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Dissipations in coupled quantum systems
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We investigate the dynamics of a composite quantum system, comprised of coupled subsystems, of which
only one is significantly interacting with the environment. The validity of the conventionalad hocapproach—
assuming that relaxation terms can be extracted directly from the master equation of the subsystem interacting
with the reservoir—was examined. We derived the equation of motion for the composite system’s reduced
density matrix—applying only the factorization approximation, but not the conventional sequence of Markoff,
coarse grain, and secular approximations. From our analysis, we concluded that the conventionalad hoc
approach is applicable to zero-temperature reservoir, but fails for finite temperatures. It is further shown that at
finite temperatures, the standard procedure does not even yield a master equation for the composite system, and
its dynamics has to be studied by the equations of motion which are developed here. For demonstration we
considered a system of a three-level atom, the two excited states are coupled to each other, and only one of
them communicates with the ground state via a radiation reservoir.
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I. INTRODUCTION

There is a considerable interest in the physics of quan
coupled systems, especially their dissipations due to the
teraction with the environment. In particular, a number
experiments were conducted on microscopic systems, s
as two coupled microcavities@1#, and an atom interacting
with a microcavity, which is described by the Jayne
Cumming model@2#. In the present paper, we investigate t
dissipations in a system composed of two coupled pa
when only one of them is in effective contact with the en
ronment, while the interaction with the environment of t
second one is negligible. The environment is modeled a
heat reservoir.

The most common tool used for treating dissipation in
system interacting with a reservoir is themaster equationfor
thereduced density matrixof the system@3#. This equation is
derived from the equation of motion for the total dens
matrix of the combined system and reservoir, by eliminat
the reservoir degrees of freedom. Thisstandard procedure,
which leads from the exact equation of motion for the to
density matrix to the master equation, is executed along
following steps.

~a! The differential equation of motion for the total de
sity matrix is formally integrated in time once, and the res
is substituted back into the equation, this yields an integ
differential equation.

~b! The trace over the reservoir’s degrees of freedom
formally performed.

~c! The factorization approximation@4# is carried out,
namely, the total density matrix of the combined system r
ervoir is replaced, within the time integration, by a produ
of the system reduced density matrix and the reservoir
tionary density matrix.

~d! The Markoff approximation@5# is invoked, assuming
that the reservoir, which contains a huge number of deg
of freedom, has a very short memory, and on the time s
of the reservoir’s correlations the system is stationary.
1050-2947/2003/67~6!/063813~15!/$20.00 67 0638
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~e! The coarse-grained rate of variation@6# is then calcu-
lated by taking the time average of the equation for the
duced density matrix over a period of time, much longer th
the reservoir’s correlation time, but significantly shorter th
the relaxation time of the system itself.

~f! Finally, the secular approximation@3,7# is applied, and
energy-nonconserving terms are eliminated.

This procedure yields the relaxation terms of the mas
equation, which is a group ofrate equations@8# for the popu-
lations and coherences of the system.

In this paper, we consider acompositesystemS, com-
posed of two coupled partsA and C. The system’s Hamil-
tonian is described byHS5HA1HC1HAC , whereHA is the
Hamiltonian of subsystemA, HC is that of subsystemC, and
HAC is the coupling Hamiltonian between the two parts. T
reservoirR is represented by a HamiltonianHR , which is
usually modeled as an ensemble of many harmonic osc
tors. Only one of the two subsystems, sayC, is interacting
with the reservoir by a HamiltonianHCR . A canonical ex-
ample is the atom-cavity system. Here a two-level atom,A, is
interacting with a cavity,C, of a single mode, and the
strength of the coupling to the environment of one subsys
is much different from that of the other subsystems. W
study here the derivation of the equation of motion for t
reduced density matrix of the composite system, and ex
ine the applicability of the standard procedure, which is o
lined above, and the role of the different approximations
volved.

The conventionalad hocapproach to the derivation of th
equations of motion for this kind of a composite system is
follows. The relaxation terms are borrowed from the mas
equation of subsystemC, disregarding its coupling to sub
systemA. These terms are obtained by applying the stand
procedure to subsystemC, interacting with the reservoirR,
employing the HamiltonianHC1HR1HCR . We shall argue
that thisad hocapproach is only justified when the reservo
is at zero temperature. Thisad hocapproach fails, e.g., when
a Rydberg atom is traversing a superconducting reson
©2003 The American Physical Society13-1



b
th
uc

d
at
th

od
it
.
n

ie

tin
th
ly
e
e
r

de
sy
f
a

n
h

ed

e
n
io
ep
n
n
o
v
ia
a
s

n

.
t
d

m
r
i
o

ur
th
e
o
th
i

ac
ng
ep

er
mp-
s
tan-
due
cou-
ssed

ce-
m

l

by

ZOUBI, ORENSTIEN, AND RON PHYSICAL REVIEW A67, 063813 ~2003!
cavity @9#, since the temperature of the environment can
of the order of the transition frequency. However, when
environment is at finite temperatures, it fails even to prod
detailed balance at steady state. This point was noted
Cresser@10#, who observed that the usual relaxation terms
not lead to a proper thermal equilibrium. Murato and Shib
@11# have investigated the Jaynes-Cumming model, when
atom is strongly coupled to the electromagnetic single m
of the cavity, and only one component of this compos
system of atom and cavity has a considerable dissipation
our previous paper@12#, we have attempted an investigatio
of the dissipation in a system of two coupled microcavit
when only one of them is in contact with a reservoir.

We develop here an alternative approach for investiga
a composite system in a reservoir. We implement only
first three steps~a!–~c! of the standard procedure. Thus, on
the factorization approximation is invoked, while the oth
steps~d!–~f! of the scheme, with the assumptions embedd
in them, are not executed. Employing the Laplace transfo
enables us, in principle, to carry on and study the time
pendence of the reduced density matrix elements of the
tem. We demonstrate ourexact@13# approach on a model o
an atom having three levels, where the two excited ones
coupled to each other, while only one of them is commu
cating with the ground state via a radiation reservoir. T
three lowest energy states of hydrogen atom@3#, i.e., the
ground state 1s1/2, and the two quasidegenerate excit
states 2p1/2 and the metastable 2s1/2, can be thought of as a
realization of this toy model.

The paper is developed and organized as follows. In S
II we introduce the Hamiltonian of the composite system i
reservoir and outline the derivation of the equation of mot
for the reduced density matrix executing the first three st
~a!–~c! of the standard procedure. The correlation functio
for a reservoir made up of an ensemble of many harmo
oscillators, which play an important role in the dynamics
the system, are introduced. The model of the three-le
atom is introduced in Sec. III, and the integrodifferent
equations for its reduced density matrix are converted to
gebraic ones by the Laplace transform. The steady-state
lutions are shown in Sec. IV to yield detailed balance, a
proper thermal equilibrium behavior. The conventionalad
hoc scheme for a composite system is reviewed in Sec
and the equations of motion are derived. It is apparent tha
finite-temperature environment, these equations of motion
not yield a proper detailed balance. The composite syste
zero-temperature reservoir is investigated in Sec. VI. He
the results of the exact method of Sec. III are compared w
those obtained by the conventional scheme. It is dem
strated that at zero temperature, thead hocequations of mo-
tion can be safely used. The effect of a finite-temperat
reservoir is examined in Sec. VII, and it is confirmed that
ad hocscheme is not applicable. Zero temperature is und
stood here as the limit when the temperature of the envir
ment is much smaller than the characteristic energies of
system. The evolution of the composite system in time
obtained by solving the equations of motion of the ex
scheme in their Laplace transform version, without invoki
the Markoff ansatz and the other approximations of st
06381
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~d!–~f!. In Sec. VIII, we attempt a derivation of a mast
equation for the composite system by applying the assu
tions of steps~d!–~f! to the the equations of Sec. III. It i
established that, in general, at finite temperatures, the s
dard procedure does not yield a master equation. This is
to the presence of an extra time scale generated by the
pling between the subsystems. The conclusions are discu
in Sec. IX.

II. A COMPOSITE SYSTEM IN A RESERVOIR

For a later reference, we review here the standard pro
dure @3#, for deriving the equation of motion for a syste
interacting with an environment. We consider a systemS,
which is composed of two coupled subsystemsA and C,
when only one of them,C, is coupled to a reservoirR. The
Hamiltonian of the composed system is

HS5HA1HC1HAC , ~1!

whereHA is the Hamiltonian of subsystemA , HC is that of
the subsystemC, and HAC is the Hamiltonian of coupling
between the subsystemsA andC. The reservoir is described
by the HamiltonianHR , and its interaction HamiltonianHSR
with the system will be eventually described by

HSR5HCR , ~2!

where the HamiltonianHCR indicates explicitly that only
subsystemC interacts with the environment. The tota
Hamiltonian of the combined system reservoir is

Htot5HS1HR1HSR. ~3!

The equation of motion for total density matrixr, of the
combined system reservoir in the interaction picture, is

]

]t
r̃~ t !5

1

i\
@H̃SR~ t !,r̃~ t !#, ~4!

where

r̃~ t !5ei (HS1HR)t/\r~ t !e2 i (HS1HR)t/\,

H̃SR~ t !5ei (HS1HR)t/\HSRe
2 i (HS1HR)t/\. ~5!

By a formal integration of Eq.~4!, and resubstituting the
result, we have

]

]t
r̃~ t !5

1

i\
@H̃SR~ t !,r̃~0!#

1S 1

i\ D 2E
0

t

dt8†H̃SR~ t !,@H̃SR~ t8!,r̃~ t8!#‡, ~6!

wherer̃(0) is the initial value ofr̃(t). Note that even if the
initial stateof the system plus bath is aproduct state, Eq. ~6!
establishes, at timet, a state ofentanglementbetween the
system and the bath. In other words, the bath is affected
the system.
3-2
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In order to get the equation of motion fors, the reduced
density matrix of the system, we have to eliminate the b
degrees of freedom by taking the trace ofr with respect to
the reservoir, namely,s5TrR$r%. This program can be pur
sued by specifying the properties of the reservoir. In Eq.~6!,
which is still anexactequation, we now introduce thefac-

torization approximation, i.e., we replacer̃, within the time
integral, by products̃(t) ^ sR , wheresR is the stationary
density matrix of the bath, say in thermal equilibrium. Th
basic assumption is the only approximation made up to
point. The essence of this approximation is that although
bath is responding in time to the motion of the system
relaxes very fast to equilibrium, and compels the dens
matrix to become a product. Taking the trace over the b
we obtain

]

]t
s̃~ t !5S 1

i\ D 2E
0

t

dt8TrR$†H̃SR~ t !,@H̃SR~ t8!,s̃~ t8! ^ sR#‡%.

~7!

Here, we have assumed that the average value ofHSR,
with respect to the reservoir, vanishes, that
TrR$H̃SR(t)sR%50. Note thats̃(t8) within the time integra-
tion of Eq. ~7! is not the initial value ofs̃(t) but rather its
instantaneous value at the timet8. Since the reservoir is as
sumed to relax extremely fast to its stationary state,sR is
both the initial and the instantaneous values of the bath d
sity matrix. If we had used the initial value ofs̃(t) in the
right-hand side of Eq.~7!, the procedure would be simply th
second-order perturbation expansionin terms of the interac-
tion Hamiltonian HSR. The factorization assumption i
equivalent to thesummation of selective terms, presumably
the dominant ones, in aninfinite order perturbation proce-
dure. The reservoir is being affected by the dynamics of
system, though it preserves its stationarity on a very sh
time scale compared to the time scales of the system.

The system-reservoir interaction Hamiltonian is, in ge
eral, of the formHSR5( iSiRi , whereSi are dynamic opera
tors of the systemSand the bath operatorsRi depend only on
the reservoir degrees of freedom. SinceHS andHR commute
with each other, in the interaction picture,

H̃SR~ t !5(
i

S̃i~ t !R̃i~ t !, ~8!

where

S̃i~ t !5eiH St/\Sie
2 iH St/\,

R̃i~ t !5eiH Rt/\Rie
2 iH Rt/\. ~9!

Substituting Eq.~8! into Eq. ~7! yields that
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]

]t
s̃~ t !52

1

\2E0

t

dt8(
iÞ j

$gi j ~t!@S̃i~ t !S̃j~ t8!s̃~ t8!

2S̃j~ t8!s̃~ t8!S̃i~ t !#1gji ~2t!@s̃~ t8!S̃j~ t8!S̃i~ t !

2S̃i~ t !s̃~ t8!S̃j~ t8!#%, ~10!

where the trace over the reservoir was separated from
dynamics of the system’s operators. Here we define, fo
bath’s operatorO, the expectation valuêO&R5TrR$OsR%,
and introduce the bath correlation functions

gi j ~t!5^R̃i~ t !R̃j~ t8!&R ,

gji ~2t!5^R̃j~ t8!R̃i~ t !&R , ~11!

which depend on the time differencet5t2t8.
We shall consider a simple model for the reservoir, that

an ensemble of many harmonic oscillators. It is represen
by the Hamiltonian

HR5(
r

\v r~br
†br11/2!, ~12!

wherev r is the frequency of ther th reservoir oscillator, and
br andbr

† are the annihilation and creation operators of t
oscillator.

The interaction Hamiltonian for the system with the re
ervoir can be cast into the following form:

V5S1R21S2R1, ~13!

where

R25(
r

f rbr , R15(
r

f r* br
† . ~14!

Here, f r and f r* are the coupling parameters of the intera
tion between the system and ther th harmonic oscillator of
the reservoir. For the correlation functions, Eq.~11!, we get

g12~t!5(
r

u f r u2~^nr&11!e2 ivrt,

g21~t!5(
r

u f r u2^nr&e
ivrt, g11~t!5g22~t!50, ~15!

where ^nr&5^br
†br& is the average number of excitatio

quanta of ther th oscillator of the reservoir.
It is only natural to write Eq.~10! for the reduced density

matrix by its components. Introducing the complete set
statesua&, which are the energy eigenstates ofHS , namely,

HSua&5Eaua&. ~16!

Now we write Eq.~10! as
3-3
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]

]t
sab~ t !5

1

i\
~Ea2Eb!sab~ t !2(

c,d
E

0

t

dt8„sdb~ t8!$Sac
1 Scd

2 @G~vbc ,t!1GT~vbc ,t!#1Sac
2 Scd

1 GT* ~vcb ,t!%1sac~ t8!

3$Scd
1 Sdb

2 @G* ~vad ,t!1GT* ~vad ,t!#1Scd
2 Sdb

1 GT~vda ,t!%2scd~ t8!$Sac
2 Sdb

1 @G* ~vcb ,t!1GT* ~vcb ,t!

1G~vda ,t!1GT~vda ,t!#1Sac
1 Sdb

2 @GT* ~vad ,t!1GT~vbc ,t!#%…. ~17!
nc
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Here, we have introduced two kinds of bath correlation fu
tions

G~v,t!5
1

\2 (
k

u f ku2e2 i (vk2v)t,

GT~v,t!5
1

\2 (
k

u f ku2^nk&e
2 i (vk2v)t, ~18!

and have usedOab5^auOub&. Note that the reduced densit
matrix componentssab(t) in Eq. ~17! are expressed in th
Schrödinger picture. We observe that although Eq.~17! is
written explicitly in terms the energy eigenstatesua& of HS ,
it is a general equation for the atomic density matrix, and
only approximation made is the factorization approximatio
We continue the development of the theorywithoutapplying
to the standard Markoff approximation of replacings(t8) in
Eq. ~17! by s(t). To make the point clear, we shall study
simple model system, which displays the features of a co
posite system interacting with a bath.

III. A THREE-LEVEL ATOM IN A RESERVOIR

Our model system is an atom with three energy sta
where the two excited states,u2& of energy\v2 and u3& of
energy\v3 , are coupled directly to each other, while th
ground stateu1& of energy \v150 is coupled through a
radiation reservoir to the excited stateu2&. In terms of these
bareenergy states, the Hamiltonian of the atom is expres
in the form of Eq.~1!, as

HA5\v3u3&^3u,

HC5\v2u2&^2u,

HAC5\g~ u3&^2u1u2&^3u!, ~19!

where\g is the coupling energy between the excited sta
and we choose

g!v2 ,v3 . ~20!

The radiation reservoir is given by Eq.~12!, and its interac-
tion with the atom is written explicitly as

HSR5\(
k

~ f kS
1bk1 f k* bk

†S2!, ~21!

where
06381
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S15u2&^1u, S25u1&^2u. ~22!

To follow the steps of the preceding section, from E
~16! onwards, the atom’s Hamiltonian of Eq.~19!, HS5HA
1HC1HAC , is diagonalized. Expressed in terms of t
original states, we get the following for the diagonal eige
states:

u1&5
1

AL
@gu2&1Lu3&],

u2&5
1

AL
@Lu2&2gu3&],

u1&5u1&, ~23!

with the respective eigenenergies

E15\v15
\

2
@v21v31D#,

E25\v25
\

2
@v21v32D#,

E15\v150 ~24!

and with

d5v32v2 , D25d214g2,

L5
1

2
D~D1d!, L5

d1D

2
. ~25!

For the case where the two excited states aredegenerate, i.e.,
when

v25v35v0 , ~26!

Eq. ~23! is reduced to

u1&5
1

A2
~ u2&1u3&),

u2&5
1

A2
~ u2&2u3&), ~27!

and the corresponding eigenenergies are

E15\v15\~v01g!,
3-4
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E25\v25\~v02g!. ~28!

The Hamiltonian of the atomic system, in the diagonal re
resentation, is given by

HS5\v1u1&^1u1\v2u2&^2u. ~29!

We shall now investigate the equations of motion for t
model of three-level atom in a radiation bath. We consi
the degenerate case, and use Eq.~17! to express the equa
tions of motion for the populations and coherences of
system in the diagonal representation explicitly as the
lowing.

~i! The equation fors (11) is

]

]t
s (11)~ t !52

1

2E0

t

dt8$@G~v1 ,t!1G* ~v1 ,t!

1GT~v1 ,t!1GT* ~v1 ,t!#s (11)~ t8!

1@G~v1 ,t!1GT~v1 ,t!#s (21)~ t8!

1@G* ~v1 ,t!1GT* ~v1 ,t!#s (12)~ t8!

2@GT~v1 ,t!1GT* ~v1 ,t!#s (11)~ t8!%.

~30!

~ii ! The equation fors (22) is
io
th

hi

q

r
a

e

06381
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]

]t
s (22)~ t !52

1

2E0

t

dt8$@G~v2 ,t!1G* ~v2 ,t!

1GT~v2 ,t!1GT* ~v2 ,t!#s (22)~ t8!

1@G~v2 ,t!1GT~v2 ,t!#s (12)~ t8!

1@G* ~v2 ,t!1GT* ~v2 ,t!#s (21)~ t8!

2@GT~v2 ,t!1GT* ~v2 ,t!#s (11)~ t8!%.

~31!

~iii ! The equation fors (12) is

]

]t
s (12)~ t !522igs (12)~ t !2

1

2E0

t

dt8$@G~v2 ,t!

1G* ~v1 ,t!1GT~v2 ,t!

1GT* ~v1 ,t!#s (12)~ t8!1@G~v2 ,t!

1GT~v2 ,t!#s (22)~ t8!1@G* ~v1 ,t!

1GT* ~v1 ,t!#s (11)~ t8!2@GT~v2 ,t!

1GT* ~v1 ,t!#s (11)~ t8!%. ~32!

~iv! Finally, the equation fors (11) is
]

]t
s (11)~ t !52

1

2E0

t

dt8$@GT~v1 ,t!1GT* ~v1 ,t!1GT~v2 ,t!1GT* ~v2 ,t!#s (11)~ t8!2@G~v1 ,t!1G* ~v1 ,t!

1GT~v1 ,t!1GT* ~v1 ,t!#s (11)~ t8!2@G~v2 ,t!1G* ~v2 ,t!1GT~v2 ,t!1GT* ~v2 ,t!#s (22)~ t8!

2@G~v2 ,t!1G* ~v1 ,t!1GT~v2 ,t!1GT* ~v1 ,t!#s (12)~ t8!2@G~v1 ,t!1G* ~v2 ,t!1GT~v1 ,t!

1GT* ~v2 ,t!#s (21)~ t8!%. ~33!
ion
Here t5t2t8, the reservoir correlation functionG* is the
complex conjugate ofG of Eq. ~18!, and s (21)(t)
5s (12)* (t). Note that the coherences, such ass (11)(t), do
not appear in these equations.

We observe that Eqs.~30!–~33! are integrodifferential
equations in time. In the standard method, these equat
are converted into a set of differential equations by using
Markoff approximation, where thes(t8) is replaced bys(t)
and is being taken out of the integral. The rational for t
replacement is that in the interaction picture,s(t) is slowly
varying in time. However, as can clearly be seen from E
~32!, this is not the case here, since, e.g.,s (12)(t) is oscil-
latory due to the internal coupling, with frequency 2g. It is
evident that the Markoff procedure should be avoided fo
composite system, and we should explore a different
proach.

The integrodifferential equations, Eqs.~30!–~33!, being
of the time-convolution type, call for employing Laplac
ns
e

s

.

a
p-

transform. We introduce the Laplace transform of a funct
f (t) of the timet by

f̄ ~s!5E
0

`

dte2stf ~ t !, ~34!

and its inverse transform by

f ~ t !5
1

2p i Eg2 i`

g1 i`

dsestf̄ ~s!, ~35!

with g.0 and real. The Laplace transform of Eq.~30! is

~s1Ḡ11T̄1!s̄ (11)1S Ḡ11T̄1

2
D s̄ (12)1S Ḡ11T̄1

2
D s̄ (21)

2T̄1s̄ (11)5s (11)~0!, ~36!

that of Eq.~31! is
3-5
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~s1Ḡ21T̄2!s̄ (22)1S Ḡ21T̄2

2
D s̄ (12)1S Ḡ21T̄2

2
D s̄ (21)

2T̄2s̄ (11)5s (22)~0!, ~37!

that of Eq.~32! is

S s12ig1
Ḡ11T̄11Ḡ21T̄2

2
D s̄ (12)1S Ḡ11T̄1

2
D s̄ (11)

1S Ḡ21T̄2

2
D s̄ (22)2S T̄11T̄2

2
D s̄ (11)5s (12)~0!,

~38!

and that of Eq.~33! is

~s1T̄11T̄2!s̄ (11)2~Ḡ11T̄1!s̄ (11)2~Ḡ21T̄2!s̄ (22)

2S Ḡ11T̄11Ḡ21T̄2

2
D s̄ (12)

2S Ḡ11T̄11Ḡ21T̄2

2
D s̄ (21)5s (11)~0!. ~39!

Here, thes(0) on the right-hand sides are the initial valu
in time t50, of s(t). Note that this set of equations is alg
braic. The Laplace transform for the bath correlation fun
tions of Eq.~18! is simply

Ḡ~s,v!5
1

\2 (
k

u f ku2
1

s1 i ~vk2v!
,

ḠT~s,v!5
1

\2 (
k

u f ku2nk

1

s1 i ~vk2v!
. ~40!

We have introduced two new functionsḠ and T̄ by

Ḡ~s,v!5ReḠ~s,v!5
1

\2 (
k

u f ku2
s

s21~vk2v!2
,

~41!

and

T̄~s,v!5ReḠT~s,v!5
1

\2 (
k

u f ku2nk

s

s21~vk2v!2
,

~42!

where Re stands for the real part. We point out that t
imaginary parts of theG functions in Eq.~38! have been
discarded, since these contribute only to the renormaliza
of the frequency 2g. We have also introduced, in Eqs.~36!–
~39!, the definitions

Ḡ15Ḡ~v1!, Ḡ25Ḡ~v2! ~43!

and
06381
-

n

T̄15T̄~v1!, T̄25T̄~v2!. ~44!

Before we continue with the development of the theo
we make a digression, and study an exact solution of our
of equations, i.e., the steady-state behavior of the atomic
tem. It should be noticed that this can be done without f
ther approximations, such as Markoff’s.

IV. STEADY STATE

Now we consider our system of three-level atom in co
tact with a heat reservoir in thermal equilibrium at tempe
ture T. At steady state, the atomic system is expected
reach thermal equilibrium, and the reduced density matrix
the system should obey

seq5
e2bHS

Tr$e2bHS%
, ~45!

where b51/kBT, and kB is the Boltzmann constant. I
should be emphasized that in Eq.~45!, HS is the entire
Hamiltonian of the atom with the intrinsic coupling. In th
diagonal representation, for the degenerate case, using
~27!, and Eq.~28!, the steady-state populations should be

s (11)
eq 5

1

Z
, s (11)

eq 5
e2b\(v01g)

Z
,

s (22)
eq 5

e2b\(v02g)

Z
, ~46!

where the partition function is

Z5Tr$e2bHS%5112e2b\v0cosh~b\g!. ~47!

Now we show that the steady-state solutions of Eqs.~36!–
~39! are indeed given by Eqs.~46!. It is easy to obtain the
steady-state solutions directly from the Laplace transform
version of the equations of motion. The steady-state valu
s(t) is found by taking the limit

sss~ t !5 lim
s→01

ss̄~s!, ~48!

of the propers̄(s). We multiply each side of these equation
by s, take the limits→01, and readily get

s (11)
ss 5

T̄~s→10,v1!

Ḡ~s→10,v1!1T̄~s→10,v1!
s (11)

ss ,

s (22)
ss 5

T̄~s→10,v2!

Ḡ~s→10,v2!1T̄~s→10,v2!
s (11)

ss ,

s (12)
ss 5s (21)

ss 50. ~49!

As expected, the off-diagonal elements of the equilibriu
reduced density matrix in the diagonal representation ind
vanish. To find the steady-state values of the diagonal po
lations, we use Eqs.~41! and ~42! to find
3-6
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Ḡ~s→0,v6!5G~v6! ~50!

and for the thermal functions

T̄~s→0,v6!5
G8~v6!

2
N~v6!. ~51!

Here, we have introduced the inverse relaxation times—
damping rates—for the system, which are defined by

G~v!5
2p

\2 (
k

u f ku2d~vk2v! ~52!

and

G8~v!5
2p

\2 (
k

u f ku2nkd~vk2v!5G~v!N~v!, ~53!

and the thermal distribution function for the bath oscillato

N~v!5
1

eb\v21
, ~54!

is the Bose-Einstein distribution.
The detailed balanceconditions for the populations ar

simply obtained by substituting Eqs.~50! and ~51! into Eq.
~49!, i.e.,

s (11)
ss

s (11)
ss

5e2b\(v01g),
s (22)

ss

s (11)
ss

5e2b\(v02g). ~55!

Note that this result is independent of theG8s. The detailed
balance means that in the steady state, the number of tr
tions from one state to another is compensated by the rev
transitions. Since the normalization dictates that

s (11)1s (22)1s (11)51, ~56!

we can write Eq.~55! as

s (11)
ss 5

e2b\(v01g)

Z
, s (22)

ss 5
e2b\(v02g)

Z
,

s (11)
ss 5

1

Z
, s̄ (12)

ss 5s̄ (21)
ss 50, ~57!

whereZ is given by Eq.~47!, and conclude that indeed, a
steady state,sss5seq of Eq. ~45!. To express the steady sta
in the original representation of the bare states, we invert
transformation as the following:

s (11)5
1

2
~s (22)1s (33)1s (32)1s (23)!,

s (22)5
1

2
~s (22)1s (33)2s (32)2s (23)!,
06381
e
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s (12)5
1

2
~s (22)2s (33)2s (32)1s (23)!, ~58!

and find for the populations

s (33)
eq 5s (22)

eq 5
e2b\v0cosh~b\g!

Z
~59!

and for the coherences

s (32)
eq 5s (23)

eq 5
2e2b\v0sinh~b\g!

Z
. ~60!

We observe that in steady state, the coherences do not
ish, and no detailed balance is established between the le
u3& and u2& with the levelu1&.

V. THE CONVENTIONAL AD HOC APPROACH

The goal of the present study is to compare, for the co
posite system in a reservoir, the outcome of our exact
proach, where only the factorization approximation is us
with that of the standard one. Let us first review thecommon
procedurewhich is utilized to obtain the master equation of
quantum system composed of two coupled subsystem, w
only one of them is interacting with the reservoir. It is ba
cally assumed that the coupling between the subsystems
bedisregarded@14#, when calculating the relaxation terms o
the master equation. More specific, for a system’s Ham
tonian of Eq.~1!,

HS5HA1HC1HAC ,

when only the subsystemC is coupled to the reservoi
through the HamiltonianHRC , the effect of the reservoir is
calculated disregardingHAC . The master equation of th
composite system is then written as

d

dt
s~ t !5

1

i\
@HS ,s~ t !#1S d

dt
s~ t ! D

rel

, ~61!

wheres(t) is the reduced density matrix of the compos
system and the relaxation term@ds(t)/dt# rel has been as-
sessed using the HamiltonianHR1HC1HRC .

For our model of three-level atom, with the Hamiltonia
of Eq. ~19!, and Eq.~21!, this relaxation term is

S d

dt
s~ t ! D

rel

5
G8~v0!1G~v0!

2
@2S2s~ t !S12S1S2s~ t !

2s~ t !S1S2#1
G8~v0!

2
@2S1s~ t !S2

2S2S1s~ t !2s~ t !S2S1#. ~62!

Here the atomic operators are related by Eq.~22! only to the
u1& and u2& transitions of frequencyv0, and the damping
ratesG(v0) and G8(v0)5G(v0)N(v0) are given by Eqs.
~52! and ~53!, whereN(v0) is the reservoir’s mean photon
number of Eq.~54!, at frequencyv0. It should be pointed
3-7
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out that while the relaxation term was calculated forsC(t),
the reduced density matrix of subsystemC only, it is re-
placedad hocby s(t) of the composite system. It should b
emphasized that Eq.~62! is derived@3# by applying, beside
the factorization approximation, the Markoff ansatz, t
coarse-grained procedure, and the Secular approximatio

With the relaxation term of Eq.~62! substituted into Eq.
~61!, the equations of motion for the populations and t
coherences in the Schro¨dinger picture, in the diagonal repre
sentation of Eq.~27!, can be written explicitly as the follow
ing.

~i! For s (11)(t), we have

d

dt
s (11)52

G1G8

2
s (11)1

G8

2
s (11)2

G1G8

4

3~s (12)1s (21)!. ~63!

~ii ! For s (22)(t), we obtain

d

dt
s (22)52

G1G8

2
s (22)1

G8

2
s (11)2

G1G8

4

3~s (21)1s (12)!. ~64!

~iii ! For the coherences (12)(t), we find

d

dt
s (12)52 i ~v12v2!s (12)2

G1G8

2
s (12)

2
G1G8

4
~s (11)1s (22)!1

G8

2
s (11) . ~65!

~iv! For the ground-state population, we get

d

dt
s (11)52G8s (11)1

G1G8

2
~s (11)1s (22)

1s (12)1s (21)!. ~66!

In these equations, we have written, for short,

G5G~v0!, G85G8~v0!, ~67!

using the Laplace transform, the above equations becom
following.

~i! Equation~63! is converted to

S s1
G1G8

2 D s̄ (11)2
G8

2
s̄ (11)1

G1G8

4
~ s̄ (12)1s̄ (21)!

5s (11)~0!. ~68!

~ii ! The Laplace transform of Eq.~64! is

S s1
G1G8

2 D s̄ (22)2
G8

2
s̄ (11)1

G1G8

4
~ s̄ (21)1s̄ (12)!

5s (22)~0!. ~69!

~iii ! The Laplace transform of Eq.~65! is
06381
e

the

S s12ig1
G1G8

2 D s̄ (12)2
G8

2
s̄ (11)1

G1G8

4
~ s̄ (11)

1s̄ (22)!5s (12)~0!. ~70!

~iv! Equation~66! is converted to

~s1G8!s̄ (11)2
G1G8

2
~ s̄ (11)1s̄ (22)1s̄ (12)1s̄ (21)!

5s (11)~0!. ~71!

Here,s (ab)(0) are the initial conditions.
The steady-state solutions of these equations are ca

lated, and compared to our results of Eq.~55!. For the case of
a heat reservoir at finite temperature, applying Eq.~48! for
the steady state to the above set of Laplace transforms
obtain

s (11)
ss

s (11)
ss

5
G8

G1G8
5e2b\v0,

s (22)
ss

s (11)
ss

5
G8

G1G8
5e2b\v0. ~72!

This indicates that the standard procedure does not esta
the proper detailed balance in the composite system. U
the normalization of Eq.~56!, we get

s (11)
ss 5s (22)

ss 5
e2b\v0

112e2b\v0
, ~73!

s (11)
ss 5

1

112e2b\v0
, s (12)

ss 50,

which does not lead to the thermal equilibrium result of E
~46!. In contrast, we observe that our exact equations of m
tion ~where only the factorization approximation is applie!
render the right detailed balance, and the proper populat
at thermal equilibrium. We also note that at least one diff
ence stems from the sensitivity of the distribution functi
N(v) to frequency. While in the exact solutions,N(v) is
related in the diagonal frequenciesv06g, in the conven-
tional master equation the functionN(v) is expressed only
at the bare frequencyv0.

VI. ZERO-TEMPERATURE RESERVOIR

In this section, we compare our exact method with t
conventional master equation, when the reservoir is at z
temperature. First, we write the exact set of equations,
Eqs.~36!–~39!, as

~s1Ḡ1!s̄ (11)1
Ḡ1

2
~ s̄ (12)1s̄ (21)!5s (11)~0!,
3-8
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~s1Ḡ2!s̄ (22)1
Ḡ2

2
~ s̄ (12)1s̄ (21)!5s (22)~0!,

S s12ig1
Ḡ11Ḡ2

2
D s̄ (12)1

Ḡ1

2
s̄ (11)1

Ḡ2

2
s̄ (22)

5s (12)~0!, ~74!

and

ss̄ (11)2Ḡ1s̄ (11)2Ḡ2s̄ (22)2S Ḡ11Ḡ2

2
D ~ s̄ (12)1s̄ (21)!

5s (11)~0!. ~75!

Note thats̄ (11) does not appear in Eqs.~74!. Next, we write
the set of the conventional schemes, Eqs.~68!–~71!, as

S s1
G

2 D s̄ (11)1
G

4
~ s̄ (12)1s̄ (21)!5s (11)~0!,

S s1
G

2 D s̄ (22)1
G

4
~ s̄ (12)1s̄ (21)!5s (22)~0!,

S s12ig1
G

2 D s̄ (12)1
G

4
~ s̄ (11)1s̄ (22)!5s (12)~0!,

~76!

and

ss̄ (11)2
G

2
~ s̄ (11)1s̄ (22)1s̄ (12)1s̄ (21)!5s (11)~0!.

~77!

A superficial comparison of these two sets of equations in
cates that if we would replace the functionsḠ1(s) and
Ḡ2(s), in Eqs.~74! and~75! by G/2, which does not depen
on s, the two sets will be identical. We shall now argue th
under general conditions, this can be justified. Thus, we c
clude that at zero temperature, the conventional master e
tion, i.e., the set of equations~76!, and Eq.~77!, is appli-
cable.

To show this, we observe that the solutionsin timeof Eqs.
~74! are obtained by the inverse Laplace transform of E
~35!. The latter, in turn, depends on the zeros of the deter
nant of the fourth-order algebraic equations of the set
equations~74!, amended by the equation fors̄ (21) . We can
readily write the determinant as

D~s!54g2$s21s~Ḡ11Ḡ2!1Ḡ1Ḡ2%

1S s1
Ḡ11Ḡ2

2
D sH s21sS 3Ḡ113Ḡ2

2
D 12Ḡ1Ḡ2J ,

~78!

and seek for the zeros,s̃, of the equationD( s̃)50. Before
attempting a general solution of this equation, we conject
06381
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that all the rates of change in time are much smaller than
scale of the atomic frequencyv0. So, besideg!v0, @see Eq.
~20!#, we expect that

s̃!v0 . ~79!

Further, we notice from Eq.~41!, and Eq.~43!, that

Ḡ1,2~ s̃,v!5
1

\2 (
k

u f ku2
s̃

s̃21~vk2v6!2
~80!

are of the order of

G~v6!5
2p

\2 (
k

u f ku2d~vk2v6!, ~81!

of Eq. ~52!, which should also obey

G~v6!!v0 . ~82!

To conclude, we observe that there are two frequency sc
besides̃, namely, the coupling frequencyg and the damping
rateG.

A. Strong coupling limit

First, consider the limit when the intrinsic coupling co
stantg is much larger than the damping rateG: g@G. In this
strong-coupling limit, sinceg@Ḡ1 ,Ḡ2, we expand the de-
terminant D( s̃) with respect toḠ1 and Ḡ2. We find that
D( s̃) of Eqs.~78! can be simplified into

D~ s̃!5~ s̃1Ḡ2~ s̃!!S s̃12ig1
Ḡ1~ s̃!1Ḡ2~ s̃!

2
D

3~ s̃1Ḡ1~ s̃!!S s̃22ig1
Ḡ1~ s̃!1Ḡ2~ s̃!

2
D , ~83!

which yields the following four solutions:

s̃1,252Ḡ1,2~0!52
G~v6!

2
, ~84!

s̃3522ig2
Ḡ1~22ig !1Ḡ2~22ig !

2

522ig2
G~v122ig !1G~v222ig !

4
, ~85!

and

s̃452ig2
G~v112ig !1G~v212ig !

4
. ~86!

Since for a reservoir of harmonic oscillators the coupli
factor u f ku2 is a smooth function ofvk , Eq. ~81! leads to

G~v6!,G~v662ig !.G~v0!5G. ~87!
3-9
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We observe that the zeros of the determinant of the set,
~74!, i.e.,

s̃1,25
G

2
, s̃3,4562ig2

G

2
, ~88!

are the same as those of the set of equations~76!. It is easy
then to invert the Laplace transform and find the solutions
time. For example, if initially the atom was in the stateu3&,
we have

s (11)~ t !5s (22)~ t !5
1

2
e2Gt/2F12

G

4g
sinh~2gt!G ,

s (12)~ t !5
1

2
e2Gt/2F G

4ig
~12e2igt!2e2igtG , ~89!

which yield also for the bare states

s (33)~ t !5
1

2
e2Gt/2H 11cos~2gt!1

G

g
sin~2gt!J ,

s (22)~ t !5
1

2
e2Gt/2$12cos~2gt!%. ~90!

B. Weak-coupling limit

Next, we consider the limit when the intrinsic couplin
constantg is much smaller than the damping rate,G: g

!G. In this weak-coupling limit, sinceg!Ḡ1 ,Ḡ2 , we ex-
pand the determinantD( s̃) with respect tog2, to get

D~ s̃!5S s̃1
4g2

Ḡ11Ḡ2
D S s̃1

3~Ḡ11Ḡ2!2D

4
D

3S s̃1
3~Ḡ11Ḡ2!1D

4
D S s̃1

Ḡ11Ḡ2

2
D , ~91!

where

D259Ḡ1
219Ḡ2

2214Ḡ1Ḡ2 . ~92!

Repeating the same arguments of the strong-coupling li
we find the following zeros of the determinant of the set E
~74!, i.e.,

s̃1,252
G

2
, s̃352G, s̃452

4g2

G
, ~93!

which are also the zeros of the set, Eqs.~76!, in the weak-
coupling case. Here, for the same initial conditions as pre
ously, the solutions in time are

s (11)~ t !5s (22)~ t !

5
1

2
e24g2t/G1

4g2

G
~e24g2t/G1e2Gt22e2Gt/2!,
06381
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s (12)~ t !5
2ig

G
~e2Gt/22e24g2t/G!2

1

2
e24g2t/G, ~94!

and also

s (33)~ t !5e24g2t/G1
4g2

G2
$ e24g2t/G1e2Gt22e2Gt/2%,

s (22)~ t !5
4g2

G2
$ e24g2t/G1e2Gt22e2Gt/2%. ~95!

In passing, for completeness of presentation, we comp
these two results for the dependences of the populat
s (33)(t) ands (22)(t) of Eq. ~90!, wheng@G, as depicted in
Fig. 1, with that of Eqs.~95!, wheng!G, as depicted in Fig.
2. We observe, as it is well known@3#, that when the cou-
pling g, between the degenerate states, is much larger
the effective width of the lineG, which is induced by the
reservoir, the stateu3&, though not directly coupled to the
radiation bath, decays on the same time scaleTR52/G, as
the stateu2& does, while the population oscillate, with fre
quency 2g, between the two excited states. On the oth
hand, when the stateu3& is weakly coupled to stateu2&, it
decays on a time scale much longer thanTR , by a factor of
(1/8)(G/g)2, and the two levels decay directly without an
oscillations.

C. General solution

Now, we show that it is legitimate to interpolate betwe
these two extreme limits ofg@G, and g!G. We observe
that since in general, the zeross̃ of determinantD( s̃) of Eq.
~78! are of the order ofg or G, we can replace bothḠ1( s̃)
and Ḡ2( s̃) by G/2. We then find that the zeros of the dete
minant of the set, Eqs.~74!, are

s̃1,252
G

2
, s̃3,45

2G6V

2
, ~96!

whereV5AG22(4g)2. The solutions in time for the previ
ous initial conditions are

s (21)~ t !5e2Gt/2F S 2igG

V2
2

1

2D coshS Vt

2 D
1S 2ig

V
2

G

2V D sinhS Vt

2 D2
2igG

V2 G ,

s (11)~ t !5s (22)~ t !

5e2Gt/2F G2

2V2
coshS Vt

2 D1
G

2V
sinhS Vt

2 D2
8g2

V2 G ,

~97!

and
3-10
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s (33)~ t !5e2Gt/2H 1

2
@cosh~Vt/2!11#1

G2

2V2
@cosh~Vt/2!

21#1
G

V
sinh~Vt/2!J ,

s (22)~ t !5
8g2

V2
e2Gt/2@cosh~Vt/2!21#. ~98!

It is easy to show that these general results lead to the
iting cases of strong and week couplings. These solutions
identical to those obtained from the conventional set of eq
tions, Eqs. ~76!. We conclude that in the case of zer
temperature reservoir, whoseG(v) of Eq. ~81! is a flat func-
tion of frequency nearv0 , our ‘‘exact’’ derivation of the
equations of motion for a composite system supports thead
hoc insertion of the relaxation term, Eq.~62!, into Eq. ~61!.

VII. FINITE-TEMPERATURE RESERVOIR

The general case when our composite system is in con
with a finite-temperature reservoir is studied here. Bef
executing this program we compare the exact set of eq
tions, Eqs.~36!–~39!, with the ad hocset, Eqs.~68!–~71!.
Our suspicion that thead hocscheme is not justified in this
case is emanated from its failure to produce the proper ste
state, and the detailed balance. The crucial differences s
to come due to the presence of the thermal functi
T̄(s,v6) of Eq. ~42! in the exact equations, while the the
mal functionG8(v0) of Eq. ~53! appears in thead hocequa-
tions. These are absent at zero-temperature limit. While
zero temperature, for a flat frequency reservoir, we h
Ḡ(s!v0 ,v6).G(v6).G(v0), at finite temperatures th
distribution functionsN(v) appear in the equations, an
their dependence on the frequency cannot be discarded
conclude that thead hoc schemecannot be applied to a
composite system at finite temperatures.

FIG. 1. Original states populationss (33) ands (22) vs scaled time
vt at a zero-temperature reservoir in the limit of strong coupli
The parametersg/v and G/v are chosen to be 0.1 and 0.01, r
spectively.
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We turn now to the exact set of equations, at finite te
peratures, namely, Eqs.~36!–~39!, and examine the determi
nant of these equations. We express this fifth-order poly
mial in s as

D~s!5s$s~s1L1!~s21sL21L3!14g2~s21sL41L5!%,

~99!

where we have introduced

L15
Ḡ11T̄11Ḡ21T̄2

2
,

L25
3Ḡ115T̄113Ḡ215T̄2

2
,

L352Ḡ1Ḡ213Ḡ1T̄213Ḡ2T̄114T̄1T̄2 ,

L45Ḡ11Ḡ212T̄112T̄2 ,

L55Ḡ1Ḡ212Ḡ1T̄212Ḡ2T̄113T̄1T̄2 , ~100!

and seek again the zeross̃ of the equationD( s̃)50. One
zero is readily obtained by inspection, namely,

s̃150, ~101!

which is responsible to the steady-state solutions in tim
However, we cannot find the other zeros in the general c
and we will attempt solutions in the previous two limits:~i!
the strong coupling and~ii ! the weak coupling.

A. Strong-coupling limit

In this case, we consider the intrinsic coupling constang
to be much larger than all the damping rates of the syst

.

FIG. 2. Original states populationss (33) ands (22) vs scaled time
vt at a zero-temperature reservoir in the limit of weak couplin
The parametersg/v and G/v are chosen to be 0.01 and 0.1, r
spectively.
3-11
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Since here zeross̃, beside being extremely smaller relative
v0, are expected to be of the order ofg, or the damping rates
of the system, which are related toḠ1,2( s̃), andT̄1,2( s̃). The
strong-coupling limit implies thatg@Ḡ1 ,Ḡ2 ,T̄1 ,T̄2 . Ex-
pandingD( s̃) with respect toḠ1 ,Ḡ2 ,T̄1 ,T̄2 , we get

s̃252S Ḡ1~s!1Ḡ2~s!12T̄1~s!12T̄2~s!2D~s!

2
D

(s→0)

,

s̃352S Ḡ1~s!1Ḡ2~s!12T̄1~s!12T̄2~s!1D~s!

2
D

(s→0)

,

s̃452ig2S Ḡ1~s!1Ḡ2~s!1T̄1~s!1T̄2~s!

2
D

(s→2ig)

,

s̃5522ig2S Ḡ1~s!1Ḡ2~s!1T̄1~s!1T̄2~s!

2
D

(s→22ig)

,

~102!

where

D25@Ḡ1~s!2Ḡ2~s!12T̄1~s!22T̄2~s!#214T̄1~s!T̄2~s!.

~103!
SinceG(v) is not sensitive to a relevant range of frequenc
aroundv0 , we can replace theG functions with a constant
i.e.,

Ḡ1~ s̃!5Ḡ2~ s̃!5G/2. ~104!

This is not so for theT functions, which are sensitive to thes
frequencies through their dependence onN(v). We have

T̄1~ s̃!5GN1/2, T̄2~ s̃!5GN2/2, ~105!

where

N15N~v1!, N25N~v2!, ~106!

are the mean photon numbers in the reservoir at the freq
ciesv15v1g andv25v2g, respectively. Having obtain
all the zeros of the determinant, which are also the locati
of the poles for the contour integrations in the inver
Laplace transformations, we can express the solutions fo
populations and the coherences in time. We demonst
some typical cases as depicted in Figs. 3 and 4, when
tially only the stateu3& is occupied. We observe that since
the strong coupling caseg is dominant, oscillations of the
populations in time occur at the beginning. We further not
that after long time, the populations are settled at their th
mal equilibrium values.

B. Weak coupling limit

In a similar manner, we tackle the weak-coupling lim
Here, the damping rates are much larger than the intrin
coupling g, or g!Ḡ1 ,Ḡ2 ,T̄1 ,T̄2. We expandD( s̃) in Eq.
~99! with respect tog2. First, we can be convinced that th
06381
s
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s
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ic

Ḡ8s andT̄8s can be replaced as in Eqs.~104! and~105!. The
zeros are then expressed, in terms of the photon distribu
of Eq. ~106!, as

s̃252
16g2~112N112N213N2N1!

G~21N21N1!~213N113N214N2N1!
,

s̃352
G

4
~21N11N2!,

s̃452
G

8
~615N115N21F !,

FIG. 3. Diagonal states populationss (11) ands (22) vs scaled
time vt at a finite-temperature reservoir in the limit of strong co
pling. The mean photon numbers in the reservoir areN155 and
N256. The parametersg/v andG/v are chosen to be 0.1 and 0.01
respectively.

FIG. 4. Original states populationss (33) , s (22) , and s (11) vs
scaled timevt at a finite-temperature reservoir in the limit of stron
coupling. The mean photon numbers in the reservoir areN155 and
N256. The parametersg/v andG/v are chosen to be 0.1 and 0.01
respectively.
3-12
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s̃552
G

8
~615N115N22F !, ~107!

where

F254125N1
2125N2

2112N1112N2214N2N1 .
~108!

We demonstrate some typical cases as depicted in Figs. 5
6. Since the couplingg is small, no oscillations of the popu
lations are developed, and the latter relax directly to th
equilibrium values.

VIII. MASTER EQUATION FOR A COMPOSITE SYSTEM

In the previous sections, we have studied the dynamic
a composite system in a reservoir, invoking only the fact
ization approximation, and making use of the Laplace tra
form, without using the Markoff ansatz, the coarse-grain
procedure, and the secular approximation. The latter are
building blocks of the standard master equation. Instead
continuing from the integrodifferential equations of motio
in time of Eq. ~17!, or rather the set, Eqs.~30!–~33!, and
invoking the approximations of the standard procedure,
u-

1,

06381
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ir
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-
s-
d
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have converted these equations into algebraic ones, i.e.,
~36!–~39!, by Laplace transform, and investigated the lat
set. In the present section, we shall attempt to follow
standard procedure, as developed, e.g., in Ref.@3#, in order to
produce a master equation for the composite system, nam
to convert the integrodifferential equation into an appro
mate differential equation in time for the reduced dens
matrix s(t) of the coupled subsystems.

We now continue the review of the standard procedu
starting from Eq.~17!, and then apply it to our three-leve
atom. First, Eq.~17! is written in the interaction picture
where the reduced density matrixs̃(t) is expected to vary on
relaxation time statesTR;1/G, much larger than that of the
reservoir correlation timestc . Then, a coarse-grained ve
sion of Eq.~17! is generated by taking the average in time
this equation, over an arbitrary time step,Dt which is con-
fined by

tc!Dt!TR . ~109!

At this stage, the Markoff ansatz is invoked, ands̃(t8),
within the time integrations, are replaced bys̃(t), and can
be taken out of the time integrals. We end up with the coar
graineds̃(t) obeying the following differential equation:
d

dt
s̃ab~ t !52(

c,d
E

0

`

dt
1

DtEt

t1Dt

dt8„s̃db~ t !eivadt8$Sac
1 Scd

2 @G~vbc ,t!1GT~vbc ,t!#1Sac
2 Scd

1 GT* ~vcb ,t!%

1s̃ac~ t !eivcbt8$Scd
1 Sdb

2 @G* ~vad ,t!1GT* ~vad ,t!#1Scd
2 Sdb

1 GT~vda ,t!%2s̃cd~ t !ei (vac1vdb)t8

3$Sac
2 Sdb

1 @G* ~vcb ,t!1GT* ~vcb ,t!1G~vda ,t!1GT~vda ,t!#1Sac
1 Sdb

2 @GT* ~vad ,t!1GT~vbc ,t!#%…,

~110!
k

,

FIG. 5. Diagonal states populationss (11) ands (22) vs scaled
time vt at a finite-temperature reservoir in the limit of weak co
pling. The mean photon numbers in the reservoir areN155 and
N256. The parametersg/v andG/v are chosen to be 0.01 and 0.
respectively.
FIG. 6. Original states populationss (33) , s (22) , and s (11) vs
scaled timevt at a finite-temperature reservoir in the limit of wea
coupling. The mean photon numbers in the reservoir areN155 and
N256. The parametersg/v andG/v are chosen to be 0.01 and 0.1
respectively.
3-13
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where the correlation functions are given by Eq.~18!. Only
three time scales were involved in the derivation up to he
as stated by Eq.~109!. However, in a composite system, wit
the coupling Hamiltonian of Eq.~1! between the component
of the system, there is another, an intrinsic time scale of
order of;\/^HAC&, presents in the system. This time sca
is bound to introduce a dilemma of how to relate it to t
other ones, and, in particular, to the coarse-grained timeDt.
It may further cast a doubt on the applicability of the sta
dard procedure to a composite system.

We return now to our toy model of the three-level ato
and apply the coarse-grained procedure, and the Markoff
satz, to the set, Eqs.~30!–~33!. We obtain the following.

~i! From Eq.~30!, we have

d

dt
s̃ (11)~ t !52

1

2
@G~v1!1G8~v1!#s̃ (11)~ t !

1
1

2
G8~v1!s̃ (11)~ t !2

1

DtEt

t1Dt

dt8
1

4

3@G~v2!1G8~v2!#@e2igt8s̃ (21)~ t !

1e22igt8s̃ (12)~ t !#. ~111!

~ii ! Equation~31! is turned into

d

dt
s̃ (22)~ t !52

1

2
@G~v2!1G8~v2!#s̃ (22)~ t !

1
1

2
G8~v2!s̃ (11)~ t !2

1

DtEt

t1Dt

dt8
1

4

3@G~v1!1G8~v1!#@e2igt8s̃ (21)~ t !

1e22igt8s̃ (12)~ t !#. ~112!

~iii ! Equation~32! is expressed as

d

dt
s̃ (12)~ t !52

1

4
@G~v2!1G~v1!1G8~v2!

1G8~v1!#s̃ (12)~ t !

2
1

DtEt

t1Dt

dt8
1

4
e2igt8$@G~v2!

1G8~v2!#s̃ (22)~ t !1@G~v1!

1G8~v1!#s̃ (11)~ t !2@G8~v1!

1G8~v2!#s (11)~ t !%. ~113!

~iv! Finally, Eq. ~33! is converted into
06381
e,

e

-

,
n-

d

dt
s̃ (11)~ t !52

1

2
@G8~v1!1G8~v2!#s̃ (11)~ t !1

1

2
@G~v1!

1G8~v1!#s̃ (11)~ t !1
1

2
@G~v2!

1G8~v2!#s̃ (22)~ t !1
1

DtEt

t1Dt

dt8
1

4
@G~v2!

1G~v1!1G8~v2!1G8~v1!#@e2igt8s̃ (21)~ t !

1e22igt8s̃ (12)~ t !#. ~114!

HereG(v) is defined in Eq.~52!, andG8(v)5G(v)N(v).
We note that the coarse-grained averaging is boiled dow
integration in timet8 over the oscillatory term of frequenc
2g, i.e.,

I 5
1

DtEt

t1Dt

dt8e2igt85e2igteigDt
sin~gDt !

gDt
, ~115!

and this, in general, is not defined. The reason is that
arbitrary time Dt is prescribed to be bound bytc!Dt
!TR , see Eq.~109!, and it is unrelated to the intrinsic tim
scale 1/g. Only in the weak-coupling case, i.e., wheng
!G, since thenTR!1/g we havegDt!1, andI of Eq. ~115!,
if is well defined, and replaced bye2igt. In this case, the
coarse-grained equations, with the Markoff ansatz, confo
with the exact equations in the weak-coupling limit. How
ever, this is as far as we can go, and wheng andG are not
related byg!G, the standard procedure is at a dead end,I of
Eq. ~115!, is not well defined, and the procedure does n
produce a master equation for the composite system. N
that we cannot use to the secular approximation to save
scheme.

IX. CONCLUSION

The present paper has dealt with the dynamics of a c
posite small system, made up of two coupled subsyste
when only one of them is interacting with the environment
set of equations of motion, which we coin for short the ex
set, for the reduced density matrix of the composite sys
has been derived using only the factorization approximati
without employing the Markoff ansatz, the coarse-grain
averaging, and the secular approximation. The latter are
building blocks of the standard procedure, which leads to
master equation. The conventionalad hocapproach, which
assumes that the relaxation terms of the equations of mo
of the composite system can be borrowed from the ma
equation of the subsystem interacting with the reservoir,
been compared with the exact approach. It has been dem
strated that when the reservoir is at zero temperature, thad
hoc scheme is applicable, however, at finite temperature
fails to predict the dynamics of the system. It has been
ther shown that at finite temperatures, the standard proce
does not yield a master equation for the composite syst
and one has to appeal to the exact scheme, with the Lap
transforms, to study the dynamics of the system.
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