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Interaction of an atom with a small dispersive and absorptive dielectric body

Claudia Eberlein and Maciej Janowicz*
Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

~Received 4 February 2003; published 27 June 2003!

The paper analyzes the interaction of an atomic system with a quantum damped harmonic oscillator. Such an
oscillator is the building block in the recently proposed models of bulk dielectrics and may also serve as a
simple model of a small dielectric body. Dispersion and losses are taken into account by assuming the
oscillator to be coupled to a zero-temperature reservoir consisting of an infinite system of other harmonic
oscillators. The Green’s function of the atomic system is calculated perturbatively when coupled to the bath.
The self-energy of the atomic electron is obtained by the partial resummation of perturbation diagrams, and
thus energy-level shifts of both ground and excited states of the atom due to the presence of the oscillator are
determined. Corrections to the decay rates are also obtained and analyzed as functions of the distance of the
atom from the oscillator, and of the coupling of the oscillator to the reservoir.
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I. INTRODUCTION

The problem of the interaction of atoms with electroma
netic fields in the presence of dielectric bodies and interfa
has attracted a lot of attention over the past three dec
~cf., e.g., Refs.@1–11#!. Interactions of this kind are particu
larly interesting in the case of lossy and dispersive diel
trics, since these describe realistic materials. One of the m
successful models of such media involves their represe
tion in terms of a system of harmonic oscillators coupled
a reservoir consisting of yet another collection of harmo
oscillators@5#. However, the application of this model eve
to very simple inhomogeneous systems is nontrivial, and
cause of a multitude of technical difficulties the approach
mostly been applied only to one-dimensional systems. H
ever, going beyond one spatial dimension is the very co
plex though powerful formalism employed in Ref.@10#; it
facilitated the extraction of expressions for the spontane
decay rate of an atom near an interface in three dimensi
but energy-level shifts were not discussed. We want to de
mine both level shift and decay rates, and we shall us
Green’s-function approach that is similar in the spirit to th
of Ref. @10#.

In view of the above-mentioned technical arduousnes
seems appropriate to tackle the general problem by
studying in some detail the simplified problem of an ato
interacting with just one harmonic oscillator, and this is t
objective of the present paper. There is a twofold motivat
for studying this simple model. On one hand, the experie
that one gains from it and the methodology developed fo
provide useful intuitions for more complex structures. The
are, e.g., photonic crystals built of many discrete small
electric particles, or macroscopic bodies which can
thought of as a continuum of oscillators. To facilitate su
generalization we shall model the oscillator by a continuo
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oscillator field density and shall select the geometry o
single oscillator only later by choosing a pointlike couplin
with the electromagnetic field. On the other hand, even s
a simple one-oscillator system is a realistic model for a sm
polarizable body with dispersion and losses~‘‘small’’ mean-
ing here much smaller than any characteristic waveleng
involved!. Another objective of this paper is to study th
effect of the coupling to a reservoir by comparing the resu
for undamped and damped oscillators~i.e., uncoupled from
and coupled to a reservoir, respectively!. Again, useful infor-
mation can be gained from such a comparison, and this
be employed in the analysis of the atom-field interactions
the presence of large dielectrics for finding out what diffe
ence losses make. For the case of nonretarded interact
such a comparison has been performed in Ref.@1#.

To forestall confusion we emphasize that we are int
ested strictly in the van der Waals problem of an atom int
acting with external dielectrics. If one were to consider
oms embedded in dielectric materials, then one would h
to take local-field corrections into account~see, e.g., Ref.
@6#!. The formalism developed here is not suited to that pr
lem.

The atom and the oscillator are coupled via their polari
tions in the electromagnetic field. In this work we put bo
the atomic and the oscillator polarizations into the interact
Hamiltonian and treat both of them perturbatively. O
could, of course, include the oscillator-polarization term
the zeroth-order Hamiltonian and determine the Gree
function of the electromagnetic field that is already correc
for the presence of the oscillator, i.e., to all orders. This
possible because the problem of the interaction of a char
harmonic oscillator with an electromagnetic field is exac
soluble, either by diagonalization of the Hamiltonian@13# or
by solving the initial-value problem for the Heisenberg o
erators@14#. Then, the atom could be considered to inter
not with the electromagnetic field and through it with th
oscillator, but just with the ‘‘dressed’’ electromagnetic fiel
This approach is in fact the only option for atom-field inte
actions in the presence of large and optically dense dielec
bodies, where a perturbative treatment of the oscillator-fi
coupling would not converge. However, apart from techni

ky
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simplicity, the perturbation expansion with respect to bo
polarizations has merit for a small dielectric body becaus
treats the two interacting objects~the atom and the oscillator!
on the same footing and, thus, leads to elegant and sym
ric expressions. Furthermore, this approach allows us to
late to the standard perturbative theory of atom-atom in
actions.

The main body of the paper is organized as follows.
Sec. II, we provide the Hamiltonian and free propagat
necessary for our Green’s-function approach. Section III c
tains the perturbative calculation of the atomic propaga
We formulate simple Feynman rules for constructing the d
grams of the perturbation expansion. Both the~rather simple!
Green’s functions and the Feynman rules are discusse
some length since they are provided here in quite a gen
form, suitable for dielectric bodies of arbitrary type and si
In Sec. IV the energy-level shifts and decay rates of the a
are extracted and analyzed in various asymptotic regim
Finally, Sec. V contains a summary and a few conclud
remarks. The Appendix derives the retarded Green’s func
for the oscillator when coupled to the bath and examines
analytic properties of its Fourier transform.

The oscillator representing the small body will in the fo
lowing be referred to as the ‘‘system’’ oscillator, while th
oscillators that constitute the reservoir will be called t
‘‘reservoir’’ or ‘‘bath’’ oscillators.

II. FORMULATION OF THE PROBLEM—THE
HAMILTONIAN AND THE FREE GREEN’S FUNCTIONS

Our objective in this paper is to describe the interaction
an atom with a damped harmonic oscillator, mediated by
electromagnetic field. We look for the energy-level shifts a
modified decay rates of the atom due to this interacti
Thus, the system under considerations consists of the foll
ing subsystems.

~i! The atom, which we choose to be located at the po
r5R and described by the following free second-quantiz
Hamiltonian

HA5(
l

Elcl
†cl . ~1!

Here,cl and cl
† are the annihilation and creation operato

respectively, of the atomic electron in levell, and the sum
runs over all energy levels of the atom. As we conside
one-electron atom, we have( lcl

†cl51.
~ii ! The free electromagnetic field has the Hamiltonian

HF5E d3r S e0E2~r !1
1

m0
B2~r ! D . ~2!

SinceHF describes the free radiation field,E(r ) is the trans-
verse electric field which is related to the dielectric displa
ment throughE5D/e0.

~iii ! The system oscillator and the bath oscillators are
scribed by the Hamiltonian
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HO2R5E d3rF P2

2M 1
1

2
Mv0

2X2

1E
0

`

dnS Zn
2

2rn
1

rn

2
n2~Yn2X!2D G , ~3!

where X and P are the dipole moment and the conjuga
momentum of the system oscillator, andY and Z are the
dipole moments and conjugate momenta of the bath osc
tors. Strictly speaking, all these variables are densities,
the Hamiltonian actually describes continuous fields of
system and the bath oscillators. We shall pick the geom
of our model dielectric by allowing the atom to interact on
with oscillators inside a certain volume. This works fine b
cause oscillators at different points in space are, of cou
mutually independent. Our model is similar to th
independent-oscillator model of the reservoir developed
Ref. @20#, except that we use a continuous field rather tha
discrete assembly. The model describes an absorbing die
tric with an absorption band around frequencyv0. The
strength of the dielectric response is determined by
‘‘mass’’ M, as the combination 1/(Mv0

2) has the physical
meaning of a static polarizability@12#. The bath oscillator
massesrn govern the damping due to the absorption and th
prescribe the precise profile and structure of the absorp
spectrum. We shall discuss all this in more detail in S
IV B.

The total zeroth-order Hamiltonian is

H05HA1HF1HO2R .

It describes the unperturbed system of the atom and the
tem oscillator when not coupled to each other.

The interaction is mediated by the polarizations of t
atom and of the system oscillator in the electromagne
field. In the electric dipole approximation, the interactio
Hamiltonian reads

V52d•E~R!2E d3r g~r !X~r !•E~r ! with

d52e(
i j

qi j ci
†cj . ~4!

The electron charge is2e andqi j [^ i uqu j & are the transition
amplitudes between the atomic statesi andj. The dimension-
less couplingg(r ) specifies the geometry of the dielectric;
is constant inside and zero outside the dielectric body.
the moment we remain general in our derivation and leav
stand as an arbitrary function ofr , but eventually we shall
choose it to describe a pointlike dielectric and thus be n
zero only at a single point.

The square of the polarization has been omitted from
interaction Hamiltonian, since it contributes only when t
positions of the atom and the oscillator coincide. As rega
the coupling between the system and the bath oscillators
note that this has been included inHO2R , Eq. ~3!.

In this work we are going to use a Green’s-function a
proach. First, we shall determine the free Green’s functi
6-2
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of the unperturbed system, and then we shall calculate
corrections to them by means of a perturbation expans
The location of the poles of the corrected atomic Gree
function gives the energy shifts and lifetimes of the atom d
to the interactions with the dielectric body.

We start by compiling all the free propagators needed
the perturbative expansion. In general, field propagators
‘‘causal Green functions’’ are defined by@15,16#

G~x,x8,t,t8!52
i

\
^VuT„F~x,t !F†~x8,t8!…uV&, ~5!

whereF(x,t) is an arbitrary field operator in the Heisenbe
picture,uV& is the exact ground state of the system, andT is
the time-ordering operator. We note, however, that conv
tions differ slightly in regard to the presence of\. The exact
ground state of the system is unknown and, in most ca
accessible only perturbatively. Such perturbative calculati
are performed in the interaction picture and use Gree
functions with respect to the ground state of the noninter
ing system. In our case, the ground state of the noninter
ing system is simply the tensor product of the vacuum of
atomic-electron field, the vacuum of the electromagne
field, the ground state of the system oscillator, and
ground state of the reservoir.

A. Atomic-electron propagator

The atomic creation and annihilation operatorscl
† ,cl sat-

isfy the anticommutation relations

@cl ,cm
† #15d lm , @cl ,cm#150, @cl

† ,cm
† #150. ~6!

Since the free atomic-electron Hamiltonian is diagonal,
time evolution of the operatorscl ,cl

† is simply

cl~ t !5cl~0!e2 iEl t/\, cl
†~ t !5cl

†~0!eiEl t/\. ~7!

In order to determine the unperturbed atomic-electron pro
gator

G(0)~r ,r 8,t,t8!52
i

\
^VuT„c~r ,t !c†~r 8,t8!…uV&

we expand the field operatorsc andc† in terms of the cre-
ation and annihilation operators,

c~r ,t !5(
l

cl~ t !f l~r !.

The c-number functionsf l are the eigenfunctions of th
first-quantized atomic-electron Hamiltonian, i.e., the so
tions of the Schro¨dinger equation. We obtain

G(0)~r ,r 8,t,t8!5(
l ,m

f l~r !fm* ~r 8!Glm
(0)~ t,t8!

with
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Glm
(0)~ t,t8!5

2 i

\
^VuT„cl~ t !cm

† ~ t8!…uV&.

From Eqs.~6! and ~7! one quickly finds

Glm
(0)~ t,t8!52 iu~ t2t8!e2 iEl (t2t8)/\d lm .

Since this Green’s function depends only on the time diff
encet5t2t8, we can work with its Fourier transform

Glm
(0)~E!5E

2`

`

dtGlm
(0)~t!eiEt/\5

1

E2El1 i«
d lm . ~8!

In order to make the Fourier integral convergent, we ha
added a small imaginary shift2 i« to the energyEl and thus
shifted the pole ofGlm

(0)(E) away from the real axis into the
complex plane. This prescription also ensures the cor
causal boundary conditions ofG(0)(t,t8) for (t2t8)→6`.

B. Electromagnetic-field propagator

Although the Green’s functions of the electromagne
field are well known, they are normally given for the vect
potential A(r ,t) @18#. Since we are working with thed•E
coupling, we require the causal propagator of theE field
instead:

Di j
E~r ,r 8,t,t8!52

i

\
^0uT„Ei~r ,t !Ej~r 8,t8!…u0&. ~9!

It is straightforward to calculate this propagator either fro
the causalA field propagator in a fixed gauge, or, witho
resorting to gauge-dependent derivations, from the fi
equation forE:

¹3¹3E1
1

c2

]2E

]t2
50.

When applying the same differential operator on propaga
~9!, one must take care in applying the time derivative to
time-ordering symbol~see, e.g., Ref.@17#!. Noting that

]2

]t2
Di j

E~r ,r 8,t,t8!52
i

\ K 0UTS ]2Ei~r ,t !

]t2
Ej~r 8,t8!D U0L

2
i

\
d~ t2t8!

3K 0UF]Ei~r ,t !

]t
,Ej~r 8,t8!GU0L .

and using the gauge-independent equal-time commut
~cf., e.g., Ref.@19#!

@Ei~r !,Bj~r 8!#5
\

~2p!3e0

e i jnE d3kkneik•(r2r8),

we find that the causalE field propagator satisfies the equ
tion
6-3
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~“3“3DE! i j ~r ,r 8,t,t8!1
1

c2

]2

]t2
Di j

E~r ,r 8,t,t8!

52
1

~2p!3e0

d~ t2t8!E d3k~d i j k
22kikj !e

2 ik•(r2r8).

~10!

The right-hand side of this equation contains the transverd
function because the electromagnetic field is a transv
field and, thus, in order to obtain the propagator, one m
invert the operator of its field equation in the subspace
transverse fields.

Equation~10! can be solved easily by Fourier transform
tion. One finds that in free space the matrix elements of
electromagnetic Green’s functionDmn

E can be written as

Dmn
E ~r ,r 8,v!5~2¹2dmn1¹m¹n!d~ ur2r 8u,v!, ~11!

where the scalar Green’s functiond(ur2r 8u,v) is given by

d~ ur2r 8u,v!52
1

4pe0
Fu~v!

eivur2r8u/c

ur2r 8u

1u~2v!
e2 ivur2r8u/c

ur2r 8u
G . ~12!

Thus, the causal Green’s function depends only onuvu, and
it is translation invariant as expected for a free-field pro
gator. Since theE field propagator is the only electromag
netic propagator used in this work, we shall omit the sup
script E and write simplyDi j from now on.

C. The oscillator propagators

The system and bath oscillator HamiltonianHO2R con-
sists of three parts,

HO2R5HO8 1HR81HOR8 .

There is the free~though frequency shifted! system oscillator

HO8 5E d3r S P2

2M 1
1

2
Mv1

2X2D , ~13!

with

v1
25v0

21
1

ME
0

`

dnrnn2. ~14!

The free reservoir is described by

HR85E d3rE
0

`

dnS 1

2rn
Zn

21
1

2
rnn2Yn

2D . ~15!

The coupling between the system and the reservoir osc
tors is
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0

`

dnrnn2X•Yn . ~16!

We shall deal with the coupling in Sec. III B, but for th
moment we are going to determine the Green’s functions
for the free system and reservoir oscillators.

The free system-oscillator Green’s function is defined

Ki j
(0)~r ,r 8,t,t8!52

i

\
^0uT„Xi~r ,t !Xj~r 8,t8!…u0&.

It is easily calculated from the free-oscillator Hamiltonia
~13! as

Ki j
(0)~r ,r 8,t,t8!52

i

2Mv1
d i j d~r2r 8!@u~ t2t8!e2 iv1(t2t8)

1u~ t82t !eiv1(t2t8)#. ~17!

Fourier transformation with respect tot2t8 yields

Ki j
(0)~r ,r 8;v!5

1

M
1

v22v1
21 i«

d i j d~r2r 8!

[K (0)~v!d i j d~r2r 8!. ~18!

The reservoir Green’s function is defined by

Hi j
(0)~r ,r 8,t,t8,n,n8!52

i

\
^0uT„Yi~r ,t,n!Yj~r 8,t8,n8!…u0&.

As seen from Eq.~15!, the reservoir is simply a collection o
mutually independent oscillators, and thus we can w
down its Green’s function by just copying the structure
Eq. ~17!,

Hi j
(0)~r ,r 8,t,t8,n,n8!52

i

2rnn
d i j d~n2n8!@u~ t2t8!

3e2 in(t2t8)1u~ t82t !ein(t2t8)#.

Fourier transforming with respect tot2t8 and naming the
Fourier variablev, we obtain

Hi j
(0)~r ,r 8,n,n8;v!5H (0)~v,n!d i j d~r2r 8!d~n2n8!,

~19!

with

H (0)~v,n!5
1

rn

1

v22n21 i«
. ~20!

III. PERTURBATIVE EXPANSION FOR THE ATOMIC
PROPAGATOR

Our aim is to calculate the propagator of the atomic el
tron when the atom is interacting with the electromagne
field and via that with the small body and the reservoir. T
poles of the full atomic propagator will yield the interactio
energy of the atom with the dielectric and the correspond
6-4
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radiative lifetime. The general expression for the perturba
expansion of a Green’s function is@15,16#

G~x,x8,t,t8!5 (
n50

` S 2 i

\ D n11E dt1•••E dtn^VuT„F~x,t !

3F†~x8,t8!V~ t1!•••V~ tn!…uV&conn.

The subscript ‘‘conn’’ means that the summation runs on
over terms that correspond to connected Feynman diagr
Topologically equivalent diagrams, i.e., those that can
generated from each other by permuting the factors ofV(t i)
in the above expression, are counted only once, and there
we have omitted the factor 1/n! that would have arisen in the
straightforward expansion of the time-ordered exponentia

In order to obtain the atomic-electron Green’s functio
we replace the generalF fields by the atomic operatorscl ,
cl

† ,

Gii ~ t,t8!5 (
n50

` S 2 i

\ D n11E dt1E dt2•••E dtn^VuT~ci~ t !

3ci
†~ t8!V~ t1!V~ t2!•••V~ tn!!uV&conn. ~21!

According to Eq.~4!, the interaction Hamiltonian in the in
teraction picture reads
06381
e

s.
e

re

,

V~ t !5E d3r Fe(
i j

qi j ci
†~ t !cj~ t !d~r2R!E~r ,t !

2g~r !X~r ,t !•E~r ,t !G . ~22!

However, in order to account for the interaction between
system and the bath oscillators, we also need to include
coupling HamiltonianHOR8 of Eq. ~16!. In the interaction
picture, it is

HOR8 ~ t !52E d3rE
0

`

dnrnn2X~r ,t !•Yn~r ,t !. ~23!

Thus, the interaction HamiltonianV(t) that appears in Eq
~21! shouldprima faciebe the sum ofV(t), Eq. ~22!, and
HOR8 (t), Eq. ~23!. However, as we shall see below, we c
take into account the interaction between the system and
bath oscillators to all orders by dressing the system-oscilla
field. This will allow us to omitHOR8 (t) from the interaction
Hamiltonian while using the dressed-system oscillator fi
in V(t), Eq. ~22!.

A. Feynman rules

The terms appearing in the perturbation expansion~21!
can be represented graphically by Feynman diagrams.
use the following lines for the various free propagators:
oton
The interaction Hamiltonian of Eq.~22! yields the following rules for the vertices between the atomic electron and the ph
field and between the photon field and the system oscillator:
6-5
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~The symbolqi j
(k) denotes thekth vector component of the transition amplitudeqi j between the atomic statesi and j.! The

coupling Hamiltonian of Eq.~23! gives the vertex between the system and the bath oscillator fields:

To compute a diagram, one has to sum over all internal indices and integrate over internal times, internal coordina
reservoir oscillator frequenciesn andn8.
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B. Dressing the system-oscillator line

The atom interacts with the system oscillator via the el
tromagnetic field, and we treat this interaction perturbative
However, the interaction of the system oscillator with t
bath can be summed to all orders, i.e., the corrections to
system-oscillator dynamics due to the presence of the re
it

or

06381
-
.

he
er-

voir can be treated exactly. To do this we perform quite
simple summation of all relevant graphs, which is going
result in an easily soluble Dyson equation. In fact, this su
mation corresponds to the diagonalization of the polarizat
Hamiltonian performed by Huttner and Barnett@5#.

We choose a bold dashed line to represent the dre
system oscillator, i.e.,
Then, we have the following graphical equation:
nd
a-
n-
To
ract
er.

of
the
ning
which corresponds to

Kmn~r ,t;r 8,t8!5Kmn
(0)~r ,t;r 8,t8!

1(
l ,p

E
2`

`

dt1E
2`

`

dt2E d3r 1

3E d3r 2E
0

`

dnE
0

`

dn8n2n82rnrn8

3Kml
(0)~r ,t;r1 ,t1!Hlp

(0)~r1 ,t1 ;r2 ,t2 ;n,n8!

3Kpn~r2 ,t2 ;r 8,t8!.

Fourier transforming both sides of the above equation w
respect to time and using Eqs.~18! and ~19!, we obtain

Kmn~r ,r 8;v!5K (0)~v!dmnd~r2r 8!

1E
0

`

dnrn
2n4K (0)~v!H (0)~v,n!Kmn~r ,r 8,v!.

Thus, we find for the dressed system-oscillator propagat
h

Kmn~r ,r 8;v!5K~v!dmnd~r2r 8! with K~v!

5F 1

K (0)~v!
2E

0

`

dnrn
2n4H (0)~v,n!G21

.

Substituting from Eqs.~18!, ~20!, and~14!, we get

K~v!5FM~v22v0
21 i«!2v2E

0

`

dn
rnn2

v22n21 i«
G21

.

~24!

C. Atomic propagator to the fourth order

Looking at the possible ways of combining the lines a
vertices of Sec. III A, one quickly sees that the first nonv
nishing order to which the atom-oscillator interactions co
tribute to the exact atomic propagator is the fourth order.
the second order, both the atom and the oscillator can inte
only with the electromagnetic field, but not with each oth
The second-order terms yield part of the self-energies
atom and oscillator, but these are of no concern to us for
purpose of the present paper. They do have physical mea
6-6
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as the difference between the self-energies of a bound e
tron and of a free electron accounts for most of the La
shift, but we note that even if we were interested in them,
present model would not be suitable for calculating La
shifts because in our interaction Hamiltonian we have
glected terms that contain the square of the polarization
the following, we shall assume that the energiesEl which
enter the atomic-electron propagators are not bare bu
ready renormalized and have already been corrected for
Lamb shift contributions.

Hence, the first nonzero corrections to the atomic ener
due to atom-oscillator interactions appear in the fourth or
of the perturbation expansion. We choose the sym
Gii

(4)(t,t8) to denote the fourth-order correction to th
Green’s function that is due only to the interaction with t
oscillator. The only graph that contributes to the electrom
netically mediated interaction between the atom and the
cillator is

Note, in particular, that the same graph but with cross
photon lines is, in fact, not different since the oscillator li
is not directed,K(t12t2)5K(t22t1). Using the Feynman
rules of Sec. III A and taking advantage of the structure
the propagators, Klm(r ,r 8,t,t8)5K(t2t8)d lmd(r2r 8),
Gi j (t,t8)5Gii (t2t8)d i j , one obtains for the contribution o
the above graph
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Gii
(4)~ t,t8!5 i\e2(

j
(

l ,m,n
E

2`

`

dt1•••E
2`

`

dt4qi j
(m)qji

(n)

3K~ t12t2!E d3rg2~r !Dlm~r ,R,t12t3!

3Dln~r ,R,t22t4!Gii
(0)~ t2t3!Gj j

(0)

3~ t32t4!Gii
(0)~ t42t8!. ~25!

Up to this point, all our considerations have been perfec
general and suitable for the description of arbitrary dielec
bodies. Now we specify that our dielectric is actually a po
at the coordinate origin by taking the coupling between
system oscillator and the electromagnetic field to be

g2~r !5V0d~r !, ~26!

whereV0 is the volume of the small dielectric body. The
the spatial integration in Eq.~25! is straightforward to per-
form. Thus, we find that the Fourier-transformed atom
electron Green’s function can be written as

Gii ~E!'Gii
(0)~E!1Gii

(4)~E!, ~27!

where the Fourier-transformed fourth-order correcti
Gii

(4)(E) is given by

Gii
(4)~E!5

i\e2V0

2p (
j

(
l ,m,n

qi j
(m)qji

(n)E
2`

`

dvK~v!Dlm

3~0,R,2v!Dln~0,R,v!Gii
(0)~E!Gj j

(0)

3~E2\v!Gii
(0)~E!.

However, since we are not actually interested in corr
tions to the Green’s function itself but rather in the perturb
tive shifts of its poles, Eq.~27! is not yet quite what we need
Instead, we consider the Green’s function that correspond
the following sum of diagrams:
nd
ve
Here, every blob represents the fourth-order approxima
to the atomic-electron self-energy shown in the previous d
gram, but without the two external lines. The Fourier tra
form of this blob equals

S i~E!5
i\e2V0

2p (
j

(
l ,m,n

qi j
(m)qji

(n)E
2`

`

dvK~v!

3Dlm~0,R,v!Dln~0,R,v!Gj j
(0)~E2\v!, ~28!

where we have used the fact thatD(r ,r 8,2v)
5D(r ,r 8,v). The summation of this series of diagrams
quite simple and gives
n
-
-

Gii ~E!5
Gii

(0)

12Gii
(0)~E!S i~E!

.

Substituting the explicit form ofGii
(0)(E) from Eq. ~8!, one

obtains

Gii ~E!5
1

E2Ei1 i«2S i~E!
. ~29!

Since the diagram with two blobs is of the eighth order a
the following ones are of even higher orders, the abo
6-7
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C. EBERLEIN AND M. JANOWICZ PHYSICAL REVIEW A67, 063816 ~2003!
Green’s function~29! is in fact the same as the one in E
~27! to the order we are considering, namely, the fourth
der. However, the poles of Eq.~29! are much easier to locat
than those of Eq.~27!. The poles of the perturbatively co
rected causal Green’s function yield the atomic energies
shifted due to the presence of the oscillator. To obtain th
explicitly is still a formidable task—sinceS i is a function of
E one has to solve a complicated integral equation to find
poles ofGii (E). One can, however, look for the approxima
location of a pole by approximatingS i(E) by S i(Ei) in Eq.
~29!. Thus, the poles of the Green’s functionGii (E) are lo-
cated approximately at

E5E* 'Ei1S i~Ei !, ~30!

and the approximate shift of thei th energy level isS i(Ei).
We would like to point out here that the propagat

Gii (E) of the interacting system has also other poles that
not close to the location of the poles of the noninteract
Green’s functionGii

(0)(E). These poles tend to lie far into th
complex plane, and thus correspond to rapidly decay
modes. For the dynamics of the system, all poles of
propagator are important, and for the problem of two os
lators interacting via the electromagnetic field it has be
shown that the additional poles far into the complex pla
do, in fact, dominate the short-time dynamics of the syst
@21#. In the present context, however, we are not intereste
the dynamics of the system but just in the stationary ene
shift, and hence we ignore those additional poles in the c
plex plane.

In the following section, we shall analyze the ener
shiftsS i(Ei) in some detail. In order to extract readily usab
information on the physics of our system, we shall consi
two important asymptotic regimes. In the nonretarded reg
or ‘‘near zone,’’ the distanceRof the atom from the oscillato
is small compared to both the wavelength of any atom
transition that contributes significantly to the self-energy a
the wavelength of the oscillator. This is to say that bo
dimensionless combinationsuEi2Ej uR/(\c) andv0R/c are
small. In the retarded regime or ‘‘far zone,’’ the oppos
holds true anduEi2Ej uR/(\c) andv0R/c are both large.

IV. ATOM-OSCILLATOR INTERACTION ENERGY AND
DECAY RATES

Substituting the explicit form of the electromagne
causal Green’s function, Eqs.~11! and ~12!, into the self-
energy, Eq.~28!, and canceling the antisymmetric part of th
integrand under the symmetricv integral, we can write the
self-energy as

S i~Ei !5S 1

4pe0
D 2 ie2V0

p (
j

(
l ,m,n

v i j qi j
(m)qji

(n)E
0

`

dv

3FM~v22v0
21 i«!2v2E

0

`

dn
rnn2

v22n21 i«
G21
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3F ~2¹2d lm1¹l¹m!
eikR

R G
3F ~2¹2d ln1¹l¹n!

eikR

R G 1

~v i j 1 i«!22v2
, ~31!

whereR5uRu, k5v/c, v i j 5(Ei2Ej )/\.
At this point we would like to consider several distin

cases.

A. Atom in the ground state interacting with an undamped
oscillator

For studying the interaction of the atom with an u
damped oscillator, we just need to set to zero the coupling
the oscillator to the reservoir. Then, the Green’s function~24!
for the system oscillator reduces to

K~v!5
1

M
1

v22v0
21 i«

.

Correspondingly, we setrn50 in Eq. ~31!, which simplifies
the expression forS i(Ei) considerably. Further simplifica
tion is brought about if the atomic statei we are considering
is the ground state. Then, we havev0 j,0 for all other states
j, and thus the only poles of the integrand in Eq.~31! are at
2v01 i«, v02 i«, 2uv0 j u1 i«, anduv0 j u2 i«. This means
that there are no poles in the first quadrant of the complev
plane, and we can rotate thev integration byp/2 to run
along the positive imaginary axis from 0 toi`. Substituting
i 50 for the ground state and changing variables fromv to
i j we can rewrite the self-energy as

S0~E0!52S 1

4pe0
D 2 e2V0

pM (
j .0

(
l ,m,n

q0 j
(m)qj 0

(n)v j 0

3E
0

` dj

j21v0
2 F ~2d lmj2/c21¹l¹m!

e2jR/c

R G
3F ~2d lnj2/c21¹l¹n!

e2jR/c

R G 1

j21v j 0
2

. ~32!

This result is well known and has been derived many tim
~cf., e.g., Refs.@22,23#!. We have rederived it in a differen
way for the sake of comparison with the case of a dam
oscillator. Carrying out the differentiations, we obtain

S0~E0!52S 1

4pe0
D 2 e2V0

pM (
j .0

v j 0E
0

`

dje22jR/c
1

j21v0
2

3
1

j21v j 0
2 F uq0 j

(')u2S ~j/c!2

R
1

j/c

R2
1

1

R3D 2

14uq0 j
(i)u2S j/c

R2
1

1

R3D 2G , ~33!

where we have split the vectorqi j into its componentqi j
(i)

along R and the two-component vectorqi j
(') perpendicular

to R.
6-8
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INTERACTION OF AN ATOM WITH A SMALL . . . PHYSICAL REVIEW A 67, 063816 ~2003!
In the nonretarded regime whenv j 0R/c and v0R/c are
both small, theR23 terms dominate and the exponential c
be approximated by exp(22jR/c)'1. Then, performing the
integration overj, one finds the following ground-state en
ergy shift:

DE0
(nonret)'2S 1

4pe0
D 2 e2V0

2Mv0

1

R6 (
j .0

1

v01v j 0
~ uq0 j

(')u2

14uq0 j
(i)u2!. ~34!

In the retarded regime whenv j 0R/c andv0R/c are both
large, the analysis is slightly more involved. We first rewr
Eq. ~33! by expressing the polynomial inj in terms of de-
rivatives of the exponential,

DE052S 1

4pe0
D 2 e2V0

pM (
j .0

v j 0S uq0 j
(')u2

16R2

]4

]R4
2

uq0 j
(')u2

4R3

]3

]R3

1
3uq0 j

(')u214uq0 j
(i)u2

4R4

]2

]R2
2

uq0 j
(')u214uq0 j

(i)u2

R5

]

]R

1
uq0 j

(')u214uq0 j
(i)u2

R6 D E
0

`

dj
exp~22jR/c!

~j21v0
2!~j21v j 0

2 !
. ~35!

The j integral equals@24# @formula ~5.2.12!#

E
0

`

dj
exp~22jR/c!

~j21v0
2!~j21v j 0

2 !

5
1

v j 0
2 2v0

2 F 1

v0
f ~2v0R/c!2

1

v j 0
f ~2v j 0R/c!G .

Note that the limitv j 05v0 is innocuous, since the squa
bracket vanishes linearly withv j 02v0 and, consequently
nothing special happens when one of the atomic transit
coincides with the oscillator frequency. Using the asympto
expansion of the functionf (z)5ci(z)sin(z)2si(z)cos(z) for
largez @24# @formula ~5.2.34!#

f ~z!'
1

z
2

2!

z3
1

4!

z5
2•••,

we find that the ground-state energy shift in the retard
regime is approximately

DE0
(ret)'2S 1

4pe0
D 2 e2cV0

4pMv0
2

1

R7 (
j .0

1

v j 0
~13uq0 j

(')u2

120uq0 j
(i)u2!1OS 1

R9D . ~36!

This is the Casimir-Polder result for the retarded interact
between two neutral, polarizable point particles@25#.
06381
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B. Atom in the ground state interacting with a damped
oscillator

We now want to evaluate the self-energy~31! for the case
of a damped system oscillator when the bath oscilla
massesrn are not zero. To be able to proceed we need
specify the dependence ofrn on the frequencyn, which can
be done by comparing our model with experimentally o
servable characteristics of absorbing dielectrics. The po
ization of the system oscillator is a response to the elec
field,

^Pi~r ,t !&5E
0

`

dtE d3r 8a i j ~r ,r 8,t!^Ej~r 8,t2t!&,

and the response functiona i j (r ,r 8,t) can very simply be
calculated by linear-response theory, i.e., by first-order p
turbation theory. For the oscillator-field interaction given
Eq. ~4!, we obtain

a i j ~r ,r 8,t!5u~t!
i

\
g~r !g~r 8!^0u@Xi~r ,t !,Xj~r 8,t2t!#u0&

[2g~r !g~r 8!Ki j
ret~r ,r 8;t,t2t!.

Here,Ki j
ret(r ,r 8;t,t8) is the retarded propagator of the dress

system-oscillator field, which we calculate in the Append
from the equations of motion for the oscillator fields.

The experimentally significant quantity is the polarizati
a i j (r ,r 8,v) which is the Fourier transform of the respon
function. We obviously havea i j (r ,r 8,v)5a(r ,v)d i j d(r
2r 8), i.e., our model for the dielectric is isotropic and pr
cludes spatial dispersion. From the Fourier transform of
retarded system-oscillator propagator, Eq.~A4!, derived in
the Appendix, we find

a i j ~r ,r 8;v!52g2~r !d i j d~r2r 8!FM~v22v0
2!

2v2E
0

`

dn
rnn2

v22n21 i«v
G21

. ~37!

For the response functiona i j (r ,r 8;t) to satisfy causality re-
quirements, we must ensure that its Fourier transfo
a i j (r ,r 8;v) has no poles in the upper half of the complexv
plane. We show in the Appendix that this is indeed the ca
provided the functionrn for realn is real, even, and positive
and does not have poles on the real axis.

The n integral in Eqs.~24! and~37! does not converge a
the upper limit unlessrn falls off asn22 or faster for largen.
If we introduce a new constantg and choose

rn5
4Mg

pn2
, ~38!

we obtain for the polarizability@26#

a~v!5
1

M
1

v0
22v222igv

,

6-9
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C. EBERLEIN AND M. JANOWICZ PHYSICAL REVIEW A67, 063816 ~2003!
where we have got rid of ther dependence by using th
explicit expression forg2(r ), Eq. ~26!, and averaging ove
the volume of the small dielectric body. Thus, the choice
rn , Eq. ~38!, leads to a single absorption line with Lorent
ian shape and a width that is given by the damping cons
g. Different choices forrn can be used not just to mode
different line shapes but also to introduce additional pole
a(v) and thus describe more than one absorption line, as
already been pointed out for the canonically quantized v
sion of this model@5#. Such an approach is certainly we
suited to describing broad bands of absorption, and exp
mentally observed absorption profiles can even be matc
by fitting them to Eq.~37!. However, when it comes to mod
eling several widely spaced absoption lines, one might m
appropriately choose a model that right from the outset
several system-oscillator frequencies, because this is like
be the technically simpler choice and would make the ph
ics of the processes involved more transparent.

Having specifiedrn we can proceed with the evaluatio
of the self-energy. Carrying out then integral in Eq.~31! we
see that the resulting expression does not have any p
again in the first quadrant of the complexv plane. Thus, we
rotate the contour of thev integration byp/2 and change
variables fromv to i j, as before, and obtain

S0~E0!52S 1

4pe0
D 2 e2V0

pM (
j .0

(
l ,m,n

q0 j
(m)qj 0

(n)v j 0

3E
0

`

dj
1

j21v0
212jg
re
E

b
is
i-

er

-
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3F ~2d lmj2/c21¹l¹m!
e2jR/c

R G
3F ~2d lnj2/c21¹l¹n!

e2jR/c

R G 1

j21v j 0
2

. ~39!

The only difference between this expression and the equ
lent for the undamped case in Eq.~32! is the presence of 2jg
in the denominator of the first factor. This makes thej inte-
gral a little more complicated than before, but the calculat
runs along the same lines as for the undamped case. Firs
carry out the differentiations and get the same result as in
~33!, except for the replacement of the first denominatorj2

1v0
2 by j21v0

212jg.
In the nonretarded regime where the distanceR between

the atom and the oscillator is small compared to all relev
wavelengths, we can make the same approximations as
fore and obtain for the ground-state energy shift

DE0
(nonret)'2S 1

4pe0
D 2 e2V0

2Mv0

1

R6 (
j .0

3
v j 0v0J~v j 0 ,v0 ,g!

~v j 0
2 2v0

2!214g2v j 0
2 ~ uq0 j

(')u214uq0 j
(i)u2!.

~40!

The fraction after the sum sign stems from the integral o
j and replaces (v01v j 0)21 in the result for the undampe
case, Eq.~34!. The abbreviationJ(v j 0 ,v0 ,g) stands for
J~v j 0 ,v0 ,g!5
4g

p
lnS v j 0

v0
D2

v j 0
2 2v0

2

v j 0
15

v j 0
2 2v0

212g2

Av0
22g2 S 12

2

p
arctan

g

Av0
22g2D g,v0 ,

2
v j 0

2 1g2

pg
g5v0 ,

v j 0
2 2v0

212g2

pAg22v0
2

lnS g1Ag22v0
2

g2Ag22v0
2D g.v0 .
lor
te-
xi-
Taking the limit of no damping,g→0, we recover Eq.~34!,
as we should.

We can go beyond the nonretarded approximation by
expressing the energy-level shift in the same way as in
~35!, except for the replacement of the factor (j21v0

2)21 by
(j21v0

212gj)21 under thej integral. Thej integration
can then still be performed analytically—one gets a com
nation of terms involving exponential integrals. While th
would be useful for the evaluation of the level shift for arb
trary distancesR, one can take a simpler approach for det
mining the shift in the retarded limit whereR is much larger
than any relevant wavelength. WhenR is large, the exponen
tial strongly damps the integrand for increasingj. Provided
-
q.

i-

-

that the rest of the integrand is smooth, it can be Tay
expanded around the lower limit of the integral and in
grated with the exponential to give an asymptotic appro
mation to the integral~Watson’s Lemma, see, e.g., Ref.@27#!,
i.e.,

E
0

`

dj
exp~22jR/c!

~j21v0
212gj!~j21v j 0

2 !
'E

0

`

djexp~22jR/c!

3S 1

v0
2v j 0

2
2

2g

v0
4v j 0

2
j1O~j2!D .
6-10
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INTERACTION OF AN ATOM WITH A SMALL . . . PHYSICAL REVIEW A 67, 063816 ~2003!
In this way, we obtain for the level shift in the retarde
regime

DE0
(ret)'2S 1

4pe0
D 2 e2cV0

4pMv0
2 (

j .0

1

v j 0

3S 13uq0 j
(')u2120uq0 j

(i)u2

R7
2

6g

v0
2

7uq0 j
(')u216uq0 j

(i)u2

R8 D
1OS 1

R9D . ~41!

Thus, we find that in the retarded regime or far zone dam
ing makes no difference to the leading order. It does, ho
ever, give rise to a next-to-leading-order correction prop
tional to R28 and growing linearly with the damping
parameterg. As seen by comparison with Eq.~36!, suchR28

terms were not present in the undamped case when the
to-leading-order terms were only of the order ofR29. We
conclude that damping has more impact at small and in
mediate distancesR between the atom and the oscillator th
at largeR.

C. Atom in an excited state interacting with a damped
oscillator

If the atom is not in the ground state but in an excit
state, the evaluation of the self-energy is more complica
With our choice ofrn , Eq. ~38!, we get from Eq.~31!,

S i~Ei !5S 1

4pe0
D 2 ie2V0

pM (
j

(
l ,m,n

v i j qi j
(m)qji

(n)

3E
0

`

dv
1

v22v0
21 i«12igv

3F ~2¹2d lm1¹l¹m!
eivR/c

R G
3F ~2¹2d ln1¹l¹n!

eivR/c

R G 1

~v i j 1 i«!22v2
.

Now the integrand has poles in the first quadrant of thev
plane, namely, atv i j 1 i« for all states j , i . Thus, if we
rotate the contour byp/2, we get an integral along the pos
tive imaginary axisv5 i j and a sum of residues from thes
poles,

S i~Ei !5S i
(int)~Ei !1S i

(res)~Ei !.

The integral along the positive imaginary axis leads to id
tical expressions as in Sec. IV B, except for the replacem
of v j 0 by v j i and ofq0 j by qi j . Apart from these substitu
tions,S i

(int)(Ei) is the same asS0(E0) in Eq. ~39!, and con-
sequently this part of the self-energy gives rise to ene
shifts that are otherwise identical to Eqs.~40! and~41! in the
nonretarded and retarded regimes, respectively. Thus,
shall now concentrate on analyzing the part of the s
06381
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energy that arises from the residue contributions around
poles atv i j 1 i« for j , i . We find

S i
(res)~Ei !5S 1

4pe0
D 2 e2V0

M (
j , i

S uqi j
(')u2

16R2

]4

]R4
2

uqi j
(')u2

4R3

]3

]R3

1
3uqi j

(')u214uqi j
(i)u2

4R4

]2

]R2
2

uqi j
(')u214uqi j

(i)u2

R5

]

]R

1
uqi j

(')u214uqi j
(i)u2

R6 D e2iv i j R/c

v i j
2 2v0

212igv i j

. ~42!

This is a complex quantity. Its real part causes an ene
shift

DEi
(res)5Re„S i

(res)~Ei !…,

which jointly with the part of the self-energyS i
(int)(Ei) that

results from the integral along the positive imaginary ax
constitutes the total energy shift of the atomic level. T
imaginary part ofS i

(res)(Ei) gives rise to a decay rate,

G i52Im@S i
(res)~Ei !#.

From Eq.~42! it is easy to extract the asymptotic behavior
these quantities for small and largeR. In the nonretarded
regime, wherev i j R/c!1, we find for the residue part of th
energy shift

~DEi
(res)!(nonret)'S 1

4pe0
D 2 e2V0

M (
j , i

~ uq0 j
(')u2

14uq0 j
(i)u2!

v i j
2 2v0

2

~v i j
2 2v0

2!214g2v i j
2

1

R6

1O~R25!, ~43!

and for the decay rate

G i
(nonret)'S 1

4pe0
D 2 e2V0

M (
j , i

~ uq0 j
(')u2

14uq0 j
(i)u2!

2gv i j

~v i j
2 2v0

2!214g2v i j
2

1

R6
1O~R25!.

~44!

In the retarded regime, wherev i j R/c@1, the level shift and
the decay rate are approximately

~DEi
(res)!(ret)

'S 1

4pe0
D 2 e2V0

M (
j , i

uqi j
(')u2

~v i j /c!4

R2

3
~v i j

2 2v0
2!cos~2v i j R/c!12gv i j sin~2v i j R/c!

~v i j
2 2v0

2!214g2v i j
2

,

~45!
6-11
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G i
(ret)'S 1

4pe0
D 2 e2V0

M (
j , i

uqi j
(')u2

~v i j /c!4

R2

3
2gv i j cos~2v i j R/c!2~v i j

2 2v0
2!sin~2v i j R/c!

~v i j
2 2v0

2!214g2v i j
2

.

~46!

Finally, we would like to point out that the limit of no damp
ing, g→0, is not admissible in any of the above results.
that limit the residue part of the self-energy in Eq.~42! has
an unrecoverable singularity atv i j 5v0, ie the atom can
decay into a mode that is in resonance with the oscilla
and resonant transfer occurs. This very special scenario is
covered by the present calculation because for that we w
have had to take into account the natural linewidth wh
arises from the coupling to the electromagnetic field alo
Had we wanted to include it, we would have needed to c
sider the second-order as well as the fourth-order term
opposed to just the fourth-order terms in the perturbat
expansion. Moreover, the assumption in Eq.~30! that the
poles of the exact Green’s function are close to those of
unperturbed Green’s function is not justified close to re
nance.

V. SUMMARY AND CONCLUSIONS

In this paper, we have calculated the energy-level sh
and the decay rates of an atom that interacts with a dam
harmonic oscillator a distanceR away. Without damping we
recover the usual results for the van der Waals interac
between two polarizable, unexcited point particles: the
ergy shift scales asR26 in the nonretarded regime or ne
zone whereR is small, and asR27 in the retarded regime o
far zone whereR is large. This is still true when damping i
included. Then, however, the coefficient ofR26 in the near
zone depends on the damping constantg strongly and non-
trivially. In the far zone, damping has no impact on t
leading-orderR27 term in the interaction energy, but it in
troduces a new next-to-leading orderR28 term, whereas
without damping the next-to-leading order is onlyR29. If
the atom is excited, then a part of the energy shift origina
from an integral over photon frequencies and behaves in
same way as for a ground-state atom. The other part is pu
due to virtual down transitions in the atom and appears in
calculation as a sum of residues from the integration o
photon frequency. Since down transitions can also be r
the residue part of the energy shift goes hand in hand wi
modified decay rate of the atom due to the presence of
damped oscillator. In the nonretarded regime, both the
ergy shift and the decay rate vary with distance asR26 and
depend strongly on the damping constantg. In the retarded
regime, the energy shift is dominated by the part that ar
from virtual down transitions in the atom. Its distance dep
dence oscillates with twice the ratio ofR to the wavelength
of the atomic transition and with an amplitude that drops
asR22. The decay rate shows qualitatively the same beh
ior. To leading order the decay takes place preferentially p
allel to the atom-oscillator axis, and perpendicular com
06381
r,
ot
ld

h
.
-

as
n

e
-

ts
ed

n
-

s
e
ly
e
r
l,
a
e

n-

s
-

f
v-
r-
-

nents decay only with a rate that drops off asR23. In the
limit of no damping, the decay is governed by the natu
linewidths of atom and oscillator, which have been ignor
in this calculation. Thus, taking the limitg→0 in the results
for the atom in an excited state is not physically meaning

The techniques developed here can be transferred alm
unaltered to the problem of an atom interacting with an
sembly of weakly coupled oscillators. Furthermore, t
present methods can be built upon for devising a strategy
dealing with strongly coupled oscillators which model so
dielectric bodies. In this case, one can dress
electromagnetic-field propagator and thus take into acco
the presence of the dielectric not perturbatively but exactly
all orders of the perturbation theory.
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APPENDIX: THE RETARDED PROPAGATOR OF THE
DRESSED SYSTEM OSCILLATOR

1. Derivation of the propagator

The retarded propagator is defined as

Ki j
ret~r ,r 8,t,t8!52

i

\
u~ t2t8!^0u@Xi~r ,t !,Xj~r 8,t8!#u0&.

The dynamics of fieldXi(r ,t) is described by the Hamil-
tonianHO2R , Eq. ~3!. Hamilton’s equations read

Ẋi~r ,t !5
dHO2R

dPi~r ,t !
[

Pi~r ,t !

M , ~A1!

Ṗi~r ,t !52
dHO2R

dXi~r ,t !
[2Mv0

2Xi~r ,t !

1E
0

`

dnrnn2~Yi~r ,t,n!2Xi~r ,t !!. ~A2!

DifferentiatingKi j
ret(r ,r 8;t,t8) with respect to timet and us-

ing Eq. ~A1! gives

]

]t
Ki j

ret~r ,r 8,t,t8!52
i

\
u~ t2t8!K 0UFPi~r ,t !

M ,Xj~r 8,t8!GU0L
2

i

\
d~ t2t8!^0u@Xi~r ,t !,Xj~r 8,t8!#u0&.

The second term vanishes because the equal-time comm
tor of the field with itself is zero. Differentiating with respec
to t once more leads to
6-12
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]2

]t2
Ki j

ret~r ,r 8,t,t8!52
i

\Mu~ t2t8!

3 K 0UF]Pi~r ,t !

]t
,Xj~r 8,t8!GU0L

2
i

\
d~ t2t8!

3 K 0UFPi~r ,t !

M ,Xj~r 8,t8!GU0L .

Now we use Eq.~A2! for rewriting the first term and the
canonical commutation relations for simplifying the seco
term and obtain

]2

]t2
Ki j

ret~r ,r 8,t,t8!5
iv1

2

\
u~ t2t8!^0u@Xi~r ,t !,Xj~r 8,t8!#u0&

2
i

\Mu~ t2t8!E
0

`

dnrnn2

3^0u@Yi~r ,t,n!,Xj~r 8,t8!#u0&

2
1

Md~ t2t8!d i j d~r2r 8!.

The shifted frequencyv1 has been defined in Eq.~14! in the
main text. We can rearrange the last equation to read

]2

]t2
Ki j

ret~r ,r 8,t,t8!1v1
2 Ki j

ret~r ,r 8,t,t8!

5
1

ME
0

`

dnrnn2Fi j ~r ,r 8,t,t8,n!

2
1

Md~ t2t8!d i j d~r2r 8!, ~A3!

where we have defined

Fi j ~r ,r 8,t,t8,n!52
i

\
u~ t2t8!^0u@Yi~r ,t,n!,Xj~r 8,t8!#u0&.

Proceeding along exactly the same lines as forK ret we can
derive an equation forF. Using the Hamilton equations o
motion for reservoir fields,

Ẏi~r ,t,n!5
dHO2R

dZi~r ,t,n!
[

Zi~r ,t,n!

rn
,

Żi~r ,t,n!52
dHO2R

dYi~r ,t,n!
[2rnn2@Yi~r ,t,n!2Xi~r ,t !#,

we derive

]2

]t2
Fi j ~r ,r 8,t,t8,n!1n2Fi j ~r ,r 8,t,t8,n!5n2Ki j

ret~r ,r 8,t,t8!.
06381
We now Fourier transform with respect tot2t8 and obtain

Fi j ~r ,r 8,n;v!5
n2

n22v22 i«v
Ki j

ret~r ,r 8;v!.

The infinitesimal imaginary term in the denominator is the
to shift the poles ofFi j (r ,r 8,n;v) slightly into the lower half
of the complexv plane. This is necessary since theu func-
tion in Fi j (r ,r 8,t,t8,n) demands it to be zero fort2t8,0
and thusFi j (r ,r 8,n;v) to be analytic in the upper half plane
We substitute the result into the Fourier transform of E
~A3!,

~v1
22v2!Ki j

ret~r ,r 8;v!5
1

ME
0

`

dnrn

n4

n22v22 i«v
Ki j

ret

3~r ,r 8;v!2
1

Md i j d~r2r 8!.

Resubstitutingv1
2 from Eq. ~14! we finally arrive at

Ki j
ret~r ,r 8;v!5d i j d~r2r 8!K ret~v! with K ret~v!

5FM~v22v0
2!2v2E

0

`

dn
rnn2

v22n21 i«v
G21

.

~A4!

2. Analytic properties of the propagator in v space

For Ki j
ret(r ,r 8,t,t8) to be retarded, i.e., to vanish fort

,t8 its Fourier transformKi j
ret(r ,r 8;v) must not have poles

in the upper half of the complexv plane. We show that this
is indeed the case, provided the functionrn for realn is real,
positive, even, and has no poles on the real axis. The
two of these requirements are important also for other r
sons:rn must be real to ensure the Hermiticity of the Ham
tonian, and it must be positive so that the Hamiltonian ha
spectrum that is bounded from below, i.e., to guarantee
existence of a ground state.

We start by considering the analytic properties of then
integral in the denominator of Eq.~A4!. For evenrn , we can
extend then integration along the whole of the real axis an
split the denominator into partial fractions

v2E
0

`

dn
rnn2

v22n21 i«v
5

v

4E2`

`

dnrnn2

3S 1

v1n1 i«
1

1

v2n1 i« D
5

v

2E2`

`

dn
rnn2

v2n1 i«
.

Thus, this integral as a function ofv has a cut just below the
real axis but is analytic in the upper half plane.

To study the analytic properties of the whole ofK ret(v) in
the upper half plane, we split the frequency into real a
imarginary parts,v5v81 iv9 with v9.0. If the real part
6-13
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v8 is nonzero,K ret(v81 iv9) cannot have a pole, as one ca
see by examining the imaginary part of its inverse,

ImS 1

K ret~v81 iv9!
D 52Mv8v9

1
v9

2 E
2`

`

dn
rnn3

~n2v8!21v92
.

The denominator of then integral gives rise to a Lorentzia
peak aroundn5v8. Multiplied by n3 this peak gets weighed
positively for positivev8 and negatively for negativev8.
Therefore, ifrn is an even and positive function the integr
must be positive for positivev8 and negative for negative
et

d

06381
v8. The same is true trivially for the first term and, cons
quently, the inverse ofK ret(v) cannot be zero ifv has a
nonzero real part. IfK ret(v) has any poles at all in the uppe
half plane, then they must lie on the imaginary axis. Ho
ever, on the imaginary axis we find

1

K ret~ iv9!
52M~v921v0

2!1
iv9

2 E
2`

`

dn
rnn2

n21v92
~n

1 iv9!.

For evenrn the imaginary part of this expression is zero, b
its real part is negative. Thus,Ki j

ret(r ,r 8;v) cannot have any
poles in the upper half of the complexv plane.
,

n
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