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Amplitude and phase representation of quantum invariants
for the time-dependent harmonic oscillator
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The correspondence between classical and quantum invariants is established. The Ermakov-Lewis quantum
invariant of the time-dependent harmonic oscillator is translated from the coordinate and momentum operators
into amplitude and phase operators. In doing so, Turski's phase operator as well as Susskind-Glogower opera-
tors are generalized to the time-dependent harmonic-oscillator case. A quantum derivation of the Manley-Rowe
relations is shown as an example.
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I. INTRODUCTION Aty .
i——=H[y(). @

Exact invariants have been extensively used to solve the
time-dependent Shdinger equatiorf1]. Various related in- The solution to this equation for a time-independent

variants have been obtained for the quantum-mechanic T ; _0

time-dependent harmonic-oscillat¢@M-TDHO) equation @\amnt?nlan' 'S formally given byA|¢//(t)) U(t.)Ll’/l(o»’
in one dimension. The Ermakov-Lewis invariant and Or_wher.eU(t) is the evolution c.)perat'dd(t)zexp(—ll—!t). For
thogonal functions invariant are two such constants of moth€ ime-dependent harmonic-oscillator Hamiltonian
tion that have been used to solve the QM-TDHO problem.

Ny = LTA2 4 020142
The Ermakov-Lewis invariant is usually expressed in terms H(t)=z[p"+ Q% (1)0"], )

(ne solution may be written in terms of a propagator that
fvolves a time-independent operator together with an appro-

that lead to number states for wave functions that are eigerb'riate transformation of the wave function

states of the invariant operatf2]. However, the amplitude
operator stemming from this procedure does not correspond ] &t
to the amplitude of the oscillator in the classical limit. |4(0)=UiTTT(0)]4(0)). ®
The purpose of this_ paper is to translate the invaria_nt forThe propagator is given by
malism from the coordinate and momentum operators into an
invariant in terms of amplitude and phase operators that re- ¢ dt’
duce to the corresponding variables in the classical limit. In U =exp—is,l,), Sazf — 4
the Sec. Il, the solution to the QM-TDHO equation is stated 0 «a
using the square of the orthogonal functions invariant and the i i )
Ermakov invariant. In the following section, a second linearvhere the functiors, is a time-dependert number andx
Hermitian invariant is introduced and the Ermakov-LewissaF'Sf'eS a differential equatl_on appro_pnate to the invariant
invariant is economically obtained from these two constant$ing used. The transformation is defined as
of motion. Two distinct annihilation and creation operators A -
Ina dg? dina g?
=exp i—— ——|ex 5 2
definition is shown to yield an amplitude and phase repre- B In_a Sh L ha
sentation that is consistent with the classical limit. In Sec. —exp ! 2 (qp+pq)
example. proportional to the square of the orthogonal functions invari-
ant operator

—>

are presented in Sec. IV and their equations of motion are
established. In Sec. V, the quantum phase is defined using the 2 dt
Turski and Susskind and Glogower formalisms. The former .
. [e4 "2

exp( |2aq ) (5)
VI, the Ermakov-Lewis invariant is written in amplitude and
phase variables. The energy conservation and photon number The time-independent operator in the propagator is an in-
relations in nonlinear optical processes are shown as avariant that is not uniqug3]. On the one hand, it may be

IIl. EVOLUTION OPERATORS AND INVARIANTS

. . " o I,=Z2(up—uq)?, (6)
Consider the time-dependent Sattiryer equation with
h=1, where the functione—ue R, replaced in the invariant as
well as in the transformation expressions, obeys the TDHO
equation
*On leave from Depto. de &ica, CBI, Universidad A. Metropoli- .
tana, Iztapalapa 09340, Ap. Postal, 55-534 xMe D.F., Mexico. u+Q2(t)u=0. (7)
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On the other hand, the propagator may be written using We may rewrite this expression as a function of an ampli-
the Ermakov-ngis invariant wite— p, wherep obeys the  tyde function p= ‘/u21+ u22, by noticing that pp=u,U;
Ermakov equation +U,U, and that the orthogonal functions obey EE), so

. ) s that
p+Q%t)p=p2 8 _ _ . :
. o o . 2 ) (UgUp—Upup)?+(Uglg +Upup)® o, o,

In either case, it is seen that the invariant in the time- — tpP°= 2 =(uituy).
dependent case enters the propagator expression in an analo-" P (15)
gous fashion as the Hamiltonian does in the time-
independent case. The operator in terms qf is then

~N\ 2
Ill. CLASSICAL AND QUANTUM INVARIANTS - 1{/Gq P A)z 7 16
=315 (pp—pa)?|=1,,

The classical orthogonal functions invariant is

. . but this is precisely the Ermakov-Lewis invariant where the
G=uu;—Upuy, (9 real constant is usually normalized to unity but may, in
general, be different from or|@]. The above procedure is a
whereu, andu, are real linearly independent solutions of simple derivation of the quantum Ermakov-Lewis invariant,
the TDHO equatior{4]. The constancy of this quantity is which has otherwise been obtained using rather more com-
readily obtained from the evaluation of its time derivative plex mathematical method®]. The non-Hermitian linear

G=U1U,— Uyl =0. The quantum invariant arising from the invarianti, introduced by Malkinet al. written in terms of
mapping ofu, and u, into the coordinate and momentum the orthogonal functions invariants lis=G;—iG,.

operators is In the classical case, the amplitude and phase representa-
tion of the invariant is straightforward. If the complex coor-
Gi=up—uQ. (10 dinate variablal is expressed in polar coordinates,
The time derivative of this operator is U= pe'So+gpe 'S, (17)

a6, a6, i . . ) A whereo is a constant, the orthogonal solutions may be writ-
Wz7—%[G1,H(t)]=(u+92u)q=0, (1)  tenasu;=—(1-o0)psin(s,) andu,=(1+0)p cosE,). Sub-
stitution of these variables in the classical orthogonal func-

L . . tions expression(9) yields the invariant in terms of
thus confirming its invariance. The obtention of a seco”damplitude and phase variables

invariant given a first invariant has been a subject of several

communications[5,6]_. It i_s worth remarking that _the exis_—_ G/(l_az):pz'sp' (18)
tence of a second invariant warrants complete integrability
for a Hamiltonian-Ermakov systetf7]. Within the present The constanG/(1— o) may be normalized to 1 and the

formalism, it is straightforward to introduce a second invari- y, i 246 of the phase written as the frequemmt)zép;

ant stemming from the mapping af andu, into the coor-  the squared amplitude times the frequency then obeys the
dinate and momentum operators, relationship

Gy=—U,P+U,0. (12 pPADw(t)=1. (19

The energy of a time-independent oscillator is propor-
tional to the squares of the momentum and coordinate vari-
ables xp?+ w3g?, which in terms of the amplitude and
phase variables i§xp3w3. In the adiabatic approximation,
this relationship is considered to hold even in the time-
© L a an dependent case, i.e£xp?(t)w?(t). The orthogonal func-

I=3(G1+G3), (13)  tions exact invariant is then proportional to the ratio of the
energy over the frequendy/(1— o?) < £(t)/ w(t) thus yield-
which in terms of the position and momentum operators is ing the well-known adiabatic invariarjtL0]. Nonetheless,
the exact invariant expressiofi8) does not rely on this

These two invariants obey the commutation relation
[G,,6,]=—iG, whereG is the constant given by Eg9).
From the sum of their squares, we may construct the invari
ant operator

G2+ B3= (Uap— 0,8+ (—Ugh-+ 1) approximation. BT
However, the quantum versions of this invariant produce
= (uf+u3)p?+ (ui+uj)g? a linear form in the coordinate and momentum operators as
_ o seen in Eqs(10) and(12). It therefore comes to no surprise
—(uqugtuyu,)(pg+qp). (14)  that the argument of the propagator is proportional to the
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square of the orthogonal functions quantum invari@tOn . 1 (4 o
the other hand, the classical Ermakov-Lewis invariant in the al(ty=—=|—=—i(pp—pQq) |. (29
amplitude and phase representation follows from the substi- V2\p

tution q—p coss,, p—~dg/dt [8]. These time-dependent annihilation and creation operators

were originally introduced by Lewi§2]. The Ermakov in-

1,452 © or .
I=3p"s variant in terms of these operators is

p

(20

that implies a quadratic dependence on the energy of the
oscillator. Therefore, a quantum invariant with a quadratic

dependence on the coordinate and momentum variablggyee the second equality follows from the definition of this
should be in correspondence with the classical orthogongf,ariant in terms of the orthogonal functions quantum in-

functions invariant. variants(13). In order to obtain the transformation between
the distinct annihilation and creation operators, evaluate

i=a(ta(t)+i=ATA+1, (25)

IV. CREATION AND ANNIHILATION OPERATORS

An operator that can be written as the sum of two squares  gis,i Ag—is)l = Ag~iSy= 1 (6,—16,)(Up+iuy)

may be expressed in terrps of two adjoint complex quantities. \/Z
To wit, given an operatop that can be expressed as (26)
,27’_ H2+ h2 21) where u;=—psins,, u,=pcoss,. The relationship be-
=h? ,

tween the orthogonal functions and their trigonometric rep-
) . A _ ) _resentation is not unique. This choice represents the function
provided[b,,b,]=c, with ¢ a c-number, there exist annihi- , |eadingu, by =/2 ass, increaseq10]. Replacing the
lation and creation operatofs=b;+ib,, b'=b;—ib, so  definitions of the invariants yields

that the operator may be written %B*B—i[ﬁl,f)z]. For

instance, annihilation and creation operators for the Hamil- A s 1 uluz—uluz " ui+ u% -
tonian (2) may be written a$11] Ae “r= 2\ q-+i P
.1 . UgU;+UyUs |
B= _[Ql/Z(t)q+ip/Ql/2(t)], _|( 1Y1 2 2) ' 2
\/E —p q (27)
1 which simplifies to
B'=—=[Q"(t)a—ip/QY1)]. (22) )
ﬁ Aeior= | Siof ”)) a @
e = —| —+i - =a.
2\ p pP—pQ

However, the way in which thé operator is written as

Sherefore the time-dependent annihilati@meatior) opera-
Sors may be written as the product of the time-independent
annihilation(creation operators times a phase that involves
only ac-number function. This expression may be written as
a unitary transformation of a phase shift,

sions (13) and (16) are two such possibilities. The former
leads to annihilation and creation operators of the form

.1 . . .1
A=—(G;-iG,), AT=—2(Gl+|G2), (23

V2 V2

where the identifications,— G, andb,— —G, have been The equation of motion of this operator is then
made. These operators may also be obtained from the non-
Hermitian linear invariant, which arises from the complex da ~ oA

solution of the TDHO equatio12,13. The sign in the E_'w(t)[l’a]' (30
imaginary part of the above expressions is introduced in or-

der to have consistency with the cited results. These annihi- |t js thus seen that the operate(t)i in the QM-TDHO

lation and creation operators are also invariant since they aigquation again plays the role that the Hamiltonian does in a

a=expis,)Aexp(—is,l). (29)

composed of invariant operators. . time-independent harmonic-oscillator case. This assertion is
_On the other hand, the operators arising from Ef)  consistent with the transformation that relates the invariant
yield and the time-dependent Hamiltonif3i:
AR O K B ) Lot
a(t)=—=|—+i(pp—pQq) |, =A(t)—i —T.
(t) ir (pp—pQ) oI =H() i —T (31)
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V. PHASE OPERATORS FOR THE TIME-DEPENDENT where|n) is a number state, eigenstate of the invariant

OSCILLATOR The transformationViV'=i+1, although having discrete

As it is well known, different operators can be used tonature works as a shifter in the same waygaand p do:

define the phase in quantum optidst]. The invariant for- explap)qexp(iap)=q+a. The sine and cosine operators

malism will be applied here to the phase operator given by, the Susskind-Glogower operators,
Turski and the exponential phase operators of Susskind and

Glogower. In particular, the former operator will allow an L V+vh vVt
appropriate translation of the classical amplitude-phase in- C= 2 S= 2i (37)
variant into the quantum one.
give the commutation relationsf,f:]=—i§, [T,§]=ié.
A. Turski phase operator Following the same treatment as above, i.e., expressing op-

) L ) ) ~ AT . . . ™~
By using the annihilation operat¢24) the displacement erators that depend ananda’ in terms of the invariant#,
operator can be written a(a)=exp@Ea’—a*a), a A", andl, the equations of motion for the sine and cosine
=rexp(6). The vacuum state may then be displaced to opPPerators are

tain a coherent stater)=D(a)|0) and the phase operator dC _ L . dS . ~
introduced by Turski15] is then generalized to the time- Hzlw(t)[l ,Cl=w(1)S, a=lw(t)[| ,S]=—ow(1)C.
dependent case, (38)

T 2
q)_f 6 a)(alda. (32) VI. AMPLITUDE AND PHASE REPRESENTATION OF

INVARIANT
This operator obeys the commutation relatidn1]=—i. In

order to evaluate the time evolution ®f, this operator can
be written in terms of the invariant annihilation and creation

The coordinate operator from E®4) is

L Ay
operators using Eq29), q Vo(t) (a+a’), (39
&;:eispf( f 9[‘)A(a)eispf|0><o|eispff)/§(a)d2a) efispT, and following Dirac[18] the creation and annihilation opera-
tors may be written as

(33 T Sy
a=\e i, at=e®\f. (40)
The coordinate operat@89) in the form of amplitude and
phase variables is then

e s, (34 N e |
a= Vo0 " Vauuy (41)

the time derivative of this expression yields the equation of i ) »
. ~ where the amplitude and phases, are identified as
motion for ®: p

i [ 1 5
@—iw(t)[f,ci)]z—w(t)_ (35) p— o)’ s,—&. (42)

dt

where D (a) =exp@AT—a*A). The invariant acting over
the vacuum state i§0)=|0) and the phase is then

(i):eispf

J 0D a(@)|0)(0|DA(@)d?

R The invariant with the aid of Eq.35) is given in ampli-

The operatotw(t)| once again takes the role of the Hamil- tude and phase operators as
tonian. aga 4 n
; a'a+ti dod

B. Susskind-Glogower operators w(t) dt’

The generalization of the phase to the time-dependenjhich has the same structure of the orthogonal functions
case is also applicable using other formalisms. Consider, fG|assical invariant written in amplitude and phase variables
example, the Susskind-Glogower operatpt§] given by  (18). The number operator is then identified with
(see, for instance, Ref17])

1

(43

‘i
n(t)= % (44)

It should be recalled that the number operator is identified

1 o with the product of the annihilation and creation pair when
vi=at => |n+ 1)(n|, (36)  these operators arise from the Hamiltonian operator; namely,
n=0

aa BB given by Eq.(22). However, the identification of the

V= a= >, |n}(n+1],
n=0

aal
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number operator in terms of the annihilation-creation paifThis scheme corresponds to a Lagrangian hydrodynamic
arising from the invariant is obtained from the correspon-framework where a given volume is being followed along its
dence with the orthogonal functions classical invariant. Thigoropagating path. The power density, defined as the energy
association may seem dimensionally awkward but it shoulder unit imeW=¢&/ 7= Ew, at these two times is then given
be remembered that the invariant initial value was normalby
ized to 1[Eq. (19)]. The explicit introduction of the normal-
ization factorpgwo makes, of course, a dimensionless photon
numberpz(t)zpéwolw(t) for a dimensionless amplitude
(usually set to unitypg=1). The invariant is then

Wi W,

W, Wy

(47)

This reasoning may be extended to an arbitrary number of
modes leading to other nonlinear processes such as paramet-
ric amplification or frequency difference. These type of equa-
tions are known in nonlinear optics as Manley-Rowe rela-
tions[19]. They are usually derived in semiclassical theory
Since a'a is invariant from Eq.(25), if the frequency is through a rather cumbersome procedure that relies on the
constant the number of excitations is then also constanParticular nonlinearity being described together with the

Nonetheless, in the time-dependent case, the number of egYMMetries that they involvekleinmann’s condition when

citations is inversely proportional to the time-dependent fre10 absorption is presefi20]. These semiclassical results are

: . : : ften interpreted in terms of photon numbers participating in
?;ﬁgg%rzntﬁgréle;%?ggﬁ?niﬁ with the intensity dependence 0@ach mod€20,21]. This interpretation is naturally embodied

The energy of the excitation at a given timds given by In the present quantum treatment,
E=n(t)w(ty) (with 2=1) but this is precisely the quantum

invariant value above the vacuum state —n(ts)(d®/dt) An economical derivation of the quantum Ermakov-Lewis
X(ts). Therefore, the invariant represents the energy conseinyariant has been presented. This invariant may be used in
vation of the closed system. In contrast, the time-dependenfn equivalent fashion as the Hamiltonian is used in the time-
Hamiltonian (2) is no longer a constant of motion whose independent case. Namely, to obtain evolution operators, to
eigenvalue is necessarily related to an open system. Cogast the equations of motion of different operators in com-
sider, as an example of this formalism, the number of excimutative expressions, and to produce a phase shift with its
tations to represent the photon number. Allow for a nonlineaexponential form. The invariant and time-dependent defini-
process where the field experiences second-harmonic genetans for annihilation and creation operators have been used

~ ~ 1 (O] )d(i)
|=— n(t)+§m H(t)

(45)

VII. CONCLUSIONS

tion. Let the photon number at tintg be n, when the fre-
guency mode ig; and allow it to evolve at a timg, to the
mode w,=2w4. The number of photons in the mods is
then from the invariant relationshi@5),

~ ~ Wq 1.

n2=n1w—2=—n1. (46)

2

to generalize the quantum phase to the time-dependent case.
Following the classical form of the orthogonal functions in-
variant, the quantum Ermakov-Lewis invariant has been ex-
pressed in amplitude and phase variables in accordance with
the correspondence principle. A quantum derivation of the
Manley-Rowe relations has been presented as a particular
application of this representation.
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