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Time-correlated quantum amplitude-damping channel
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We analyze the problem of sending classical information through qubit channels where successive uses of
the channel are correlated. This work extends the analysis of Macchiavello and Palma to the case of a
non-Pauli channel—the amplitude damping channel. Using the channel description outlined byeDaffer
we derive the correlated amplitude damping channel. We obtain a result similar to that obtained by Macchia-
vello and Palma, that is, under certain conditions on the degree of channel memory, the use of entangled input
signals may enhance the information transmission compared to the use of product input signals.
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Unlike purely classical channels, quantum channels admit In real physical quantum transmission channels, it is com-
more than one well-defined information carrying capacitymon to have correlated noise acting on consecutive uses. The
[1]. For instance, one can transmit classical stringgproblem of the classical capacity of quantum channels with
(X1, - .+ Xm), with x; elements from an alphabet set time correlated noise was first considered by Macchiavello
={1,---,n}, by sending product input states of the form and Palm&g5]. They analyzed the specific case of sending
Ty, @+ @y, where my, are density operators acting on qubits(quantum states belonging to two-dimensional Hilbert

Hilbert space,, via a memoryles$10], generally noisy ~SPaces, each spanned by orthonormal vec{¢ds, |1)})
quantum channeb, a completely positive, trace preserving with two consecutive uses of a quantum depolarizing chan-
map on density operators;, — p, =®(m,). As in the clas- nel with partial memory [5,7]: 7—p=o(m)=(1

o : P : : —w)=3 _ DUaDY + 433 DS wDEl, where Osu<1
sical information theoryf2], one can define an input prob- ~ */=i,j=0%ij THij T A=k=0“kk T kk » p==
ability distribution, 0<qg;<1, 2;q;=1, on the input states With probability (1~ »), the noise is uncorrelated and com-

1 El 1 .pe _ i
m;, that is, one can consider an input ensemisle pletely specified by the Kraus operatds = Vpipjo'®d’,
={q;,;}, described byr=3q;m, . For the above product while with probability « the noise is correlated and specified
input statesgr;=m, ®---®m, andg;=d,,---q_, where by Dﬁkl: \/ﬂﬂk(@gk-ngfe%OSpgl, Po=(1-p), P1=p2
0=q,=1, "_,q, =1 is a probability distribution defined P3=3P. ando ,o",0% 0" are the identity and the Paull
A i i matrices, respectively. They considered the following equally
on input statesr, . Measurements are performed on outputyyeighted ensemble of orthonormal input states:
statesp=® () to determine the output probability distribu-
tion. The “distance” between these distributions is given by 7= 3 (|7 (| +| 7o) (o] + | ma)(mma] + | ma)(7al),
the Shannon mutual information fon uses of the quantum (2
channell ,(£,®). The classical information capacity of the ) ]
quantum channel is defined bjg,4] C=lim_C,/m, Where |m)=cos$|00)+sing[1l), |m;)=—sin4|00)
m—o _ .

_ . ! +cosg|1l), |m3z)=cos¢|0l)+sin410), and |m,)
whgreCm=sup5I ”?(.giq))' By def|n|t|on,Cm<sat|sfy the fol- = —sin¢|01) +cos$|10), with 0<¢p<w/2. They showed
lowing superadditivity propertyCp, + Cm,<Cm,+m, and  {hat there exists a threshojd= u, such that whenu> .,
the above limit can be shown to exist. Physicallyrepre-  one may have enhanced information carrying capacity in the
sents the largest per symbol amount of classical informatiogase of entangled inputs.
that can be transferred reliably using the quantum channel. In  We note that a quantum dephasing chariReluli Z chan-
Refs. [3,4], Holevo, Schumacher, and Westmoreland havene|) with uncorrelated noise can similarly be defined as one

shown that specified by the following Kraus operators:
U ppooa. Q=
In(E@)=SB(m)=2 S(b(m). @ A= PP ech 1103 ©

and one with correlated noise by

where S(o) = —tr(o logyo) is the von Neumann entropy of c ok
density operatolr expressed in bits. One can recover the b= Vpkot@ ok, k=03, )
classical information casg2] by considering input states
7y, = 4, (¥ |, One-dimensional orthonormal projectors. In

this caseC,,=mC; and thusC=C;. In the quantum infor-

mation theory, one can consider the more general class of  Aj=A ®A;, A§=A®A;, Aj=A®A,,
entangled input states. This implies the possibility of strict

superadditivity of the mutual information and, consequently, L=A®A,, (5)
C,<C [5]. However, there is no such strict superadditivity,

at least, for the quantum depolarizing chanl&l where, with Gs y< /2,

The same prescription can be applied to a quantum ampli-
tude damping channel with uncorrelated noise:
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cosy O 0 0 preserving map as one which describes a quantum amplitude
Ag= 0 1) A= (6) damping channel with correlated noise. Then, we analyze, as
in Ref.[5], the action of a quantum amplitude damping chan-

are the Kraus operators for an amplitude damping channef€! With partial memory given in Eq22). Our results are in
Here,|0) and|1) denote the excited and ground states, re-2greement with those of Reb]; that is, the transmission of
spectively. However, it is noa priori clear how the Kraus classical information can be enhanced by employing en-

operators for a quantum amplitude damping channel witfangled states as carriers of information rather than product

correlated noise could be constructed in a similar manner, $tates. _ o ,
it is at all possible. We begin by solving the following Lindblad equation:
Recently, Dafferet al. [8] used a special basis of left,

{L;}, and right{R;}, damping eigenoperators for a Lindblad
superoperatorp () =exp{L) 7, wheret is time, to calcu-
late explicitly the image of a completely positive, trace-
preserving map for a wide class of Markov quantum
channels:

siny O

Lér=—iT[m— (0@ m(c320%)]. (12

Equation(12) is an obvious extension of E411) with ¢°
replaced by ¢®¢°). The rationale is that the phase-flip
actions of the channel would then be correlated. The method
of solution involves first determining the right eigenoperators
Rij, which solves Eq(8):

7 p=0(m) E tr(Lim)exp AR, . (7) Ri=Lolwol, 1,j=0123 13
For a finite N-dimensional Hilbert space, L7  with eigenvaluesgg=A13=N2=A33=0, Ag1=N1p=MAg2

= —%EiN,-Z;fCij(FfFinr 7FFi—2F;wF]), with the system =ho=—I, Nog=A30=0, N12=A21=0, Ny3=Ag=Az;
operatorsF; satisfying trf;) =0, tr(FiTFJ-)= 8. The com- =\g3,=—1I". The left eigenoperators are then determined by

) i, . . . imposing Eq.(9). Finally, the image of the completely posi-
glaet;(s%/] tI\oeme1i;eﬁszllﬂ\éeergjgtli)(().n-rhe right eigenoperatds tive, trace-preserving map can be obtained via(Eg.In this

case, we have w—>p:Eﬁj:0tr(Lijrr)exp()\ijt)Rij

LRi=\R;, 8)  =SoZumZsy, whereZ;, are given by Eq(4), with
and the following duality relation: p=3[1—exp —TIt)]. (14)
tr(LiR)) = &;; (9 Therefore, Eq(12) does indeed yield a Paulichannel with

_ ) ) ) correlated noise. The Paiand PauliY channels with cor-
with the left eigenoperators; . The amplitude damping and (g|ated noise can similarly be obtained by relpacing
dephasing chanpels are the _examples of quantum Marko% o2, in Eq.(12) with o'® o' ando?® o2, respectively, and
channels. The Lindblad equati¢8] solving the resulting equations with E(L3), though with
different eigenvaluegll]. Equation(13) also solves the fol-
lowing equation: £¢7=—3I[37—(c'® o) 7(ct® o)
- (c?@0?)m(c?@0?)—(o*® ) m(o°®e®)], giving a
depolarizing channel with correlated noise?].

Next, we solve the Lindblad equation

Lm=—1 a(O'T0'7T+ molo—20mal), (10

wherea is a parameter analogous to the Einstein coefficien
of spontaneous emission, and=2%(c'+ic?), o=31(ot
—io?) are the creation and annihilation operators, respec-
tively, yields the amplitude damping channel, Ef). And, ¢, _ 1 T ot o ot
the dephasing channel can be derived fi@h Lom 2a(o@o)(o@a)mtm(oies)(0c8a)
—2(o@o)m(c'@ch)]. (15
Lm=—iT(m—o3mo?), (11
This follows from the same rationale that is behind the con-
wherel is another parameter. struction of Eq.(12). By replacingo in Eg. (10) with (o
In this paper, we derive Eq4) from the Lindblad equa- ® o), we expect the actions of the resulting channel to be
tion (12), that is, it gives the quantum dephasing channekorrelated. We call it the quantum amplitude damping chan-
with correlated noise. In a similar fashion, we solve Ep) nel with correlated noise. The right eigenoperatéts,
and interpret the resulting completely positive, trace-which solve Eq(8), are

000 0 0000 0000 100 0
000 O 0100 0000 1/0 00 O
Ro=lo 0 0 of RuTlo 0 0 of R0 01 of B350 00 o @©
00 0 2 000 0 0000 000 -1
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0O =1 0 O 0 0 1 O 0 0 0 =1 0O 0 0 O
. 1|1 o oo . 1|00 oo . 1/000 O} ., 1[0 0 *1 0
R 2lo 0 0 o' "2 31 0 0 of " Hlooo o P Zlo1 o of
0 0 0 0 0 0 O 1 0 0 O 00 0 O
000 O 000 O (17
., 1[0 0 0 =1 ., 1[0 0 0 O
Ris= 510 0 o o)' R=5lo 0 0 =1 (18
01 0 O 0 01 O
|
with eigenvalueshog=A11=\2,=0, A33=—a, Ay;=\g, 1-a b*
e o sl Sand By Do e oAl
=2itr(Liw)exp(>\it)R,-=2j1:0Aj°j wAjCjT, where whereais real, O<a<1, andb s, in general, complex. This
is mapped to
cosy 0 0 O 0 0 00 (1-p)(1-a) I—pb*
Al 0 100 e 0 00O pqu(w)z( b (-patp
0 0 0 1 o] "™ 0 0 0 of
0 0 0 1 siny 0 0 0 by sending it through the amplitude-damping channel. Here,

(19) p=sin2y. Note that this channel is nonunital and hence we
cannot adopt the approach of Ruskai and King, Réf.
with Instead, note that the eigenvaluespofire given by . =3
+3V1-4(1-p){(1-a)l(1-p)a+p]-[b[7}. Conse-
cosy=exp(— % at), siny=yl—exp—at). (20) quently,S(p) depends only o via |b|?, and it is sufficient
to consider only reab. We note thatS(p) will have maxi-
We note that, in contrast tdg, in Eq. (4), A§, cannot be mum value one by takingb?=(1—a)[(1—p)a+p]
written as a tensor product of two two-by-two matrices. This—1/4(1— p)<0, which satisfyb?<(1—a)[(1—p)a+p],
gives rise to the typical “spooky” action of the channel: required by the positivity ofp. So, whenb=0 or a
|01), |10y, and any linear combination of them, ajid) will =(1-2p)/[2(1—p)], S(p) is maximal and equals one.
go through the channel undisturbed, but (@f). We also note thaS(p) will have minimum value zero for
It is interesting to note that E¢3) can also be derived by fixed a, p by taking b?=(1—a)[(1—p)a+p]=(1—a)a.
solving the following Lindblad equationfVm=—3T[#  Therefore, the mutual information ,(&,®)=S(d (7))
—(0c°@ ¥ m(c°® %] - LT[ 7 — (6@ ) m(c® d9)]. —qujS(d)(rrj)) is never equal to one unlegs=0 or a
However, analogous approach for the amplitude damping=1 in accordance with the physics of the amplitude-
channel with uncorrelated noise does not work. This is bedamping  channel. In fact, I,(&,®)=<max, S(p(x1))
cause the_ z_implitude d_amping c_:hannel is by definition non——EjZ:lqjminXZS(pj(xz)) wherem=2,q;m;,
unital. This is not surprising in view of the fact that although
all Lindblad superoperators have a Kraus decomposition, the 1-x; 0
converse is not true in general. W(Xl):( 0 Xl),
Before we carry out the same analysis as in R&f.let us

characterize a parametrization of single qubit density matrix 1-X, = (1= X2) X5

inputs for the amplitude damping channel. The following mi(X2) = .

proposition is due to a private communication of Fuchs men- EV(L=x2)%2 X2

tioned without proof in Ref[1]: Consequently, it is clear that by taking the inputs prescribed

Proposition. To calculate the one-qubit capacity of the j, the statement of the proposition, we can achieve this upper
amplitude-damping channel we need to consider only onepgnd.

parameter set of pure state inputs: So, we consider the following set of input states for the
one-qubit amplitude-damping channe|x)=cos(@2)|0)
S e N e +sin@2)[1), |y)=cos@?2)|0)—sin(@2)|1), with 0=<8
== J(@—x)x X <, which correspond to the ansatz described above. We
can then obtain a parameterization for input states of the
with respective input probabilities &f each. two-qubit amplitude damping channel with partial memory,
Proof. Consider a pure state input density matrix and instead of Eq2):
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1 - - - o~ - o~ - o~
7T=Z(|771><771|+|772><772|+|773><773|+|7T4><774|),
(21)

where |7;)=cosg[x)+singlyly), |m)=—sin¢x)x)

+cosgly)ly), | 73) = cosg|X)ly)+sin Bly)[x), £
—sing|x)ly)+cosdly)|x). Note that|;) are, in general,
not normalized. Forp=0, we obtain product states of the
original optimal form outlined in the above ansatz. When
= /2, we obtain Eq(2). The channel action is given by

1 1
7—p=®(7)= (1_“)”20 Al wAi“ijgo AL AL
| (22
Substituting Eqs(21) and (22) into Eq. (1) gives
4
|2(6,¢;M,X)=S(<D(7T))—;1 q;S(@ (7)), (23

carry out a numerical study that exhibits for given values o
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FIG. 1. Mutual information for product state®€ #/6,6=0,
dotted ling and for entangled state®)€ #/6,¢p= ¢o= m/4, solid
line) as a function of the degree of memory of the channel,xfor
=0.157.

This shows that in the case of quantum amplitude-
damping channel with perfect memory, it is possible to ob-
tain enhanced information carrying performance even if we
@re using product input states. This is the same conclusion

b= (+0 or 7/2) andy that there exist threshold values reached in Ref[5] for the case of a depolarizing channel.

u=ui(6) for all 0< o< such thatl,(0,¢=0;u<pui,x)

In conclusion, we have extended the problem of time-

<1,(8,=bo: > p,x) and thus have shown that we set correlated noiséor “channels with memoryj as considered

out to show, since optimizing givesQ<Il,(0,¢=¢dg,u
>ue,p)=<C,. That is, for eachy there are thresholdg;

in Ref.[5] to the case of the amplitude-damping channel. In
the case of sending two qubits by successive uses of an am-

such that foru> s, the performance of the entangled statesPlitude damping channel with partial memory, we establish
for classical information transmission is better than that ofiumerically that by using entangled states rather than prod-

the product states. While, foe<u,, better performance is

uct states as information carriers, we can enhance the trans-

achieved by using the product states instead. For instancglission of classical information over the quantum channel.

numerical calculation of,(8, ¢; u,x) for ¢= po= /4 (i.e.,
entangled statgsand¢ =0 (i.e., the completely unentangled
product states with 0= u <1 and 0< y<w/2 allows us to
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