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Interaction of an atom with a small dispersive and absorptive dielectric body

Claudia Eberlein and Maciej Janowfcz
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
(Received 4 February 2003; published 27 June 2003

The paper analyzes the interaction of an atomic system with a quantum damped harmonic oscillator. Such an
oscillator is the building block in the recently proposed models of bulk dielectrics and may also serve as a
simple model of a small dielectric body. Dispersion and losses are taken into account by assuming the
oscillator to be coupled to a zero-temperature reservoir consisting of an infinite system of other harmonic
oscillators. The Green’s function of the atomic system is calculated perturbatively when coupled to the bath.
The self-energy of the atomic electron is obtained by the partial resummation of perturbation diagrams, and
thus energy-level shifts of both ground and excited states of the atom due to the presence of the oscillator are
determined. Corrections to the decay rates are also obtained and analyzed as functions of the distance of the
atom from the oscillator, and of the coupling of the oscillator to the reservoir.
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[. INTRODUCTION oscillator field density and shall select the geometry of a
single oscillator only later by choosing a pointlike coupling
The problem of the interaction of atoms with electromag-with the electromagnetic field. On the other hand, even such
netic fields in the presence of dielectric bodies and interfacea simple one-oscillator system is a realistic model for a small
has attracted a lot of attention over the past three decadgmlarizable body with dispersion and losgésmall” mean-
(cf., e.g., Refs[1-11]). Interactions of this kind are particu- ing here much smaller than any characteristic wavelengths
larly interesting in the case of lossy and dispersive dielecinvolved). Another objective of this paper is to study the
trics, since these describe realistic materials. One of the mosffect of the coupling to a reservoir by comparing the results
successful models of such media involves their representder undamped and damped oscillat¢i®., uncoupled from
tion in terms of a system of harmonic oscillators coupled toand coupled to a reservoir, respectivekgain, useful infor-
a reservoir consisting of yet another collection of harmonicmation can be gained from such a comparison, and this can
oscillators[5]. However, the application of this model even be employed in the analysis of the atom-field interactions in
to very simple inhomogeneous systems is nontrivial, and bethe presence of large dielectrics for finding out what differ-
cause of a multitude of technical difficulties the approach hagnce losses make. For the case of nonretarded interactions,
mostly been applied only to one-dimensional systems. Howsuch a comparison has been performed in REf.
ever, going beyond one spatial dimension is the very com- To forestall confusion we emphasize that we are inter-
plex though powerful formalism employed in R¢lL0]; it  ested strictly in the van der Waals problem of an atom inter-
facilitated the extraction of expressions for the spontaneouacting with external dielectrics. If one were to consider at-
decay rate of an atom near an interface in three dimensionsms embedded in dielectric materials, then one would have
but energy-level shifts were not discussed. We want to detetto take local-field corrections into accou(gee, e.g., Ref.
mine both level shift and decay rates, and we shall use B6]). The formalism developed here is not suited to that prob-
Green’s-function approach that is similar in the spirit to thatlem.
of Ref.[10]. The atom and the oscillator are coupled via their polariza-
In view of the above-mentioned technical arduousness, itions in the electromagnetic field. In this work we put both
seems appropriate to tackle the general problem by firshe atomic and the oscillator polarizations into the interaction
studying in some detail the simplified problem of an atomHamiltonian and treat both of them perturbatively. One
interacting with just one harmonic oscillator, and this is thecould, of course, include the oscillator-polarization term in
objective of the present paper. There is a twofold motivatiorthe zeroth-order Hamiltonian and determine the Green's
for studying this simple model. On one hand, the experiencéunction of the electromagnetic field that is already corrected
that one gains from it and the methodology developed for ifor the presence of the oscillator, i.e., to all orders. This is
provide useful intuitions for more complex structures. Thesgossible because the problem of the interaction of a charged
are, e.g., photonic crystals built of many discrete small di-harmonic oscillator with an electromagnetic field is exactly
electric particles, or macroscopic bodies which can besoluble, either by diagonalization of the Hamiltonid:8] or
thought of as a continuum of oscillators. To facilitate suchby solving the initial-value problem for the Heisenberg op-
generalization we shall model the oscillator by a continuousrators[14]. Then, the atom could be considered to interact
not with the electromagnetic field and through it with the
oscillator, but just with the “dressed” electromagnetic field.
*Present address: Fachbereich 8—Physik, Carl-von-Ossietzkyhis approach is in fact the only option for atom-field inter-
University, 26111 Oldenburg, Germany. Permanent address: Instactions in the presence of large and optically dense dielectric
tute of Physics, Polish Academy of Sciences, Al. Lotmike2/46,  bodies, where a perturbative treatment of the oscillator-field
02-668 Warsaw, Poland coupling would not converge. However, apart from technical
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simplicity, the perturbation expansion with respect to both p2 1

polarizations has merit for a small dielectric body because it HO_R=f d3r m+ EM(»%XZ

treats the two interacting objedtthe atom and the oscillator

on the same footing and, thus, leads to elegant and symmet- " 72 o

ric expressions. Furthermore, this approach allows us to re- +f dv( =+ VZ(Y,,—X)2> , ©)
late to the standard perturbative theory of atom-atom inter- 0 2p, 2

actions. . .
The main body of the paper is organized as follows. InWherex and P are the dipole moment and the conjugate

Sec. Il, we provide the Hamiltonian and free propagator%?oggrg%r;gt;haenzycséiﬁ Oast:g”rlsgon:eiifgfn?hi l:?;teh tgsecilla-
necessary for our Green’s-function approach. Section Ill con: P Jug

tains the perturbative calculation of the atomic propagatorEErS‘HStrz:ﬁilyniSpfak'Pg’”a” dthesr(iabvarlabrl](;i are dﬁnlf;t'esf’ t?]nd
We formulate simple Feynman rules for constructing the dia- € niamilionian actually describes continuous 1elds ot the

grams of the perturbation expansion. Both ttegher simple system and the bath oscillators. We shall pick the geometry

Green's functions and the Feynman rules are discussed 8{ our model dielectric by allowing the atom to interact only

some length since they are provided here in quite a gener?ﬂ'th oscillators inside a certain volume. This works fine be-

form, suitable for dielectric bodies of arbitrary type and size.cause oscillators at different points in space are, of course,

In Sec. IV the energy-level shifts and decay rates of the (:1t0|“ﬂmtu""||y mdepepdent. Our model is S|_m|lar to thg
ndependent-oscillator model of the reservoir developed in

are extracted and analyzed in various asymptotic regime ; .
y ymp 9 j?ef. [20], except that we use a continuous field rather than a

Finally, Sec. V contains a summary and a few concluding . " blv. Th del d i bsorbing diel
remarks. The Appendix derives the retarded Green’s functioﬁ“.scre.e assembly. 1he modet describes an absorbing dielec-
glc with an absorption band around frequenay. The

for th illator when led to th th and examines th . . . .
or the osciiato en coupled to the bath and examines strength of the dielectric response is determined by the

analytic properties of its Fourier transform. o .
yue prop “mass” M, as the combination 1M ®3) has the physical

The oscillator representing the small body will in the fol- X : o "
lowing be referred to as the “system” oscillator, while the M€aning of a static polarizabilitj12]. The bath oscillator

oscillators that constitute the reservoir will be called theMasse®, govern the damping due to the absorption and thus
“reservoir’ or “bath” oscillators. prescribe the precise profile and structure of the absorption

spectrum. We shall discuss all this in more detail in Sec.
IV B.
Il. FORMULATION OF THE PROBLEM—THE The total zeroth-order Hamiltonian is
HAMILTONIAN AND THE FREE GREEN’S FUNCTIONS
T . . . . Ho=HatHg+Ho_r.
Our objective in this paper is to describe the interaction of
an atom with a damped harmonic oscillator, mediated by thét describes the unperturbed system of the atom and the sys-
electromagnetic field. We look for the energy-level shifts andtem oscillator when not coupled to each other.
modified decay rates of the atom due to this interaction. The interaction is mediated by the polarizations of the
Thus, the system under considerations consists of the follonatom and of the system oscillator in the electromagnetic
ing subsystems. field. In the electric dipole approximation, the interaction
(i) The atom, which we choose to be located at the poinHamiltonian reads
r=R and described by the following free second-quantized

Hamiltonian V:—d-E(R)—f d3r g(r)X(r)-E(r) with

HA:Z Eiclc. @ d=—e> gclc (4)
) H

Here,c, andc] are the annihilation and creation operators, The electron charge is e andq;;=(i|q|j) are the transition
respectively, of the atomic electron in levgland the sum amplitudes between the atomic statesdj. The dimension-
runs over all energy levels of the atom. As we consider dess couplingg(r) specifies the geometry of the dielectric; it
one-electron atom, we ha\&cfrc,zl. is constant inside and zero outside the dielectric body. For
(ii) The free electromagnetic field has the Hamiltonian the moment we remain general in our derivation and leave it
stand as an arbitrary function of but eventually we shall
1 choose it to describe a pointlike dielectric and thus be non-
HF:f d3r( €oE2(r)+ —B2(r)|. (2)  zero only at a single point.
Ho The square of the polarization has been omitted from the
interaction Hamiltonian, since it contributes only when the
SinceH¢ describes the free radiation field(r) is the trans-  positions of the atom and the oscillator coincide. As regards
verse electric field which is related to the dielectric displacethe coupling between the system and the bath oscillators, we

ment throughE=D/ ¢, note that this has been includedhty_r, Eq. (3).
(iii) The system oscillator and the bath oscillators are de- In this work we are going to use a Green’s-function ap-
scribed by the Hamiltonian proach. First, we shall determine the free Green’s functions
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of the unperturbed system, and then we shall calculate the —j

corrections to them by means of a perturbation expansion. Gt = 7<Q|T(C|(t)CTm(t'))|Q>-
The location of the poles of the corrected atomic Green’s

function gives the energy shifts and lifetimes of the atom dug-rom Eqs.(6) and(7) one quickly finds

to the interactions with the dielectric body.

We start by compiling all the free propagators needed for Gl(r?])(t,t')z —j g(t_t')e*iﬁ(t*t')/ﬁglm_
the perturbative expansion. In general, field propagators or
“causal Green functions” are defined 5,16 Since this Green’s function depends only on the time differ-

encer=t—t’, we can work with its Fourier transform

1

G(x,x' t,t")=— ;L—(Q|T(<D(x,t)d>T(x’,t’))|Q), (5) 5
E—E +ig '™

Gi3E)- | drafine - ®
where® (x,t) is an arbitrary field operator in the Heisenberg
picture,|Q) is the exact ground state of the system, and

the time-ordering operator. We note, however, that conven
tions differ slightly in regard to the presencefaf The exact
ground state of the system is unknown and, in most case§°™MP!
accessible only perturbatively. Such perturbative calculation§aUsa
are performed in the interaction picture and use Green’s
functions with respect to the ground state of the noninteract- B. Electromagnetic-field propagator

ing system. In our case, the ground state of the noninteract- ajthough the Green's functions of the electromagnetic
ing system is simply the tensor product of the vacuum of theje|d are well known, they are normally given for the vector
atomic-electron field, the vacuum of the electromagnetiGygtential A(r,t) [18]. Since we are working with the-E
field, the ground state of the system oscillator, and th%oupling, we require the causal propagator of Edield

In order to make the Fourier integral convergent, we have
added a small imaginary shiftie to the energy, and thus
shifted the pole of5{®)(E) away from the real axis into the
ex plane. This prescription also ensures the correct
| boundary conditions &(O)(t,t’) for (t—t')— + .

ground state of the reservoir. instead:
ic- i
A. Atomic-electron propagator Dﬁ(r,r’,t,t’)= _ %(O|T(Ei(r,t)Ej(r’,t’))|0>. ©
The atomic creation and annihilation operatofsc, sat-
isfy the anticommutation relations It is straightforward to calculate this propagator either from

the causalA field propagator in a fixed gauge, or, without
resorting to gauge-dependent derivations, from the field
quation fork:

[ci.chli=8im. [C.cml+=0, [c].chl=0. (6)

Since the free atomic-electron Hamiltonian is diagonal, thee
time evolution of the operators ,c,T is simply 1 6%E
) ) VXVXE+ =7 =0.
ci(t)=ci(0)e ", cf(t)=c[(@e®. (@) e at

When applying the same differential operator on propagator

In order to determine the unperturbed atomic-electron propa(—g), one must take care in applying the time derivative to the

gator time-ordering symbol(see, e.g., Ref.17]). Noting that
i 2 ; 2
(0) ’ N — Trer 41 J , , | J E(r,t) o
GO tt")= = =(QITG(r,H¢'(r',))|Q) ?Dﬁ(r,r ot )=—%<o T(TEJ(r t )) o>
we expand the field operatosand ¢ in terms of the cre- i
ation and annihilation operators, —zot-t)
HE0=S a0, ><<o [‘QE‘;:'”,E,-@',V)} o>.

The c-number functions¢, are the eigenfunctions of the and using the gauge-independent equal-time commutator
first-quantized atomic-electron Hamiltonian, i.e., the solu-(cf., e.g., Ref[19])
tions of the Schrdinger equation. We obtain

[E'(r>,B-(r’)]=Le-- fdskk gk 1)
G(O)(r,r',t,t’)zz ¢|(r)¢§1(r')G|(r?])(t,t’) i i (27T)360 in )

we find that the causd# field propagator satisfies the equa-
with tion
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(VXVXDE);(r,r t,t")+ (16)

L7 e tu H. =—Jd3rfwdv VXY
—ZED”(I’J Ot ) OR 0 Pv v
We shall deal with the coupling in Sec. Il B, but for the
moment we are going to determine the Green'’s functions just
for the free system and reservoir oscillators.

The free system-oscillator Green'’s function is defined by

- 8(t—t’ fd3k Sijk?—kikj)e k=),
2myie, ) | KKKk

(10

The right-hand side of this equation contains the transvérse

function because the electromagnetic field is a transverse

field and, thus, in order to obtain the propagator, one must . . : I

invert the operator of its field equation in the subspace mltt is easily calculated from the free-oscillator Hamiltonian

transverse fields. (13 as
Equation(10) can be solved easily by Fourier transforma-

tion. One finds that in free space the matrix elements of theKi(jO)(r,r’,t,t’): -

KO(rr ) =— %<O|T(Xi(r*t)xj(r"t’))|o>'

Thla, u oot t')e et

electromagnetic Green’s functiddf, , can be written as ZM
+ ot —t)elert=t], 17)
D1, @)= (= V280t VoV d(|r —r'| ), (11)
Fourier transformation with respect te-t" yields
where the scalar Green’s functialf|r —r’|,w) is given by
= KO, ) =~ syar—r)
giolr—r'l/c i (Lrw)=—r—————§;o(r—r
d(r—r'|,w)=— 0(w) M o~ witie
4meq [r—r’| ©) ,
=KO(w)8;8(r—r"). (18
e—iw\r—r’\/c
+6(—w) | | (120  The reservoir Green’s function is defined by
r—r’
. (O) ’ —_ !
Thus, the causal Green’s function depends only@h and (rrigtvvh)= <O|T(Y (Rt w)Y(r',t',v"))]0).

it is translation invariant as expected for a free-field propa-
gator. Since thee field propagator is the only electromag- As seen from Eq(15), the reservoir is simply a collection of
netic propagator used in this work, we shall omit the supermutually independent oscillators, and thus we can write

script E and write simplyD;; from now on.

C. The oscillator propagators

The system and bath oscillator Hamiltonibdy, g con-
sists of three parts,

Ho r=Ho+Hpt+Hog.

There is the freéthough frequency shiftedystem oscillator

=f d3r (%+§Mwix2) (13
with
w1=w%+ijwdvp,)v2 (14)
Mo
The free reservoir is described by
H,’sz dr f:dv(zimzﬁJr %va2Y12,>. (15)

down its Green's function by just copying the structure of
Eq. (17),

Hi(jo)(l',l",t,t’,VrV’):_ 5|]5(V_V,)[0(t_t’)

|
2p,v
X e—iv(t—t/)+ a(t/ —t)ei V(t_t/)].

Fourier transforming with respect to-t’ and naming the
Fourier variablew, we obtain

(0)(r r' v 0)=HO(v, v)&ijo(r—r')o(v—v'),
(19

with

1 1
H(O)(w V)_ —2
Pv w“—votie

(20
IIl. PERTURBATIVE EXPANSION FOR THE ATOMIC
PROPAGATOR

Our aim is to calculate the propagator of the atomic elec-
tron when the atom is interacting with the electromagnetic
field and via that with the small body and the reservoir. The

The coupling between the system and the reservoir oscillgpoles of the full atomic propagator will yield the interaction

tors is

energy of the atom with the dielectric and the corresponding
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radiative lifetime. The general expression for the perturbative s .
expansion of a Green’s function 45,16 V(t):f d°r e% gijCi (t)c(t) o(r —R)E(r,t)
* —j n+1
G(x,x' t,t)=> (7) fdtl...fdtn(mT(q)(x,t) —g(r)X(r,t)-E(r,t)} (22
n=0
XOT(x" V(1) V(t)| Q) conn- However, in order to account for the interaction between the

system and the bath oscillators, we also need to include the
coupling HamiltonianHgg of Eq. (16). In the interaction

The subscript tonn” means that the summation runs only ™. L
icture, it is

over terms that correspond to connected Feynman diagram@
Topologically equivalent diagrams, i.e., those that can be o
generated from each other by permuting the factorg (of) Hogr(t) = —J dgrf dvp, v?X(r,t)-Y,(r,t). (23
in the above expression, are counted only once, and therefore 0
we have omitted the factorri/ that would have arisen in the Thys, the interaction Hamiltonia¥((t) that appears in Eq.
straightforward expansion of the time-ordered exponential. (21) should prima faciebe the sum ofV(t), Eq. (22), and
In order to obtain the atomic-electron Green’s function,HéR(t), Eqg. (23). However, as we shall see below, we can
we replace the generdl fields by the atomic operators,  take into account the interaction between the system and the
G bath oscillators to all orders by dressing the system-oscillator
field. This will allow us to omitH(t) from the interaction
Zo [ —i\te Hamiltonian while using the dressed-system oscillator field
Gii(t,t')ZHZO (T) f dtlf dt,- - j dt,(Q|T(ci(t) in V(t), Eq. (22).

Xcl()V)V(t) - -V(t) [ Qconn: (21 A. Feynman rules

The terms appearing in the perturbation expangi)
According to Eg.(4), the interaction Hamiltonian in the in- can be represented graphically by Feynman diagrams. We
teraction picture reads use the following lines for the various free propagators:

> corresponds to ihGgg ), t),

t 1 t

VAV Ve We Ve corresponds to ihDy(r,t;r',t'),

t,r kl t,r

——————— corresponds to ihKy(gy);(r,t; r,t),
t,r mn t,r

t,r v,pq tLr corresponds to ihH,(,g)(r, Lt ).

The interaction Hamiltonian of Eq22) yields the following rules for the vertices between the atomic electron and the photon
field and between the photon field and the system oscillator:

kl
> re] t (k)6 -R
“ - presents eg;;’6(r1 —R),
% i 1,11 J ¢
ANNANANANAS — — — — — represents —&im g(r1) -
o kKl t,m mn  t,r
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(The symbolq,(k) denotes thekth vector component of the transition amplitugg between the atomic statésandj.) The
coupling Hamlltonlan of Eq(23) gives the vertex between the system and the bath oscillator fields:

————— LR L L LR represents —p, 12 6y, .

To compute a diagram, one has to sum over all internal indices and integrate over internal times, internal coordinates, and
reservoir oscillator frequenciesandv’.

B. Dressing the system-oscillator line voir can be treated exactly. To do this we perform quite a
S|mple summation of all relevant graphs, which is going to
The atom interacts with the system oscillator via the e|eCTe5u|t in an eas||y soluble Dyson equat|0n In fact, this sum-
tromagnetic field, and we treat this interaction perturbativelymation corresponds to the diagonalization of the polarization
However, the interaction of the system oscillator with theHamiltonian performed by Huttner and Barnfi.
bath can be summed to all orders, i.e., the corrections to the We choose a bold dashed line to represent the dressed
system-oscillator dynamics due to the presence of the resesystem oscillator, i.e.,

-— e = = e - - stands for iAKmn(r, ¢/, ¢} .
v, mn t,r

Then, we have the following graphical equation:

- e Em e, = - — — — } = — — —@e------e-e- O = e -
+ - — — —@-emeeoonee- *~— — — —@----------- ~— — — — +
= —_— = —— — + —— e = e eeccccccnaa o= =m == o=
[
which corresponds to Kinn(r, 1 0)=K(w)8mnd(r—r')  with  K(w)

-1
Kma(r tir/,t) =KQUr i1’ t")

+> dtlf dtZJd3r1
I,p —o0 —

ster’ va dv’ 2’2 [

XKO(r,t;ry, l)H rytyirtov, ')

2 414(0)
K(O)(w) f dvp v HY (w,v)

Substituting from Eqs(18), (20), and(14), we get

2
PV

wl—12+ie

K(w)={M(w2—wé-f—is)—wzfowdv

(24)
X Kpn(rZatZ;r 1t )

. . . . . C. Atomic propagator to the fourth order
Fourier transforming both sides of the above equation with I propag !

respect to time and using Eq4.8) and (19), we obtain Looking at the possible ways of combining the lines and
vertices of Sec. Il A, one quickly sees that the first nonva-
nishing order to which the atom-oscillator interactions con-
tribute to the exact atomic propagator is the fourth order. To
w the second order, both the atom and the oscillator can interact
+f dvpZr* KO (0)HO (0, )Kni(r,r',w).  only with the electromagnetic field, but not with each other.
0 The second-order terms yield part of the self-energies of
atom and oscillator, but these are of no concern to us for the
Thus, we find for the dressed system-oscillator propagator purpose of the present paper. They do have physical meaning

Knn(r, 15 0)=KO () 8pmnd(r—r")
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as the difference between the self-energies of a bound elec- @)oo iy 2 o o ()
tron and of a free electron accounts for most of the Lamb G (t,t)=ifie’>) l%ﬂ f_mdtl' . f_mdtzt% qji

shift, but we note that even if we were interested in them, the b
present model would not be suitable for calculating Lamb

_ 3r 2 _
shifts because in our interaction Hamiltonian we have ne- XKty t2)f d*rg“(r)Dym(r,R,t;—t3)

glected terms that contain the square of the polarization. In «D (0) (0)
. . rR,to—1,)Gy/(t—t3) G
the following, we shall assume that the energigswhich (MR 1) Gt~ 1) Gy
enter the atomic-electron propagators are not bare but al- X (t3— 1) GO(t,—t"). (25)

ready renormalized and have already been corrected for any . . . .
Lamb shift tributi p to this point, all our considerations have been perfectly
amb Shift contrioutions. general and suitable for the description of arbitrary dielectric

Hence, the first nonzero corrections to the atomic energieggodies. Now we specify that our dielectric is actually a point
due to atom-oscillator interactions appear in the fourth ordegt the coordinate origin by taking the coupling between the
of the perturbation expansion. We choose the symbosystem oscillator and the electromagnetic field to be
Gi(i“)(t,,t’) to denote the fourth-order correction to the g1 =Voa(r), (26)
Green'’s function that is due only to the interaction with the
oscillator. The only graph that contributes to the electromagwhereVy is the volume of the small dielectric body. Then,

netically mediated interaction between the atom and the odh€ spatial integration in Eq25) is straightforward to per-
cillator is form. Thus, we find that the Fourier-transformed atomic-

electron Green’s function can be written as
- Gii(E)~G{P(E)+G{Y(E), (27)

where the Fourier-transformed fourth-order correction
GY(E) is given by

T G@W(E _iﬁezvoz S g [ dwk(w)D
v : i (E)= 2r 4%, aij i’ | de (0)Diy

X (OR,— ®)Diy(0R,0)G(E)G{Y
Note, in particular, that the same graph but with crossing ( ©)Din(OR,@)Gi(E)Gjj

photon lines is, in fact, not different since the oscillator line X(E—ﬁw)Gi(io)(E).

is not directed,K(t;—t5)=K(t,—t;). Using the Feynman H : . .

) owever, since we are not actually interested in correc-
rules of Sec. Il A and taking advantage of the structure Ofyjons 15 the Green's function itself but rather in the perturba-
the  propagators, Kiu(r,r',t,t")=K(t—t")6md(r—r’),  tive shifts of its poles, Eq27) is not yet quite what we need.
Gjj(t,t")=G;(t—t") §;; , one obtains for the contribution of |nstead, we consider the Green'’s function that corresponds to
the above graph the following sum of diagrams:

— 00— — 00~

Here, every blob represents the fourth-order approximation GO
to the atomic-electron self-energy shown in the previous dia- G;i(E)= 5 . )
gram, but without the two external lines. The Fourier trans- 1-GP(E)Z(E)
form of this blob equals

562V . Substituting the explicit form oGi(iO)(E) from Eq. (8), one

3(E)=——2 3 af’qf) f doK(w) obtains
2 i IL,mn —
XDin(0R,0)Djn(0R,0)GE-fiw), (28) G;i(E)= (29)

E-Ei+ie—3(E)’
where we have used the fact thab(r,r’,—w)

=D(r,r’,w). The summation of this series of diagrams is Since the diagram with two blobs is of the eighth order and
quite simple and gives the following ones are of even higher orders, the above
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Green’s function(29) is in fact the same as the one in Eq.

(27) to the order we are considering, namely, the fourth or- X
der. However, the poles of ER9) are much easier to locate

than those of Eq(27). The poles of the perturbatively cor-

rected causal Green’s function yield the atomic energies as X 5
shifted due to the presence of the oscillator. To obtain them (wjjtie)~o
explicitly is still a formidable task—sincg; is a function of whereR=|R|, k=w/c, w;;=(E;—E;)/%.

E one has to solve a complicated integral equation to find the At this point we would like to consider several distinct
poles ofG;;(E). One can, however, look for the approximate cgses.

location of a pole by approximating;(E) by 2;(E;) in Eq.

(29). Thus, the poles of the Green’s functi@; (E) are lo- A. Atom in the ground state interacting with an undamped
cated approximately at oscillator

For studying the interaction of the atom with an un-
damped oscillator, we just need to set to zero the coupling of
E=E*~E+3(E), (30 the oscillator to the reservoir. Then, the Green’s funct2s)
for the system oscillator reduces to

oikR
(_V25Im+VIVm)?

eikR

(_V25In+vlvn)F (31)

and the approximate shift of thi¢h energy level i;(E;).
We would like to point out here that the propagator K(w)
G;;(E) of the interacting system has also other poles that are

not close to the location of the poles of the noninteracting ) ) _ o
Green's functiorG(®)(E). These poles tend to lie far into the COrrespondingly, we sgt, =0 in Eq. (31), which simplifies

complex plane, and thus correspond to rapidly decayindl® €xpression fol;(E;) considerably. Further simplifica-

modes. For thé dynamics of the system, all poles of th ion is brought about if the atomic stateve are considering
’ . ! . Is the ground state. Then, we hawg; <0 for all other states

propagator are important, and for the problem of two oscil- and thus the only poles of the integrand in €3l are at

lators interacting via the electromagnetic field it has beeﬂ; 4 i, —|wg|+ie, and|wg|—ic. This means
shown that the additional poles far into the complex plan hwtoth &, o 18, | ©0j ths;" . woé talfth I
do, in fact, dominate the short-time dynamics of the syste at there are no poies In the Tirst quadrant ot the compiex
[21]. In the present context, however, we are not interested iR lane, and we can rot{:\te the |_ntegrat|0|_‘1 by /2 t_o run
the dynamics of the system but just in the stationary energ long the positive imaginary axis from Ote " Substituting
shift, and hence we ignore those additional poles in the com-_ 0 O the ground state and changing variables fronto
plex plane. 1£ we can rewrite the self-energy as

In the following section, we shall analyze the energy 1 \2e?v,
§h|ﬁsEi(Ei) in some det_a|l. In order to extract readily usaple 2o(Eg) = —( ) —u E > qu J(S)“’JO
information on the physics of our system, we shall consider =0 1mn

1 1

w’—witie

<

4meg

two important asymptotic regimes. In the nonretarded regime v dé —¢RIC

or “near zone,” the distancR of the atom from the oscillator X f (— &m&2c?+VV,)

is small compared to both the wavelength of any atomic 0 £+ wh R
transition that contributes significantly to the self-energy and _ Ric

the wavelength of the oscillator. This is to say that both x| (= 8. 212+ )e 32)
dimensionless combinationg; — Ej|R/(#c) and wyR/c are In 'R £+

small. In the retarded regime or “far zone,” the opposite
holds true andE; —E;|R/(%c) and wyR/c are both large. This result is well known and has been derived many times
(cf., e.g., Refs[22,23)). We have rederived it in a different

way for the sake of comparison with the case of a damped

IV. ATOM-OSCILLATOR INTERACTION ENERGY AND . . . . .
oscillator. Carrying out the differentiations, we obtain

DECAY RATES

Substituting the explicit form of the electromagnetic S o(Eq)= — 1 \%e?Vo S o J"”dge_zgwc 1
causal Green’s function, Eq$l1) and (12), into the self- 0l=0 ey TM Sh @i, 4
energy, Eq(28), and canceling the antisymmetric part of the
integrand under the symmetrie integral, we can write the " 1 | (L)|2 (&élc)? ) élc N 1\2

If- D] I
self-energy as §2+wj20 Qoj R 2R3

élec 1 2
2:72
ie2V, = +4|qPPP| =+ = |, (33
Ei(Ei):(47T€0 - 2 I;n wijqi(]_m)qj(in)fo do |qOJ | R2 R3
. 5 -1 where we have split the vectay; into its componen'qi(j”)
% M(wz_wg+i8)_w2f dv# along R and the two-component vectaf") perpendicular
0 w —votie to R.
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In the nonretarded regime whewn,,R/c and wyR/c are B. Atom in the ground state interacting with a damped
both small, theR™ 3 terms dominate and the exponential can oscillator
be approximated by exp(2¢R/c)~1. Then, performing the  \ye now want to evaluate the self-enei@y) for the case
integration over, one finds the following ground-state en- ¢ 4 damped system oscillator when the bath oscillator

ergy shift: masses, are not zero. To be able to proceed we need to
specify the dependence pf, on the frequency, which can
(nonre) 1 \2 eV, 1 1 w2 be done by comparing our model with experimentally ob-
AE; ~ 2 2 06 —(|ag;”| servable characteristics of absorbing dielectrics. The polar-
7TEO Mwo R >0 wo-l-w]o : : 8 . g . p :
ization of the system oscillator is a response to the electric
+4/af)|?). (34) field,
In the retarded regime when;oR/c and wyR/c are both (Pi(r,t))= deTj d3r’aij(r,r’,r)(Ej(r’,t— M),
0

large, the analysis is slightly more involved. We first rewrite
Eqg. (33) by expressing the polynomial ié in terms of de-

rivatives of the exponential and the response functioa;;(r,r’,7) can very simply be

calculated by linear-response theory, i.e., by first-order per-
turbation theory. For the oscillator-field interaction given in

2.2 (L)j2 44 £)2 43
AE :_( 1 1"eVo 5 (laofl® o laofl® gqg (), we obtain
0 4mey) TM 6% 16R2 GR*  4R® GR3 .
i
a(rr' )= 60(7)-g(r)g(r"){O|[ X;(r,t),X;(r",t— 0
+3|q&)|2+4|qglj)|2 (9_2_|q&)|2+4|q8\j)|zi aijj( 7) (T)ﬁg( )g(r"){O[[Xi(r,t),X;( 7)]/0)
4RY R A =—g(Ng(rKIEr I/ ;tt—7).
N Iq&)|2+ 4|qg”j)|2 f‘” exp(—2éR/c) 35 Here K{¥(r,r’;t,t') is the retarded propagator of the dressed
R® 0 T (E+wh)(E+wly) system-oscillator field, which we calculate in the Appendix

from the equations of motion for the oscillator fields.
The ¢ integral equal§24] [formula (5.2.12] The experimentglly significgnt guantity is the polarization
ajj(r,r’,») which is the Fourier transform of the response
. B function. We obviously havew;;(r,r’,w)=a(r,w) &;; 5(r
f d exp(—2¢Ric) —r'), i.e., our model for the dielectric is isotropic and pre-
0 (&+ wg)(§2+ wjzo) cludes spatial dispersion. From the Fourier transform of the
retarded system-oscillator propagator, E44), derived in
the Appendix, we find

1

2 2
Wijp™ Wo

1 1
w—of(ZwoR/c)— a)_j()f(zijR/C) .

. . _ aij (1,1 @) ==g%(r) & 8(r—t')| M(w?- wp)
Note that the limitw;o=w, is innocuous, since the square
bracket vanishes linearly witwjo—w, and, consequently,

nothing special happens when one of the atomic transitions B szd p,v° 37)
coincides with the oscillator frequency. Using the asymptotic @ 0 v wi—12tisw
expansion of the functiofi(z) = ci(z)sin(2) —si(z)cosf) for
large z [24] [formula (5.2.39] For the response functiosm;(r,r’;7) to satisfy causality re-
quirements, we must ensure that its Fourier transform
21 41 ajj(r,r’;w) has no poles in the upper half of the comptex
fo)~-——+——--, plane. We show in the Appendix that this is indeed the case,
Z 23 25 . . . .
provided the functiom, for real v is real, even, and positive

) o and does not have poles on the real axis.
we_fmd_ that the_ground-state energy shift in the retarded Tpe, integral in Eqs(24) and (37) does not converge at
regime is approximately the upper limit unlesgp, falls off asv ™2 or faster for largev.
If we introduce a new constant and choose

1 \2 e%cV, 1 1
AE(fet)%_(_ -0 = —(13 (L))2
0 4mey] AmMwi R (50 wjo ;| p,,=—4My, (38
7TV2
+20/9§)|%) + 0 =1k (36)  we obtain for the polarizability26]
. o ) , 1 1
This is the Casimir-Polder result for the retarded interaction a(w)= Mo 2 g
between two neutral, polarizable point particles). wp— @ = 2iyw
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e ¢RIc

where we have got rid of the dependence by using the I
X (_5Im§ Ic +Vlvm)T

explicit expression fog?(r), Eq. (26), and averaging over

the volume of the small dielectric body. Thus, the choice of
p,, EQ.(38), leads to a single absorption line with Lorentz-
ian shape and a width that is given by the damping constant
v. Different choices forp, can be used not just to model
different line shapes but also to introduce additional poles i
a(w) and thus describe more than one absorption line, as has
already been pointed out for the canonically quantized ver:

sion of this model[5]. Such an approach is certainly well in the denominator of the first factor. This makes thimte-

suited to describing broad bands of absorption, and expergral a little more complicated than before, but the calculation
mentally observed absorption profiles can even be matche §ns along the same lines as for the undamped case. First, we
by fitting them to Eq(37). However, when it comes to mod- carry out the differentiations and get the same result as in Eq.

eling several widely spaced absoption lines, one might moré33) except for the replacement of the first denominagor

appropriately choose a model that right from the outset had “’0 by ¢ +“’0+2§7’ ) ,

several system-oscillator frequencies, because this is likely t% In the nonretarded regime where the distaRchetween

be the technically simpler choice and would make the phys the atom and the oscillator is small compared to all relevant

ics of the processes involved more transparent. wavelengths, we can make the same approximations as be-
Having specifiedp, we can proceed with the evaluation '0r€ @nd obtain for the ground-state energy shift

of the self-energy. Carrying out theintegral in Eq.(31) we 2 9

see that the resulting expression does not have any poles AE(nonret)N_(L) eVo 1

again in the first quadrant of the complexplane. Thus, we 4meg) 2Muwg RS S0

rotate the contour of the integration byw/2 and change

—éRlc

X (—5|n§2/CZ+V|Vn)T - (39

§2+ a)jz

Mrhe only difference between this expression and the equiva-
ant for the undamped case in E§2) is the presence of@y

variables fromw to i £, as before, and obtain v w]OwOj(wJ();wO 7) | o +4|q(H)| .
1\ () g () (wlo™wp)"+ 47"
_ m) ~(n
2o(Eo)= (47760 M ]ZO |% doj djo @jo (40)
- 1 The fraction after the sum sign stems from the integral over
Xf dgf ¢ and replacesd+ wio)*l in the result for the undamped
0 & twpt28y case, Eq(34). The abbreviation/(wjq,wo,y) stands for

rw-z—a)z-f—Zyz 2 y
00 "7 11— Zarctar——e—| y<wq
Vog— v ™ Neg—y
4y [wj| ©Hh— o oY
Jwjg,wq,y)= _|n(_])_ ] + 2] Y= wq,
o wqo ij my
wjzo—wg-f—Z'yz y+\/y2—wg
>——> N 2_ 2 Y= @o-
[ ™Y —es Ly VY - wp

Taking the limit of no dampingy— 0, we recover Eq(34), that the rest of the integrand is smooth, it can be Taylor

as we should. expanded around the lower limit of the integral and inte-
We can go beyond the nonretarded approximation by regrated with the exponential to give an asymptotic approxi-

expressing the energy-level shift in the same way as in Egnation to the integralWatson's Lemma, see, e.g., REZ7]),

(35), except for the replacement of the factéf ¢ w3) by i.e.,

(624 w3+2y€) "t under the¢ integral. Theé integration

can then still be performed analytically—one gets a combi-

nation of terms involving exponential integrals. While this fw exp(—2&R/c)

would be useful for the evaluation of the level shift for arbi- 2, 2 2, 2

trary distancesR, one can take a simpler approach for deter- 0 (EHept2yf(Etof

mining the shift in the retarded limit whefis much larger ( 1

X

) ~ fo déexp(—2£&R/c)

2y
——5 £+0(&8%) .

than any relevant wavelength. WhBris large, the exponen- R
WoWjg WoeWjp

tial strongly damps the integrand for increasifigProvided
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In this way, we obtain for the level shift in the retarded energy that arises from the residue contributions around the

regime poles atw;; +ie for j<i. We find
AE<re»~_( L )2 oV ¢ 1 S (e, )= )ZeZVo R AN 'l
0 4mes) AmMawl 150 jo b lAme) M S| 16R? R* 4R RS
[ 139617 +20a6)1” 6y 7]d6 1"+ 6laf)|” L A o 1
R’ w3 R® 4R* IR? RS IR
+0| —|. (41) +— 6 - 2 2. : (42)
Rg R wij—w0+2l'ywij

Thus, we find that in the retarded regime or far zone dampThis is a complex quantity. Its real part causes an energy
ing makes no difference to the leading order. It does, howshift

ever, give rise to a next-to-leading-order correction propor-

tional to R™® and growing linearly with the damping AE{®=Re(3 (I E))),

parametety. As seen by comparison with E@6), suchR™ 8

terms were not present in the undamped case when the nexhich jointly with the part of the self-energy("(E;) that
to-leading-order terms were only of the order Rf°. We results from the integral along the positive imaginary axis,

conclude that damping has more impact at small and intefgonstitutes the totz’:rl'las)energy shift of the atomic level. The
mediate distanceR between the atom and the oscillator thanimaginary part of;™>(E;) gives rise to a decay rate,

| R
at large Iy=— Im[S*YE))].

C. Atom in an excited state interacting with a damped From Eq.(42) it is easy to extract the asymptotic behavior of
oscillator these quantities for small and larg® In the nonretarded
If the atom is not in the ground state but in an excitedregime, wherew;;R/c<1, we find for the residue part of the
state, the evaluation of the self-energy is more complicatedenergy shift
With our choice ofp,,, Eq.(38), we get from Eq(31),

AE(res))(nonret)N 1 2e2VO E (L)2
S (E)= 1 \2%ie?v, 2 2 w--q-(-m)q(-“) (AE; ~ dre) M 2 (|C10j |
! ! 47760 7TM i IL,mn 0 n 2 2
. 1 Al —— 2~
Xf dw (wizj—w%)2+4'yzwﬁ R®
0 wz—a)g+ie+2i’yw g
+0O(R™), (43
ein/C
X| (= V?8im+ Vi Vi) = and for the decay rate
2.2
Cvr pe S 1 rpem | S0 S (e
x| (— + . 4re M =
In I Vn R (a)lj+|8)2—w2 0 1<
2 yw;; 1
Now the integrand has poles in the first quadrant of ¢he +4q¥)1)— 272)” —5 —+O(R™®).
plane, namely, aw;;+ie for all statesj<i. Thus, if we (wfj—wp)“+4y°wij R
rotate the_ contour byr/_2, we get an integra_l along the posi- (44)
tive imaginary axiso=1i¢ and a sum of residues from these
poles, In the retarded regime, whetg;R/c>1, the level shift and
. the decay rate are approximately
(B =2{"(E) +Z{*E)).
(AEi(res))(ret)

The integral along the positive imaginary axis leads to iden- A .
tical expressions as in Sec. IV B, except for the replacement (1 eV 3 (L)|2(wij /c)
of wj by w;; and ofqg; by g;; . Apart from these substitu- \amey) M & i R2
tions, 3 (" (E;) is the same a&((E,) in Eq. (39), and con-

sequently this part of the self-energy gives rise to energy (wizj—wg)cos(ZwijR/c)+27wijsin(2win/c)
shifts that are otherwise identical to E§40) and(41) in the X 2_ 224 4,22
nonretarded and retarded regimes, respectively. Thus, we (wij— wp) Y @i
shall now concentrate on analyzing the part of the self- (45)
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1 \2%e?v
(ret | = 0 (L))2
1—‘I ( ) M ; |qu |

(wj; /c)* nents decay only with a rate that drops off Rs3. In the
41eg 2

limit of no damping, the decay is governed by the natural
R linewidths of atom and oscillator, which have been ignored
in this calculation. Thus, taking the limjt— 0 in the results
for the atom in an excited state is not physically meaningful.
(0~ 0))*+47%0]; The techniques developed here can be transferred almost
(46) unaltered to the problem of an atom interacting with an as-
sembly of weakly coupled oscillators. Furthermore, the
Finally, we would like to point out that the limit of no damp- Present methods can be built upon for devising a strategy for
ing, y—0, is not admissible in any of the above results. Indealing with strongly coupled oscillators which model solid

that limit the residue part of the self-energy in E42) has ~ dielectric bodies. In this case, one can dress the
an unrecoverable singularity af;=w,, ie the atom can electromagnetic-field propagator and thus take into account

decay into a mode that is in resonance with the oscillator’fhe presence of the dielec@ric not perturbatively but exactly to
and resonant transfer occurs. This very special scenario is n8tl orders of the perturbation theory.

covered by the present calculation because for that we would

have had to take intq account the natural Iingwidth which ACKNOWLEDGMENTS

arises from the coupling to the electromagnetic field alone.

Had we wanted to include it, we would have needed to con- This work was supported by the U.K. Engineering and
sider the second-order as well as the fourth-order terms &3hysical Sciences Research Council and by the Royal Soci-
opposed to just the fourth-order terms in the perturbatiorety. We would like to thank Professor Gabriel Barton for
expansion. Moreover, the assumption in Eg80) that the fruitful discussions.

poles of the exact Green’s function are close to those of the
unperturbed Green’s function is not justified close to reso-
nance.

2yw;C0% 2w;jR/C) — (w], — w§)sin(2w;;R/C)
>< .

APPENDIX: THE RETARDED PROPAGATOR OF THE
DRESSED SYSTEM OSCILLATOR

V. SUMMARY AND CONCLUSIONS 1. Derivation of the propagator

In this paper, we have calculated the energy-level shifts 1he retarded propagator is defined as

and the decay rates of an atom that interacts with a damped i

harmonic oscillator a distande away. Without damping we K{ft(r,r’,t,t’)z - %0(t—t’)<0|[Xi(r,t),Xj(r',t')]|0>.
recover the usual results for the van der Waals interaction

between two polarizable, unexcited point particles: the en-

ergy shift scales aR° in the nonretarded regime or near The dynamics of fieldX;(r,t) is described by the Hamil-
zone whereR is small, and aR ™’ in the retarded regime or tonian Ho_r, EQ.(3). Hamilton’s equations read

far zone whereR is large. This is still true when damping is

included. Then, however, the coefficient Rf © in the near

zone depends on the damping constargtrongly and non- )'(i(r,t)z = ,
trivially. In the far zone, damping has no impact on the oP;(r,1) M
leading-orderR™’ term in the interaction energy, but it in-

troduces a new next-to-leading ord& 8 term, whereas )

without damping the next-to-leading order is oriy °. If Pi(r,t)=—
the atom is excited, then a part of the energy shift originates

from an integral over photon frequencies and behaves in the %
same way as for a ground-state atom. The other part is purely + f dvp, v?(Yi(r,t,n) = Xi(r,1)). (A2)

due to virtual down transitions in the atom and appears in the 0

calculation as a sum of residues from the integration over

photon frequency. Since down transitions can also be reaDifferentiating K{ft(r,r’;t,t’) with respect to time¢ and us-

the residue part of the energy shift goes hand in hand with ing Eq. (A1) gives

modified decay rate of the atom due to the presence of the

damped oscillator. In the nonretarded regime, both the en- i P.(r 1)

ergy shift and the decay rate vary with distanceRa$ and —K{-e‘(r,r',t,t’)= — _g(t_tf)<OH'_"X]_(rr'tr)Ho>
depend strongly on the damping constantin the retarded at h M

regime, the energy shift is dominated by the part that arises i

from virtual down transitions in the atom. Its distance depen- - g5(t—t’)(0|[Xi(r,t),Xj(r’,t’)]IO).

dence oscillates with twice the ratio 8fto the wavelength

of the atomic transition and with an amplitude that drops off

asR 2. The decay rate shows qualitatively the same behavThe second term vanishes because the equal-time commuta-
ior. To leading order the decay takes place preferentially partor of the field with itself is zero. Differentiating with respect
allel to the atom-oscillator axis, and perpendicular compo+to t once more leads to

oHo-r _ Pi(r,t)

(A1)

SHo-r

2
m=—/\/lwoxi(r,t)
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P : We now Fourier transform with respectte-t’ and obtain
e — —
aK‘(rr,t,t) ﬁMa(tt) 2
Fiy(rr' viw)=—————KF(r,r'; o).
aP;(r,t) ! P—w?—icw
X {0 e Xj(r',t") (|0

The infinitesimal imaginary term in the denominator is there
to shift the poles ofF;(r,r’,v; ) slightly into the lower half

[
- gﬁ(t—t') of the complexw plane. This is necessary since thdunc-
tion in F;(r,r’,t,t’,v) demands it to be zero far—t'<0
Pi(r,t) and thusF;; (r,r’,v;w) to be analytic in the upper half plane.
<0[ M Xi(r' )H > We substitute the result into the Fourier transform of Eq.
(A3),

Now we use Eq(A2) for rewriting the first term and the
canonical commutation relations for simplifying the second
term and obtain

" 4
(w%—wz)K{ft(r,r';w)ZiJ de,,V—_KirjElt
Mo r—w’—icw

2 P2

1
a—KrEI(r r'tt )—I—0(t t)(O|[X;(r,t),X;(r’,t")]0) X(r,r'w)=——=&;0(r=r’).

M

—Wet t)f de,,

X(O|[Y;(r,t,v),X;(r",t")]|0)

Resubstitutings? from Eq. (14) we finally arrive at

KiF(r,r'w)=8;8(r—r")K™(w) with K®{(w)

2 -1
P,V
2

w’— 1’ +isw

1 = M(wz—wg)—wzj dv
’ ’ 0
_ﬂ5(t_t )5ij5(r—r )

(A4)
The shifted frequencw; has been defined in E¢L4) in the
main text. We can rearrange the last equation to read 2. Analytic properties of the propagator in  space
) For Kre[(r r',t,t’) to be retarded, i.e., to vanish fdr
‘9_Kret(r L)+ w2 K ) <t' its Fourler transfornKret(r r’;w) must not have poles

in the upper half of the Complem plane. We show that this
1 o is indeed the case, provided the functignfor real v is real,
:_j dvpvvzfij(r,r’,t,t' V) positive, even, anq has no polgs on the real axis. The first
M two of these requirements are important also for other rea-
1 sons:p, must be real to ensure the Hermiticity of the Hamil-
— St 88 —T), (A3) tonian, and it must be positive so that the Hamiltonian has a
spectrum that is bounded from below, i.e., to guarantee the
existence of a ground state.

where we have defined We start by considering the analytic properties of the
i integral in the denominator of EGA4). For everp,,, we can
Fiy(r,r Gt v)=— - 6(t—t"){O|[ Y;(r,t,»),X;(r',t')]|0). extend thev integration along the whole of the real axis and

split the denominator into partial fractions

Proceeding along exactly the same lines ask&t we can
derive an equation fof. Using the Hamilton equations of j dy———F——= —f dvp,v?
motion for reservoir fields, W=’ ticw

SHo r  Zi(rt,w) 1 1

N _ X - -
Yi(r’t'v)zézi(rtv)z 0 ) a)+V+I8+0)—V+|8
'z-(rtv)z—m=— VLY (rtv) = Xi(r )] :_f Yo v+|s
] 14 5Y|(r,t,]/) - py | 14 ] ) )
we derive Thus, this integral as a function af has a cut just below the
real axis but is analytic in the upper half plane.
5 To study the analytic properties of the wholekdf( w) in
—Fy(rr ,,)+,,2}-ij(r r'tt v)—sz'e‘(r rt). the upper half plane, we split the frequency into real and

imarginary partsw=w'+io” with ©”">0. If the real part
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o' is nonzeroKret(w’ +iw”) cannot have a pole, as one can w'. The same is true trivially for the first term and, conse-

see by examining the imaginary part of its inverse, quently, the inverse oK"{w) cannot be zero i has a
nonzero real part. IK™{(w) has any poles at all in the upper

half plane, then they must lie on the imaginary axis. How-
m| ———— | =2Mo' 0" ever, on the imaginary axis we find
Ke(w' +iw")
"o 3 1 iw” (= pVVZ
+w_f dr ﬁ:—M(‘”"z*‘"g”TJ Ay (v
2 ) _o (V_wr)2+w772 K t(|w ) — e+ w
The denominator of the integral gives rise to a Lorentzian +iw").
peak around'=w’. Multiplied by »* this peak gets weighed _ _ _ o
positively for positivew’ and negatively for negative’. For evenp,, the imaginary part of this expression is zero, but

Therefore, ifp, is an even and positive function the integral its real part is negative. Thuls’,{ft(r,r’;w) cannot have any
must be positive for positivew’ and negative for negative poles in the upper half of the complex plane.
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