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Dissipations in coupled quantum systems
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We investigate the dynamics of a composite quantum system, comprised of coupled subsystems, of which
only one is significantly interacting with the environment. The validity of the conventah&locapproach—
assuming that relaxation terms can be extracted directly from the master equation of the subsystem interacting
with the reservoir—was examined. We derived the equation of motion for the composite system’s reduced
density matrix—applying only the factorization approximation, but not the conventional sequence of Markoff,
coarse grain, and secular approximations. From our analysis, we concluded that the conveudtiboal
approach is applicable to zero-temperature reservoir, but fails for finite temperatures. It is further shown that at
finite temperatures, the standard procedure does not even yield a master equation for the composite system, and
its dynamics has to be studied by the equations of motion which are developed here. For demonstration we
considered a system of a three-level atom, the two excited states are coupled to each other, and only one of
them communicates with the ground state via a radiation reservoir.
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[. INTRODUCTION (e) The coarse-grained rate of variatidi®] is then calcu-
lated by taking the time average of the equation for the re-
There is a considerable interest in the physics of quanturduced density matrix over a period of time, much longer than
coupled systems, especially their dissipations due to the irthe reservoir’s correlation time, but significantly shorter than
teraction with the environment. In particular, a number ofthe relaxation time of the system itself.
experiments were conducted on microscopic systems, such (f) Finally, the secular approximatiof8,7] is applied, and
as two coupled microcavitiegl], and an atom interacting energy-nonconserving terms are eliminated.
with a microcavity, which is described by the Jaynes- This procedure yields the relaxation terms of the master
Cumming mode[2]. In the present paper, we investigate theequation, which is a group oéte equationg8] for the popu-
dissipations in a system composed of two coupled partdations and coherences of the system.
when only one of them is in effective contact with the envi- In this paper, we consider eompositesystemS, com-
ronment, while the interaction with the environment of theposed of two coupled partd and C. The system’s Hamil-
second one is negligible. The environment is modeled as tonian is described b s=Ha+Hc+Hac, whereH, is the
heat reservoir Hamiltonian of subsysterA, H is that of subsystert, and
The most common tool used for treating dissipation in aH ¢ is the coupling Hamiltonian between the two parts. The
system interacting with a reservoir is theaster equatioior ~ reservoirR is represented by a Hamiltonidtg, which is
thereduced density matrigf the systeni3]. This equation is usually modeled as an ensemble of many harmonic oscilla-
derived from the equation of motion for the total densitytors. Only one of the two subsystems, f@yis interacting
matrix of the combined system and reservoir, by eliminatingwith the reservoir by a Hamiltoniaklcg. A canonical ex-
the reservoir degrees of freedom. Thsimndard procedure ample is the atom-cavity system. Here a two-level atanis
which leads from the exact equation of motion for the totalinteracting with a cavity,C, of a single mode, and the
density matrix to the master equation, is executed along thetrength of the coupling to the environment of one subsystem
following steps. is much different from that of the other subsystems. We
(a) The differential equation of motion for the total den- study here the derivation of the equation of motion for the
sity matrix is formally integrated in time once, and the resultreduced density matrix of the composite system, and exam-
is substituted back into the equation, this yields an integroine the applicability of the standard procedure, which is out-

differential equation. lined above, and the role of the different approximations in-
(b) The trace over the reservoir's degrees of freedom is/olved.
formally performed. The conventionaad hocapproach to the derivation of the

(c) The factorization approximatiof4] is carried out, equations of motion for this kind of a composite system is as
namely, the total density matrix of the combined system resfollows. The relaxation terms are borrowed from the master
ervoir is replaced, within the time integration, by a productequation of subsyster@, disregarding its coupling to sub-
of the system reduced density matrix and the reservoir stasystemA. These terms are obtained by applying the standard
tionary density matrix. procedure to subsyste@, interacting with the reservoiR,

(d) The Markoff approximatio5] is invoked, assuming employing the Hamiltoniatd - +Hg+Hcg. We shall argue
that the reservoir, which contains a huge number of degree$at thisad hocapproach is only justified when the reservoir
of freedom, has a very short memory, and on the time scales at zero temperature. Thégl hocapproach fails, e.g., when
of the reservoir’s correlations the system is stationary. a Rydberg atom is traversing a superconducting resonant
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cavity [9], since the temperature of the environment can bdd)—(f). In Sec. VIII, we attempt a derivation of a master

of the order of the transition frequency. However, when theequation for the composite system by applying the assump-
environment is at finite temperatures, it fails even to producéions of steps(d)—(f) to the the equations of Sec. Ill. It is
detailed balance at steady state. This point was noted b§stablished that, in general, at finite temperatures, the stan-
Cressef10], who observed that the usual relaxation terms dogdard procedure does not yield a master equation. This is due
not lead to a proper thermal equilibrium. Murato and Shibatd© the presence of an extra time scale generated by the cou-
[11] have investigated the Jaynes-Cumming model, when th_gling between the subsystems. The conclusions are discussed
atom is strongly coupled to the electromagnetic single mod& Sec. IX.

of the cavity, and only one component of this composite

system of atom and cavity has a considerable dissipation. In Il. A COMPOSITE SYSTEM IN A RESERVOIR

our previous pap€rl2], we have attempted an investigation
of the dissipation in a system of two coupled microcavities

when only one of them is in con with ar rvoir. ) ; - - .
en only one of them is in contact a reservo interacting with an environment. We consider a syst8m

We develop here an alternative approach for investigatin%vhich is composed of two coupled subsvstesand C
a composite system in a reservoir. We implement only the b P y '

. when only one of themC, is coupled to a reservoR. The
first three _step&a)—(c) of Fhe s_tandard procedurg. Thus, only Hamiltonian of the composed system is

the factorization approximation is invoked, while the other

steps(d)—(f) of the scheme, with the assumptions embedded He=Ha+Hc+Hac 1)
in them, are not executed. Employing the Laplace transform '

enables us, in principle, to carry on and study the time dewhereH, is the Hamiltonian of subsyste, H is that of
pendence of the reduced density matrix elements of the Syshe subsystenC, andHc is the Hamiltonian of coupling
tem. We demonstrate oexact[13] approach on a model of petween the subsystemsandC. The reservoir is described
an atom having three levels, where the two excited ones angy the HamiltoniarHg, and its interaction HamiltoniaH s,

coupled to each other, while only one of them is communi-yith the system will be eventually described by
cating with the ground state via a radiation reservoir. The

three lowest energy states of hydrogen at8h i.e., the Hsr=Hcr, 2
ground state &;,, and the two quasidegenerate excited
states P,,, and the metastables?,, can be thought of as a where the HamiltoniarHcg indicates explicitly that only
realization of this toy model. subsystemC interacts with the environment. The total

The paper is developed and organized as follows. In Seddamiltonian of the combined system reservoir is
[l we introduce the Hamiltonian of the composite system in a
reservoir and outline the derivation of the equation of motion Hiot=Hst+Hg+ Hgr. ()
for the reduced density matrix executing the first three steps . . . .
(a)—(c) of the standard procedure. The correlation functions Th? equation of mot|on_ fgr total_ densny mat_rpx of the
for a reservoir made up of an ensemble of many harmoni€oMmbined system reservoir in the interaction picture, is
oscillators, which play an important role in the dynamics of J 1
the system, are introduced. The model of the three-level —p(t)=—[Hsg1),p()], (4)
atom is introduced in Sec. lll, and the integrodifferential at in
equations for its reduced density matrix are converted to al-
gebraic ones by the Laplace transform. The steady-state sihere
lutions are shown in Sec. IV to yield detailed balance, and
proper thermal equilibrium behavior. The conventioaal
hoc scheme for a composite system is reviewed in Sec. V, - , _
and the equations of motion are derived. It is apparent that at Hsr(t) =€/ st ARV g o= I(Hst HRIVA, 5
finite-temperature environment, these equations of motion do ) ) o
not yield a proper detailed balance. The composite system &Y & formal integration of Eq(4), and resubstituting the
zero-temperature reservoir is investigated in Sec. VI. Herg/€sult, we have
the results of the exact method of Sec. Ill are compared with
those obtained by the conventional scheme. It is demon- i~ _i B -

. p(t)=—[Hs1),p(0)]

strated that at zero temperature, #tehocequations of mo- dt it
tion can be safely used. The effect of a finite-temperature
reservoir is examined in Sec. VII, and it is confirmed that the +
ad hocscheme is not applicable. Zero temperature is under-
stood here as the limit when the temperature of the environ- 3 _
ment is much smaller than the characteristic energies of thetherep(0) is the initial value ofp(t). Note that even if the
system. The evolution of the composite system in time ignitial state of the system plus bath ismgoduct stateEq. (6)
obtained by solving the equations of motion of the exactestablishes, at timg a state ofentanglemenbetween the
scheme in their Laplace transform version, without invokingsystem and the bath. In other words, the bath is affected by
the Markoff ansatz and the other approximations of stepshe system.

For a later reference, we review here the standard proce-
dure [3], for deriving the equation of motion for a system

T(t) = el (HsTHRIVA o () g~ I (HsHHRIVA.

1\t - -
ﬁ) jodt/[HSR(t)a[HSR(t’)-P(t’)]]v (6)
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In order to get the equation of motion fer, the reduced B 1 (t .
density matrix of the system, we have to e!iminate the bath Ea’(t)z — —Zf dt’z 1gij(D[Si(H)S;(t")o(t’)
degrees of freedom by taking the tracepofvith respect to heJo  iZ
the reservoir, namelyy=Trg{p}. This program can be pur- = ~
sued by specifying the properties of the reservoir. In &Y. =S5t o(t)SO]+g;i(— Dlo(t) () S(1)
wh.ich -is still ane.xact-quation, we nov! intrloolluce tch- —~Si(t)}(t’)~Sj(t’)]}, (10)
torization approximationi.e., we replace, within the time
integral, by producir(t)® g, whereog is the stationary ~ Where the trace over the reservoir was separated from the
density matrix of the bath, say in thermal equilibrium. This dynamics of the system’s operators. Here we define, for a
basic assumption is the only approximation made up to thidath’s operatoO, the expectation valuéO)g=Trr{OoR},
point. The essence of this approximation is that although th@nd introduce the bath correlation functions
bath is responding in time to the motion of the system, it

relaxes very fast to equilibrium, and compels the density L(D=[ROR )
matrix to become a product. Taking the trace over the bath, gii ! ! R
we obtain
gji(— D =(Ri(t")Ri(1)r, (13)

.~ 1\ ~ ~ L~ which depend on the time differenee=t—t’.
Ea(t):(ﬁ) Jodt Trri[Hse(t),[Hs/(t"),o(t") @ or]]}- We shall consider a simple model for the reservoir, that is,
7) an ensemble of many harmonic oscillators. It is represented
by the Hamiltonian

Here, we have assumed that the average valud (f,
with~ respect to the r(iservoir, vanishes, that is, He= fw,(bib,+1/2), (12)
Tre{Hsg(t)or}=0. Note thato(t") within the time integra- T
tion of Eq. (7) is not the initial value ofo(t) but rather its
instantaneous value at the time Since the reservoir is as-
sumed to relax extremely fast to its stationary statg,is

both the initial and the instantaneous values of the bath dergs?lilrllaet(');teract'on Hamiltonian for the svstem with the res
. ) . ~ i i iltoni wi -
sity matrix. If we had used the initial value of(t) in the Y

right-hand side of Eq.7), the procedure would be simply the ervoir can be cast into the following form:

second-order perturbation expansianterms of the interac-

tion Hamiltonian Hgg. The factorization assumption is V=S'R +SR", (13

equivalent to thesummation of selective termgresumably

the dominant ones, in aimfinite order perturbation proce-

dure. The reservoir is being affected by the dynamics of the

system, though it preserves its stationarity on a very short B

time scale compared to the time scales of the system. R :2 fibr,
The system-reservoir interaction Hamiltonian is, in gen-

eral, of the formHsg=2;SR;, whereS; are dynamic opera- Here, f, and f* are the coupling parameters of the interac-

tors of the syster$and the bath operatoR depend only on  ion petween the system and thth harmonic oscillator of

the reservoir degrees of freedom. SittgandHg commute  the reservoir. For the correlation functions, Etfl), we get
with each other, in the interaction picture,

wherew, is the frequency of theth reservoir oscillator, and
b, and b,T are the annihilation and creation operators of this

where

RT=> f*b!. (14)
r

T

glz<r>=2 If,[2((n,)+1)e e,

Hse()=2 SOR(1), ®
(.3]21(7')=Er [f12(ne)e' ", g1a(7) =0l 7)=0, (15)
where
where (n,)=(b/b,) is the average number of excitation

B ' . quanta of theth oscillator of the reservoir.

S(t)=eHs/hge HsA It is only natural to write Eq(10) for the reduced density
matrix by its components. Introducing the complete set of
statesla), which are the energy eigenstatestbf, namely,

B (+) — aiHRt/ip a—iHRt/H

A © Hela) =E,a). a6

Substituting Eq(8) into Eqg.(7) yields that Now we write Eq.(10) as
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J 1 t
Ea'ab(t) = E(Ea_ Ep) gan(t) — ;;1 Jodt/ (Udb(t’){sgcsgd[G(wbc ,7)+ Gr(wpe,7) ]+ S;CS:dG%"(wcb T+ oac(t’)

X{S{4Sapl G* (@ag, 7) + G (wad, 7)1+ SgeSapCr(@dar 7} — Tea(t’ /{ScSipl G* (@ep, 7) + GF (wep, 7)

+G(@ga,7)+ Gr(wga, 7)1+ SacSqel G (wad 7) + Grlwpe, 7)1} 17

Here, we have introduced two kinds of bath correlation func- St=|2)1|, S =]1)(2|. (22)
tions
To follow the steps of the preceding section, from Eq.

1 2 (o o) (16) onwards, the atom’s Hamiltonian of E(L9), Hg=Hx
G(ﬂ).TFﬁ% |fil%e ), +Hc+Hac, is diagonalized. Expressed in terms of the
original states, we get the following for the diagonal eigen-
1 states:
Grlw, =3 Zk |fl2(nye k@), (18) 1
|+)= ﬁ[g|2>+A|3>],
and have use®,,=(a|O|b). Note that the reduced density
matrix componentsr,(t) in Eqg. (17) are expressed in the 1
Schralinger picture. We observe that although E47) is |—)Y=-—=[A|2)—g]3)],
written explicitly in terms the energy eigenstate$ of Hg, \/E

it is a general equation for the atomic density matrix, and the

only approximation made is the factorization approximation. 11)=[1), (23
We continue the development of the thearighoutapplying

to the standard Markoff approximation of replaciat’) in
Eq. (17) by o(t). To make the point clear, we shall study a 4
simple model system, which displays the features of a com- Ei=fhow,=x5[w+wz+A],
posite system interacting with a bath. 2

with the respective eigenenergies

h
Ill. ATHREE-LEVEL ATOM IN A RESERVOIR E_=ﬁw_=§[w2+ w3—A],

Our model system is an atom with three energy states,
where the two excited stateg®) of energyfw, and|3) of E;=fhw,;=0 (24
energyf ws, are coupled directly to each other, while the ]
ground statel1) of energy%w;=0 is coupled through a a&nd with
radiation reservoir to the excited std®. In terms of these
bare energy states, the Hamiltonian of the atom is expressed,
in the form of Eq.(1), as

5:(,03_(1)2, A2:52+4g2,

L=iaars, a=2R 25
Ha=hws|3)(3), —5AA%9), A= (9
He= 1wy 2)(2) For the case where the two excited statesdageneratei.e.,
c 2 : when

where7g is the coupling energy between the excited statesgq (23) is reduced to
and we choose

1
g<wy,03. (20 |+>:ﬁ(|2>+|3>)'
The radiation reservoir is given by E(l2), and its interac-
tion with the atom is written explicitly as 1
_>=E(|2>_|3>)' (27)
Hsr=1%>, (f,S"b+fibis™), (21)
k and the corresponding eigenenergies are

where E.=hw,=f(wy+0),
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E_=fho_=fi(wo—Q). 28 J L
w_=fh(wy=g) 8 ot )=—§j0dt’{[G(w,,T)+G*(w—17)

The Hamiltonian of the atomic system, in the diagonal rep- N
resentation, is given by +Gr(w_,7)+G(w_, Do (t)
Hs=ho|+)+|+ho_[-)(—]. (29) +[G(ow_,7)+Gr(w_,7)]o (1)

We shall now investigate the equations of motion for this +[G* (w_, 1)+ G (w_, 7)o 4)(t")
model of three-level atom in a radiation bath. We consider
the degenerate case, and use @) to express the equa- —[Gr(w_,7)+GT(w_,7)]oy(t")}.
tions of motion for the populations and coherences of our 31)
system in the diagonal representation explicitly as the fol-
lowing. (iii ) The equation folr _y is

(i) The equation folo( 1 is

J
2o =3 iic(, N+t 0. Foe V=207 0~ 3 [ aviet o
0
+Gr(ws 1)+ G0 D)]o( (1) FeHon D F e
+[G(w,, 1)+ Gy, 7)]o (L") *G1(0s o)+ 1)
HG (. 1)+ B (0, D)o (1) FOrlem oG 0
—[Gr(ws, 1)+ G (w4, 7)ot} TCr(0r Do (') ~[Crlw-,7)
(30) +GT (w4, 1) ]oan(t)}. (32
(i) The equation folor(_ _y is (iv) Finally, the equation foer(;q) is
d 1t
EU(ll)(t):_Efodt/{[GT(er 7))+ G (w4, 7)+Gr(w_,7)+GT(w_,7)]oqy(t") —[G(w, ,7)+C* (0 ,7)

+Gr(w,,7)+Gx (0, D]o (") —[Cle_, 7+G*(w_,7)+Gr(w_,7)+GCi(w_, 7)o (1)
—[G(w-,7)+GC*(ws,7)+Gr(w_,7)+CT (w4 ,7)]o (') —[C(w,,7)+C* (w_,7)+Cr(w,,7)
+GF(w_, 1) ]o 4t} (33

Here r=t—t’, the reservoir correlation functioB* is the transform. We introduce the Laplace transform of a function
complex conjugate ofG of Eg. (18), and o )(t) f(t) of the timet by
=(r?+_)(t). Note that the coherences, suchas,(t), do .
not appear in these equations. f_(s):J dte S%(t), (34)
We observe that Eqs30)—(33) are integrodifferential 0

equations in time. In the standard method, these equations
are converted into a set of differential equations by using thé
Markoff approximation, where the(t’) is replaced byr(t) 1 [y+ie _
and is being taken out of the integral. The rational for this f=5— dse'f(s), (39
replacement is that in the interaction pictuogt) is slowly [
varying in time. However, as can clearly be seen from Equjth y>0 and real. The Laplace transform of Eg0) is
(32), this is not the case here, since, e _)(t) is oscil-
latory due to the internal coupling, with frequency.2it is
evident that the Markoff procedure should be avoided for a (s+G, +T1)0(+ nt
composite system, and we should explore a different ap-

roach. T o=
P The integrodifferential equations, Eq80)—(33), being T27ay= 0 H(0), 30
of the time-convolution type, call for employing Laplace that of Eq.(31) is

and its inverse transform by

Gy+Ty|—

2 %

G+T,|—
T2 )T
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- Go+To|— Go+To|—
(S+G2+T2)(T(,,)+ 5 O+t 5 O(—+)
~T,001y=0(—(0), (37)
that of Eq.(32) is
. Gy T +G,+T,| — G +T,|—
S+2|g+ 2 (T(+,)+ T O-(++)
Got+To|— T +T,|—
o7 T ranT o (0),
(38
and that of Eq(33) is
(S+?1+?2);(11)_(61+?1);(++)_(62+?2);(77)
Gl+T1+Gz+T2
2 O(+-)
Gl+T1+G2+T2
> - )= 0oa(0). (39

Here, thea(0) on the right-hand sides are the initial values
in timet=0, of ¢(t). Note that this set of equations is alge-
braic. The Laplace transform for the bath correlation func-

tions of Eq.(18) is simply

G(sw)=— E |12 m
G- 1 > fl? 40
T(Saw)_ﬁ 4 i st i (op—a) (40
We have introduced two new functio® and T by
G(s,0)=ReG(s,0)= 2~
(s,0)=%Reg(s,w)= 2|k|2+(w_w)2
(42)

and

T(s,0)=ReG(s,0) Z |fi/2n

(42

—
%+ (wg— )2

where e stands for the real part. We point out that the
imaginary parts of thes functions in Eq.(38) have been

PHYSICAL REVIEW A67, 063813 (2003

T1=T(wy), T=T(w-). (44)
Before we continue with the development of the theory,
we make a digression, and study an exact solution of our set
of equations, i.e., the steady-state behavior of the atomic sys-
tem. It should be noticed that this can be done without fur-

ther approximations, such as Markoff’s.

IV. STEADY STATE

Now we consider our system of three-level atom in con-
tact with a heat reservoir in thermal equilibrium at tempera-
ture T. At steady statethe atomic system is expected to
reach thermal equilibrium, and the reduced density matrix of
the system should obey

o= (45)

where 8=1/kgT, and kg is the Boltzmann constant. It
should be emphasized that in E@5), Hs is the entire
Hamiltonian of the atom with the intrinsic coupling. In the
diagonal representation, for the degenerate case, using Eq.
(27), and Eq.(28), the steady-state populations should be
eq _ _e_ﬁh(wo_"g)
canTz 9+ nHT Tz
e Bhi(wo—9)

ot y= (46)

where the partition function is
Z=Tr{e AHs}=1+2e Ahwocosh phg). (47)

Now we show that the steady-state solutions of E88)—
(39 are indeed given by Eq$46). It is easy to obtain the
steady-state solutions directly from the Laplace transformed
version of the equations of motion. The steady-state value of
o(t) is found by taking the limit

a*(t)= lim so(s), (48)

s—0*

of the proper;(s). We multiply each side of these equations
by s, take the limits—0*, and readily get

B T(s—+00.)
E(S—>+O,(1)+)+?(S—>+O,(1)+)

“?151) '

T(s—+0,0_)
G(5—>+Ow )+ T(s—+0,0_)

oSS
I(11)>

discarded, since these contribute only to the renormalization

of the frequency 8. We have also introduced, in Eq86)—
(39), the definitions
G1=G(w,), G,=G(w.) (43)

and

oS y=aPs =0, (49)

As expected, the off-diagonal elements of the equilibrium
reduced density matrix in the diagonal representation indeed
vanish. To find the steady-state values of the diagonal popu-
lations, we use Eqg41) and(42) to find

063813-6
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G(s—0,0.)=T(w. 50 1
( 2)=Tlw2) 0 U(+7):§(0(22)_0(33)—0(32)+0(23)). (58

and for the thermal functions
and find for the populations

_ INws)
T(s—0w.)= —N(w.). (51 e~ Pheocosh Bhg)
2 O(38)= 0 (29)= 7 (59
Here, we have introduced the inverse relaxation times—the
damping rates—for the system, which are defined by and for the coherences
— e Pheosink BfiQ)
2 eq _ eq _
P@)="7 3 [f2ow- o) (52 7@ Gy Z ' (€0
k

We observe that in steady state, the coherences do not van-
and ish, and no detailed balance is established between the levels
) |3) and|2) with the level|1).
an
I (0)=— 2 |ful?nd(w— 0)=T(w)N(w), (53
(@) #2 Ek | k| NS @) (@)N(w), (53 V. THE CONVENTIONAL AD HOC APPROACH
The goal of the present study is to compare, for the com-

posite system in a reservoir, the outcome of our exact ap-
proach, where only the factorization approximation is used,

and the thermal distribution function for the bath oscillators,

N(w)= ; (54  With that of the standard one. Let us first review doenmon
ehho—1 procedurewhich is utilized to obtain the master equation of a
quantum system composed of two coupled subsystem, when
is the Bose-Einstein distribution. only one of them is interacting with the reservoir. It is basi-

The detailed balanceconditions for the populations are cally assumed that the coupling between the subsystems can
simply obtained by substituting Eq&0) and (51) into Eq.  bedisregarded 14], when calculating the relaxation terms of
(49), i.e., the master equation. More specific, for a system’s Hamil-

tonian of Eq.(1),

of? o
_<S+S+) — e Bhlwg+a) _(SS ) —e=Ph(wo-9) (55 He=Ha+Hc+Hac,
71 7ay

when only the subsysten® is coupled to the reservoir
Note that this result is independent of thés. The detailed through the Hamiltoniatd g, the effect of the reservoir is
balance means that in the steady state, the number of transialculated disregardingd,c. The master equation of the
tions from one state to another is compensated by the reversemposite system is then written as
transitions. Since the normalization dictates that

d 1 d
0'(++)+0(__)+(r(11)=1, (56) a("(t):ﬁ[Hs,U(t)]*' ag(t))rel, (61)
we can write Eq(55) as where o(t) is the reduced density matrix of the composite
o Bi(wo+0) o= Bh(wo-0) system anld the relaxa.tlon.ter[nlo(t)/dt],e| has been as-
oSS = oSS = sessed using the Hamiltoniddy+Hc+Hgc.
) z = T0C7) z For our model of three-level atom, with the Hamiltonian
of Eq. (19), and Eq.(21), this relaxation term is
1 _
Tz 0= 0CH=0, (57) d I (wo) +T (o)
1y z (+=) Y (=) (aa(t)) _ ( o2 (wo [2S a(1)S" = S"S a(t)
rel

whereZ is given by Eq.(47), and conclude that indeed, at I ()
steady stater®s= o®9 of Eq. (45). To express the steady state _ + o “o + -
in the original representation of the bare states, we invert the oSS 1+ 2 [257e (DS
transformation as the following: - .
—S STo(t)—o(1)S™S]. (62

Here the atomic operators are related by ) only to the
|1) and|2) transitions of frequencys,, and the damping
ratesI'(wg) andI'' (wq) =I"(wo)N(wg) are given by Egs.
(52 and(53), whereN(wy) is the reservoir’s mean photons
number of Eq.(54), at frequencyw,. It should be pointed

0‘(++):§(0(22)+ O (33T 03t 0(23),

0(-) =5 (Tt 0337 TE T 0(23),
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out that while the relaxation term was calculated di(t),
the reduced density matrix of subsysténonly, it is re-
placedad hocby o(t) of the composite system. It should be
emphasized that Eq62) is derived[3] by applying, beside +;(__)):U(+_)(0). (70)
the factorization approximation, the Markoff ansatz, the
coarse-grained procedure, and the Secular approximation. () Equation(66) is converted to
With the relaxation term of Eq62) substituted into Eqg.
(61), the equations of motion for the populations and the . r+r’ _ . . .
coherences in the Schtimger picture, in the diagonal repre-  (s+1I'")o(11)— 5 (o yToytouytocy)
sentation of Eq(27), can be written explicitly as the follow-
ng. =0(12(0). (71)
(i) For oy 1)(t), we have

— r— r+r- —
O+ Zo0anT —7 (04

R
S+2|g+T

Here,o(,z(0) are the initial conditions.

el - _ - _ e steady-state solutions of these equations are calcu-
d r+r N r r+r Th dy Ui f th quati |
T(++) T(++) 0(11)
dt 2 2 4 lated, and compared to our results of Egp). For the case of
(o . ) 63) a heat reservoir at finite temperature, applying &@) for
)RR the steady state to the above set of Laplace transforms, we
- . btain
(ii) For o~ _(t), we obtain 0
d r+r’ r’ r+1r’ o$ r’
— ++) _ — A Pho
HO(-)T T T 5 0TS0y s o o € o,
dt 2 2 4 affl) r+r
X(O‘(,+)+(T(+7)). (64) s
el r’
(ii ) For the coherence(, _\(t), we find %Z ——=e P, (72)
(+-) o r+r’
(11)
d . r+r’
TR —i(ws~w_)on )~ 5 T(+-) This indicates that the standard procedure does not establish
the proper detailed balance in the composite system. Using
r+r’ ) r’ 65 the normalization of Eq(56), we get
——(O'(++)+O'(,,) +—0'(11). 6
4 2
—Bho
. . s _gss S preo (73
(iv) For the ground-state population, we get I+~ 1+ 20 Bhoo’
d r+r’
— =T + +o__
dtU(n) g (11) 2 (U(+ +)TO(--) oSS = 1 oSS =0
A7 e phiwg”  “FTT
+O'(+,)+O'(,+)). (66)

which does not lead to the thermal equilibrium result of Eq.
(46). In contrast, we observe that our exact equations of mo-
I=T(wy), I''=I"(w), (67)  tion (where only the factorization approximation is applied
render the right detailed balance, and the proper populations
using the Laplace transform, the above equations become tta thermal equilibrium. We also note that at least one differ-

In these equations, we have written, for short,

following. ence stems from the sensitivity of the distribution function
(i) Equation(63) is converted to N(w) to frequency. While in the exact solutionN(w) is
related in the diagonal frequencies,*=g, in the conven-
r+r— r— r+r — — tional master equation the functiow(w) is expressed only
st——|oen™ 50ant (0T oey) at the bare frequencyy.
=0'(++)(O). (68) VI. ZERO-TEMPERATURE RESERVOIR
(i) The Laplace transform of Eq64) is In this section, we compare our exact method with the
. ) ) conventional master equation, when the reservoir is at zero
st r+r P F_; i I'+T (Ot ors ) temperature. First, we write the exact set of equations, i.e.,
T2 9T Z%anT T4 =T Egs.(36)—(39), as
:O'(,,)(O). (69) -

_ G, — —
(iii ) The Laplace transform of Eq65) is (S+G1)U(++)+7(U(+*)+U(*H)_UH +(0),
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DISSIPATIONS IN COUPLED QUANTUM SYSTEMS

_ Gy, _
(s+ G2)0(77)+7(U(+7)+U(7+))=(T(77)(0),

. G1+G,|— Gi— Gy
S+2|Q+T 0'(+_)+70'(++)+ 70’(__)
:O'(Jr,)(O), (74)
and
- — G,+G,| — —
501y~ C10(++) =G0~ | =5 [ (0 T o)

=0 11)(0). (79

Note that;(n) does not appear in Eq64). Next, we write
the set of the conventional schemes, BG8)—(71), as

ry— r — _
5+§)U(++)+Z(U(+)+U(+)):U(++)(0),
I — r — _
S+§ O'(__)+ Z(O’(+_)+O'(_+))=O'(__)(O),
R g r — _
S+2|g+§ O’(+,)+ Z(O‘(++)+0'(,,)):0'(+,)(0),
(76)
and
_ I — _ _ _
Soy~ 5 (0T oo T o)) =0a1(0).
(77

A superficial comparison of these two sets of equations indi-

cates that if we would replace the functioﬁ_sl(s) and

az(s), in Egs.(74) and(75) by I'/2, which does not depend
on s, the two sets will be identical. We shall now argue that
under general conditions, this can be justified. Thus, we con-

PHYSICAL REVIEW &7, 063813 (2003

that all the rates of change in time are much smaller than the
scale of the atomic frequeneay,. So, besidg< w,, [see Eq.
(20)], we expect that

'S<wp. (79
Further, we notice from Eq41), and Eq.(43), that
Gl == ff—— (80
’ h? x S+ (0~ w=)?
are of the order of
F(w:)=2—f§ |fd?8(w— w2, (81)
of Eq. (52), which should also obey
I'w.)<wg. (82

To conclude, we observe that there are two frequency scales

besides, namely, the coupling frequeneyand the damping
ratel’.

A. Strong coupling limit
First, consider the limit when the intrinsic coupling con-
stantg is much larger than the damping rdteg>T". In this
strong-coupling limit, sincsg>§l,§2, we expand the de-
terminantD(s) with respect toG,; and G,. We find that
D(s) of Egs.(78) can be simplified into

D(3)=(3+G,(3)) ~S+2ig+w)
X (5+Gy(s)) 5—2ig+w), 63

which yields the following four solutions:

clude that at zero temperature, the conventional master equa- (02)

tion, i.e., the set of equationd6), and Eq.(77), is appli-
cable.
To show this, we observe that the solutiom¢ime of Egs.

(74) are obtained by the inverse Laplace transform of Eq.
(35). The latter, in turn, depends on the zeros of the determi-
nant of the fourth-order algebraic equations of the set of

equationg74), amended by the equation foy_ . We can
readily write the determinant as

D(s)=4g%{s?+s(G;+G,) +G,G,}

G,+G.
+ s+ 222

( 3G,+3G,

s[ s?+s +2€1€2},
(78)

and seek for the zeros, of the equatiorD(s)=0. Before

attempting a general solution of this equation, we conjecture

- — INow
$1.=—G;A0)=— 5 (84)
~ _ Gy(—2ig)+Gy(—2ig)
Sz=—2ig— 5
MNw,—2ig)+(w_—2i
~ ig— (w4 9)4 (o g), (5
and
- MNw,+2ig)+ T (w_+2i
30— 2ig— (04 +2ig)+ (@ g)_ 6

4

Since for a reservoir of harmonic oscillators the coupling
factor|f,|? is a smooth function oy, Eq.(81) leads to

I'Nw.),I'(w.*2ig)=I"(wo)=T". (87
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We observe that the zeros of the determinant of the set, Egs. 2ig - . 1 .
(74), i.e., o y()= (e H—e ) — Se I, (94)
~ I - r
S12=5, Ssa—*2ig- 5, (89 ~ andalso
. 49°
are the same as those of the set of equat{@6s It is easy 0(33)(t):e*492tlr+%{ e*492t/F+e*Ft_2e*Ft/2},
then to invert the Laplace transform and find the solutions in r

time. For example, if initially the atom was in the sta8g,
we have 4g? 5

-TI't/2

1 r
O'(++)(t):(1'(,,)(t):§e 1—4—sinl"(29t)},
9 In passing, for completeness of presentation, we compare
these two results for the dependences of the populations
, (89) 0 (33)(t) ando(,,)(t) of Eq.(90), wheng>T", as depicted in
Fig. 1, with that of Eqs(95), wheng<T", as depicted in Fig.
2. We observe, as it is well know[8], that when the cou-
which yield also for the bare states pling g, between the degenerate states, is much larger than
r the effective width of the lind", which is induced by the
L reservoir, the stat¢3), though not directly coupled to the
1+cos2gt)+ gsm(29t)], radiation bath, decays on the same time sdgle2/T", as
the state|2) does, while the population oscillate, with fre-
1 e quency 2y, between the two excited states. On the other
o22)(t)=5€ " "{1-cod2gt)}. (90 hand, when the stat8) is weakly coupled to statf), it
decays on a time scale much longer tHgn by a factor of
(1/8)(I'/g)?, and the two levels decay directly without any

r : :
ﬁ(l_ eZlgt) _ e2|gt

—TI't/2]

1
o= 5e

—TI't/2

_ 1
o33)(t)= >€

B. Weak-coupling limit

oscillations.
Next, we consider the limit when the intrinsic coupling
constantg is much smaller than the damping raté; g C. General solution
<I. In this Weal_<-coup~ling _Iimit, sincg<(§1,62, we ex- Now, we show that it is legitimate to interpolate between
pand the determinari2(s) with respect tog<, to get these two extreme limits a§>T", andg<I'. We observe
_ ~ 4g? ~ 3(§1+€2)—A that since in general, the zersof determinanD(s) o_f ENq.
D(s)=| s+ =——|| s+ ) (78) are of the order ofy or I', we can replace botf,(s)
G1+ Gy and G,(s) by I'/2. We then find that the zeros of the deter-
_ 3G+ Gy +A|[. G,+G, or minant of the set, Eq$74), are
X| s+ 7 s+ > , (91 _ r T+0
S1,0=— PR S3.4= 2 (96)
where
. — whereQ = \T?—(4g)?. The solutions in time for the previ-
A?=9G}+9G5—14G,G,. (92)  ous initial conditions are
Repeating the same arguments of the strong-coupling limit, 2igl 1 Ot
we find the following zeros of the determinant of the set Egs. g(_ﬂ(t):e*“’2 ——— = |cosh —
. 02 2 2
(74, i.e.,
_ T _ ~ 492 2|g _ r . Ot _ZIgF
31,2:_51 s3=—1T, 54:_Ta (93 +(ﬁ 20 sin 2 02 |

which are also the zeros of the set, EG&), in the weak- oo (D=0 (1)

coupling case. Here, for the same initial conditions as previ-
2 Ot
—— cosh —

ously, the solutions in time are e
=e
202

oy () =0 (1)

1 2 492 2
— e 4t (e~ 49T g~ Tt_pg=TU2),

2 and
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1 1
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5 06; 1 / \\- (2] h AN
g £ 0.6} N
2 g )
g 04r \ = ~ -
2 ~
“ n? 0.4 ~
o2t | | 1 S
~
v S~
0 \ /. . A \ \ / / 0.2 r ~ -
0 20 40 60 80 100
ot
0 1 n
FIG. 1. Original states populatiomng s ando ,, vs scaled time 0 100 200 300 400 500
ot

wt at a zero-temperature reservoir in the limit of strong coupling.
The parameterg/w andI'/w are chosen to be 0.1 and 0.01, re-

FIG. 2. Original states populatiomsss) ando,, vs scaled time

spectively.

2

_ - I't2 1 QO r QO
ozt =e E[cosf( t/2)+1]+ﬁ[cosr( t/2)

r
1]+ a sinh(Qt/2)

8g° ~Tt/2
T22)(t)= ?e [coshQt/2)—1].

(98)

ot at a zero-temperature reservoir in the limit of weak coupling.
The parameterg/w andI'/w are chosen to be 0.01 and 0.1, re-
spectively.

We turn now to the exact set of equations, at finite tem-
peratures, namely, Eq&36)—(39), and examine the determi-
nant of these equations. We express this fifth-order polyno-
mial in s as

D(s)=s{s(s+L)(s?>+sl,+L3)+40%(s®+sL,+Lg)},

(99
where we have introduced
It is easy to show that these general results lead to the lim-
iting cases of strong and week couplings. These solutions are G+ T,+G,+T,
identical to those obtained from the conventional set of equa- L= > ;
tions, Egs.(76). We conclude that in the case of zero-
temperature reservoir, who$d w) of Eq. (81) is a flat func- —_ = =
tion of frequency neawg, our “exact” derivation of the :3G1+5T1+3G2+5T2
equations of motion for a composite system supportsathe 2 2 ’
hocinsertion of the relaxation term, E¢62), into Eq.(61).
L3:ZGle+ 3G1T2+ 3Gle+4T1T2,
VII. FINITE-TEMPERATURE RESERVOIR

The general case when our composite system is in contact L4=Gy+ Gt 2Ty 2T,
with a finite-temperature reservoir is studied here. Before -
executing this program we compare the exact set of equa- Ls=G1Gy+2G; T +2G, T +3T4 Ty, (100

tions, EQgs.(36)—(39), with the ad hocset, Eqs.(68)—(71). _ ~
Our suspicion that thad hocscheme is not justified in this and seek again the zerssof the equationD(s)=0. One
case is emanated from its failure to produce the proper steadigro is readily obtained by inspection, namely,

state, and the detailed balance. The crucial differences seem
to come due to the presence of the thermal functions
T(s,w~) of Eq. (42) in the exact equations, while the ther-
mal functionl'’ (wg) of Eq. (53) appears in thad hocequa-

$,=0, (101

which is responsible to the steady-state solutions in time.

tions. These are absent at zero-temperature limit. While dg®Wever, we cannot find the other zeros in the general case,
zero temperature, for a flat frequency reservoir, we ha(%]nd we will attelr_npt SOM'OES In thke prev:pus two limits;
G(s<wq,w+)=T'(w+)=T(wy), at finite temperatures the the strong coupling andi) the weak coupling.

distribution functionsN(w) appear in the equations, and
their dependence on the frequency cannot be discarded. We
conclude that thead hoc schemecannot be applied to a
composite system at finite temperatures.

A. Strong-coupling limit

In this case, we consider the intrinsic coupling constant
to be much larger than all the damping rates of the system.

063813-11
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Since here zeras, beside being extremely smaller relative to ~ 0-5
wg, are expected to be of the ordergyfor the damping rates = = %)
of the system, which are related @, A(s), andT; i(s). The 0.45} — %) |]
strong-coupling limit implies thag>G,,G,,T,,T,. Ex-
pandingD(s) with respect t6G;,G,,T;,T,, we get 2 04
o
~ (Gl(s)+Gz(s)+2Tl(s)+2T2(s)—A(s)) 5
52: - ’ [« %
2 (50) S 0.35} 1
y/
— — — — \
~ G1(8)+Gy(8)+2T41(S)+2T,(S)+ A(S) A N
S3=— > : 03l = o -~ —— —— -]
(s—0)
- G1(S)+Gy(s)+T1(S)+ Ty(s 0.25 . : -
34:2ig_( 1(8)*Go(9) ¥ Ta(8) + Tol )> , 0 50 100 150 200
2 (s—2ig) ot
= b~ — — FIG. 3. Diagonal states populations, ) ando(_ _, vs scaled
S5= —2ig— ( Gi(s)+Ga(8) +Ta(S) +T2(S)) , time ot at a finite-temperature reservoir in the limit of strong cou-
2 (s——2ig) pling. The mean photon numbers in the reservoir ldfe=5 and
(102 N,=6. The parameter®’ w andl'/w are chosen to be 0.1 and 0.01,
respectively.

where

2 A e~ e 2 4= G’sandT’s can be replaced as in Eq404) and(105). The

AT=[6G1(8) = Ga(s) +2T4(8) = 2To(8) "+ 4Ty (S) To(s). zeros are then expressed, in terms of the photon distribution
(103 of Eq. (106), as

Sincel'(w) is not sensitive to a relevant range of frequencies 9

aroundwg, we can replace th& functions with a constant, 3 =— 1697°(1+ 2Ny + 2N, + 3N,N,)

ie., 27 T(2+Ny+Nyp)(2+3N;+3N,+4N,Ny)

G,(s)=G,(s)=T1/2. (104) 5 r
33: - Z(2+ Nl+ Nz),
This is not so for thd functions, which are sensitive to these
frequencies through their dependenceNfw). We have

. T
S4=— g (6+5N;+5N,+F),

T,(5)=TNy/2, T,(s)=TN,/2, (105
where 1
N;=N(w,), N,=N(w_), (106) - - :(22)
are the mean photon numbers in the reservoir at the frequer 0.8¢ T 0:??; ]

ciesw,=w+g andw_=w—(g, respectively. Having obtain

all the zeros of the determinant, which are also the locations2 0.6
of the poles for the contour integrations in the inverse%
Laplace transformations, we can express the solutions for ths
populations and the coherences in time. We demonstratnng_'oA.
some typical cases as depicted in Figs. 3 and 4, when ini:
tially only the statd3) is occupied. We observe that since in
the strong coupling casg is dominant, oscillations of the 0.2}
populations in time occur at the beginning. We further notice

that after long time, the populations are settled at their ther-

mal equilibrium values. 0

0 50 100 150 200
wt
B. Weak coupling limit
L . - FIG. 4. Original states populationsss), o2, and oy vs
In a similar manner, we tackle the Weak-coupllng IIn_m'_scaled timewt at a finite-temperature reservoir in the limit of strong
Here, the damping rates are much larger than the |ntr|nS|Eoup"ng_ The mean photon numbers in the reservoiiNgre 5 and

coupling g, or g<G,,G,,T;,T,. We expandD(s) in Eq. N,=6. The parametery/ » andI'/ » are chosen to be 0.1 and 0.01,
(99) with respect tog?. First, we can be convinced that the respectively.
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- r have converted these equations into algebraic ones, i.e., Egs.
S5=— §(6+ 5N;+5N,—F), (107 (36)—(39), by Laplace transform, and investigated the latter
set. In the present section, we shall attempt to follow the
standard procedure, as developed, e.g., in[Bé&fin order to
produce a master equation for the composite system, namely,
F2=4+ 25N2+ 25N2+ 12N, + 12N, — 14N,N; . to convert the integrodifferential equation into an approxi-
(109  Mmate differential equation in time for the reduced density
matrix o(t) of the coupled subsystems.
We demonstrate some typical cases as depicted in Figs. 5 and We now continue the review of the standard procedure,
6. Since the coupling is small, no oscillations of the popu- starting from Eq.(17), and then apply it to our three-level
lations are developed, and the latter relax directly to theiatom. First, Eq.(17) is written in the interaction picture

where

equilibrium values. where the reduced density mateixXt) is expected to vary on
relaxation time state$g~ 1/I', much larger than that of the
VIIl. MASTER EQUATION FOR A COMPOSITE SYSTEM reservoir correlation times.. Then, a coarse-grained ver-

sion of Eq.(17) is generated by taking the average in time of

In the previous sections, we have studied the dynamics ahjs equation, over an arbitrary time steft which is con-
a composite system in a reservoir, invoking only the factorfined by
ization approximation, and making use of the Laplace trans-
form, without using the Markoff ansatz, the coarse-grained
procedure, and the secular approximation. The latter are th
building blocks of the standard master equation. Instead c/gt this stage, the Markoff ansatz is invoked, andt’),
continuing from the integrodifferential equations of motion Within the time integrations, are replaced byt), and can
in time of Eq. (17), or rather the set, Eq$30)—(33), and  be taken out of the time integrals. We end up with the coarse-

invoking the approximations of the standard procedure, weyrainedo(t) obeying the following differential equation:

re<At<Tg. (109

dtoaba) -2 f dr— 4t G0 181824 Gl w7+ (e 7]+ 5184 G (e 7}

+0'ac(t)elebt {S Sdb[G*(wad T)+G*(wad T)]+S debG (0garT } Ucd(t)el(wa°+wdb)t

X{S;cSchrb[G* (wep, )+ G‘l*'(wcb ,7)+G(wga,7) +Gr(wga,7) ]+ S;csab[c‘$(wad ,7)+ Gr(wpe, T)]}):

(110
0.5 T T T T T 1
\
= = %% . — - Oag)
__o© __o©
) ost \ 6(22) i
\ S—- (1)
\
2 ol O
] \ oY \
E 0.4} N s A ~
§. ) §_ ~_
S N $04r N o2
Ny e T e =
N /./’
N .
AN 0.2 L
~
~ - - Y,
0.3 ! . ! : : 0 L L L L L
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
wt ot
FIG. 5. Diagonal states populations, .y ando_ _) vs scaled FIG. 6. Original states populationsss), o2, and oy vs

time wt at a finite-temperature reservoir in the limit of weak cou- scaled timewt at a finite-temperature reservoir in the limit of weak
pling. The mean photon numbers in the reservoir ldje=5 and  coupling. The mean photon numbers in the reservoifNgre5 and
N,=6. The parametery/ v andIl'/w are chosen to be 0.01 and 0.1, N,=6. The parameters » andl'/» are chosen to be 0.01 and 0.1,
respectively. respectively.
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where the correlation functions are given by E48). Only d._

three time scales were involved in the derivation up to hereaff(u)(t)=

as stated by Eq109. However, in a composite system, with
the coupling Hamiltonian of Eq1) between the components
of the system, there is another, an intrinsic time scale of the
order of ~7/{Hac), presents in the system. This time scale
is bound to introduce a dilemma of how to relate it to the
other ones, and, in particular, to the coarse-grained fime
It may further cast a doubt on the applicability of the stan-
dard procedure to a composite system.

We return now to our toy model of the three-level atom,

PHYSICAL REVIEW A67, 063813 (2003
1 U 1
=S (0 )T (@ )7y + 5T (w.)
~ 1
T (0] D+ 5T ()

_ 1 (t+Aat 1
Jrr'(w_)]a(__)(t)+mft dtZ[M(w-)

+T (@) 4T (0 ) +1 (@)1 o 4 (1)

and apply the coarse-grained procedure, and the Markoff an- +e*2‘9"?r(+,)(t)]. (119
satz, to the set, Eq$30)—(33). We obtain the following.
(i) From Eq.(30), we have Herel'(w) is defined in Eq(52), andI'’ (w)=T"(w)N(w).

We note that the coarse-grained averaging is boiled down to
integration in timet’ over the oscillatory term of frequency

d~ 1 , ~ 29, i.e.,
&UH +)(t): - E[F(GM)"'F (w+)]0'(++)(t)
t+At i
1, - 1 (a1 |=% t dt’eZigt’=e2igteigAt—Slr;i?t), (115
+2F (w+)0'(11)(t) AtJ; dt 4
o and this, in general, is not defined. The reason is that the
X[T(w_ )+ (w_)][€*9" o ,y(t) arbitrary time At is prescribed to be bound by.<At
oigt'~ <Tg, see Eq(109), and it is unrelated to the intrinsic time
te o+ 0] 11D gscale 1g. Only in the weak-coupling case, i.e., when
<TI, since therg<1/g we havegAbt;_l, andl of Eq.(115),
N . . . if is well defined, and replaced bg?'%'. In this case, the
(if) Equation(31) is turned into coarse-grained equations, with the Markoff ansatz, conform
with the exact equations in the weak-coupling limit. How-
d 1 ever, this is as far as we can go, and wigeandI” are not
_’(}(__)(t): — —[F(w_)+l“’(w_)]5(__)(t) related byg<T", the standard procedure is at a dead ¢,
dt 2 Eqg. (115, is not well defined, and the procedure does not
1 B 1 fteat 1 produce a master equation for the composite system. Note
+ =T (w_ )opuy(t) —— dt’— that we cannot use to the secular approximation to save the
2 o AJ‘ 4 scheme

X[F(@4)+T" (@,)][€9 T4 )(1)

+e 29 ()], (112

IX. CONCLUSION

The present paper has dealt with the dynamics of a com-

posite small system, made up of two coupled subsystems,

(iii) Equation(32) is expressed as

when only one of them is interacting with the environment. A
set of equations of motion, which we coin for short the exact

set, for the reduced density matrix of the composite system

has been derived using only the factorization approximation,

E} B (t):_l[r(w7)+[‘(w )+T (w_) without employing the Markoff ansatz, the coarse-grained
dt” ) 4 " i imati
averaging, and the secular approximation. The latter are the
T ~ ¢ building blocks of the standard procedure, which leads to the
(@)]o 1) master equation. The conventioraad hocapproach, which
1 (At 1 assumes that the relaxation terms of the equations of motion
- —f dt’—e?9" [T (w_) of the composite system can be borrowed from the master
At Jy 4 . ; . . .
equation of the subsystem interacting with the reservoir, has
, ~ been compared with the exact approach. It has been demon-
(0 )]o O+ (0,) strated that when the reservoir is at zero temperatureadhe
+F,(w+)]a(++)(t)_[rl(w+) hqc scheme_is applicable,. however, at finite temperatures it
fails to predict the dynamics of the system. It has been fur-
+T (0 )]o)(D}. (113 ther shown that at finite temperatures, the standard procedure
does not yield a master equation for the composite system,
and one has to appeal to the exact scheme, with the Laplace
(iv) Finally, Eq.(33) is converted into transforms, to study the dynamics of the system.
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