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Conditional measurements as probes of quantum dynamics

Shabnam Siddiqui, Daniel Erenso, Reeta Vyas, and Surendra Singh
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

~Received 5 December 2002; published 17 June 2003!

We discuss conditional measurements as probes of quantum dynamics and show that they provide different
ways to characterize quantum fluctuations. We illustrate this by considering the light from a subthreshold
degenerate parametric oscillator. Analytic results and curves are presented to illustrate the behavior.
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I. INTRODUCTION

Fluctuations are an integral feature of quantum dynam
evolution. For dissipative quantum optical sources, th
fluctuations are reflected in the photoemissions from th
sources. In this paper, we will use the terms photoemiss
and photodetections interchangeably because photodete
is simply a matter of casting a net to catch the photons e
ted by the source. A photoemission signals a fluctuation
progress. Hence, a conditional measurement that comme
when a photoemission has occurred catches a fluctuatio
the act and, in fact, allows us to observe the time evolut
of the fluctuation@1#. This sort of information is not avail-
able in unconditioned measurements. Thus, conditional m
surements allow us to probe quantum dynamics at a de
level. Perhaps the best known example of conditional m
surement is the measurement of the second-order inte
correlation that measures fluctuations of light intensity f
lowing a conditioning photodetection@2#. This is the basis of
the observation of photon bunching or antibunching. R
cently, measurements of quadrature squeezing conditio
on a photodetection have also been proposed and report
cavity quantum electrodynamics@3,4#. In this paper, we con-
sider conditional measurements in the context of parame
oscillators and show that such measurements provide s
tive probes of quantum dynamics and the language of c
ditional measurements provides powerful conceptual to
for unraveling and understanding nonclassical features
quantum dynamics@5–8#.

Optical parametric oscillators~OPOs! and amplifiers@9#
based on down-conversion have played a central role in
studies of nonclassical photon correlations and vari
schemes for quantum communication and computation@10#.
The fundamental process in optical parametric oscillator
conversion of a pump photon of frequencyvp into a pair of
photons~signal and idler! of lower frequenciesvs andv i in
a nonlinear medium inside an optical cavity. The proc
conserves energy and momentum. Conservation of en
requires the pump and down-converted frequencies to be
lated byvp5vs1v i and conservation of momentum, als
known as phase matching, requires the use of certain an
tropic material media and specific states of polarization
the pump, signal, and idler photons. If the down-conver
photons have the same frequency (vs5v i[vd), polariza-
tion, and direction of propagation, the process is called
generate otherwise it is called nondegenerate. In the for
case, we speak of a degenerate parametric oscillator~DPO!
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and in the latter of a nondegenerate parametric oscillato
We begin by considering a degenerate parametric osc

tor in Sec. II and discuss conditional measurements of int
sity and amplitude. Conditional measurements of quadra
fluctuations are discussed in Sec. III. We restrict our cons
erations to its operation below the threshold of sustain
oscillations. This allows us to obtain simple analytic expre
sions for various quantities of interest. The results are su
marized in Sec. IV.

II. CONDITIONAL MEASUREMENTS OF A DPO

The field from the DPO is governed by the interacti
Hamiltonian for phase-matched down-conversion inside
optical cavity driven by a classical injected signal@5,6#. The
equation of motion for the density operatorr̂d of the DPO
field is then

ṙ̂d5
k«

2
@ âd

†22âd
2 ,r̂d#1g~2âdr̂dâd

†2âd
†âdr̂d2 r̂dâd

†âd!,

~1!

wherek is the mode-coupling constant,« is the dimension-
less amplitude of the classical pump field,g is the cavity
linewidth, andâd and âd

† are the annihilation and creatio
operators for the DPO. In writing the equation of motion f
the density matrix, we have neglected pump depletion tha
a reasonable approximation for low down-conversion e
ciencies and subthreshold operation of the DPO conside
here. The combinationk« has been chosen to be real by
suitable definition of the phases ofâd and âd

† .
Using the positive-P representation for the density matrix

we can map the equation of motion for the annihilation a
creation operators for the DPO field onto a set of stocha
equations for thec-number amplitudesad and ad* corre-
sponding, respectively, to the annihilation and creation
eratorsâ and âd . These equations read@5,6#

ȧd52gad1k«ad* 1Ak«j1~ t !, ~2!

ȧd* 52gad* 1k«ad1Ak«j2~ t !, ~3!

wherej1(t) andj2(t) are two statistically independent re
Gaussian white-noise processes with zero means and
intensity. Normally ordered averages ofâd

† and âd can then
be calculated by using the mapping
©2003 The American Physical Society08-1
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^:âd
†mâd

n :&→^ad*
m ad

n&, ~4!

where the averaging on the right-hand side is with respec
the positive-P function. Since the noise terms in Eqs.~2! and
~3! are real, the variablesad and ad* can be chosen to b
real. Then by using the simple transformation

ad5~u11u2!, ad* 5~u12u2!, ~5!

we find that the field produced by the DPO can be descri
in terms of two independent real Gaussian processesu1 and
u2 with mean and correlation functions given by

^ui&50, ^ui~ t !uj~ t8!&5d i j

1

4

k«

l i
e2l i ut2t8u, ~6!

where the decay constantsl i are given by

l15g2k«, l25g1k«. ~7!

Below threshold (k«,g) both decay constants are positiv
Higher-order correlations ofu1 andu2, and thereforead and
ad* , can be expressed in terms of the second-order corr
tion function using the Gaussian moment theorem@11#.

Using the result of Eq.~6!, the steady-state mean valu
for the DPO field amplitude and its second-order mome
are found to be@6#

ād[^âd&505^âd
†&[ād* , ~8!

n̄d[^n̂d&5
1

2 F ~k«/g!2

12~k«/g!2G , ~9!

ad
2[^âd

2&5
g

k«
n̄d5^âd

†2&[ad*
2 , ~10!

wheren̂d5âd
†âd is the number operator for the DPO. In Eq

~8!–~10! and in the rest of the paper, we denote the stea
state operator averages with a bar over the letter symbo
the operator. We see that the steady-state mean-field am
tude from the DPO vanishes. The contribution to the me
photon number is thus purely from quantum fluctuations
should also be noted that since the mean values such as^âd

2&
and ^âd

†2& are nonvanishing, quantum fluctuations are n
isotropic in phase. This phase dependent noise is the so
of squeezing exhibited by the DPO. The steady-state m
photon number can be observed by measuring the mea
tensity of the light emitted by the DPO and the mean-fi
amplitude can be measured in an interference experim
with a coherent field.

Before proceeding further, we recall that the intensity
light ~photons/sec! from the DPO is related to the photo
number inside the cavity bŷÎ d&52g^n̂d&. Because of this
simple proportionality between the two, we will use th
terms intensity and photon number interchangeably in
paper. In view of Eqs.~8!–~10!, it follows that the steady-
state intensity of the light from the DPO is proportional
the mean number of photonsn̄d inside the cavity and the
mean amplitude of the field emitted by the DPO vanishe
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Let us now consider the intensity from the DPO at tim
t5t following a photodetection in the steady state att50.
This intensity from the DPO, conditioned on a photodete
tion, is

I dd~t!52g
^âd

†~0!âd
†~t!âd~t!âd~0!&

^n̂d~0!&

52g
^:n̂d~0!n̂d~t!:&

^n̂d~0!&
[2gndd~t!, ~11!

where we have used the fact that the probability of a pho
detection in the steady state is proportional to the stea
state intensity 2g^n̂d&52gn̄d from the DPO. Thus, the con
ditioned intensity is proportional to the conditioned phot
number. The conditioned intensity is related to the seco
order intensity correlation function@2#

gd
(2)~t!5

^:n̂d~t!n̂d~0!:&

^n̂d&
2

5
ndd~t!

n̄d

, ~12!

where the colons denote time and normal ordering of ope
tors enclosed by them. From this equation, we see that
second-order intensity correlation function is the ratio of t
conditioned photon number to the steady-state photon n
ber.

The time dependence of conditioned photon number
be calculated with the help of Eqs.~5! and ~6! to be

ndd~t!5n̄d1
1

4 S l2

l1
e22l1t1

l1

l2
e22l2tD . ~13!

It can be seen that long after the first detection (t→`), the
mean photon number reverts to its steady-state valuen̄d . The
rate at which the system approaches the steady state is d
mined byl1 andl2 given by Eq.~7!. Beforet50, the mean
photon number has its steady-state valuen̄d . Immediately
after a photodetection att50, the mean photon numbe
jumps fromn̄d to the value given by

ndd~0!5S 3n̄d1
1

2D , ~14!

and thereafter relaxes to the steady-state valuen̄d following
Eq. ~13!. Conditioned photon number increases significan
compared to the steady-state valuen̄d . This increase in the
conditioned photon number, and therefore the condition
mean intensity from the DPO, is even more pronounced
below threshold wheren̄d!1 ~or k«!g). The enhanced
emission following a first photodetection can be understo
by recalling that inside the DPO cavity photons are genera
in pairs. Below threshold, the rate of pair generation is sm
so that the photons in each pair leak out from the cavity w
before another pair is produced. Thus, although the m
number of photons in the cavity is very small, there are la
fluctuations whenever a pump photon is down-converted
a pair of photons into the cavity mode. The detection o
first photon signals a fluctuation in progress which increa
the mean number of photons in the cavity for a period of
8-2
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CONDITIONAL MEASUREMENTS AS PROBES OF . . . PHYSICAL REVIEW A 67, 063808 ~2003!
order of cavity lifetime (2g)21. This increased mean photo
number gives rise to enhanced emission from the cavity
lowing a photodetection.

We also note that, such as the steady-state field ampli
ād , the conditional amplitudeādd also vanishes indicating
that the field from the DPO is incoherent. The emission fr
the DPO is thus pure noise and the contribution to its int
sity is from incoherent fluctuations. These fluctuations, ho
ever, are not uniformly distributed in phase as we have
ready noted following Eqs.~8!–~10!. The phase of the
fluctuations can be observed in an interference experim
outlined in Fig. 1.

The light from the DPO is mixed with the light from
coherent oscillator~a laser with complex field amplitudea
5uaueif) at a loss-less beam splitter BS1 of power reflectiv-
ity R and transmittivityT512R. The phasef is relative to
the classical pump for the DPO@6,12#. The superposed ligh
in the two output modes, labeled by subscripts 1 and 2, of
beam splitter is detected by two photoelectric detectorsD1
andD2, respectively. The annihilation operators for the tw
output modes can be written as@13#

â15ARa1AT âd , ~15!

â25ATa2ARâd . ~16!

Here, we have taken the beam splitter to be an antisymm
beam splitter~for example, a glass plate with a silvered u
per surface!. Qualitatively no new features arise with oth
choices of beam splitters. We model the coherent oscilla
~CO! field to be radiated by a laser operating high abo
threshold and take the linewidth of the laser cavity also to
g. All measurements in the rest of this paper refer to
superposed fields given by Eqs.~15! and ~16!. Considering
modeâ1 for definiteness, we find its steady-state mean a
plitude and intensity are given by

ā1[^â1&5ARa1ATād5ARa, ~17!

FIG. 1. An outline of the setup for detecting the interference
the light from the DPO with a coherent field. BS1 is a lossless beam
splitter andD1 andD2 are two photoelectric detectors that monit
the outputs at ports 1 and 2 of BS1.
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n̄1[^n̂1&5Rn̄l 1T n̄d1ART ~aād* 1a* ād!5Rn̄l 1T n̄d .
~18!

From these equations, we see that the mean-field ampli
at port 1 has contribution only from the laser and that
mean photon number is the sum of contributions from
DPO and the laser. The interference term averages ou
zero in the steady state.

Let us now consider conditional measurements. For d
niteness we shall consider conditioning measurement to
photodetection at port 1. Noting that the CO field rema
unaffected by a photodetection, we can express the co
tional expectation values of the superposed field variable
terms of the conditional expectation values of the DPO a
CO field variables. Thus, the mean amplitude and intensit
port 1 conditioned on a detection at port 1 are@8#

a11~t![
^â1

†~0!â1~t!â1~0!&

^n̂1&
5ARa1ATad1~t!, ~19!

ad1~t![
^â1

†~0!âd~t!â1~0!&

^n̂1&

5
k«ART

4n̄1
F S e2l1t

l1
2

e2l2t

l2
Da

1S e2l1t

l1
1

e2l2t

l2
Da* G , ~20!

n11~t![
^â1

†~0!n̂1~t!â1~0!&

^n̂1&

5Rn̄a1Tnd1~t!1ART @aad1* ~t!1a* ad1~t!#,

~21!

nd1~t![
^â1

†~0!n̂d~t!â1~0!&

^n̂1&

5n̄d1
T n̄d

4n̄1
Fl2

l1
e22l1t1

l1

l2
e22l2tG . ~22!

Here, the first index denotes the port of measurement and
second index denotes the conditioning port. Thus, for
ample,ad1 is the DPO field amplitude conditioned on a d
tection at port 1. The third term inn11(t) arises due to in-
terference between the CO and the DPOconditionedon a
first photodetection at port 1.

There are several noteworthy features of these equati
First, unlike the steady-state field amplitudeād which van-
ishes, the conditional DPO field amplitudead1(t) is non-
zero. Consequently, the conditional interference term in
~21! is also nonzero. Second, even when the mean DPO l
intensity is very small compared to the CO light intensity, t
conditional interference term can cancel the contributio
from the first two terms in Eq.~21!. This means the fringe
visibility can be nearly unity even when the two interferin
fields have very dissimilar intensities. This is impossib

f

8-3
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SIDDIQUI et al. PHYSICAL REVIEW A 67, 063808 ~2003!
with classical sources. Figures 2~a! and 2~b! show plots of
intensity n11(t) for several different values of the rati
Rn̄a /T n̄d . For f50 @Fig. 2~a!#, the intensity shows an en
hancement immediately after a first detection and therea
monotonically relaxes to its steady-state value. Forf
5p/2, on the other hand, the behavior ofn11(t) can be
nonmonotonic as seen in Fig. 2~b!. For example, the curve
labeled~iii ! shows that the conditioned intensity decrea
first before turning around and relaxing toward its stea
state value. Another noteworthy feature is that the curve
Fig. 2~b! violate one or more of the classical inequaliti
n11(0)>n̄1 , n11(0)>n11(t), un11(0)2n̄1u>un11(t)2n̄1u.
These inequalities follow from those satisfied by the seco
order intensity correlation function@13–18#. This nonclassi-
cal behavior of conditioned intensity arises due to a nonc
sical interference of the conditioned DPO field with the C
field as will be seen shortly@8#.

Unlike the steady-state emission, the conditional emiss
from the DPO has a definite phase relative to the CO. Fr
Eq. ~20!, the phasec of the DPO field immediately after a
first photodetection is given by

FIG. 2. Conditioned mean intensityn11(t)/n̄1 at port 1 as a
function of scaled time 2gt for ~a! f50 and~b! f5p/2 for sev-
eral different values of the ratio (n̄aR/n̄dT )5600 ~i!; 200 ~ii !; 50
~iii !. For both figuresn̄d51024 and n̄1 is the steady-state mea
photon number for port 1. The dashed curves represent the coh
result ua11(t)/n̄1u2 for the same parameters. The times beforet
50 correspond to the steady state.
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Far below threshold (k«!g), this givesc'2f. Thus, if a
first photodetection occurs with phasef, the DPO radiates
with phase2f. Figures 3~a! and 3~b! show the time evolu-
tion of the superposed field amplitude at port 1 over an
terval during which a first photodetection occurs. The sup
posed field amplitude has been normalized so that its ste
state value is unity. Before detection the system is in
steady-state and the superposed field amplitude has the m
ā15ARa. After a photodetection, the mean-field amplitu
changes abruptly from the steady-state valueARa to the
value given by Eqs.~19! and ~20!,

a11~0!5ARa1
T n̄d

n̄1
S a1

g

k«
a* D . ~24!

For f50 @Fig. 3~a!#, this amplitude is real and positive. I
this case, the DPO field amplitude adds to the CO field a
plitude resulting in an enhanced amplitude immediately a

ent

FIG. 3. Conditioned mean-field amplitudea11(t)/ā1 at port 1 as
a function of scaled time 2gt for ~a! f50 and ~b! f5p/2 for
several different values of the ratio (n̄aR/n̄dT )5600 ~i!; 200 ~ii !;
50 ~iii !. For both figuresn̄d51024 and ā1 is the steady-state field
amplitude at port 1. The times beforet50 correspond to the stead
state.
8-4
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CONDITIONAL MEASUREMENTS AS PROBES OF . . . PHYSICAL REVIEW A 67, 063808 ~2003!
a photodetection. It then monotonically relaxes to its stea
state value. This is consistent with Fig. 2~a! for the intensity.

For f5p/2 @Fig. 3~b!#, the conditioned field amplitude
a11(0) is pure imaginary. The contribution from the seco
term in Eq.~24!, which represents the conditional field fro
the DPO, can become negative imaginary. The mean-fi
radiated by the DPO is zero before detection@Eq. ~8!# and
changes discontinuously to ad1(0)5ART (n̄d /n̄a)@a
1(g/k«)a* # @Eq. ~20!#. For small n̄d ~which implies
g/k«..1) andf5p/2, the conditioned DPO field ampli
tude is ad1(0)'ART (gn̄d /k«uau2)a* 52ART (gn̄d /
k«uau2)a. Thus, after the detection of the first photon, t
field radiated by the DPO is out of phase with the laser fi
at port 1. It subtracts from the CO contribution and, depe
ing on the operating point of the DPO and the ra
T n̄d /Rn̄a , it can cancel the CO field amplitude. It can ev
exceed the CO field, thereby changing the sign of the ove
field amplitude as seen in Fig. 3~b! @curve labeled~iii !#. Fol-
lowing the detection, the field amplitude relaxes along
imaginary axis back to the steady state according to Eqs.~19!
and~20!. If after a first detection the field amplitude becom
negative, then during its passage to the steady state it pa
through zero at some nonzero delay@curve~iii ! in Fig. 3~b!#.
If the state of the superposed field after a photodetec
were a coherent state, the conditioned mean intensity of
superposed field at port 1 would be

n1c~t![ua11~t!u25n̄1Fcos2fS 11
k«T
n̄1

e2l1t

2l1
D 2

1sin2fS 12
k«T
n̄1

e2l2t

2l2
D 2G . ~25!

This function vanishes whenevera11(t) vanishes. The
dashed curves in Fig. 2 representing the normalized cohe
intensityn1c(t)/uā1u2 are seen to be good approximation
the exact conditional intensities~continuous curves!. The dif-
ference in the exact intensity and the coherent result nea
minimum is due to the incoherent fluctuations of the DP
represented by the second term in Eq.~22!. The importance
of this term decreases asn̄d becomes smaller. Forn̄d!1, the
coherent resultn1c(t) is a good approximation to the cond
tioned photon numbern11(t). In this limit, therefore, we can
speak of the DPO field amplitude having a definite phase
in a coherent state.

It is also remarkable that for the parameters of Fig. 2,
CO field is much stronger than the DPO field (Rn̄a
@T n̄d), yet the field radiated by the DPO can cancel or ev
exceed the CO field. We have already noted that the
hanced conditioned emission from the DPO is rooted in
creation of photon pairs inside the DPO cavity. When
first photon of a pair is detected the conditioned mean pho
number for the DPO increases temporarily and the D
emits at an enhanced rate such that the second photon
out within a time (2g)21 of the first.

Induced coherence after a first detection is also reflec
in the conditioned mean photon number of theâ2 mode. A
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calculation similar to the one outlined here shows that
relevant averages for theâ2 mode are given by

a21~t![
^â1

†~0!â2~t!â1~0!&

^n̂1&
5ATa2ARad1~t!, ~26!

n21~t![
^â1

†~0!n̂2~t!â1~0!&

^n̂1&

5T n̄a1Rnd1~t!2ART @aad1* ~t!1a* ad1~t!#.

~27!

Using these equations together with Eq.~20!, we see that
immediately following a photodetection at port 1 the con
tional contribution from the DPO to modeâ2 is with phase
p2f. Figures 4~a! and 4~b! show the time evolution of
conditional amplitudea21(t) and photon numbern21(t).

For f5p/2, the conditional field radiated by the DP
interferes destructively with the CO field at port 1 and co
structively at port 2. In this case, the interference term
n21(t) reinforces the contribution from the first two term
This is shown by the curves labeled~i! in Figs. 4~a! and 4~b!.
By comparing the behavior ofn11(t) and n21(t), we find

FIG. 4. Conditioned mean-field amplitudea21(t)/ā2 ~a! and in-
tensityn21(t)/n̄2 ~b! at port 2 as functions of scaled time 2gt for
~i! f5p/2 and ~ii ! f50. The curves are forR5T, n̄d51024,
(n̄aR/n̄dT )550. ā2 and n̄2 are the steady-state amplitude and i
tensity at port 2.
8-5
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SIDDIQUI et al. PHYSICAL REVIEW A 67, 063808 ~2003!
that while the conditional probability of detecting a photon
port 1 is negligible, the probability of detecting a photon
port 2 is high.

For f50 @curve~ii ! in Fig. 4~a!#, we find that the condi-
tioned field from the DPO interferes destructively at por
and constructively at port 1@Fig. 4~b!#. Figure 4~b! shows
the time evolution ofn21(t) in this case. We see that whil
the conditional probability of detecting a photon at port 2
negligible, the corresponding probability of detecting a ph
ton at port 1 is high@Fig. 2~b!#. The dip inn21 for f50 @Fig.
4~b!, curve ~ii !# arises due to the fact that in this case t
DPO field contribution at port 2 is out of phase with the C
field and exceeds its magnitude. The overall conditional a
plitude at port 2 therefore changes sign immediately follo
ing the first detection@curve ~ii ! in Fig. 4~a!#. As the ampli-
tudea21 relaxes toward its steady-state value, it crosses z
at some finite time. This is reflected in the behavior ofn21(t)
as a function of time@Fig. 4~b!, curve ~ii !#. The dashed
curves in Fig. 4~b! representingua21(t)/ā2u2 are indistin-
guishable from the exact intensities. This once again re
forces coherent nature of emission from the DPO espec
for small n̄d .

The asymmetry between ports 1 and 2 implied by Figs
and 4 is not due to the asymmetric beam splitter BS1 ~beam
reflected from the upper face suffers a phase change op
relative to that reflected from the lower face! in Fig. 1. For
example, forf5p/4, we find thatn11(t) and n21(t) de-
creases monotonically fort.0 and there is very little differ-
ence between them. Indeed it can be checked that by con
ering other types of beam splitters, we arrive at the sa
results albeit for different values off. Quantities such as
n22(t) andn12(t) that are conditioned on a first photodete
tion at port 2 can be similarly discussed but do not lead
qualitatively new phenomena. In particular, for the spec
case R5T51/2, we find n11(t)5n22(t) and n12(t)
5n21(t).

Finally, we consider the effect of unequal reflectivity a
transmittivity of the beam splitter. An inspection ofn11(t)
shows that it depends only onn̄d and the ratioRn̄a /T n̄d .
On the other hand,n21(t) depends on these two variable
and also explicitly on the ratioT /R. For a fixedn̄d , when
we varyR ~with R1T51), the ratioRn̄a /T n̄d can be kept
constant by adjustingn̄a . We then find that asR is varied by
keeping n̄d and Rn̄a /T n̄d constant,n11(t) remains un-
changed butn21(t) changes. This is shown in Fig. 5. AsR is
varied from 0.4 to 0.6 the shape ofn21(t) changes. This
dependence ofn21(t) on T /R can be utilized to tailor the
intensity at port 2 following a detection at port 1.

It is clear that the phase of the conditioned field from t
DPO plays an important role. This phase can be detecte
a homodyne setup. For example, if we take the efficienc
of detectorsD1 andD2 to be the same and BS1 to be a 50:50
(R5T51/2) beam splitter, the difference signal condition
on a photodetection at port 1 is

n11~0!2n21~0!5
n̄an̄d

n̄1
F11

g

k«
cos 2fG . ~28!

Thus, if phasef is modulated the conditioned differenc
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signal will contain a modulation at twice the frequency. Asf
deviates from6p/2 and approaches 0, the nonclassical fe
tures inn11(t) and n12(t) are gradually washed out. The
would be revealed, however, rather dramatically in a m
surement that we describe next.

III. CONDITIONAL MEASUREMENTS
OF QUADRATURE FLUCTUATIONS

It is well known that the quadrature fluctuations of th
field emitted by the DPO exhibit nonclassical squeezi
Quadrature variables for the DPO can be introduced by

X̂du5
1

2
~e2 iuâd1eiuâd

†!, ~29!

Ŷdu5
1

2i
~e2 iuâd2eiuâd

†!, ~30!

where the phaseu is arbitrary. Note thatŶdu5X̂du1p/2 . For
the DPO both quadratures have zero mean and their norm
ordered variances are given by

^:~DX̂d0!2:&5
1

4

k«

l1
, ~31!

FIG. 5. Effect of unequal beam splitter reflectivity and transm
tivity on the intensities at the two ports for~a! f50, ~b! f5p/2.
The curves are for fixed values ofn̄d51024 and (n̄aR/n̄dT )
550, and forR50.5 ~—!; R506 ~- - -!; andR50.4 2•••2.
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CONDITIONAL MEASUREMENTS AS PROBES OF . . . PHYSICAL REVIEW A 67, 063808 ~2003!
^:~DŶd0!2:&52
1

4

k«

l2
. ~32!

For classical fields these fluctuations are always posit
Since normally ordered variance of quadratureŶd0 for the
DPO becomes negative its fluctuations are squeezed ind
ing their nonclassical character. Fluctuations of quadra
X̂d0, on the other hand, stay positive as would be the case
a classical field. They are, nevertheless, nonclassical
their nonclassical character is revealed in a conditional m
surement made by using the arrangement outlined in Fig
For this purpose, we have replaced the second detectorD2 in
Fig. 1 by a homodyne detection setup for the beam exit
port 2 of the beam splitter BS1. The beam exiting the secon
port is mixed with another coherent field of amplitudeb
5ubueiu at a ‘‘50:50’’ beam splitter BS. The fields at the tw
outputs of this beam splitter will be given by

â35
1

A2
~b1â2!, ~33!

â45
1

A2
~2b1â2!. ~34!

A balanced homodyne measurement ofâ2, conditioned upon
a photodetection of modeâ1 at t50 is given by@3#

F~t,u,f!5
^:â1

†~0!@ n̂3~t!2n̂4~t!#â1~0!:&

n̄1

, ~35!

FIG. 6. A setup for balanced homodyne detection of modeâ2.
BS is a 50:50 beam splitter. This arrangement replaces the det
D2 in Fig. 1.
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where the mean photon numbern̄15^â1
†â1& for modeâ1 is

given by Eq.~18! and we have explicitly taken into accoun
the fact thatâ1 depends onf and â3 and â4 depend onu.
Using Eqs.~33! and ~34! for â3 and â4, together with Eqs.
~15! and ~16! for â1 and â2, we find

F~t,u,f!5
2uauubuAT

n̄1

@22R^:X̂df~0!X̂du~t!:&

1cos~f2u!n̄1#. ~36!

By choosing the photon number for modeâ1 to be n̄1
[Ruau21T n̄d52Rn̄d , which can always be done by ad
justing the coherent field photon number so thatuau2

5n̄d@22(T /R)# and by settingu5f, we obtain

F~t,f,f!5
4uauubuRAT n̄d

n̄1
F2

^:X̂df~0!X̂df~t!:&

n̄d

11G .

~37!

This function depends on the quadrature correlation func

^:X̂df(0)X̂df(t):&. In the limit t→`, this correlation func-
tion factorizes and vanishes because^X̂df&50. In this limit,
the functionF(t,f,f) reaches the value

F`[
4uauubuRAT n̄d

n̄1

. ~38!

Using this value, we introduce a normalized function

f f~t![
F~t!

F`
5F2

^:X̂df~0!X̂df~t!:&

n̄d

11G , ~39!

which characterizes conditional quadrature fluctuations. T
correlation function satisfies certain inequalities. These
equalities are easily derived by noting that for a fieldâ, with
quadrature operatorsX̂f5(e2 ifâ1eifâ†)/2 and Ŷf
5(e2 ifâ2eifâ†)/2i , the amplitude and quadrature fluctu
tions are related by

^:Dâ†Dâ:&5^:~DX̂f!2:&1^:~DŶf!2:&, ~40!

where for an operatorÔ the quantityDÔ5Ô2^Ô&. Divid-
ing both sides of Eq.~40! by ^:Dâ†Dâ:&, we obtain

15
^:~DX̂f!2:&

^:Dâ†Dâ:&
1

^:~DŶf!2:&

^:Dâ†Dâ:&
. ~41!

For classical fields ^:(DX̂f)2:&, ^:(DŶf)2:&, and
^:Dâ†Dâ:& are all positive quantities. It follows that the fluc
tuations of both quadratures satisfy the inequality

0<
^:~DX̂f!2:&

^:Dâ†Dâ:&
<1. ~42!

tor
8-7
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Using Schwartz inequality, we can also establish the follo
ing bound satisfied by classical fields:

^:@DX̂f~0!#2:&

^:Dâ†Dâ:&
>

^:DX̂f~0!DX̂f~t!:&

^:Dâ†Dâ:&
. ~43!

If the mean value of the field amplitude and quadratu
vanish, then with the help of these inequalities we find t
the functionf f(t) for a classical field satisfies the inequa
ties

0< f f~0!<1, ~44!

f f~t!> f f~0!. ~45!

Using the relation between quadrature and annihilation
creation operators, we find the correlation function neede
calculatef f(t) for the DPO field is

^:X̂df~0!X̂df~t!:&

^:âd
†âd :&

5
k«

4n̄d
Fe2l1t

l1
cos2f2

e2l2t

l2
sin2fG .

~46!

We note thatf f(t) for f50 depends on unsqueezed quad
ture fluctuations@Eq. ~31!# and for f5p/2 it depends on
squeezed quadrature fluctuations@Eq. ~32!#. The results for
the DPO in the two cases are

f 0~t!512
ke

4n̄dl1

e2l1t, ~47!

f p
2
~t!511

ke

4n̄dl2

e2l2t. ~48!

These functions are plotted in Fig. 7. We see that bothf 0(t)
and f p/2(t) violate the inequality~44! that restricts classica

FIG. 7. Plots off f(t) for n̄d51022 andf50 ~i!; p/4 ~ii !; p/2
~iii !. f f(0),0, f f(0).1, or f f(t), f f(0) indicate nonclassica
behavior.
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fluctuations of both quadratures, as characterized byf f(0),
to be bounded by 0 and 1. Nonclassical character
squeezed quadrature fluctuations is already revealed in
conditioned measurements as noted following Eq.~32!. Mea-
surements off f reveal not only the nonclassical character
the squeezed quadrature fluctuations but also of the
squeezed quadrature fluctuations. The violation of class
inequalities in terms off f can be rather large. For exampl
below threshold (k«!g, n̄d!1), we find

f 0~0!'12
1

2A2n̄d

!21, f p/2~0!'11
1

2A2n̄d

@1.

~49!

Thus, the fluctuations of both quadratures exhibit giant v
lations of classical inequality~44!. We also note thatf p/2(t)
for the squeezed quadrature violates not only the first
equality~44! but also the second inequality~45!. In addition
to revealing the nonclassical character of both quadra
fluctuationsf f has another advantage. By virtue of its no
malization in Eq.~39!, the functionf f(t) is largely indepen-
dent of the efficiency of detection. This is in contrast to t
usual homodyne detection of squeezing that is degraded
nonunit detector efficiency.

It is also noteworthy that nonclassical features of the fi
revealed inf f(t) are most pronounced whenn̄a5n̄d ~for
R5T ), whereas those revealed inni j are usually most pro-
nounced whenn̄d /n̄a!1. In this sense, the two ways o
characterizing nonclassical fluctuations are complement
Time evolution ofni j (t) and f f(t) reflects the dynamica
evolution of the intensity and quadrature variables followi
a detection. Conditional measurements coupled with
freedom provided byf allow us to select the ‘‘correct’’
phase for observing nonclassical excursions of fluctuatio

IV. SUMMARY

In this paper, we have considered conditional measu
ments as probes of quantum dynamics. Such measurem
not only provide a deeper understanding of nonclassical
tures of quantum dynamic but also lead to different ways
characterizing them. By taking a degenerate parametric
cillator operating below threshold as a model system,
have given quantitative analytic results that can be teste
photoelectric counting experiments. Our results show t
the nonclassical intensity correlations of the DPO are a c
sequence of enhanced coherent emission from the DPO
a first photodetection. Our approach reveals that l
squeezed quadrature fluctuations unsqueezed quadr
fluctuations are also nonclassical. Whereas unconditio
measurements reveal only the nonclassical characte
squeezed quadrature fluctuations, conditional measurem
reveal the nonclassical character of both quadrature fluc
tions and in much more dramatic manner than unconditio
measurements.

The features of quantum mechanics that most distingu
8-8
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it from classical mechanics are the interference of probab
amplitudes and entanglement. Conditional measurement
low us to probe these nonclassical features of quantum
namics for a degenerate parametric oscillator and prov
different ways of understanding and revealing the noncla
cal character of quantum fluctuations.
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