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Conditional measurements as probes of quantum dynamics
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We discuss conditional measurements as probes of quantum dynamics and show that they provide different
ways to characterize quantum fluctuations. We illustrate this by considering the light from a subthreshold
degenerate parametric oscillator. Analytic results and curves are presented to illustrate the behavior.
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[. INTRODUCTION and in the latter of a nondegenerate parametric oscillator.
We begin by considering a degenerate parametric oscilla-
Fluctuations are an integral feature of quantum dynamicalor in Sec. Il and discuss conditional measurements of inten-
evolution. For dissipative quantum optical sources, thes@ity and amplitude. Conditional measurements of quadrature
fluctuations are reflected in the photoemissions from thesBuctuations are discussed in Sec. Ill. We restrict our consid-
sources. In this paper, we will use the terms photoemissiongrations to its operation below the threshold of sustained
and photodetections interchangeably because photodetectigfcillations. This allows us to obtain simple analytic expres-
is simply a matter of casting a net to catch the photons emitsions for various quantities of interest. The results are sum-
ted by the source. A photoemission signals a fluctuation irmarized in Sec. IV.
progress. Hence, a conditional measurement that commences

when a photoemission has occurred catches a fluctuation in | CONDITIONAL MEASUREMENTS OF A DPO
the act and, in fact, allows us to observe the time evolution . . _ .
of the fluctuation[1]. This sort of information is not avail- ~ The field from the DPO is governed by the interaction

able in unconditioned measurements. Thus, conditional meddamiltonian for phase-matched down-conversion inside an
surements allow us to probe quantum dynamics at a deepéptical cavity driven by a classical injected sigiaJ6]. The
level. Perhaps the best known example of conditional meagquation of motion for the density operatoy of the DPO
surement is the measurement of the second-order intensifigld is then

correlation that measures fluctuations of light intensity fol-

lowing a conditioning photodetectid@]. This is the basis of L _KE 42 2 s (2858 — atAs.— 5.ata
the observation of photon bunching or antibunching. Re- P4~ % [8d"~8d.pal* ¥(284Padg—ag@aPa— Peduda),
cently, measurements of quadrature squeezing conditioned (D)

on a photodetection have also been proposed and reported in
cavity quantum electrodynami¢3,4]. In this paper, we con- wherex is the mode-coupling constant,is the dimension-
sider conditional measurements in the context of parametritess amplitude of the classical pump field,is the cavity
oscillators and show that such measurements provide sensinewidth, anda, and ag are the annihilation and creation
tive probes of quantum dynamics and the language of corpperators for the DPO. In writing the equation of motion for
ditional measurements provides powerful conceptual toolshe density matrix, we have neglected pump depletion that is
for unraveling and understanding nonclassical features o4 reasonable approximation for low down-conversion effi-
quantum dynamicg5—8§]. ciencies and subthreshold operation of the DPO considered
Optical parametric oscillator@OPOs and amplifiery9]  here. The combinatiors has been chosen to be real by a
based on down-conversion have played a central role in thgyjtable definition of the phases af anday,.
studies of nonclassical photon correlations and various ysing the positiveP representation for the density matrix,
schemes for quantum communication and computdfl® e can map the equation of motion for the annihilation and
The fundamental process in optical parametric oscillators igreation operators for the DPO field onto a set of stochastic
conversion of a pump photon of frequeney into a pair of  equations for thec-number amplitudesry and ag, corre-

photons(signal and idley of lower frequenciesos andw; in sponding, respectively, to the annihilation and creation op-
a nonlinear medium inside an optical cavity. The procesgratorsa anda,. These equations reds,6]

conserves energy and momentum. Conservation of energy
requires the pump and down-converted frequencies to be re-
lated by w,= ws+ w; and conservation of momentum, also
known as phase matching, requires the use of certain aniso- ,
tropic material media and specific states of polarization for gy = = Yoy + ke agt ke éo(1), (©)

the pump, signal, and idler photons. If the down-converted

photons have the same frequenay.€ w;=w,), polariza- whereé;(t) and&,(t) are two statistically independent real
tion, and direction of propagation, the process is called deGaussian white-noise processes with zero means and unit
generate otherwise it is called nondegenerate. In the formentensity. Normally ordered averages@ﬁ‘ and &y can then
case, we speak of a degenerate parametric osci{@®0)  be calculated by using the mapping

ag=— yag+ keag, + ke éy(t), 2
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<;agmag N—(al, a), (4 Let us now consider the intensity from the DPO at time
t=r following a photodetection in the steady statetat0.
where the averaging on the right-hand side is with respect tdhis intensity from the DPO, conditioned on a photodetec-
the positiveP function. Since the noise terms in E¢®) and  tion, is
(3) are real, the variableay and a4, can be chosen to be

real. Then by using the simple transformation | (T)_2y<3$(0)ég(7)3d(7)3d(0)>
dd(7) =

: , . (:hg(0)Ag(7):)
we find that the field produced by the DPO can be described =2y——=

in terms of two independent real Gaussian procesgesnd (hq(0))
u, with mean and correlation functions given by

ag=(U;+Uy), ag,=(U;—Uy),

2yngyq(7), (11

where we have used the fact that the probability of a photo-

1 ke , detection in the steady state is proportional to the steady-
(u)=0, (ui(u(t')=38;7 Te**i“*‘ . (6) state intensity 3(fy)=2yny from the DPO. Thus, the con-
' ditioned intensity is proportional to the conditioned photon
where the decay constants are given by number. The conditioned intensity is related to the second-

order intensity correlation functiof2]
N=v—Ke, Ar,=vy+tke. (7) o o
@, (Pa(7)Ag(0):)  Nyg(7) 12
Below threshold ke <y) both decay constants are positive. 9¢7(7)= (Ag)? T (12)
Higher-order correlations af; andu,, and thereforery and d d

agy ,» can be expressed in terms of the second-order correlgyhere the colons denote time and normal ordering of opera-

tion function using the Gaussian moment theoiférh. tors enclosed by them. From this equation, we see that the
Using the result of Eq(6), the steady-state mean values second-order intensity correlation function is the ratio of the

for the DPO field amplitude and its second-order momentgonditioned photon number to the steady-state photon num-

are found to bg6] ber.
— . Aty — The time dependence of conditioned photon number can
ag=(a4)=0=(ag)=2ag, , (8 be calculated with the help of Eq&) and (6) to be
_ 1| (xely)? — I e Mo
ng=(f )= =| —————|, 9 Nga(7)=Ng+ 5| —e "7+ —e <27/, 13
a=(Na)= >3 1= (xel7)? 9) d(7)=Ng+ 7 i v (13

o y L It can be seen that long after the first detectien+(), the
aj=(a%)= —ny=(al?=a3,, (100  mean photon number reverts to its steady-state vajudhe
ke rate at which the system approaches the steady state is deter-
wherefy= a4, is the number operator for the DPO. In Egs. mined byA, and\, given by Eq/(7). Beforer=0, the mean

(8)—(10) and in the rest of the paper, we denote the Steadyphoton number has its steady-state vafje Immediately

state operator averages with a bar over the letter symbol foélfter a photodetection at=0, the mean photon number
P 9 y mps fromny to the value given by

the operator. We see that the steady-state mean-field amph—
tude from the DPO vanishes. The contribution to the mean
photon number is thus purely from quantum fluctuations. It Ngq(0) =
should also be noted that since the mean values su¢iias

and (&)%) are nonvanishing, quantum fluctuations are Notand thereafter relaxes to the steady-state valuollowing
isotropic in phase. This phase dependent noise is the sourgg, (13). Conditioned photon number increases significantly
of squeezing exhibited by the DPO. The steady-state meagompared to the steady-state valye This increase in the
photon number can be observed by measuring the mean igpnditioned photon number, and therefore the conditioned
tensity of the light emitted by the DPO and the mean-fieldmean intensity from the DPO, is even more pronounced far
amplitude can be measured in an interference experimemelow threshold wher@y<1 (or ke<y). The enhanced
with a coherent field. . ~ emission following a first photodetection can be understood
~ Before proceeding further, we recall that the intensity ofpy recalling that inside the DPO cavity photons are generated
light (photons/secfrom the DPO is related to the photon in pairs. Below threshold, the rate of pair generation is small
number inside the cavity byl y)=2vy(fy). Because of this so that the photons in each pair leak out from the cavity well
simple proportionality between the two, we will use the before another pair is produced. Thus, although the mean
terms intensity and photon number interchangeably in th@umber of photons in the cavity is very small, there are large
paper. In view of Egs(8)—(10), it follows that the steady- fluctuations whenever a pump photon is down-converted into
state intensity of the light from the DPO is proportional to a pair of photons into the cavity mode. The detection of a
the mean number of photong; inside the cavity and the first photon signals a fluctuation in progress which increases
mean amplitude of the field emitted by the DPO vanishes. the mean number of photons in the cavity for a period of the

2

_ 1
3ng+ —), (14
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ny=(N)=Rn,+Tng+VRT(eag +a*ay)=Rn,+7Tng.
(Ds) (18)

From these equations, we see that the mean-field amplitude
at port 1 has contribution only from the laser and that the

~ 2

From aq e | D ” ” ” > mean photon number is the sum of contributions from the
DPO ~ 1 DPO and the laser. The interference term averages out to
1

BS; | a zero in the steady state.
Let us now consider conditional measurements. For defi-
a niteness we shall consider conditioning measurement to be a
E:l phase ¢ photodetection at port 1. Noting that the CO field remains
unaffected by a photodetection, we can express the condi-
CcO tional expectation values of the superposed field variables in

terms of the conditional expectation values of the DPO and

FIG. 1. An outline of the setup for detecting the interference of CO field variables. Thus, the mean amplitude and intensity at
the light from the DPO with a coherent field. BB a lossless beam port 1 conditioned on a detection at port 1 §8¢

splitter andD; andD,, are two photoelectric detectors that monitor

At A A
the outputs at ports 1 and 2 of BS ag(r)= <a1(0)a<1ﬁ( T))al(o)> _ R+ \Tag(7), (19
order of cavity lifetime (2/) ~1. This increased mean photon ’
number gives rise to enhanced emission from the cavity fol- (al(0)a4(7)a,(0))
lowing a photodetection. ag1(7)= A
We also note that, such as the steady-state field amplitude (Aa)
a4, the conditional amplitudeyy also vanishes indicating M7 aAgT
that the field from the DPO is incoherent. The emission from = KS\/R_T (e : _€ ’ )a
the DPO is thus pure noise and the contribution to its inten- 4n; M A2
sity is from incoherent fluctuations. These fluctuations, how- N
ever, are not uniformly distributed in phase as we have al- + € + € )a* (20)
ready noted following Eqs(8)—(10). The phase of the Ap A2 '
fluctuations can be observed in an interference experiment At
outlined in Fig. 1. _(a1(0)h1(7)a4(0))
The light from the DPO is mixed with the light from a Nyy(7)= (fy)
coherent oscillatofa laser with complex field amplitude '
=|a|e'?) at a loss-less beam splitter BSf power reflectiv- =Rn,+ Ty (7)+ \/R_T[aagl( )+ a*ag (7],
ity R and transmittivity7=1—R. The phasep is relative to 21)
the classical pump for the DP[®,12]. The superposed light
in the two output modes, labeled by subscripts 1 and 2, of the Atrma A
beam splitter is detected by two photoelectric detecidys Ngy(7)= (81(00M4(7)3.(0))
andD,, respectively. The annihilation operators for the two (Ry)
output modes can be written k3]
" Ter )\2 —2NqT )\1 —2\oT
=Ng+ — )\—e 1 +)\—e 20, (22)
él: \/ﬁa-l- \ﬁ"é.d, (15) 4nl 1 2
Here, the first index denotes the port of measurement and the
a,= \/?a—\/ﬁad, (16) second index denotes the conditioning port. Thus, for ex-

ample,ay; is the DPO field amplitude conditioned on a de-

Here, we have taken the beam splitter to be an antisymmetrigcuon at port 1. The third term inyy(7) arises due to in-

. ; : érference between the CO and the DE@nditionedon a
beam splitterfor example, a glass plate with a silvered up- first photodetecti t port 1
er surfacg Qualitatively no new features arise with other Irst pnotodetection at port ~. .
per . X There are several noteworthy features of these equations.
choices of beam splitters. We model the coherent oscnlatolg. . : . )
) . . . irst, unlike the steady-state field amplitudg which van-
(CO) field to be radiated by a laser operating high aboveIshes the conditional DPO field amplitudey, (1) is non-
threshold and take the linewidth of the laser cavity also to be ' . P n\T :
. . zero. Consequently, the conditional interference term in Eq.
v. All measurements in the rest of this paper refer to the .\ :
. . . (21) is also nonzero. Second, even when the mean DPO light
superposed fields given by Eq4.5) and (16). Considering . - I d 1o th liaht i ity th
modea; for definiteness, we find its steady-state mean am[nten_s!ty IS very small compared to the COlig tintensity, the
litude land intensit are, ven b conditional interference term can cancel the contributions
P y 9 y from the first two terms in Eq(21). This means the fringe
visibility can be nearly unity even when the two interfering

a,=(a,)=VRa+Tag= \Ra, (17)  fields have very dissimilar intensities. This is impossible
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FIG. 2. Conditioned mean intensity,;(7)/n,; at port 1 as a FIG. 3. Conditioned mean-field amplitude,(7)/a; at port 1 as

function of scaled time 27 for (a) =0 and(b) ¢= /2 for sev- a function of scaled time 27 for (a) ¢=0 and(b) ¢==/2 for
eral different values of the ration{,R/ny7) =600 (i); 200 (ii); 50 several different values of the ratim (R/ny7) =600 (i); 200 (ii);
(iii ). For both figuresng=10"* andn; is the steady-state mean 50 (iii). For both figuredi;=10"* anda; is the steady-state field
photon number for port 1. The dashed curves represent the coheremmplitude at port 1. The times before=0 correspond to the steady
result |a;;(7)/ny|? for the same parameters. The times befere state.

=0 correspond to the steady state.

Y
with classical sources. Figuresa? and 2b) show plots of tany=—tang¢ yire) (23

intensity ny4(7) for several different values of the ratio
Rn,[Tng. For $=0 [Fig. 2a)], the intensity Shows an en- o1 pejoy thresholdde < y), this givesy~ — ¢. Thus, if a
hancement immediately after a first detection and thereaftey,; photodetection occurs with phage the DPO radiates
monotonically relaxes to its steady-state value. Fbr i phase— ¢. Figures 3a) and 3b) show the time evolu-
=m/2, on the other hand, the behavior of;(7) can be ton of the superposed field amplitude at port 1 over an in-
nonmonotonic as seen in Fig(k?. For example, the curve terval during which a first photodetection occurs. The super-
labeled (iii) shows that the conditioned intensity decreasegosed field amplitude has been normalized so that its steady
first before turning around and relaxing toward its steady-state value is unity. Before detection the system is in the
state value. Another noteworthy feature is that the curves igteady-state and the superposed field amplitude has the mean
Fig. 2(b) violate one or more of the classical inequalitiesa, = \/Ra. After a photodetection, the mean-field amplitude
n11(0)=ny, nyy(0)=nyy(7), [n1(0)—Ny|=[n1y(7)—1y|.  changes abruptly from the steady-state vallRx to the
These inequalities follow from those satisfied by the secondvalue given by Eqs(19) and(20),
order intensity correlation functiofl3—18. This nonclassi-
cal behavior of conditioned intensity arises due to a nonclas- T y
sical interference of the conditioned DPO field with the CO a;(0)= \/ﬁoﬂer( at—a* ) (24)
field as will be seen shortl§g]. ny ke

Unlike the steady-state emission, the conditional emission
from the DPO has a definite phase relative to the CO. Fronfor ¢=0 [Fig. 3(@], this amplitude is real and positive. In
Eq. (20), the phasey of the DPO field immediately after a this case, the DPO field amplitude adds to the CO field am-
first photodetection is given by plitude resulting in an enhanced amplitude immediately after
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a photodetection. It then monotonically relaxes to its steady- 25 : : . T .

state value. This is consistent with FigaRfor the intensity.
For ¢==/2 [Fig. 3(b)], the conditioned field amplitude

a,1(0) is pure imaginary. The contribution from the second

term in Eq.(24), which represents the conditional field from 15

the DPO, can become negative imaginary. The mean-fielc:l\@N

radiated by the DPO is zero before detectj@&uy. (8)] and S

changes discontinuously toay;(0)=VR7(ng/M,)[« & os |

+(y/ke)a*] [Eq. (20)]. For small ny (which implies ’

ylke>>1) and¢= /2, the conditioned DPO field ampli-

tude is ag(0)~VRT(yng/ke|al?)a* =— VRT(yny/

ke|lal?) a. Thus, after the detection of the first photon, the 05

field radiated by the DPO is out of phase with the laser field -2

at port 1. It subtracts from the CO contribution and, depend-

ing on the operating point of the DPO and the ratio 6

Tng/Rn,, it can cancel the CO field amplitude. It can even

exceed the CO field, thereby changing the sign of the overall 5}

field amplitude as seen in Fig(t8 [curve labelediii)]. Fol-

lowing the detection, the field amplitude relaxes along the

imaginary axis back to the steady state according to B&s. I

H
T

and(20). If after a first detection the field amplitude becomes E 3¢
negative, then during its passage to the steady state it passt &
through zero at some nonzero defayrve(iii) in Fig. 3b)]. = 27
If the state of the superposed field after a photodetection
were a coherent state, the conditioned mean intensity of the
superposed field at port 1 would be 0
-2 0 2 9 4 6 8 10
B y — 2ol 1 keT e M7 2 v
N1o(7)=[a1s(7)|* ="y cos'e| 1+ 2\ FIG. 4. Conditioned mean-field amplitude,(7)/a, (a) and in-
tensity n,;(7)/n, (b) at port 2 as functions of scaled timey2 for
keTe raor\|? (i) ¢=m/2 and(ii) ¢=0. The curves are foR=7, Ng=10*,
+sifg| 1——— N (25  (n,RI/NgT)=50.4a, andn, are the steady-state amplitude and in-
ng 2 tensity at port 2.

This function vanishes wheneveay,(7) vanishes. The calculation similar to the one outlined here shows that the

dashed curves in Fig. 2 representing the normalized cohereflevant averages for tté, mode are given by
intensityn,.(7)/[a;|? are seen to be good approximation to

the exact conditional intensitigésontinuous curves The dif- Ay )=<a1(0)a2(r)a1(0)> — Ta—Rag(n), (26
ference in the exact intensity and the coherent result near the 27— (Ay) e dit 7
minimum is due to the incoherent fluctuations of the DPO

represented by the second term in E2R). The importance (éT(O)ﬁ2(7)31(0)>

of this term decreases ag becomes smaller. Fory<1, the Noy(7)= 1

coherent resulh;.(7) is a good approximation to the condi- (Ay)

tioned photon numbaer,4( 7). In this limit, therefore, we can %
speak of the DPO field amplitude having a definite phase as = TN+ Rnay(7) — VRT [aag,(7) + a* agi(7)].
in a coherent state. (27)
It is also remarkable that for the parameters of Fig. 2, the
CO field is much stronger than the DPO field&Rf, Using these equations together with Eg0), we see that
>7ny), yet the field radiated by the DPO can cancel or everimmediately following a photodetection at port 1 the condi-
exceed the CO field. We have already noted that the ertional contribution from the DPO to modi, is with phase
hanced conditioned emission from the DPO is rooted in ther— ¢. Figures 4a) and 4b) show the time evolution of
creation of photon pairs inside the DPO cavity. When theconditional amplitudea,,(7) and photon numbemn,( 7).
first photon of a pair is detected the conditioned mean photon For ¢=#/2, the conditional field radiated by the DPO
number for the DPO increases temporarily and the DPGOnterferes destructively with the CO field at port 1 and con-
emits at an enhanced rate such that the second photon leadtsuctively at port 2. In this case, the interference term in
out within a time (2y) ~?* of the first. n,4(7) reinforces the contribution from the first two terms.
Induced coherence after a first detection is also reflectedhis is shown by the curves label&dlin Figs. 4a) and 4b).
in the conditioned mean photon number of fhemode. A By comparing the behavior afi;;(7) and ny,(7), we find
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that while the conditional probability of detecting a photon at 6 . . . . .
port 1 is negligible, the probability of detecting a photon at - : (@)
port 2 is high. 5r
For ¢=0 [curve(ii) in Fig. 4@)], we find that the condi- r
tioned field from the DPO interferes destructively at port 2 4r
and constructively at port [Fig. 4b)]. Figure 4b) shows 1 I
the time evolution of,,(7) in this case. We see that while &
the conditional probability of detecting a photon at port 2 is =
negligible, the corresponding probability of detecting a pho-
ton at port 1 is highiFig. 2(b)]. The dip inn,, for ¢=0 [Fig.
4(b), curve (ii)] arises due to the fact that in this case the
DPO field contribution at port 2 is out of phase with the CO
field and exceeds its magnitude. The overall conditional am- D
plitude at port 2 therefore changes sign immediately follow-
ing the first detectioricurve (ii) in Fig. 4a)]. As the ampli- 10
tudea,, relaxes toward its steady-state value, it crosses zerc i \ (b)
at some finite time. This is reflected in the behaviongf 7)
as a function of timg[Fig. 4(b), curve (ii)]. The dashed
curves in Fig. 4b) representinga,(7)/a,|? are indistin- [
guishable from the exact intensities. This once again rein- ;& 6
forces coherent nature of emission from the DPO especially?
for smallng. - 4
The asymmetry between ports 1 and 2 implied by Figs. 2 & [
and 4 is not due to the asymmetric beam splitte; B®am
reflected from the upper face suffers a phase change of
relative to that reflected from the lower fade Fig. 1. For
example, for¢= /4, we find thatn.;(7) and ny(7) de- -
creases monotonically far>0 and there is very little differ- 27
ence between them. Indeed it can be checked that by consid-
ering other types of beam splitters, we arrive at the same FIG. 5. Effect of unequal beam splitter reflectivity and transmit-
results albeit for different values ap. Quantities such as tivity on the intensities at the two ports féa) $=0, (b) ¢=m/2.
n,»(7) andnyy(7) that are conditioned on a first photodetec- The curves are for fixed values af;=10"* and {,R/M47)
tion at port 2 can be similarly discussed but do not lead to=50, and forR=0.5(—); R=06 (---); andR=0.4 —---—.
qualitatively new phenomena. In particular, for the special
case R=7=1/2, we find ny(7)=ny(7) and nyy7) signal will contain a modulation at twice the frequency.As
=N,y(7). deviates from=* 7r/2 and approaches 0, the nonclassical fea-
Finally, we consider the effect of unequal reflectivity andtures inn;y(7) andnyy(7) are gradually washed out. They
transmittivity of the beam splitter. An inspection nf(7) would be revealed, however, rather dramatically in a mea-

W
T

[y

o
N
N
=]
s o]

10

shows that it depends only am, and the ratioRn,/7ny.  Surement that we describe next.

On the other handn,,(7) depends on these two variables

and also explicitly on the rati@/R. For a fixedng, when [ll. CONDITIONAL MEASUREMENTS
we varyR (with R+7=1), the ratioRn,/7ny can be kept OF QUADRATURE FLUCTUATIONS

constant by adjusting,, . We then find that a® is varied by
keeping ny and Rn,/7ny constant,n;y(7) remains un-
changed buh,,(7) changes. This is shown in Fig. 5. A&Sis
varied from 0.4 to 0.6 the shape of4(7) changes. This
dependence ofi,4(7) on 7/R can be utilized to tailor the R 1 .
intensity at port 2 following a detection at port 1. Xd0=§(e"oéd+e' %al), (29
It is clear that the phase of the conditioned field from the

DPO plays an important role. This phase can be detected by 1

a homodyne setup. For example, if we take the efficiencies ngzf(e*”’éd—e' 933), (30)
of detectordD; andD, to be the same and B$o be a 50:50 '

(R=17=1/2) beam splitter, the difference signal conditioned ) ) - -
on a photodetection at port 1 is where the phasé@ is arbitrary. Note thal gy=Xgg+ »2. FOr

the DPO both quadratures have zero mean and their normally
ordered variances are given by

It is well known that the quadrature fluctuations of the
field emitted by the DPO exhibit nonclassical squeezing.
Quadrature variables for the DPO can be introduced by

[
N11(0) =Ny (0) = —
ny

Y
1+ o Ccos2¢p|. (28)

N 1 ke
(AXgo)% )= — (31
Thus, if phase¢ is modulated the conditioned difference < )" 4 N
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where the mean photon numbey=(ala,) for modea; is
given by Eq.(18) and we have explicitly taken into account
the fact thatd; depends onp anda; anda, depend ord.
Using Eqs.(33) and (34) for &5 and a,, together with Egs.
(15) and(16) for a; anda,, we find

F(7,0,¢)= —————[— 2R(:Xgp(0) Xgo( 7):)

2|al|BINT,
ng

+cog¢—0)ny]. (36)
By choosing the photon number for modg to be n;
=R|a|?+Thy=2Rny, which can always be done by ad-
justing the coherent field photon number so thaf?
=ng[2—(7/R)] and by settingd= ¢, we obtain

4] a|| B RN TR B <35(d¢(0)5(d¢(7)1> +1

ng Ny

F(r.¢.¢)=
(37

This function depends on the quadrature correlation function

BS is a 50:50 beam splitter. This arrangement replaces the detectbrf(d¢(0)5(d¢( 7):). In the limit 7—o0, this correlation func-

D, in Fig. 1.

1 ke

(:(AYg0)?)=~ N, (32)

tion factorizes and vanishes becat(;gtg¢)=0. In this limit,
the functionF(r, ¢, ¢) reaches the value

_ _ 4lallp|R T

— (38)
Ny

For classical fields these fluctuations are always positive.

Since normally ordered variance of quadratiYtg for the

Using this value, we introduce a normalized function

DPO becomes negative its fluctuations are squeezed indicat-

ing their nonclassical character. Fluctuations of quadrature

X0, ON the other hand, stay positive as would be the case for
a classical field. They are, nevertheless, nonclassical and
their nonclassical character is revealed in a conditional me
surement made by using the arrangement outlined in Fig.

For this purpose, we have replaced the second detBetor

Fig. 1 by a homodyne detection setup for the beam exitin
port 2 of the beam splitter BSThe beam exiting the second

port is mixed with another coherent field of amplituge

g

F(7) | (Kag(ORag(7)) |

f (7
A= =

1|, (39

zl'vhich characterizes conditional quadrature fluctuations. This

correlation function satisfies certain inequalities. These in-
equalities are easily derived by noting that for a fia|dwvith
quadrature  operatorsX,=(e '“a+e€'¢a’)/2 and Y,
=(e '%a—e'?a")/2i, the amplitude and quadrature fluctua-

=|Ble'’ at a “50:50” beam splitter BS. The fields at the two 1ONS are related by

outputs of this beam splitter will be given by

A= (~ B+ 2) (34
Qu=——(— as).
4 \/E :8 2

A balanced homodyne measuremenégf conditioned upon
a photodetection of mod&; at 7=0 is given by[3]

(:a}(0)[ () —Aa(7)]85(0):)
[

F(7,0,¢)= , (39

(:AATAEY = (:(AX,)2)+ (:(AY 4)2), (40)

where for an operatdd the quantityAO=0—(0). Divid-
ing both sides of Eq40) by (:Aa'A4:), we obtain

:<:(AX¢)2:>+<3(AQ¢)2:>
(:Aa"Aa:)  (:AafAa:)

(41)

For classical fields (:(AX)2%), (:(AY,4)?%), and
(:Aa'Aa:) are all positive quantities. It follows that the fluc-
tuations of both quadratures satisfy the inequality

A 2
(:Aa"A&:)
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6 . . - . fluctuations of both quadratures, as characterized j§9),

to be bounded by O and 1. Nonclassical character of
squeezed quadrature fluctuations is already revealed in un-
conditioned measurements as noted following (88). Mea-
surements of , reveal not only the nonclassical character of
the squeezed quadrature fluctuations but also of the un-
squeezed quadrature fluctuations. The violation of classical
inequalities in terms of , can be rather large. For example,
below threshold ke <y, ng<1), we find

1 1
fo(0)~1— <—1, f0)~1+
4 - - - - 22, 22,

6 8 10 (49)

>1.

4
291
FIG. 7. Plots off 4(7) for ng=10"? and =0 (i); /4 (ii); /2 Thus, the fluctuations of both quadratures exhibit giant vio-
(iii). f,(0)<<0, f,(0)>1, or f,(7)<f,(0) indicate nonclassical |ations of classical inequaliti44). We also note that ,/5( 7)
behavior. for the squeezed quadrature violates not only the first in-

] . . _ equality (44) but also the second inequalit5). In addition
Using Schwartz inequality, we can also establish the follow+o revealing the nonclassical character of both quadrature

ing bound satisfied by classical fields: fluctuationsf , has another advantage. By virtue of its nor-
. R R malization in Eq(39), the functionf ,(7) is largely indepen-
([AX40)]%)  (:AX4(0)AX4(7)1) 43 dent of the efficiency of detection. This is in contrast to the
= . . . .
(:Aa'AA:) (:Aa'Aa:) usual homodyne detection of squeezing that is degraded by

nonunit detector efficiency.
If the mean value of the field amplitude and quadratures It is also noteworthy that nonclassical features of the field

vanish, then with the help of these inequalities we find thafévealed inf,(7) are most pronounced whem,=ny (for

the functionf ,(7) for a classical field satisfies the inequali- *=7), whereas those revealed iy are usually most pro-
ties nounced whemy/n,<1. In this sense, the two ways of

characterizing nonclassical fluctuations are complementary.
0=f,(0)<1, (44) Time gvolution (_)fni]-(r_) and f 4(7) reflects the dynamica_l

evolution of the intensity and quadrature variables following
¢ —t 0 (45) a detection. Conditional measurements coupled with the
o(7)=14(0). freedom provided by allow us to select the “correct”

Using the relation between quadrature and annihilation anghase for observing nonclassical excursions of fluctuations.

creation operators, we find the correlation function needed to
calculatef ,(7) for the DPO field is

IV. SUMMARY
(;S(d¢(o)5<d¢(7);> ke [e M7 e N7 In this paper, we have considered conditional measure-
P = coS¢p— Sirfe |. ments as probes of quantum dynamics. Such measurements
(:ajaq:) 4ngl M A2

not only provide a deeper understanding of nonclassical fea-
tures of quantum dynamic but also lead to different ways of
Characterizing them. By taking a degenerate parametric os-
cillator operating below threshold as a model system, we
have given quantitative analytic results that can be tested in
photoelectric counting experiments. Our results show that
the nonclassical intensity correlations of the DPO are a con-
sequence of enhanced coherent emission from the DPO after

(46)

We note thaf ,(7) for =0 depends on unsqueezed quadra
ture fluctuationd Eq. (31)] and for ¢==/2 it depends on
squeezed quadrature fluctuatidisy. (32)]. The results for
the DPO in the two cases are

4 A7 a first photodetection. Our approach reveals that like
fo(r)=1— ——e™ M7, (47 .

N\ g squeezed quadrature fluctuations unsqueezed quadrature
fluctuations are also nonclassical. Whereas unconditional
measurements reveal only the nonclassical character of

() — KE —ar squeezed quadrature fluctuations, conditional measurements
fr(r)=1+ ——e 27, (48 )
2 4ngh, reveal the nonclassical character of both quadrature fluctua-

tions and in much more dramatic manner than unconditional
These functions are plotted in Fig. 7. We see that bigh) measurements.
andf ,,,(7) violate the inequality44) that restricts classical The features of quantum mechanics that most distinguish
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