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Time-correlated quantum amplitude-damping channel
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~Received 6 December 2002; revised manuscript received 4 March 2003; published 27 June 2003!

We analyze the problem of sending classical information through qubit channels where successive uses of
the channel are correlated. This work extends the analysis of Macchiavello and Palma to the case of a
non-Pauli channel—the amplitude damping channel. Using the channel description outlined by Dafferet al.,
we derive the correlated amplitude damping channel. We obtain a result similar to that obtained by Macchia-
vello and Palma, that is, under certain conditions on the degree of channel memory, the use of entangled input
signals may enhance the information transmission compared to the use of product input signals.
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Unlike purely classical channels, quantum channels ad
more than one well-defined information carrying capac
@1#. For instance, one can transmit classical strin
(x1 , . . . ,xm), with xi elements from an alphabet setA
5$1,•••,n%, by sending product input states of the for
px1

^ •••^ pxm
, wherepxi

are density operators acting o

Hilbert spaceHi , via a memoryless@10#, generally noisy
quantum channelF, a completely positive, trace preservin
map on density operators:pxi

→rxi
5F(pxi

). As in the clas-
sical information theory@2#, one can define an input prob
ability distribution, 0<qj<1, ( jqj51, on the input states
p j , that is, one can consider an input ensembleE
5$qj ,p j%, described byp5( jqjp j . For the above produc
input states,p j5px1

^ •••^ pxm
andqj5qx1

•••qxm
, where

0<qxi
<1, (xi51

n qxi
51 is a probability distribution defined

on input statespxi
. Measurements are performed on outp

statesr5F(p) to determine the output probability distribu
tion. The ‘‘distance’’ between these distributions is given
the Shannon mutual information form uses of the quantum
channelI m(E,F). The classical information capacity of th
quantum channel is defined by@3,4# C5 lim

m→`
Cm /m,

whereCm[supEI m(E,F). By definition,Cm satisfy the fol-
lowing superadditivity property,Cm1

1Cm2
<Cm11m2

, and
the above limit can be shown to exist. Physically,C repre-
sents the largest per symbol amount of classical informa
that can be transferred reliably using the quantum channe
Refs. @3,4#, Holevo, Schumacher, and Westmoreland ha
shown that

I m~E,F!5S„F~p!…2(
j

qjS„F~p j !…, ~1!

whereS(s)52tr(s log2s) is the von Neumann entropy o
density operators expressed in bits. One can recover t
classical information case@2# by considering input state
pxi

5ucxi
&^cxi

u, one-dimensional orthonormal projectors.

this case,Cm5mC1 and thusC5C1. In the quantum infor-
mation theory, one can consider the more general clas
entangled input states. This implies the possibility of str
superadditivity of the mutual information and, consequen
C1,C @5#. However, there is no such strict superadditivi
at least, for the quantum depolarizing channel@6#.
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In real physical quantum transmission channels, it is co
mon to have correlated noise acting on consecutive uses.
problem of the classical capacity of quantum channels w
time correlated noise was first considered by Macchiave
and Palma@5#. They analyzed the specific case of sendi
qubits~quantum states belonging to two-dimensional Hilb
spaces, each spanned by orthonormal vectors$u0&, u1&%)
with two consecutive uses of a quantum depolarizing ch
nel with partial memory @5,7#: p→r5F(p)5(1
2m)( i , j 50

3 Di j
u pDi j

u†1m(k50
3 Dkk

c pDkk
c† , where 0<m<1.

With probability (12m), the noise is uncorrelated and com
pletely specified by the Kraus operatorsDi j

u 5Apipjs
i
^ s j ,

while with probabilitym the noise is correlated and specifie
by Dkk

c 5Apks
k

^ sk. Here, 0<p<1, p05(12p), p15p2

5p35 1
3 p, and s0,s1,s2,s3 are the identity and the Pau

matrices, respectively. They considered the following equa
weighted ensemble of orthonormal input states:

p5 1
4 ~ up1&^p1u1up2&^p2u1up3&^p3u1up4&^p4u!,

~2!

where up1&5cosfu00&1sinfu11&, up2&52sinfu00&
1cosfu11&, up3&5cosfu01&1sinfu10&, and up4&
52sinfu01&1cosfu10&, with 0<f,p/2. They showed
that there exists a thresholdm5m t such that whenm.m t ,
one may have enhanced information carrying capacity in
case of entangled inputs.

We note that a quantum dephasing channel~PauliZ chan-
nel! with uncorrelated noise can similarly be defined as o
specified by the following Kraus operators:

Zi j
u 5Apipjs

i
^ s j , i , j 50,3 ~3!

and one with correlated noise by

Zkk
c 5Apks

k
^ sk, k50,3. ~4!

The same prescription can be applied to a quantum am
tude damping channel with uncorrelated noise:

A00
u 5A0^ A0 , A01

u 5A0^ A1 , A10
u 5A1^ A0 ,

A11
u 5A1^ A1 , ~5!

where, with 0<x<p/2,
©2003 The American Physical Society01-1
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A05S cosx 0

0 1D , A15S 0 0

sinx 0D ~6!

are the Kraus operators for an amplitude damping chan
Here, u0& and u1& denote the excited and ground states,
spectively. However, it is nota priori clear how the Kraus
operators for a quantum amplitude damping channel w
correlated noise could be constructed in a similar manne
it is at all possible.

Recently, Dafferet al. @8# used a special basis of lef
$Li%, and right,$Ri%, damping eigenoperators for a Lindbla
superoperator,F(p)5exp(tL)p, wheret is time, to calcu-
late explicitly the image of a completely positive, trac
preserving map for a wide class of Markov quantu
channels:

p→r5F~p!5(
i

tr~Lip!exp~l i t !Ri . ~7!

For a finite N-dimensional Hilbert space, Lp

52 1
2 ( i , j 51

N221ci j (F j
†Fip1pF j

†Fi22FipF j
†), with the system

operatorsFi satisfying tr(Fi)50, tr(Fi
†F j )5d i j . The com-

plex ci j form a positive matrix. The right eigenoperatorsRi
satisfy the eigenvalue equation

LRi5l iRi , ~8!

and the following duality relation:

tr~LiRj !5d i j ~9!

with the left eigenoperatorsLi . The amplitude damping an
dephasing channels are the examples of quantum Ma
channels. The Lindblad equation@8#

Lp52 1
2 a~s†sp1ps†s22sps†!, ~10!

wherea is a parameter analogous to the Einstein coeffici
of spontaneous emission, ands†[ 1

2 (s11 is2), s[ 1
2 (s1

2 is2) are the creation and annihilation operators, resp
tively, yields the amplitude damping channel, Eq.~6!. And,
the dephasing channel can be derived from@8#

Lp52 1
2 G~p2s3ps3!, ~11!

whereG is another parameter.
In this paper, we derive Eq.~4! from the Lindblad equa-

tion ~12!, that is, it gives the quantum dephasing chan
with correlated noise. In a similar fashion, we solve Eq.~15!
and interpret the resulting completely positive, trac
06430
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preserving map as one which describes a quantum ampli
damping channel with correlated noise. Then, we analyze
in Ref. @5#, the action of a quantum amplitude damping cha
nel with partial memory given in Eq.~22!. Our results are in
agreement with those of Ref.@5#; that is, the transmission o
classical information can be enhanced by employing
tangled states as carriers of information rather than prod
states.

We begin by solving the following Lindblad equation:

L cp52 1
2 G@p2~s3

^ s3!p~s3
^ s3!#. ~12!

Equation~12! is an obvious extension of Eq.~11! with s3

replaced by (s3
^ s3). The rationale is that the phase-fli

actions of the channel would then be correlated. The met
of solution involves first determining the right eigenoperato
Ri j , which solves Eq.~8!:

Ri j 5
1
2 s i

^ s j , i , j 50,1,2,3 ~13!

with eigenvalues l005l115l225l3350, l015l105l02
5l2052G, l035l3050, l125l2150, l135l315l23
5l3252G. The left eigenoperators are then determined
imposing Eq.~9!. Finally, the image of the completely pos
tive, trace-preserving map can be obtained via Eq.~7!. In this
case, we have p→r5( i , j 50

3 tr(Li j p)exp(lij t)Rij

5(k50,3Zkk
c pZkk

c† , whereZkk
c are given by Eq.~4!, with

p[ 1
2 @12exp~2Gt !#. ~14!

Therefore, Eq.~12! does indeed yield a PauliZ channel with
correlated noise. The PauliX and PauliY channels with cor-
related noise can similarly be obtained by relpacings3

^ s3, in Eq.~12! with s1
^ s1 ands2

^ s2, respectively, and
solving the resulting equations with Eq.~13!, though with
different eigenvalues@11#. Equation~13! also solves the fol-
lowing equation: L cp52 1

2 G@3p2(s1
^ s1)p(s1

^ s1)
2(s2

^ s2)p(s2
^ s2)2(s3

^ s3)p(s3
^ s3)#, giving a

depolarizing channel with correlated noise@12#.
Next, we solve the Lindblad equation

L cp52 1
2 a@~s†

^ s†!~s ^ s!p1p~s†
^ s†!~s ^ s!

22~s ^ s!p~s†
^ s†!#. ~15!

This follows from the same rationale that is behind the co
struction of Eq.~12!. By replacings in Eq. ~10! with (s
^ s), we expect the actions of the resulting channel to
correlated. We call it the quantum amplitude damping ch
nel with correlated noise. The right eigenoperatorsRi j ,
which solve Eq.~8!, are
R005S 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 A2

D , R115S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D , R225S 0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

D , R335
1

A2 S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D , ~16!
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R01
6 5

1

A2 S 0 61 0 0

1 0 0 0

0 0 0 0D , R02
6 5

1

A2 S 0 0 61 0

0 0 0 0

1 0 0 0D , R03
6 5

1

A2 S 0 0 0 61

0 0 0 0

0 0 0 0 D , R12
6 5

1

A2 S 0 0 0 0

0 0 61 0

0 1 0 0D ,
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

~17!

R13
6 5

1

A2 S 0 0 0 0

0 0 0 61

0 0 0 0

0 1 0 0

D , R23
6 5

1

A2 S 0 0 0 0

0 0 0 0

0 0 0 61

0 0 1 0

D , ~18!
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with eigenvaluesl005l115l2250, l3352a, l01
6 5l02

6

5l03
6 52 1

2 a, l12
6 5l13

6 5l23
6 50. The left eigenoperators ar

determined as above, and Eq.~7! becomes p→r
5( i tr(Lip)exp(lit)Ri5(j50

1 Ajj
c pAjj

c† , where

A00
c 5S cosx 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D , A11
c 5S 0 0 0 0

0 0 0 0

0 0 0 0

sinx 0 0 0

D ,

~19!

with

cosx[exp~2 1
2 at !, sinx[A12exp~2at !. ~20!

We note that, in contrast toZ00
c in Eq. ~4!, A00

c cannot be
written as a tensor product of two two-by-two matrices. T
gives rise to the typical ‘‘spooky’’ action of the channe
u01&, u10&, and any linear combination of them, andu11& will
go through the channel undisturbed, but notu00&.

It is interesting to note that Eq.~3! can also be derived by
solving the following Lindblad equation:L up52 1

2 G@p

2 (s0
^ s3)p(s0

^ s3)# 2 1
2 G@p 2 (s3

^ s0)p(s3
^ s0)#.

However, analogous approach for the amplitude damp
channel with uncorrelated noise does not work. This is
cause the amplitude damping channel is by definition n
unital. This is not surprising in view of the fact that althoug
all Lindblad superoperators have a Kraus decomposition,
converse is not true in general.

Before we carry out the same analysis as in Ref.@5#, let us
characterize a parametrization of single qubit density ma
inputs for the amplitude damping channel. The followi
proposition is due to a private communication of Fuchs m
tioned without proof in Ref.@1#:

Proposition. To calculate the one-qubit capacity of th
amplitude-damping channel we need to consider only o
parameter set of pure state inputs:

p65S 12x 6A~12x!x

6A~12x!x x
D

with respective input probabilities of12 each.
Proof. Consider a pure state input density matrix
06430
s

g
-
-

e

ix

-

e-

p5S 12a b*

b a D ,

wherea is real, 0<a<1, andb is, in general, complex. This
is mapped to

r5F~p!5S ~12p!~12a! A12pb*

A12pb ~12p!a1p
D

by sending it through the amplitude-damping channel. He
p5sin2x. Note that this channel is nonunital and hence
cannot adopt the approach of Ruskai and King, Ref.@9#.
Instead, note that the eigenvalues ofr are given byl65 1

2

6 1
2 A124(12p)$(12a)@(12p)a1p#2ubu2%. Conse-

quently,S(r) depends only onb via ubu2, and it is sufficient
to consider only realb. We note thatS(r) will have maxi-
mum value one by takingb25(12a)@(12p)a1p#
21/4(12p)<0, which satisfyb2<(12a)@(12p)a1p#,
required by the positivity ofr. So, when b50 or a
5(122p)/@2(12p)#, S(r) is maximal and equals one
We also note thatS(r) will have minimum value zero for
fixed a, p by taking b25(12a)@(12p)a1p#>(12a)a.
Therefore, the mutual informationI 1(E,F)5S(F(p))
2( jqjS(F(p j )) is never equal to one unlessp50 or a
51 in accordance with the physics of the amplitud
damping channel. In fact, I 1(E,F)<maxx1

S„r(x1)…

2( j 51
2 qjminx2

S„r j (x2)… wherep5( jqjp i ,

p~x1!5S 12x1 0

0 x1
D ,

p j~x2!5S 12x2 6A~12x2!x2

6A~12x2!x2 x2
D .

Consequently, it is clear that by taking the inputs prescrib
in the statement of the proposition, we can achieve this up
bound.

So, we consider the following set of input states for t
one-qubit amplitude-damping channel:ux&5cos(u/2)u0&
1sin(u/2)u1&, uy&5cos(u/2)u0&2sin(u/2)u1&, with 0<u
<p, which correspond to the ansatz described above.
can then obtain a parameterization for input states of
two-qubit amplitude damping channel with partial memo
and instead of Eq.~2!:
1-3
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p5
1

4
~ up̃1&^p̃1u1up̃2&^p̃2u1up̃3&^p̃3u1up̃4&^p̃4u!,

~21!

where up̃1&5cosfux&ux&1sinfuy&uy&, up̃2&52sinfux&ux&
1cosfuy&uy&, up̃3&5cosfux&uy&1sinfuy&ux&, up̃4&
52sinfux&uy&1cosfuy&ux&. Note that up̃ j& are, in general,
not normalized. Forf50, we obtain product states of th
original optimal form outlined in the above ansatz. Whenu
5p/2, we obtain Eq.~2!. The channel action is given by

p→r5F~p!5~12m! (
i , j 50

1

Ai j
u pAi j

u†1m(
k50

1

Akk
c pAkk

c† .

~22!

Substituting Eqs.~21! and ~22! into Eq. ~1! gives

I 2~u,f;m,x!5S„F~p!…2(
j 51

4

qjS„F~p j !…, ~23!

with p j51/tr(up̃ j&^p̃ j u)up̃ j&^p̃ j u andqj5
1
4 tr(up̃ j&^p̃ j u). We

carry out a numerical study that exhibits for given values
f5f0 (Þ0 or p/2) andx that there exist threshold value
m5m t(u) for all 0,u,p such thatI 2(u,f50;m,m t ,x)
,I 2(u,f5f0 ;m.m t ,x) and thus have shown that we s
out to show, since optimizing gives 2C1,I 2(u,f5f0 ,m
.m t ,f)<C2. That is, for eachx there are thresholdsm t
such that form.m t , the performance of the entangled sta
for classical information transmission is better than that
the product states. While, form,m t , better performance is
achieved by using the product states instead. For insta
numerical calculation ofI 2(u,f;m,x) for f5f05p/4 ~i.e.,
entangled states!, andf50 ~i.e., the completely unentangle
product states!, with 0<m<1 and 0<x<p/2 allows us to
compare the information carrying capacity of both forms
input state. In Fig. 1, we haveu5p/6 and x50.15p, we
havem tP(0.7,0.9). Furthermore, our numerical study sho
that for the product states,

I 2~u,f50;m51,x!>I 2~u,f50;m50,x!. ~24!
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This shows that in the case of quantum amplitud
damping channel with perfect memory, it is possible to o
tain enhanced information carrying performance even if
are using product input states. This is the same conclu
reached in Ref.@5# for the case of a depolarizing channel.

In conclusion, we have extended the problem of tim
correlated noise~or ‘‘channels with memory’’! as considered
in Ref. @5# to the case of the amplitude-damping channel.
the case of sending two qubits by successive uses of an
plitude damping channel with partial memory, we establ
numerically that by using entangled states rather than p
uct states as information carriers, we can enhance the tr
mission of classical information over the quantum chann
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@10# In the class of memoryless channels, independent~uncorre-
lated! noise acts on each use of a channel.

@11# For the PauliX channel with correlated noise,l005l115l22

5l3350, l015l1050, l025l205l035l3052G, l125l21

5l135l3152G, l235l3250. It is easy to guess that th
eigenvalues for the correlated PauliY channel would be. For
the depolarizing channel with correlated noise,l i i 50, l jk

522G for i, j ÞkP$0,1,2,3%.
@12# Formally, we observe thatL in Eq. ~11! @L c in Eq. ~12!# obeys

L 2p52GLp. Consequently,L np5(21)n21Gn21Lp. So,
from the formal series expansion of exp(tL)p, one can obtain
Eq. ~14!. The same argument applies to the correlated PauX
andY channels. It is easy to check that the argument simila
applies to the above equation.

FIG. 1. Mutual information for product states (u5p/6,f50,
dotted line! and for entangled states (u5p/6,f5f05p/4, solid
line! as a function of the degree of memory of the channel, fox
50.15p.
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