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Amplitude and phase representation of quantum invariants
for the time-dependent harmonic oscillator

M. Fernández Guasti* and H. Moya-Cessa
Instituto Nacional de Astrofı´sica Optica y Electro´nica, Coordinacio´n de Optica, Apartado Postal 51 y 216, 72000 Puebla, Puebla, Mex

~Received 11 December 2002; published 11 June 2003!

The correspondence between classical and quantum invariants is established. The Ermakov-Lewis quantum
invariant of the time-dependent harmonic oscillator is translated from the coordinate and momentum operators
into amplitude and phase operators. In doing so, Turski’s phase operator as well as Susskind-Glogower opera-
tors are generalized to the time-dependent harmonic-oscillator case. A quantum derivation of the Manley-Rowe
relations is shown as an example.
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I. INTRODUCTION

Exact invariants have been extensively used to solve
time-dependent Shro¨dinger equation@1#. Various related in-
variants have been obtained for the quantum-mechan
time-dependent harmonic-oscillator~QM-TDHO! equation
in one dimension. The Ermakov-Lewis invariant and
thogonal functions invariant are two such constants of m
tion that have been used to solve the QM-TDHO proble
The Ermakov-Lewis invariant is usually expressed in ter
of coordinate and momentum operators although it has
been expressed in terms of raising and lowering opera
that lead to number states for wave functions that are eig
states of the invariant operator@2#. However, the amplitude
operator stemming from this procedure does not corresp
to the amplitude of the oscillator in the classical limit.

The purpose of this paper is to translate the invariant
malism from the coordinate and momentum operators into
invariant in terms of amplitude and phase operators that
duce to the corresponding variables in the classical limit
the Sec. II, the solution to the QM-TDHO equation is sta
using the square of the orthogonal functions invariant and
Ermakov invariant. In the following section, a second line
Hermitian invariant is introduced and the Ermakov-Lew
invariant is economically obtained from these two consta
of motion. Two distinct annihilation and creation operato
are presented in Sec. IV and their equations of motion
established. In Sec. V, the quantum phase is defined usin
Turski and Susskind and Glogower formalisms. The form
definition is shown to yield an amplitude and phase rep
sentation that is consistent with the classical limit. In S
VI, the Ermakov-Lewis invariant is written in amplitude an
phase variables. The energy conservation and photon num
relations in nonlinear optical processes are shown as
example.

II. EVOLUTION OPERATORS AND INVARIANTS

Consider the time-dependent Schro¨dinger equation with
\51,
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]uc~ t !&

]t
5Ĥuc~ t !&. ~1!

The solution to this equation for a time-independe
Hamiltonian is formally given by uc(t)&5Û(t)uc(0)&,
whereÛ(t) is the evolution operatorÛ(t)5exp(2iĤt). For
the time-dependent harmonic-oscillator Hamiltonian

Ĥ~ t !5 1
2 @ p̂21V2~ t !q̂2#, ~2!

the solution may be written in terms of a propagator th
involves a time-independent operator together with an app
priate transformation of the wave function

uc~ t !&5ÛI T̂
†T̂~0!uc~0!&. ~3!

The propagator is given by

ÛI5exp~2 isa Î a!, sa[E
0

t dt8

a2
, ~4!

where the functionsa is a time-dependentc number anda
satisfies a differential equation appropriate to the invari
being used. The transformation is defined as

T̂5expS i
ln a

2

dq̂2

dt
D expS 2 i

d ln a

dt

q̂2

2
D

5expS i
ln a

2
~ q̂p̂1 p̂q̂! DexpS 2 i

ȧ

2a
q̂2D . ~5!

The time-independent operator in the propagator is an
variant that is not unique@3#. On the one hand, it may b
proportional to the square of the orthogonal functions inva
ant operator

Î u5 1
2 ~up̂2u̇q̂!2, ~6!

where the functiona→uPR, replaced in the invariant a
well as in the transformation expressions, obeys the TD
equation

ü1V2~ t !u50. ~7!
©2003 The American Physical Society03-1
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On the other hand, the propagator may be written us
the Ermakov-Lewis invariant witha→r, wherer obeys the
Ermakov equation

r̈1V2~ t !r5r23. ~8!

In either case, it is seen that the invariant in the tim
dependent case enters the propagator expression in an a
gous fashion as the Hamiltonian does in the tim
independent case.

III. CLASSICAL AND QUANTUM INVARIANTS

The classical orthogonal functions invariant is

G5u1u̇22u2u̇1 , ~9!

whereu1 and u2 are real linearly independent solutions
the TDHO equation@4#. The constancy of this quantity i
readily obtained from the evaluation of its time derivati
Ġ5u1ü22u2ü150. The quantum invariant arising from th
mapping ofu2 and u̇2 into the coordinate and momentu
operators is

Ĝ15u1p̂2u̇1q̂. ~10!

The time derivative of this operator is

dĜ1

dt
5

]Ĝ1

]t
2

i

\
@Ĝ1 ,Ĥ~ t !#5~ ü1V2u!q̂50, ~11!

thus confirming its invariance. The obtention of a seco
invariant given a first invariant has been a subject of sev
communications@5,6#. It is worth remarking that the exis
tence of a second invariant warrants complete integrab
for a Hamiltonian-Ermakov system@7#. Within the present
formalism, it is straightforward to introduce a second inva
ant stemming from the mapping ofu1 and u̇1 into the coor-
dinate and momentum operators,

Ĝ252u2p̂1u̇2q̂. ~12!

These two invariants obey the commutation relat

@Ĝ1 ,Ĝ2#52 iG, whereG is the constant given by Eq.~9!.
From the sum of their squares, we may construct the inv
ant operator

Î 5 1
2 ~Ĝ1

21Ĝ2
2!, ~13!

which in terms of the position and momentum operators

Ĝ1
21Ĝ2

25~u1p̂2u̇1q̂!21~2u2p̂1u̇2q̂!2

5~u1
21u2

2! p̂21~ u̇1
21u̇2

2!q̂2

2~u1u̇11u2u̇2!~ p̂q̂1q̂p̂!. ~14!
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We may rewrite this expression as a function of an am
tude function r5Au1

21u2
2, by noticing that ṙr5u1u̇1

1u2u̇2 and that the orthogonal functions obey Eq.~9!, so
that

G2

r2
1 ṙ25

~u1u̇22u2u̇1!21~u1u̇11u2u̇2!2

r2
5~ u̇1

21u̇2
2!.

~15!

The operator in terms ofr is then

Î 5
1

2
F S Gq̂

r
D 2

1~r p̂2 ṙq̂!2G5 Î r , ~16!

but this is precisely the Ermakov-Lewis invariant where t
real constantG is usually normalized to unity but may, in
general, be different from one@8#. The above procedure is
simple derivation of the quantum Ermakov-Lewis invaria
which has otherwise been obtained using rather more c
plex mathematical methods@9#. The non-Hermitian linear
invariant Î c introduced by Malkinet al. written in terms of
the orthogonal functions invariants isÎ c5Ĝ12 iĜ2.

In the classical case, the amplitude and phase represe
tion of the invariant is straightforward. If the complex coo
dinate variableũ is expressed in polar coordinates,

ũ5reisr1sre2 isr, ~17!

wheres is a constant, the orthogonal solutions may be w
ten asu152(12s)r sin(sr) andu25(11s)r cos(sr). Sub-
stitution of these variables in the classical orthogonal fu
tions expression~9! yields the invariant in terms o
amplitude and phase variables,

G/~12s2!5r2ṡr . ~18!

The constantG/(12s2) may be normalized to 1 and th
derivative of the phase written as the frequencyv(t)[ ṡr ;
the squared amplitude times the frequency then obeys
relationship

r2~ t !v~ t !51. ~19!

The energy of a time-independent oscillator is prop
tional to the squares of the momentum and coordinate v
ables E}p21v0

2q2, which in terms of the amplitude an
phase variables isE}r0

2v0
2. In the adiabatic approximation

this relationship is considered to hold even in the tim
dependent case, i.e.,E}r2(t)v2(t). The orthogonal func-
tions exact invariant is then proportional to the ratio of t
energy over the frequencyG/(12s2)}E(t)/v(t) thus yield-
ing the well-known adiabatic invariant@10#. Nonetheless,
the exact invariant expression~18! does not rely on this
approximation.

However, the quantum versions of this invariant produ
a linear form in the coordinate and momentum operators
seen in Eqs.~10! and~12!. It therefore comes to no surpris
that the argument of the propagator is proportional to
3-2
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square of the orthogonal functions quantum invariant~6!. On
the other hand, the classical Ermakov-Lewis invariant in
amplitude and phase representation follows from the sub
tution q̂→r cossr , p̂→dq̂/dt @8#:

I 5 1
2 r4ṡr

2 ~20!

that implies a quadratic dependence on the energy of
oscillator. Therefore, a quantum invariant with a quadra
dependence on the coordinate and momentum varia
should be in correspondence with the classical orthogo
functions invariant.

IV. CREATION AND ANNIHILATION OPERATORS

An operator that can be written as the sum of two squa
may be expressed in terms of two adjoint complex quantit
To wit, given an operatorb̂ that can be expressed as

b̂5b̂1
21b̂2

2 , ~21!

provided@ b̂1 ,b̂2#5c, with c a c-number, there exist annihi
lation and creation operatorsb̂5b̂11 i b̂2 , b̂†5b̂12 i b̂2 so
that the operator may be written asb̂5b̂†b̂2 i @ b̂1 ,b̂2#. For
instance, annihilation and creation operators for the Ham
tonian ~2! may be written as@11#

B̂5
1

A2
@V1/2~ t !q̂1 i p̂/V1/2~ t !#,

B̂†5
1

A2
@V1/2~ t !q̂2 i p̂/V1/2~ t !#. ~22!

However, the way in which theb̂ operator is written as
the sum of two squares need not be unique. In fact, for
invariant operator defined in the preceding section, exp
sions ~13! and ~16! are two such possibilities. The forme
leads to annihilation and creation operators of the form

Â5
1

A2
~Ĝ12 iĜ2!, Â†5

1

A2
~Ĝ11 iĜ2!, ~23!

where the identificationsb̂1→Ĝ1 and b̂2→2Ĝ2 have been
made. These operators may also be obtained from the
Hermitian linear invariant, which arises from the compl
solution of the TDHO equation@12,13#. The sign in the
imaginary part of the above expressions is introduced in
der to have consistency with the cited results. These ann
lation and creation operators are also invariant since they
composed of invariant operators.

On the other hand, the operators arising from Eq.~16!
yield

â~ t !5
1

A2
S q̂

r
1 i ~r p̂2 ṙq̂! D ,
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â†~ t !5
1

A2
S q̂

r
2 i ~r p̂2 ṙq̂! D . ~24!

These time-dependent annihilation and creation opera
were originally introduced by Lewis@2#. The Ermakov in-
variant in terms of these operators is

Î 5â†~ t !â~ t !1 1
2 5Â†Â1 1

2 , ~25!

where the second equality follows from the definition of th
invariant in terms of the orthogonal functions quantum
variants~13!. In order to obtain the transformation betwee
the distinct annihilation and creation operators, evaluate

eisr Î Âe2 isr Î5Âe2 isr5
1

A2r
~Ĝ12 iĜ2!~u21 iu1!,

~26!

where u152r sinsr , u25r cossr . The relationship be-
tween the orthogonal functions and their trigonometric re
resentation is not unique. This choice represents the func
u1 leading u2 by p/2 as sr increases@10#. Replacing the
definitions of the invariants yields

Âe2 isr5
1

A2
F S u1u̇22u̇1u2

r
D q̂1 i S u1

21u2
2

r D p̂

2 i S u1u̇11u2u̇2

r
D q̂G , ~27!

which simplifies to

Âe2 isr5
1

A2
S Gq̂

r
1 i ~r p̂2 ṙq̂! D 5â. ~28!

Therefore the time-dependent annihilation~creation! opera-
tors may be written as the product of the time-independ
annihilation~creation! operators times a phase that involv
only ac-number function. This expression may be written
a unitary transformation of a phase shift,

â5exp~ isr Î !Âexp~2 isr Î !. ~29!

The equation of motion of this operator is then

dâ

dt
5 iv~ t !@ Î ,â#. ~30!

It is thus seen that the operatorv(t) Î in the QM-TDHO
equation again plays the role that the Hamiltonian does
time-independent harmonic-oscillator case. This assertio
consistent with the transformation that relates the invari
and the time-dependent Hamiltonian@3#:

v~ t ! Î 5Ĥ~ t !2 i
]T̂†

]t
T̂. ~31!
3-3
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V. PHASE OPERATORS FOR THE TIME-DEPENDENT
OSCILLATOR

As it is well known, different operators can be used
define the phase in quantum optics@14#. The invariant for-
malism will be applied here to the phase operator given
Turski and the exponential phase operators of Susskind
Glogower. In particular, the former operator will allow a
appropriate translation of the classical amplitude-phase
variant into the quantum one.

A. Turski phase operator

By using the annihilation operator~24! the displacemen
operator can be written asD̂(a)5exp(aâ†2a* â), a
5rexp(iu). The vacuum state may then be displaced to
tain a coherent stateua&5D̂(a)u0& and the phase operato
introduced by Turski@15# is then generalized to the time
dependent case,

F̂5E uua&^aud2a. ~32!

This operator obeys the commutation relation@F̂, Î #52 i . In

order to evaluate the time evolution ofF̂, this operator can
be written in terms of the invariant annihilation and creati
operators using Eq.~29!,

F̂5eisr Î S E uD̂A(a)e2 isr Î u0&^0ueisr Î D̂A
†(a!d2a De2 isr Î ,

~33!

where D̂A(a)5exp(aÂ†2a* Â). The invariant acting over
the vacuum state isÎ u0&5 1

2 u0& and the phase is then

F̂5eisr Î S E uD̂A(a)u0&^0uD̂A
†~a!d2a De2 isr Î , ~34!

the time derivative of this expression yields the equation

motion for F̂:

dF̂

dt
5 iv~ t !@ Î ,F̂#52v~ t !. ~35!

The operatorv(t) Î once again takes the role of the Ham
tonian.

B. Susskind-Glogower operators

The generalization of the phase to the time-depend
case is also applicable using other formalisms. Consider
example, the Susskind-Glogower operators@16# given by
~see, for instance, Ref.@17#!

V̂5
1

Aââ†
â5 (

n50

`

un&^n11u,

V̂†5â†
1

Aââ†
5 (

n50

`

un11&^nu, ~36!
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where un& is a number state, eigenstate of the invariantÎ .
The transformationV̂Î V̂†5 Î 11, although having discrete
nature works as a shifter in the same way asq̂ and p̂ do:
exp(iap̂)q̂exp(2iap̂)5q̂1a. The sine and cosine operato
for the Susskind-Glogower operators,

Ĉ5
V̂1V†

2
, Ŝ5

V̂2V†

2i
, ~37!

give the commutation relations@ Î ,Ĉ#52 iŜ, @ Î ,Ŝ#5 iĈ.
Following the same treatment as above, i.e., expressing
erators that depend onâ andâ† in terms of the invariantsÂ,
Â†, and Î , the equations of motion for the sine and cosi
operators are

dĈ

dt
5 iv~ t !@ Î ,Ĉ#5v~ t !Ŝ,

dŜ

dt
5 iv~ t !@ Î ,Ŝ#52v~ t !Ĉ.

~38!

VI. AMPLITUDE AND PHASE REPRESENTATION OF
INVARIANT

The coordinate operator from Eq.~24! is

q̂5
1

A2v~ t !
~ â1â†!, ~39!

and following Dirac@18# the creation and annihilation opera
tors may be written as

â5AÎ e2 i F̂, â†5ei F̂AÎ . ~40!

The coordinate operator~39! in the form of amplitude and
phase variables is then

q̂5A Î

2v~ t !
e2 i F̂1ei F̂A Î

2v~ t !
, ~41!

where the amplituder and phasesr are identified as

r→A Î

v~ t !
, sr→F̂. ~42!

The invariant with the aid of Eq.~35! is given in ampli-
tude and phase operators as

Î 52
â†â1 1

2

v~ t !

dF̂

dt
, ~43!

which has the same structure of the orthogonal functi
classical invariant written in amplitude and phase variab
~18!. The number operator is then identified with

n̂~ t !5
â†â

v~ t !
. ~44!

It should be recalled that the number operator is identifi
with the product of the annihilation and creation pair wh
these operators arise from the Hamiltonian operator; nam
B̂†B̂ given by Eq.~22!. However, the identification of the
3-4
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number operator in terms of the annihilation-creation p
arising from the invariant is obtained from the correspo
dence with the orthogonal functions classical invariant. T
association may seem dimensionally awkward but it sho
be remembered that the invariant initial value was norm
ized to 1@Eq. ~19!#. The explicit introduction of the normal
ization factorr0

2v0 makes, of course, a dimensionless pho
number r2(t)5r0

2v0 /v(t) for a dimensionless amplitud
~usually set to unity,r051). The invariant is then

Î 52S n̂~ t !1
1

2

v0

v~ t ! DdF̂

dt
~ t !. ~45!

Since â†â is invariant from Eq.~25!, if the frequency is
constant the number of excitations is then also const
Nonetheless, in the time-dependent case, the number o
citations is inversely proportional to the time-dependent f
quency in correspondence with the intensity dependence
tained in the classical limit.

The energy of the excitation at a given timets is given by
E5n̂(ts)v(ts) ~with \51) but this is precisely the quantum

invariant value above the vacuum stateÎ 52n̂(ts)(dF̂/dt)
3(ts). Therefore, the invariant represents the energy con
vation of the closed system. In contrast, the time-depend
Hamiltonian ~2! is no longer a constant of motion whos
eigenvalue is necessarily related to an open system. C
sider, as an example of this formalism, the number of ex
tations to represent the photon number. Allow for a nonlin
process where the field experiences second-harmonic ge
tion. Let the photon number at timet1 be n̂1 when the fre-
quency mode isv1 and allow it to evolve at a timet2 to the
modev252v1. The number of photons in the modev2 is
then from the invariant relationship~45!,

n̂25n̂1

v1

v2
5

1

2
n̂1 . ~46!
ca
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This scheme corresponds to a Lagrangian hydrodyna
framework where a given volume is being followed along
propagating path. The power density, defined as the en
per unit timeW5E/t5Ev, at these two times is then give
by

W1

v1
5

W2

v2
. ~47!

This reasoning may be extended to an arbitrary numbe
modes leading to other nonlinear processes such as para
ric amplification or frequency difference. These type of equ
tions are known in nonlinear optics as Manley-Rowe re
tions @19#. They are usually derived in semiclassical theo
through a rather cumbersome procedure that relies on
particular nonlinearity being described together with t
symmetries that they involve~Kleinmann’s condition! when
no absorption is present@20#. These semiclassical results a
often interpreted in terms of photon numbers participating
each mode@20,21#. This interpretation is naturally embodie
in the present quantum treatment.

VII. CONCLUSIONS

An economical derivation of the quantum Ermakov-Lew
invariant has been presented. This invariant may be use
an equivalent fashion as the Hamiltonian is used in the tim
independent case. Namely, to obtain evolution operators
cast the equations of motion of different operators in co
mutative expressions, and to produce a phase shift with
exponential form. The invariant and time-dependent defi
tions for annihilation and creation operators have been u
to generalize the quantum phase to the time-dependent c
Following the classical form of the orthogonal functions i
variant, the quantum Ermakov-Lewis invariant has been
pressed in amplitude and phase variables in accordance
the correspondence principle. A quantum derivation of
Manley-Rowe relations has been presented as a partic
application of this representation.
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