ion can also be found in Table II. Note that the nucle
nuclear contact properties are not presented in Table II, s
their exact values equal zero identically. Such contact pr
erties usually include the nuclear-nucleard function, nuclear-
nuclear cusp, tripled function, etc.

In general, the observed convergence rate for the va
tional energiesE(N) is very high for the adiabatic HD1,
HT1, and T2

1 ions. This allows us to apply the three-bo
version of our procedure@1#. However, for the fully adiabatic
`H2

1 ion, a few modifications have been made in the p
cedure. In particular, the explicit dependence of actual n
linear parameters upon the total number of basis functionN
in Eq. ~2! has been included in the consideration. Note th
in general, the optimized values o
A1

(k) ,A2
(k) , . . . ,F1

(k) ,F2
(k) parameters depend uponN.

This means that the optimal values of such parameters d
mined forN5N1 in Eqs.~3!–~8! are not optimal parameter
in the calculations with forN5N2.N1. The reoptimization
06450
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of all 40 nonlinear parameters is a very costly procedure
N.2000. An alternative idea is to guess an explicit form
the N dependence for each of the actual nonlinear para
eters. This idea can be very successful in highly accu
three-body calculations.

In the present case, theN dependence of the six param
etersF1

(1) , F2
(1) , F1

(2) , F2
(2) , F1

(3) , andF2
(3) was crucial. The

known optimal values of these parameters determined
N5400, 500, . . . ,1500 allow us to produce some simp
interpolational formulas for theFk

( i )(N) dependencies. The
interpolated values ofF1

(1) , F2
(1) , F1

(2) , F2
(2) , F1

(3) , andF2
(3)

parameters were used in actual calculations with the la
number of basis functionsN, whereN>2000. Finally, the
overall accuracy obtained for the ground-state energy of
fully adiabatic `H2

1 ion has been drastically improved.
Thus, in this study we have performed the highly accur

calculations for a number of adiabatic ions HD1, HT1, and
T2

1 and for the fully adiabatic`H2
1 ion. Our present varia-

tional approach is completely nonadiabatic. Nevertheless,
obtained variational energies indicate clearly that this
proach is a very powerful tool which can be useful in t
study of various adiabatic atomic systems. It is shown t
the fully adiabatic`H2

1 ion can be considered by using th
same nonadiabatic methods that are successfully used
other three-body ions. In particular, our present compu
tional results for the fully adiabatic`H2

1 ion can be recog-
nized as sufficiently accurate. Obviously, further improv
ment of the variational energies is also possible.
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