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Superfluidity and collective modes in a uniform gas of Fermi atoms with a Feshbach resonance
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We investigate strong-coupling superfluidity in a uniform two-component gas of ultracold Fermi atoms
attractively interacting via quasimolecular bosons associated with a Feshbach resonance. This interaction is
tunable by the threshold energy »f the Feshbach resonance, becoming large:ais 2lecreasedrelative to
2eg, Whereeg is the Fermi energy of one compongnn recent work, we showed that the enhancement of this
tunable pairing interaction naturally leads to the BCS-BBGse-Einstein condensatiporossover, where the
character of the superfluid phase transition changes from the BCS type to a BEC of composite bosons con-
sisting of preformed Cooper-pairs and Feshbach-induced molecules. In this paper, we extend our previous
work and study both the quasiparticles and the collective dynamics of the superfluid phase below the phase-
transition temperatur&., limiting ourselves to a uniform gas. We show how the superfluid order parameter
changes from the Cooper-pair amplitudeto the square root of the number of condensed moleculgd (
associated with the Feshbach resonance, as the threshold eneigyovered. In the intermediate coupling
regime, the superfluidity is shown to be characterized by an order parameter consisting of a superpdsition of
and ¢,,. We also discuss the Goldstone mode associated with superfluidity, and show how its character
smoothly changes from the Anderson-Bogoliubov phonon in the BCS regime to the Bogoliubov phonon in the
BEC regime in the BCS-BEC crossover. The velocity of this Goldstone phonon mode is shown to strongly
depend on the value ofi2 We also show that this Goldstone mode appears as a resonance in the spectrum of
the density-density correlation function, which is experimentally accessible.
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[. INTRODUCTION field BCS theory. In addition, the character of the phase tran-
sition was shown to continuously change from the BCS type
One of the most challenging topics in current physics isto a BEC(Bose-Einstein condensatipaf composite bosons
the realization of superfluidity in a trapped atomic gas com-{consisting of preformed Cooper-pairs and long-lived Fesh-
posed of two Fermi hyperfine states. A considerable experibach moleculgsas the threshold energyvds lowered. Our
mental effort has already been made to cooldown Fefmétrong-coupling theory thus gave an upper limit ©f
atom gases, such &i and *K [1-5]. The temperature can =0 518F, for a Fermi gas in a harmonic trap potenfiabth

now be lowered td ~0.2Tg, where the Fermi gas should be T and T are proportional to the averaged trap frequency

Z(Iagehrlr)]/sdirengniinne;?[:g] and the observation of superfluid behaVIOch_oE(wOXwawoZ) 13 and T,=0.218 for a uniform gas

As a promising mechanism of BCS superfluidity with a[12_14]' These value§ are simply the BE.C transition tem-
high transition temperaturg,, making use of an atomic Fes- peratures, expressed in terms of the Fermi temperaiiod

hbach resonance has attracted much atterjiffert5. The  ©°N€ of t_he Fermi compone_nts. .
Feshbach resonance describes quasimolecular bosons, which!n this paper, we investigate the BCS-BEC crossover in
can mediate a pairing interaction between Fermi atoms. Thif'e superfluid state, extending our previous wdrR—14 to
pairing interaction is tunable by the threshold energya?  the superfluid region beloW;. Going past the previous BCS
the Feshbach resonance, and can become strong as 2 Mmean-field approximatiof®,22-24, we include strong fluc-
decreased relative to twice the Fermi energy of the atomguations around the BCS mean-field solution. We clarify how
Using this strong paring interaction, one can hope to achievéhe order parameter described by the Cooper-pair amplitude
a high value ofT.. Experimentally, the threshold energy2 A=UZ(c_pcy) in the weak-coupling BCS theory
can be controlled by a weak applied magnetic field. Verychanges to the BEC order parameter related to the number of
recently, this tunable interaction was observed in a Fermi gasondensed bosong,,=(b,-o) in the BCS-BEC crossover.
of 4% [16,17. Here,cy, is the annihilation operator of a Fermi atom in one
In our recent work{12—-14, we pointed out the impor- of two hyperfine states=1,]) andb is the annihilation
tance of fluctuations in the Cooper-channel in considering @perator of the boson molecule associated with the Feshbach
high-T. superfluidity originating from the strong pairing in- resonance.
teraction associated with a Feshbach resonance. We extendedIn the field of trapped ultracold Fermi gases, a crucial
the strong-coupling theory developed by Noe® and issue is to determine a clear unambiguous signature for su-
Schmitt-Rink[18—21], to include the effects of a Feshbach perfluidity [6,25-28. Another important problem is how to
resonance and the associated quasimolecular bosons. \&gperimentally track the system in the BCS-BEC crossover
showed that these particle-particle fluctuations strongly supregion. In this regard, the study of the Goldstone collective
pressT, from the value expected within the simple mean-mode is very useful since it is deeply related to the sponta-
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neous breakdown of the gauge symmetry associated with the .

superfluid phase transition. The Goldstone mode is known as H= E €pCpoCpo

the Anderson-Bogoliubov mode in the BCS sti6], while b

it is the Bogoliubov phonon in the BEC phag®0]. In this t T

paper, we discuss how these collective modes change from -u 2 Cp+q21C-p+ g2/ C—p' +q2/Cp +g21
one to the other as we go through the BCS-BEC crossover. ppa

We show that the velocity of the Goldstone phonop
strongly depends oni2 and thus it offers a way of observ-
ing the BCS-BEC crossover phenomenon by tuning the

+ 2 [egq+2v]blb,
q

threshold energy 2 in a cigar-shaped trafwhere the gas is + b
c_ C +H.c.]. 2.1
fairly uniform in the axial direction We also show that the g,% [PaC-pr21Cp+a2i | @
Goldstone mode appears as a resonance in the spectrum of
the density-density correlation function. Here, a Fermi atom and a quasimolecular boson associated

The present paper only considers the superfluid phase inwith the Feshbach resonance are, respectively, described by
uniform two-component Fermi gas with an attractive inter-the destruction operatocs,, andb,. The kinetic energy of a
action. In Ref.[14], we discussed the same model at andFermi atom ise,= p2/2m andqu+2vzq2/2M +2v is the
above the superfluid transition temperature for a trapped gasxcitation spectrum of thie-molecular bosons. Here p2ep-
using the local-density approximatighDA). The extension resents the lowest excitation energy lmfoosons, also re-
of the present work to an inhomogeneous trapped gas will bterred to as the threshold energy of the Feshbach resonance.
considered in the future. As well known, the low-energy col-The last term in Eq(2.1) describes the Feshbach resonance
lective modes in a trapped atomic gd&rmi or Bosg¢ are ~ With a coupling constang,, which describes how b mol-
strongly altered by the trap potential. However, the equiva€cule can dissociate into two Fermi atoms and how two
lent of the Goldstone phonon modes we discuss in this papdfefmi atoms can form onle boson. The Hamiltonian in Eq.
also arise in trapped two-component Fermi gases. These low2-D also |nc'lu'des an attractive fermion-fermion interaction
energy collective modes have been extensively discussed in Y _(<0) arising from nonresonant proces$és
the recent literaturd31—33 for the weak-coupling BCS Since oneb Bose molecule consists of tvyo Fermi atoms,
limit. In this paper, we discuss the physics of the Goldstonéhe boson ma?*" =2m and the conservation of the total
phonon mode as a function of the threshold energy & humber of particled\ imposes the relation
similar analysis remains to be done for the collective modes
of a trapped Fermi gas in the BCS-BEC crossover region.

This paper is organized as follows. In Sec. Il, we present N:% <Cgocpv>+2% <bgbq>'
our coupled fermion-boson model. We explain how to in-
clude the Strong-coup|indﬂuctuatior) effect Originating We incorporate this crucial constraint into the model Hamil-
from the Feshbach resonance in Sec. IlI. In Sec. IV, we contonian in Eq.(2.1) using a chemical potential{=H — uN.
sider the Goldstone mode. We first derive correlation func-The resulting grand-canonical Hamiltonidt has the same
tions describing Cooper-pair fluctuations, as well as a renofform as Eq.(2.1), except that the kinetic energies of Fermi
malized boson Green's function for quasimolecules?toms andb bosons are replaced by,— &,=e,—u and
associated with the Feshbach resonance, using the Hartrezga™ 27— ésq=egpqT 2V~ 24, respectively. In the latter re-
Fock random-phase approximatidhiF-RPA). The Gold- placement, _the factor of 2 m,u’z reflects the fact that onle
stone mode is then obtained from their poles. In Sec. V, Wé)oson consists of two Fer_ml atoms. . .
discuss the BCS-BEC crossover beldwbased on our nu- In this paper, we investigate strong-coupling effects in the

merical results. We also discuss the BCS-BEC crossover bes_uperﬂwd phase, as well as the Goldstone mode associated

havior of the order parameter and the Goldstone honowith superfluidity in the BCS-BEC crossover region. As a
Vclj f . pf12 In Sec. VI di h P tart, we consider a uniform Fermi gas and leave the effect of
mode, as a function o n Sec. Vi, we discuss the cou- trapping potential to future work. In this regard, we have

pling of the Goldstone mode with density fluctuations. Sechown in Refs[12—14 that while a trap potential enhances

tion VIl gives a summary and a brief discussion of trappedhe transition temperaturg, in the BEC regime, the quali-
Fermi gases. tative behavior ofT; in the BCS-BEC crossover is not very
different from a uniform Fermi gas. Within weak-coupling
BCS theory, several papers have discussed collective excita-
tions in a trapped Fermi gas with attractive interactigBge,

for example, Refs[31-33.)

When the Feshbach coupling term is absent in @2dL),

We consider a gas of Fermi atoms composed of twghe fermions andb bosons are decoupled from each other. In
atomic hyperfine states, coupled to molecular two-particlehis limit, a BCS superfluid phase transition of Fermi atoms
state. We describe the two hyperfine states using a pseand BEC transition ob bosons can occur, at different tem-
dospin variables (=7, |). The coupled fermion-boson peratures. These two superfluid phases are, respectively, de-
model Hamiltonian is given b{7-15,22-24 scribed by independent order parameters

(2.2

II. COUPLED FERMION-BOSON MODEL
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, Gy
AEUE C_oCor), p+a/2 p+ag/2
b (C=piCor? (a) - Ui g4 + o
p+a/2 P'+a/2
bm=(Dg-0)- 2.3 ' '
On the other hand, when the Feshbach resonance term |
present ¢,#0), we find the following identity in the equi-
librium state:
dey, [dbg| - o G
O_'W"<W>_<[boyH]>—(2V_2M)¢m+ Tt
(2.9 (b) 6Q= + + 4o
Equation(2.4) gives[8,9]
g A

This last result shows that the BEC order paraméigrand

the Cooper-pair order paramet&r are no longer indepen-
dent, due to the hybridization induced by the Feshbach reso
nanceg,. Both A and ¢, are finite in the superfluid phase,
and there is a unique superfluid phase transition in this

coupled fermion-boson model. P
For later convenience, we define the following composite (c) %%%%%ﬁ B © + + +

order parametef8,9,12:

FIG. 1. (a) t-matrix approximation for the particle-particle scat-
tering vertexI” at T.. The solid line represents the fermion Green’s
function. The first line in the figure involves the ladder processes by
- nonresonant interaction-U, while the second line involves the
We will find thatA corresponds to the excitation energy gapfeshbach resonance described byt#mson Green’s functiob.
in the spectrum of fermion quasi-particles beldwin the  (b) Fluctuation contribution to the thermodynamic potenfinlat

A=A—gdm. (2.6

BCS-BEC crossover regime. T.. The first line represents the Cooper-channel particle-particle
fluctuations associated with the nonresonant interactidn, and
. STRONG-COUPLING EFFECTS ON SUPERELUIDITY the second line describes the effect of the Feshbach resonance cou-
pling g, . (c) The shaded bubble includes ladder diagram scattering
A. Review of strong-coupling theory for T processes by-U.

In this section, we review the strong-coupling theory for_

T, discussed in our previous papg¢f2—14. This formula- IS an gﬁective pairing !nteractio_n. The last term in E3|_..2)
tion is extended to the region beloW, in the following describes the interaction mediated bybosons associated

sections. with the Feshbach resonance. Equati@ydl) is formally

In previous work [12—-14, we extended the strong- identical to the equation foF. in an ordinary weak-coupling
coupling theory developed by Nozes and Schmitt-Rink BCS theory. However, the chemical potenjiain the kinetic
[18] to the coupled fermion-boson model in EQ.1). The  energy&,=e,— u of the Fermi atoms can deviate strongly
equation forT, was obtained by using the Thouless criterion, from e as one approaches the BEC regitnerez is the
which states that the superfluid phase transition occurs whepgre Fermi energy of one spin componerthis contrasts
the particle-particle vertex functiofi(q,») describing the ~With simple BCS theory, where one finds that=e.

Cooper-channel develops a pole gt »=0. Within the The chemical potentigl is determined by the equation
t-matrix approximation in terms of-U and g, described for the total number of Fermi atoms, using the identity
diagrammatically in Fig. (), this equation fofT, is given ~ —d/du. We include the effect of fluctuations in the
by Cooper-channelthe first line in Fig. 1b)] as well as the
Feshbach resonanfthe second line in Fig.(b)] in the ther-
tanh 2£,/2T modynamic potential). The resulting equation relating
1=UeX —; — B 3D andNis
where 1 o4
N=NP+2N3— =>, €'o"n—
. PR quvn Ip
= 2 . .
Uer=U+0r 505, 3.2 XIn[1-[U—g2Do(q.i v) ITL(qivg)]. (3.3
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0.3 1
Go(Qyiwy) = —, 3.6

s | o(Aiwm =g (36

0.2
Sms where the Fermi Matsubara frequency i®,=(2m
= +1)7T (m=0,£1,+2,...).

0.1 The coupled equation8.1) and(3.3) determineT; and u

self-consistently. In calculating these equations, a cutoff is
0.05

necessary to make the momentum summation converge. In
Refs. [12-14, we simply introduced a Gaussian cutoff
e‘eﬁl‘”g, which is also used in this paper.

The self-consistent solutionr{ and u) of these coupled
equations is summarized in Fig. 2. Whe®-¢¢, since the
chemical potential is at mogi<eg, the Feshbach-induced
contribution to the pairing interactiog?/(2v—2u) in Eq.
(3.2 is small. In this regime, Fig.(2) shows that the super-
fluid phase transition is well described by the weak-coupling
BCS theory with aweak pairing interaction—U. In addi-

. N tion, we see thatt=e¢g, as shown in Fig. @®). However, the
-1 05 0 05 1 15 2 25 chemical potentialy gradually deviates fromeg as the
V/E; threshold energy 2 is lowered towards 2- and below. In

particular, one findgt approachesr when»<<0. In this re-

FIG. 2. (8) The BCS-BEC crossover at the superfluid phase-gime, the Feshbach-induced pairing interactigf/(2v
transition temperatu@c_ln a gas of Fermi atoms with a Feshbach —2u) in Eq. (3.2 is large, andT, deviates significantly
resonance, as a function of the threshold parameteWe take from the prediction of weak-coupling BCS theory, as shown

0,/er=0.6,U/e=0.6 andw./e=2. BCS labels the result in the . . . . o
absence of fluctuation effects and BEC giv€s of a Bose- in Fig. 2a). Since 2 is the lowest excitation energy &f

condensed gas 0#/2 molecules of masil =2m. (b) The chemical bosons and their chemical potential ig 2the situation 2
potentialy atT,, shown as a function of. These results are from = 24, realized in the limit of large negative values wfe,
Ref.[12]. is equivalent to the condition of BEC in a noninteracting
Bose gas. Indeed, Fig(& shows thafT. corresponds pre-
Here, 8= 1/T is the inverse of temperaturglgzzzpf(gp) cisely to the transition temperature of a free Bose gas/af
and Ngzzan(ng), where f(g) and ng(e) represent the atoms whenv/e<—1. These results show that the BCS-
Fermi and Bose distribution functions, respectively. The lasBEC crossover starts in the region where=22z, at least
term in Eq.(3.3) describes the fluctuation contributionkb  for small values ofg,. This crossover phenomenon can be

HW(Tc)/&:

The b-boson Green’s function is given by simply controlled by the threshold energy 2f the Fesh-
bach resonance.
) 1 We note that when one uses a large value of the Feshbach
Do(r"”n)zmv (3.4 coupling parameteg,, there is a small peak if; in the

crossover to the BEC pha#5]. However, as we have dis-
cussed in Sec. VII of Ref14], this peak is spurious, being a
result of not including the fermion self-energy due to cou-
pling to the Cooper-pair bound states. This was first pointed
out in the context of a uniform electron gas by Haussmann
[34].

where the Bose Matsubara frequencyiis=2n#T(n=0,
+1,+2,...). II(q,iv,) is the correlation function of the

Cooper-pair field operatd?'fqzEpc_p+q,2lcp+q,m , given by

- P & \Bt
T1(qivp) = fo dre (T {E{(DELO)})

B. Strong-coupling theory belowT .

1
==2> G
Bp,zwm 0

q. . q .
P+ E’Iwmﬂvn GO( P 5"‘””‘) In order to formulate the analogous strong-coupling
theory belowT ., we separate out the fluctuations of Cooper-

-y 1=F(&pig2) — F(&p-g2) 35 pairs and condensdabosons around their mean-field values
b bprqetépgaive ' denoted byA and ¢,,, respectively[35,36. For this pur-
pose, we write qu=(|5q:0) S0t 5|5q and Bq= dmdq0
Physically,IT(q,i v,) describes fluctuations of Cooper pairs + db, wherelA:q is defined before Eq3.5. Separating out
in the normal phaseGy(q,iw,) is a fermion thermal the fluctuation contribution to the Hamiltonian in E@.1),
Green’s function defined by we obtain
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A A A

A2 - L ; G G G
H=3 +2 &t > W= Ar )P+ gaqblbg
eff p p q
Gr th Y 5 iU éD(OO) iDL0,0)
+§2 [bgpq +bqpq]—zz [P1gP1-qT P2gP2-gl- pINES ” + G 00
q q T Ty T
3.7
(@ (b) (©)

Here, we have introduced the Nambu field operator for
Fermi atoms aSi’;;E(Cz:T ,C—pl) and the corresponding 2 FIG. 3. The off-diagonal static mean-field self-energies in the
x 2 Pauli matricesr; (i=1,2,3) acting on the particle-hole 2X2-matrix fermion Green's functiorG(p,iwy) given in Eq.

space[37]. The order parametéi is defined by Eqs(2.3) (3.11). Diagram (a) gives the contribution from the nonresonant

and (2.6), which we can take to be real and proportional to "eraction—U. Diagrams(b) and (¢) include the pairing interac-

0 1v . . tion mediated by a Feshbach molecular boson described by the
71=(10) W'th_OUt |°$S of generality. In Eq§3.7) and .the b-boson Green’s functio®(q,iv,). In the diagramgb) and (c),
subseguent dlsgu55|on, we use the generalized density operTel-E 1 +i,. SinceG(p.iw) in Eq.(3.12) does not have a, com-
tors pg =p1-q*ip2+q, Where ponent, a diagram similar t¢a), where 7, is replaced byr,, is
absent.

pic= 2 Vg Vo g2 (3.9 _
P composite order parametey is replaced byA. The off-

We note thatp3q=Ep,ngJrqIZ,g—Cpfq/Z,o is the ordinary diagonal (statig ~self-energyEFE—Ar1 comes from the

density-fluctuation operator. Similarly, one has mean-field termA r, appearing in the Hamiltonian in Eq.

(3.7. This self-energy corresponds to the mean-field dia-

_ t T rams shown in Fig. 3,
qu—zp [Cop-¢21Cp-g21 T Cprg21Coprgzl]s 9 9

- u AL
| L S@=—mizg 2 TnG(pion]
PZq:'Ep: [C-p-g21Co-q21 ~ Cprg2iCoprgz/ ] (39 Prom
A B
and hence =— 71U2p Z—Eptanthp,
+_ T T - _ 2
Pa =22 ChigaiClpigals Pq =22 CopgaiCpgai- . r -
p p S m=—7.-—Dg(0,0 T 7_G(p,iw
(310 =7+ 7500(0.0 2 Tir-G(piiwn)]
The operatorg, and P2q describe, respectilveliy, the ampIi_— gr2 A B
tude anq phase fluctuations of Cooper-pair field fluctuation =TTt 20—2u Ep 4—Epta“hz— Ep,
operatorF,. In Eq.(3.7), the fermion-fermion interaction is
seen to be neatly expressed as the sum of interactions be- g2
tween the am_plitude fluctuatiorfs-(U/4)Z4p14p1-¢] and S(c)=—7—4—rDo(0,0)z T 7. G(p,iwy)]
phase fluctuations— (U/4)Z yp,4p2 - o). The Feshbach reso- B P.om
nance is also expressed as an interaction between the 2 ~
b-bosons a_nd the fIL_Jctuations describedpl;fy. In Eq.(3.7), - 9 D itanh'ng, (3.12
we have simply writtenpyq—o—{p1q-0)— P1q-0 andbyo 2v—2up 5 4E
— Gm— bq:O-

Within the mean-field approximation described by thewherer,=r,*ir,. In Eq.(3.12, S(b) andi(c) include the
third term in Eq(37), the fermion thermal Green'’s function pairing interaction mediated by a Feshbdximolecule de-

is conveniently discussed in terms of X2 matrix Green’s scribed by the propagatd,. i(a) comes from theweak

function nonresonant interaction-U. The matrix self-energyiF
A 1 iwm+ &= AT =35+ 2 )+ 2 (¢ SUMS up to give
G(p,i wm): A - = 5 5 .
Iwm—§p7'3+A7'l wpt Ep i B
(3.19 Se=—rUgY s—tanh-Ey=—7A
ff TA. (3.13
F 1Ye 5 2Ep hz_ p 1

Here,E,= &5+ A2 is the energy spectrum of fermion qua-

siparticles below T., which we shall call the BCS- In the last expression, we have used the gap equation in Eq.
Bogoliubov quasiparticle spectrum. Equatit$111) reduces (3.16).

to the mean-field BCS matrix Green’s functi@v] when the Using Eq.(3.11), we see that
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u . TN TN a
A=U C_yCor)=o— T 7,G(p,i Y m
2 (cpiCp) =35 2 TnG(piom] B S QG \ +Q O +O L
~ ; /
A IB ‘~~_ ’/', \\.__,fl \\“O !

The order parameters,, andA can be obtained in terms

of A by using Eqs(2.5) and(2.6), to give Il Ti@ T

A= UZ
Ueff,

o 1. L M= + D@

b= 2, Uy

The equation for the composite order paramefer A = & @U s

—g,¢m can then be rewritten in the form

FIG. 4. (a) Fluctuation contribution5() to the thermodynamic
_ A B potential belowT .. The bubble shows the correlation functiﬂrﬂ .
A= UeﬁE fta”hz Ep, (3.16 (b) Correlation function of amplitude fluctuatioﬁ11 involving a
P P coupling with phase fluctuations described by the response function

ng. The shaded bubble includes multiscattering processes by

whereU is defined in Eq(3.2). This self-consistent equa- _{j  since the x 2-matrix fermion Green's function® are given
tion hgs the same form as the BCS gap equation if we rep, he Nambu representatioH,] is formally described as a particle-
placeA—A and u—ep. We also note that Eq.3.16) re-  hole bubble diagram(In contrast,II is described by a particle-

duces to theT, equation in Eq(3.1) whenA —0 [12]. particle bubble diagram i_n Fig. 1 because the Nambu two-
It is important to emphasize that the<2-matrix single-  component representation is not used there.

particle Green’s function in Eq(3.11) only includes self- o _ o

energy effects arising from théoff-diagona) static mean Our approximation for the fluctuation contributios()

fields produced by the Cooper-pairs and the Bose-condens&SﬂOW Ter Correspo_ndmg to th_e con_tnbguon At shown in

b molecules. In the approximation we use in this paper, théi9. 1(b), is given diagrammatically in Fig.(4). Among the

frequency-dependent fermion self-energies associated witRteraction terms in Eq(3.7), we first carry out perturbative

the order parameter collective modes are not included in E@XpPansion in terms of-(U/4)2qpoqp2-q, Which describes

(3.11). However, Eq(3.11) does implicitly involve the self- the interaction between the phase fluctuationsAofSum-

consistent renormalized values®fandu, as determined by ming up the Iqop—type 'dlagrams in Figiah we obtain the
the order parameter fluctuatiorifor further discussion of phase fluctuation contribution @}

this kind of approximation, see Ref38]). An improved 1
theory of the BCS-BEC crossover would be based on includ- 80,==— > In
ing the fermion self-energies arising from coupling to collec- 2B 47,
tive moded34].

The chemical potentigk is determined from the equation In this v, summation and in the following equations, we
for the total number of particleN. As in our discussion of Omit the important convergence facetn’, for simplicity of
the strong-coupling theory f6F, [12—14, we work with the notation. The generalized density correlation function
thermodynamic potentidl consisting of a static mean-field 119,(q,iv,) is defined by[35,36 (i,j=1,2,3)
part (=Q ) and a fluctuation partsf 5Q) originating from
the particle-particle Cooper channel, as modified by the Fes-
hbach resonance. The self-consistent equatioiNfizr given
using the identityN= —9Q/du. The mean-field part is eas-

U 0 )
1+§H22(q,lvn)

. (3.18

B .
I (q,ivn)=— J; dre""(TApig(7)pj—o(0)})

ily obtained from the first four terms on the right-hand side 1 . q
in Eq. (3.7) [39], = B > Tr TiG<p+ E,iwm+ivn
pP,om
Zz ,BE ~ q .
QMF=U—eﬁ+§p: (& Ep)—zTZp In[1+ e~ #Ee] X6 p=5.iwn ||, (3.19
+TZ In[1— e~ Aéed] (3.17) where the second Iinez(l'[ioj) is the approximation neglect-
q ' ' ing the effect of the interactions U andg, .

063612-6



SUPERFLUIDITY AND COLLECTIVE MODES INA ...

PHYSICAL REVIEW A67, 063612 (2003

Equation(3.19 also defines other correlation functions, ~ 1 1 1
which will be important, such abl,; andIl,. Physically, Hg3=—Avn2 (E E ) T
I1,, andIl,, describe, respectively, the amplitude and phase P \Epragz  Ep-g2/ (Eprgqo— Ep-g) t+ vy

fluctuations of Cooper pairdl;; describes density fluctua-

tions in the gas of Fermi atomél;; with i #] describes a
coupling between fluctuations, e.@l;, is a coupling of am-
plitude fluctuations with the phase fluctuatiof@mnplitude-
phase coupling

Summing up the Matsubara frequencies in 319, we
obtain[35,40

Ep+q/2_ Ep—q/2
(Ep+q/2_ Epfq/2)2+ Vﬁ

H?-lzz (1_ §p+ql2§p—q/2_zz)
p

Eprg2Ep-g2
X [f(Ep+q/2) - f(Ep—qIZ)]

3 §p+ql2§pq/2_zz)
>

Ep+0/2Ep—q/2
X[1=F(Epsg2) = F(Ep—g2)],

Eprg2t Ep-g2
(Ep+ g2+ Ep-g2)?+ V4

(3.20

1+

Ep+q/2_ Ep—qIZ
(Ep+q/2_ Ep—q/2)2+ Vﬁ

Eprq2ép-gatA®
HO :E (l— p p
2 p Ep+qI2Epfq/2

X[F(Eprg2) = F(Ep—g2)]

ngrqlzfpfqlz"_AZ

Ep+q/2+ Epfqlz

- |1+
p Eorq2Bp-g2 | (Epsqat Epg2)?+ 12
X[1=F(Epig2) ~F(Ep g2, (3.29
Eprqobp-g2— A%\ Epigo—Ep g2

1+

Hgsz zp

q
Ep+q/2Ep—§

X[f(Epsq2) — f(Ep—g2)]

( §p+q/2§pq/2_zz)
_2 1 2PTdeSPTYe
p Ep+qI2Ep—q/2

(Bpiq2=Ep-q2)*+ 07

Ep+q/2+ Ep— q/2

(Eprgat By g2t Vz[l— f(Ep+q2) — f(Ep—g2) .
- n

(3.22

The correlation functionﬁﬂ (i#]) describing the coupling
of different operators are given by

Vn

ngz 2

( §prgz Ep-q2
P

Eprg2 qu/Z) (Ep+g2—Ep-g2)?+ i
><[f(Ep+ql2)_ f(Ep—GJZ)]
qu/z) Vn

(Eps+ g2t Ep_g2)®+ vh
(3.23

3 ( Eprg2 N
p Ep-%—q/2 Ep—qlz

X[1=F(Epsrg2) = F(Ep—g2) ],

X[f(Epyg2) = F(Ep-_g2)]

+Zvn2

( 1 N 1 ) 1
b \Epraz  Ep-g2/ (Epigot Ep-gq)®+ V2

X[1=F(Epsgo) —F(Ep—g2) ], (3.29

EpraeTép-q2  Eprgz—Ep-go

H23= -A E
b EpraoBo-u2 (Epigo—Epg2)®+ 75

><[f(Ep+o/2)_ f(Ep—qIZ)]

x>

P Ep+geEp-q2 (Bptgot Ep—qlz)2+ V2
X[1=f(Eprgo) = F(Ep_g2) ], (3.29

with T3,=-19%,, T3,=-T13, and M3,=M9%;. The
density-density correlation functidiy; and the related cou-
pling correlation functiongI, andI19; will be used in Sec.
VI, where we show that the Goldstone mode describing the
collective phase oscillation of Cooper pairs has spectral
weight in the density correlation function. This weight comes
from the coupling to the amplitude-densitljlgg) and phase-
density (12, correlation.

The factorkE,, y,—E, 2 in the denominator of the first
line in Egs.(3.20—(3.25 describes scattering between exci-
tations with moment@=g/2 in the samequasiparticle band
E,. For this reason, the first line in Eq63.20—(3.29 is
referred to as thentraband term [35]. Since the thermal
excitations of fermion quasi-particles are absenft=at, the
intraband term vanishes dt=0. On the other hand, the
second line in Eqs.3.20—(3.25 is finite even aff=0. The
factor E,; 2+ E,_g2 in the denominator describester-
band scattering betweek,, ,, and —E, 5, and thus the
second line in Eqgs(3.20—(3.25 is called theinterband
term. The intraband term is known to give rise to Landau
damping of collective modebelow the excitation gap 2,
while the damping due to the interband term only exists
above2A [35]. We note that the gap equation in H.16)
can be neatly expressed in terms Hf, in Eq. (3.20),
namely,

EpraeTép-q2  EprgatEpge

U
+ 7“1122(0,0):0. (3.26

The fluctuation contributio®(, involving the amplitude
fluctuations of Cooper pairs is similarly obtained by sum-
ming up the loop-type diagrams in Fig@} associated with
the amplitude-amplitude interaction-(U/4)2p1401—q-
This gives

iEln

691:2B g

. (3.27

U , .
1+ Enll(Qa”}n)
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The phase and amplitude fluctuations are coupled with each 1 7t Ex
other through the amplitude-phase coupliﬂitfl’2 in Eq. DO%(q,v,) = =— n2 > 1 (332
(3.23. This additional coupling effect can be formally incor- 1vn73~ Eaq vt &g
porated intosQ, by replacingIl}(q.iv,) in Eq. (3.27 by

TI44(q,iv,), where

and 2%(q,iv,) is a 2x2-matrix correlation function(ne-
glecting the effect of~-U andg,) defined by

T 15(0i ) =T194(0i ) + 11950 )

—U/2
l+(U/2)H 2Adivy)

~ . B )
2%q,ivy)=— f dre'"n’
0

gl(q!i Vn)- <

(p;(r>ptq<0> p;(ﬂp:q(m)
P (NP2 0) pg(1)p=(0)

(3.29 >

(3.33
The second term describes the amplitude-phase coupling ef-

fect through the coupling correlation functioR, andTI, . Using the deflnltlonoq pP1=qEips+q, We find that=° can

Equation(3.28 is obtained by summing up the fluctuation pe expressed in terms of the matrix elementd18fas fol-
diagrams shown in Fig.(8). lows:

In summary, the fluctuation contributio®(, to the ther-
modynamic potential involving only the nonresonant |nterac~o = 2WTOW
tion —U is the sum of Egs(3.18 and (3.28 with H

—>H11. The sum is given by _ 193+ 15+ i (113~ 113,) [19,~ 115,
o y 15, - 112, I3+ M5, i (I3, 113y )
S0y =o— 2 In{ | 1+ S u(a,ivy) || 1+ —T1194(q,ivy) ) (3.39
2B, 2
whereW is the unitary matrix
=25 qZ In| |1+ Hll(q iv) || 1+ 5 sz(q ivy) 111
=—| . . 3.3
U2 o 0 \/f( i (339
) (0, i) (i vn)
Next we renormalize the fluctuations in E§.31) by in-
uU. cluding the effects of the nonresonant interactiebd on the
2 Indet 1+ =11°(q,iv,) 0
2,3 & 2 correlation function=°(q,iv,), working within the HF-
RPA. This results ir2°(q.i»,) in Eq. (3.31) being replaced
1 U. i 2,
=53 > Trinf 1+ Er[°(q,| v |, (3.29 by Ey, where[35,3§
0 vn U 1
R = i _HO =0(q.i
where we have used the well-known identity det Eu(divy)=|1+ (q,ive) | E7(Q,ivy). (3.30
=" Al in the last expressiodl®(q,iv,) is a 2X 2-matrix . _ . .
density correlation function, defined by The resulting expression fas()gz involves the fluctuation
effects related to both the nonresonant interactiod and
o Hgl ng the Feshbach resonance coupling paramgtenamely,
H (qvlvn): HO 1—[0 (33@ gz
e OO pr= 2,82 Trin 1——D (Qivy)Ey(a,ivy)
q,vn

Finally, we consider the fluctuation contributiomFR
from the Feshbach resonance '[e%lgl,iq[bqpq +bqpq] in g2
Eq. (3.7). First we sum up the diagrams described in Fig. =28 qz,, Trin) 1— —Do(q ivp)
4(a), where the dashed line now represents thboson "

Green'’s functiorDy(q,iv,) in Eq. (3.4), to give -1

U.
1+ —Ho(q ivn)

E°%q.i Vn)}. (3.37)

2

gr 20 . =0 .
Oer= zﬁqzy Trin 1 D (Givn) Z7(a 1 wn) | The total fluctuation contributio&() is given by the sum
(3.3 of Egs. (3.29 and (3.37). Recalling the definition in Eq.
(3.34 and the relation TrlfL+(U/2)IT1°7=TrIn[W{1

Here,D°(q,iv,) is a 2x 2-matrix b-boson Green’s function +(U/4)E YW~ 1]=TrIn[1+(U/4)E°], this sum can be writ-
defined by ten as
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80=560y+ Qg (3.3 for the normal phas&=T,., whereA= ¢,,=0. To see
1 1 this, we note that the second term on the right-hand side in

_ - 2 Trind 1+ —[U—grzlf)o(q,i vn)]éo(q,ivn) _ Eq.(3.4) reducgs to BIE in Eq. (3.9. In.ad_dit.ion,_since the
2B a7, 4 phase and amplitude fluctuations are indistinguishable when

3.3 A=0, we findI13,=113,, and thusZ, in Eq. (3.34 be-

comes diagonal aff,. Noting that 29,(q,iv,, T=Ty)=
Putting everything together, the total thermodynamic poten-_41—[(q,i v, and Egz(q,i v, T=To) =—411(q, — i v,),

tial =yt ol s wherell(q,iv,) is given in Eq.(3.5), we find that the last
A2 term in Eq.(3.41) (=6N) reproduces the last term in Eq.
0= U_+E = Ep)—ZTE In[1+ e AEp] (3.3). More explicitly, we have
eff p p
1 d
1 SN(To)=— 5= 2 —In[{1-[U—g?DIy(q,i
TS Inf1-e #8) os (T9=" 35 2 5, HL-[U-g/Daiv)]
q
1 XT1(ai v) {1~ [U ~ g7 D20 vr)]
><qE Trinj 1+ 2 [U—g?D%q,ivn) JZ%(auivy) |- W T1(q,—i v
(3.39 1 K2

=5 2 7,M1-[U-gDo(q.iv)IIl(aiivy)},
The equation for the total number of particles is then ob- @ ¥n
tained fromN=—dQ/du. (3.42
In taking the derivative with respect o, we note that the
order parametek also depends on the chemical potenjial ~Where ~we have  used D3y(a.ivn) =Do(a.ivy)  and
in addition to&,=&,— 1 andég=epq+2v—2u. Thus, one  D2:(0,ivn) =Do(q, —ivy) in the lastline. Thus, E3.41) is

needs to calculate equivalent to Eq(3.3) at T,. Our present strong-coupling
theory giving the coupled equatiof3.16) and(3.41) for the
0 IA  Que A 950 JA  95Q A superfluid phase is seen to smoothly go over to our previous
= —+ = (3.40  discussion afl, and above12—14.

O& du gR 0 X ou  gA du’
oA o oA R OA R OA K Each term in Eq(3.41 has a simple physical meaning,

In the last line, we have used the fadye/dR =0, which  WNch is useful to discuss. The first term

holds when satisfies the gap equati¢8.16. However, one 2Ngzz¢§,= 2(bq=0>2 (3.43

can show tha®sQ/dA in Eq. (3.40 is a higher-order cor-

rection within the perturbative approximation we are usinggives twice the number of Bosmndensed bosons. The

[41], so that we can neglect the contribution in E8.40.  second term

Thus, the dependence &f on « only leads to higher-order

corrections. The resulting equation fdris N _2 B
=

1- & tanh§ Ep

E, (3.49

p

&, B
1- E—ptanhi Ep

N=2¢>ﬁ1+§p‘, +22q ne(£5)

describes the number of Fermi quasiparticles. This expres-

1 sion can be directly obtained fromF=Epyg<cggcpg) in EQ.

1+ Z[U—grzbo(q,i vy)] (2.2). To understand the physical meanings of the last two
terms in Eq.(3.4D), it is convenient to divide the. deriva-

Jd
- —Trin

2B 47 I

tive in the last term into the derivative acting afg,
xéo(q,iyn)]_ (3.4) =0Q°2M+2v—2u in the b-boson Green's function
DO%q,iv,) and the derivative acting orEp=gep—p in
Here, it is understood that the derivative in the last term = (G,ivn) (=39/dug). Using the identity

only acts on the chemical potential involved §p and &g, .
Equations (3.16 and (3.41) give us the required self-

consistent coupled equations farand u in the superfluid

1 R
2% nB(§Bq>=—2q 1+= > Tr[D"(q,ivn)]},

phase belowT.. We will discuss our numerical self- (3.49
consistent solutions of the coupled equatidid3sl6 and _
(3.41) in Sec. V. we can write Eq(3.41) as
When one neglects the fluctuation contribution given in . .
the last term in Eq(3.41), we obtain the mean-field expres- N=2Ng+Ng+2Ng+2Nc, (3.46

sion obtained in Ref[24] in the context of highF. super-
conductivity. We also mention that E(B.41) reproduces Eq. whereNg and N are defined by
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2
2 EE_% 1+1 ; Tr[f)(q,ivn)]}, KEg4—r[Hu11_HU22]-
1 9 1 The correlation function$l y;; (i,j=1,2) are the matrix el-
MNe=— = > ZTrin{ 1+ ~[U—g2D%qi vy)] A :
2B & ur 4 r n ements ofl I, defined by
R u. -t
<Eq ). 347 flu(aive=| 1+ 510%aiv) | M%aiv,). (353

Here, D(q,iv,) is a renormalized X 2-matrix thermal More explicitly, we have

b-boson Green'’s function defined by

I?11
1 HunzT’
D(q,ivy) = —. (3.48 1+ 510y,
" |Vn7'3_§Bq_2(qy|Vn) 2
The b-boson matrix self-energy ﬁzz
Hyzo= — s
2
A~ . g 2, ) 1+ _H22
£(@ivg)="7Eu(aivy) 2
2 -1 e
uU. - 12
_9r 1+ —E%aq,ivy)| ZE%q,ivy) Hy1o= 2 )
4 4 U o U ol Y™ 00
1+ 1075, || 1+ 5115, — —T15.015,
(3.49 2 2 4
(3.59
describes the Feshbach coupling with Fermi atoms. N .
The renormalized-boson Green'’s function in E¢3.48 ya(Qivn) = = IlysAQivn).

has the same form as that obtained by Kostyrko and Ran- — _ _ —
ninger[24] calculated within the HF-RPA. Comparig in ~ Here, Il;, is defined in Eq(3.28 and Il is similarly ob-
Eq. (3.47) with Eq. (3.45, we may interpreN? as the num-  tained from Eq(3.28 by interchanging - 2.

ber of noncondensed bosons, as renormalized by the Fes- When we takey=i»,=0, the denominator of E43.5])
hbach resonance. In analogy to our previous discussion geduces to

the strong-coupling theory fof, [12—-14], N¢ in Eq. (3.47)

may be understood as the fluctuation contributiofNtisom Eé _o— (0,0 2_
Cooper pairs associated with tfidynamica) pairing inter- a

action given by

u
1+ 5 11340,0

u
1+ T‘*‘H&(O,O)}

2v—2u 2v—2u
~ N — o2B0( 1 i U U .
Ueff(q:”/n) u grD (q,lvn). (35() 1+EH32(0,0) 1+EH21(0,0)
We note thatU.q(q=0,v,=0)=Ugl, where Uy=U (3.55
+ ng/(Zv—Z/_L) is the effective pairing interaction appearing
in the gap equation in Eq3.16). The expression in Eq3.59 clearly vanishes when the gap
The renormalizedb-boson Green'’s function in E43.489  equation in Eq(3.26) is satisfied. This means that the exci-
can be also written in the form tation spectrum of the renormalizécdosons described by
_ _ is alwaysgaplessatq=0 for T<T,. This is a desired result,
B(qiv,) 1 ivgT3t Egq— KTy because the Bose-condensatiorbdfosons characterized by
Jvp)=—= ~ == ——= , - -
n V73— Eaq— K71 vﬁ+ §éq— 2 ¢ should be accompanied by the appearance of a Bogoliu

(3.51) bov phonon(Goldstong mode having a(uniform system
gapless dispersion. Thus, the strong-coupling theory pre-
where the renormalized parameters are given by sented in this section correctly includes a gapless spectrum
for the symmetry breaking Goldstone mode. This result is
5 grz not obtained if we use a static mean-field theory, neglecting
ivnzivn—iz[ﬂulz—ﬂuzﬂ, the fluctuation contribution given by the last term of Eq.
(3.41). Within such a mean-field theory, theboson excita-
tion spectrum is given byg,+2v—2u, which always has a
finite excitation gapat q=0. This gap is given bys)E=2v
—2u=—g?/211;,,(0,0)>0, assuming that the gap equa-

2
~ g
épq=E&pqt Zr[Hun"‘Huzﬂ: (3.52
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tion in Eq. (3.26 is satisfied. We note thalfl;,,(0,0) is
defined in Eg. (3.54), with H22(0,O)=H22(0,0) since
11%,(0,0)=0.

The gapless behavior of the renormalizedoson can be

also verified formally by noting that the Hugenholtz-Pines
theorem is verified, namely24,42—44,

2 0
2,11(0,0 —215(0,0 = 92_r w =2u—2v.
1+ 51132(0,0)
(3.56) FIG. 5. The correlatign functio& (q,i v,) is shown in(a) and
b-boson Green'’s functiob (q,i v,) is shown in(b), both within the
Here, we have used the gap equation given in(BQ6. HF-RPA. The shaded bubbl& (q,iv,) shown in (c) includes
In order to discuss the BCS-BEC crossover in the superrRPA-type diagrams involving the nonresonant attractive interaction
fluid phase, one needs to solve the coupled equat®i$) -u.

and (3.41) numerically. Results will be discussed in Sec. V.

Here, we briefly discuss limiting cases that can be treate&g. (3.16), we have included the fluctuations of the order

analytically. parametersA and ¢, in determining self-consistently the
When the threshold energyv2of the b-boson excitation values ofN and x. However, we have not included the ex-

spectrum is very largéBCS limit), 2v>2u can be realized plicit self-energy of the fermions due to these dynamic fluc-

because the chemical potentjalis at most the order of . tuations. For further discussion, see R¢88,34).

In this case, the Fermi atoms are dominant particles, while We note that the diagrammatic approach we have used in

the effects ob molecules described by, ng(&g,) andD® this section can be shown to be equivalent to keef@agss-

in Eq. (3.41) can be neglected. In addition, since the last termian fluctuationsaround the mean-field order parametérs

in Eq. (3.41) is small when one is dealing with a weak non- and ¢,. Using the functional-integral formalism, which de-

resonant interactior- U, one can also drop this term. Thus, scribes such fluctuations in a very clear fashion, Randeria

we see that Eq(3.41) reduces toN=Ng [whereNg is de-  and coworkerg20,45 showed that the strong-coupling su-

fined in Eq.(3.44], which simply givesu=gr if eg>T.  perconductivity theory afl. developed by Nozies and

When this result is substituted into the gap equation in EqSChmitt-Rink[18] can be understood as a Gaussian approxi-

(3.16 with Ur—U and A—A (note that >2u), one mation for the fluctuations in the Cooper channel. When we

obtains the usual BCS gap equation for the Cooper-pair ord tend_this Kind of formalism to_the coupled fermion-bpson
parameten. model in Eq.(2.1) belowT,, one fmds Fhe coupled equations
In the opposite limit 2<—2¢ (BEC limit), since the (3.16 and(3.41) [41]. Recently, Milsteiret al.[15] also em-

b-boson branch has an energy lower than the two fermiorﬁ’oned this approaph to the COUpled fermion_—bosqn model in
band energy, most Fermi atoms will combine to fdomol- ~ Ed: (2.1 and obtained the equations . given in Egs.

ecules and hence the fermion correlation functibhs be- (3.1) and(3.3.
comes less important. Then the gap equation in B6
can be rewritten apsee also Eq(3.56)] IV. GOLDSTONE MODES IN THE BCS-BEC
CROSSOVER REGION
2 0
2u=2v+ g—r M—Qv.
2 U,
1+ 51122(0,0)

(3.57) A. Correlation function and b-boson Green’s function in the
' HF-RPA

The Goldstone mode in fermion superfluidi#nderson-
) ) . Bogoliuboy is a collective phase oscillatiofphason of
This says that the chemical potential has the energy of thggoper pairs, and thus it appears as a pole in the phase
bottom of theb-boson excitation spectrum. Substituting 2 correlation functionI1,(q,ivy— w+id). In the present
=2v into Eq.(3.41) with 2°(q,i»,)=0, we obtain coupled fermion-boson model, we also expect a Bogoliubov
phonon mode associated with the BEChafolecules char-
acterized by the Bose order parametgy=(bq—o). This
mode appears in the excitation spectrum of thiboson
Green's functionD(q,7)=—(T {by(7)b}(0)}). However,
This is just the equation for BEC in an noninteracting uni-since the Cooper-pair amplitud® and theb-boson order
form Bose gas withN/2 bosons of masdM. Thus, the parameterp,, are coupled with each other via the Feshbach
coupled equation&3.16) and(3.41) reproduce both the BCS resonancdsee Eq.(2.5], these two Goldstone modes are
phase and BEC phase for two limiting values of the Feshstrongly hybridized.
bach molecular resonance thresholel 2 In calculating the Goldstone mode, we have to be careful

We again remind the reader about the many-body apto use a consistent approximation for the self-energy and
proximation our whole discussion is based. As we noted aftevertex correction. In this regard, apart from the chemical

N

q2
§:¢’m+2q nB(m . (3.58
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potential, we recall that the gap equation in E8§.16 is ¢
obtained from the Hartree-Fock Green’s function in Eq. V1(a,ivy)=RgUgt(q,ivy)]=U+g? 5 qu ,
(3.12). Thus, we should employ the HF-RPA formalism for VnT &g
the correlation functionsﬁ={1’[ij} and b-boson Green'’s

function [24,35,34. Using the HF-RPA guarantees the gap- Vn

N ; 2
less behavior of the Goldstone mode. Va(Giiv) =Im[Ue(,ivn) 1= 07 2+l “.5
In calculating the correlation functioH, it is convenient
to first considerZ =2W~1IW [see Eq.(3.34)]. Within the  Here, the lowest-order noninteracting correlation functions
2 : : = TI0 are defined in Egs.(3.20—(3.25. V, describes
HF-RPA, E is described by the sum of the diagrams in Fig. "ii as.(o. e V1

5(a). The summation gives amplitude-amplitude and phase-phase interactions, While
is an amplitude-phase coupling mediated tbymolecules.

A - 1 ,noe |78 o 1 SO Since bothv, andI13, vanish ag=iv,=0, the denominator
E=Ey|1-79/D%=y| =E%1+[U-giDE°| , i 0 :
4 4 r of Il in Eq. (4.3 reduces to ¥ (U.x/2)I15,(0,0). This

(4.1  vanishes when the gap equation in Eg.26 is satisfied
belowT,. This proves that the collective phase oscillation is
always gapless atj=0, a requirement of the Anderson-
Bogoliubov (Goldstong mode.
The b-boson Green'’s function consistent with treatiﬁg

in the HF-RPA is shown in terms of diagrams in Figbpb
The result is just the same as the renormalibeboson

1 1 Green’s functionD given in Eq.(3.48. As discussed at the
M=11° 1+ - [U—g?WD°W 1]11°| . (4.2)  end of Sec. lll B, the excitation spectrum Dfis gapless at

2 g=0 in the superfluid phase below, which is again con-

sistent with the expected gapless Bogoliubov phonon mode.
More explicitly, the amplitude and phase correlation func-

tions 11,4 andIl,, are given by B. Goldstone mode

where éu involves the effect of nonresonant interaction
—U using the HF-RPA, as shown in Fig(ch and given by

Eq. (3.36). The correlation functionl is then obtained from
the inverse relatiodl = W= W1, namely,

As discussed in the preceding section, the excitation spec-

M1(Q,iwn) trum of the renormalizeth boson is determined by
i A o
- e — = — — defD(q,i v,— w+id)~1]=0. (4.9
Vlﬁ V2 1_[111_[22_1—1121—121 l—112
I+ S+ Vi, IR EEVA o On the other hand, the collective phase oscillation and am-
1+ 7sz 1+ 7H22 plitude oscillation are obtained from the polesibfas given
by Eq. (4.2
[yx(q,ivy) 1 I .
5 O=de{1+ Sl —ngDowl]HO}
_ sz iV, o, =wtid
Vi Vg H(l)lHCZ)Z_HgZHgl H(l)z ’ ~ U.
1+ 7H22+T v, —V; VA =de[D°(q,w+)]de{1+ EHO(q,wQ
1+ =19, 1+ =19,
2 2 o
R B r e
4.3 Xde{Do(q,m) 1—Z~u(q,w+)
where u.
det 1+ EHO(q,er)
Vl = 2 2 de[D(q1w+)_l]' (47)
— = Epq— @5
=m0+ 15 : :
n=ru e 1.0 21 Comparing Eq(4.6) with Eq. (4.7), we see that the correla-
1+ 512 tion functionsIL;; (i,j=1,2) and theb-boson Green’s func-
ton D have the identical poles (unless  dégtl
A +(U/2)I1%0q,w.)] has zerop This equivalence is due to
) hybridizing effects from the coupling between the amplitude
M=%+ 1, ————T119,, (4.4  fluctuations, phase fluctuations, and théosons with the
14 EHO amplitude-phase couplinﬁ[‘f2 and the Feshbach resonance
2 H couplingg,. Thus, in principle, we can consider either one of
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the correlation functionsl;; or theb-boson Green’s function Re[lﬁgl(q,i v—w,) 1=0. 4.10

D when we want to study the Goldstone mode. We choose t
work with the phase correlation functidi,, in Eq. (4.3), in
which case the dispersion relation of the collective mode i

Rs for the damping of the collective mode, we investigate
this effect by examining the width of the peak of the collec-
Yive mode in the spectrum of the correlation functions given

given by by Im[Il11(q,w.)] and IM1Il,x(q,w)], as Wf:” as the
Vi V2 119,119,— 119,119, 119, b-boson excitation spectrum given by [IBn4(q,iv,
1+ 7H22+ 7 v Vo, =0. —w,)]. The structure function
1 1
1+ 7H21 1+ 71121

1 L
g  Si(Ge)=—"Ing(e)+1Imil(qiv—w0,)] (=12.

Landau damping associated with thermally excited fer- (4.13

mion quasiparticles leads to an imaginary part of the oscillais more convenient than |[rﬁ1”] in studying collective be-
tion frequency and, apart from=0, we have to look for a havior, because a diffusive mode spectrum that arises
complex solution to Eq(4.8). This requires a complicated Sec. VD appears as a central peakat0 in S;;, which
analysis. In this paper, for simplicity, we only consider thecan be easily distinguished from collective modes appearing

real part of this equatiof5,36), at a finite frequency. In contrast, this diffusive mode shows
up as a peak at éinite frequencywy in Im[ﬂ“], which

2 170 170 _ 770 170 0
R 1+ gy Ve Mulle— Ml | 1, exhibits a structure of the king/(w?+ w?).
2% 4 Vi, 2 Vi,
1+ 7“11 1+ ?Hll C. Goldstone mode at zero temperature
-0 4.9 At zero temperature, since Landau damping is absent for

modes below the excitation gapA2 we can deal directly
From this equation, we can obtain real frequencies as apwith Eq. (4.8) in determining the Goldstone mode for fre-
proximate solutions. In order to check the validity of this quenciesw below the excitation gap. In the long wavelength
prescription, we also solve another approximate equation foor phonon limit, we takev=v 4q and expand Eq4.8) up to
the mode energy obtained from the renormalizedoson  the quadratic order in terms aof andq. After some calcula-

Green's function, tion, the velocity of the Goldstone mode, is given by
|

2

9
) B+U_gﬁ (2v—2mu)?
2mry,= U (4.12
— 1710
A+ 2Ueff+ 2 gr2 1+2H11(0'O) 1+UeﬁHo 0.0 o
72 T Ug(2r-2m)7\ 20— 241005 " 2 0.0

The factorsA andB are obtained from the expansionldf,  The second term in the denominator in E4.12) describes
asT19,(q,ivy) =115,(0,0)+ Av2+ Bg?/2m, with the explicit  the effect of amplitude-phase couplifgecond order iny),

expressions while the second term in the numerator and the third term in
the denominator involve the effect of the Feshbach resonance
1 1 coupling (second order img,).
A=7 > =
PEp 1. BCS regime2v>2¢.

In the BCS limit (2v>2u), the terms involving the fac-
. (4.13  tor 1/(2v—2u) can be neglected in E¢4.12. In addition,
since the region near the Fermi surface dominates just as in
ordinary weak-coupling BCS theory, we may take

PHE5 3
2ES  4E]

Finally, the factory is related to the amplitude-phase cou-
pling I12,, namely, .

o S gté-Nwo) [ dee, @19
HlZ(q!I Vn) P o

Vn

&
> 22 (4149
T=v,=0 P ES

B 1
"= “72

whereN(u(T=0)) is the fermion density of stat¢®OS) at
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the Fermi surface. In this approximation,coming from the
amplitude-phase correlation functid'lh(f2 vanishes, and Eq.
(4.12 reduces to

1 B 1_—
U¢:_ﬁ K: ﬁvp, (416)
wherev_,:E V21 (0)/m. In evaluatingB, we have approxi-

matede, appearing in Equatiof4.13 by the Fermi energy
n(0). Eg. (4.16 is the well-known velocity of the

PHYSICAL REVIEW A 67, 063612 (2003

=2A in the spectrum of the amplitude correlation function
Im[IT,,] and henceS,,(q,w) [46,47.

2. BEC regime:»<0

In the BEC regime ¢<<0), since the chemical potential
approaches as v decreases, the effective interactibh
defined in Eq.(3.2) is dominated by the Feshbach contribu-
tion gf/(2v—2,u)>u. On the other hand, the correlation

functionsIl;} become less dominant. Singe|~|v|>A, the
energy gap is also less important in the excitation spectrum

Anderson-Bogoliubov phonon in the weak-coupling BCS su-of fermion quasiparticles, so that we can approximte

perfluidity [29,37,44.

The same result as in EGL.16) is given by the pole of the
phase correlation functioH », in the BCS limit.II,, in this
limit is given by [taking ngzo, V,;=U, andV,=0 in Eq.
(4.3)]

2
“ o
Mg/, gl aes)

HZZ(qlw+): = 0 0 .
11 , —1I15,0,0
1+§H(2)2(qyw+) 220, @) —I1350,0)

(4.17)

Using T194(q,w,)=T1195(0,0)— Aw?+Bg?/2m, we easily
find that the poles of Eq4.17) are phonons with the velocity

given by Eq.(4.16. This shows that the Goldstone mode in

= V(ep— u)?+A%=¢,+|v|. In this limiting case, Eq(4.12

reduces to
grz 1 112 g,’Z 3 112
V= =
¢ Bm| 5 (ep—|-|1/|)3 V8m| 32 veg®?

(4.20

where we have rescaled the Feshbach coupling,a®
—(g, inthe last expression. In evaluating fpsummation in
Eqg. (4.20, we have taken into account the correct energy
dependence of the DOSc(\/;J) in contrast to the approxi-
mation in Eq.(4.15. Sinceg,, is the dominant contribution
to A in the BEC regime, Eq(4.20 is proportional to\/N_g
(whereN§= 2, is the number of condensdsimolecule.

the BCS limit is a pure collective phase oscillation of the This dependence oNg is characteristic of the Bogoliubov

Cooper-pair order parametar.
The amplitude-phase coupliri@?2 in Eq. (3.8 vanishes
in the BCS limit when we use E@4.15 and retain terms up

to O(q/pg), wherepe=Fermi momentum. In this case, the

amplitude mode is decoupled from Eg.8). This mode can

phonon mode in a Bose-condensed gas. Thus(Z&E20 may

be regarded as the velocity of the Bogoliubov phonon asso-
ciated with a condensate df molecules. We also note that
the expression in Eq4.20 gives as~ 1/|v|** and this ap-
proaches zero when— —o. In this limit, the superfluidity

then be obtained from the amplitude correlation functioniS described by a BEC of a free gas witi2 bosons having

working within the HF-RPA,

2 0
Unll(q1w+)

H(l)l(Qrer)
Hll(q1w+)= = 0 0 .
I17.(q, —1I15,0,0
1+EH(1)1(q'w+) 11(0,04) 20,0
(4.18
In particular, atg=0, Eq.(4.18 reduces to
m2,(0,0.) 1
Hll(o,w+):UN(,(L(0)) »
tan ! ———
4A%— 2
X (w=2A)
VaAZ— 2 “=
2119,(0,2A) A
= (w=2A).
TUN(1(0)) \J4AZ7— 2
(4.19

the particlelike excitation spectrurm=q%2M, with no
linear (or phonon component.

The Bogoliubov phonon associated with a Bose conden-
sate of paired fermions has also been discussed in strong-
coupling superconductivity45], as well as for excitons in
optically excited semiconductof88]. Equation(4.12 repro-
duces the Bogoliubov phonon velocity in strong-coupling su-
perconductivity[45]. In this case, the Feshbach coupligg
and theb boson are absent, while the nonresonant interaction
—U is taken to be strong. Then E@L.12 reduces to

1 U 2 —-1/2
vi= =B Aty 7
vem 1+ 511900
1 [ B(A=0) L RS
V2m| n2(A=0) F (eptluD?]  VEmlu[’
(4.22)

where we have taken the strong-coupling limiy -G ),
with w large and negative. The last expression can be shown
to be equivalent to the Bogoliubov phonon velocity in strong

Thus, althougho=2A is seen to be a branch cut rather thancoupling superconductivity, as discussed in Ré]. Using
a pole, a strong peak is expected at the excitation gap the strong-coupling expressions\=(16/3m)%/\/pras
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and u=—1/2ma; [45], whereas is an swave scattering [ % @) vie=2 Zj
02

length of the pairing interaction between fermions grds Y
the Fermi momentum, Ed4.21) reduces to a more familiar 002

form o0 °

. 0.2

001 04

0

2T e
r‘IBUB 0.02 B e
= 02 b I 0
Vo™ M (4.22 003
0 0 005 01 015 02 025

T/es
Here, ng=N/2V is the number density of Cooper-pair
bosons (where V is the volume of a systemand Ug
=47ag/M (M=2m) is an effective interaction between
Cooper pairs with ars-wave scattering lengtlag=2as.
HereU = —4ma/m is defined as in Eq(3.2).

(d) v/ie=-2

0.2
04
osp In .

0.8

V. BCS-BEC CROSSOVER IN THE SUPERFLUID PHASE:
NUMERICAL RESULTS

In this section, we present numerical results for the vari-
ous thermodynamic parameters and correlation functions dis- FIG. 6. Temperature dependence of the superfluid order param-
cussed in earlier sections, as one passes through the BC8erA=A—g,¢, in the BCS-BEC crossover region. We also show
BEC crossover region. We give results as a function of théhe separate Cooper-pair componentand the Bose-condensed
temperature in the superfluid phade<(T,) for different val- ~ b-molecule componené,. We takeg,/e=0.6 andU/e¢=0.3,
ues of theb-molecule threshold 2. We take the Fermi en- while A andA are normalized with respect tg-. The character of
ergy er, Fermi momentunpg, and Fermi velocity as the  the superfluidity changes from the BCS type to the BEC type as one
units of energy, momentum and velocity, respectively, whergoes from(a) to (d). In this figure, BCS labels the order parameter
er, Pr, and v are all in the absence of coupling to given by the weak-coupling BCS theory which omits the particle-
bosons. As the unit for the number for particles, we take th@article fluctuations. BEC labels the order paramefgrof a free
total number of Fermi atom. Since the interactiond and ~ Bose gas oN/2 atoms. Note the change in scale(@.
0, always appear withl asUN andng, we rescale them as _
UN—U and g,/N—g,. As for the energy cutoff that is ParameterA=A—g¢, agrees well with the BCS theory
necessary in the gap equation in Eg§.16 and the correla- (“BCS”in the figure). SinceA determines the energy gap of

tion functions I17} in Egs. (3.20~(3.29, we employ the  the fermion quasiparticle spectrum Bs= \/£2+ A2, the su-
Gaussian cutofé™ (¢p/0)” with w.=2s¢, as in our previous perfluid character at/eg=2 is found to be the BCS type.
work for T, [12—14. This choice of cutoff seems reasonable. However, Fig. 6a) also shows a sizable difference between
Different cutoff magnitudes are physically equivalent toA and the Cooper-pair amplitude= = (c_, cy). This is
changing the magnitude of the effective pairing interactionpecause the BEC order paramedgs=(by_o) is always in-
Trr:ese d'ﬁe{ﬁm 'CUIOf;SﬁCNBSCFtSWéI:EEad to quar\%tatlvfe tduced belowT, due to the Feshbach coupling effect in Eq.
changes in the size ot the ) crossover. WWe reter ?2 5, which contributes toZ=A—g &m- As illustration
; . ) .5, (D - ,
;{fgs}giﬁaﬂgg;ui'}t]?:r;gtlicnusss'on of the choice of cutoff when we substituter/e=2, g,/e=0.6, U/e=0.3, and
’ uleg=0.84 into Eq.(2.5), the contribution of the condensed

Since our “strong-coupling” theory is based on perturba- ~ . .
tive expansions with respect toeU andg,, these coupling P P0son toA is found to be—g,¢y,=0.517 atT=0. This

terms are assumed to be weak perturbations. For this reason,

1

we takeg,= 0.6 andU=0.3¢¢ in all our numerical calcu- e  V/e=2
lations. In Sec. IV of Ref[14], we have discussed the tran- 0.5 [ vige=1 7T
sition temperaturd  in the BCS-BEC crossover for the case 0 b @i TS
of a very broad 11,15 Feshbach resonancg,& ¢¢). In this g o5 [VEO e
case, the Cooper pairs dominate in the crossover region, a\ Al — T
which occurs at large values of Analogous results would S s Vil T ]
be expected in the superfluid region discussed in the present '2 """""""" -
r. - n...........--.-.--............................ )
pape 25 | viE=2
3 . . . "
A. Temperature dependgnce of the_ order parameter 0 02 04 06 08 1
and chemical potential T/g
- F
The self-consistent solutiong\(x) of the coupled equa- FIG. 7. The chemical potentigl as a function of temperature,

tions (3.16 and (3.41) are shown in Figs. 6 and 7. In Fig. for g,/¢z=0.6 andU/e=0.3. The solid circles show the super-
6(a), we find that the temperature dependence of the ordefuid phase transition temperature.
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means about one-third of the order paramétés associated where G;(p,w+id) is the (11)-component of Eq(3.11).
with ¢, even in the BCS regime a/e=2. When the chemical potentigk is positive, the excitation

As the threshold energy:2is lowered, the Cooper-pair spectrum in Eq(5.2) has a finite gapA as in the BCS theory,
componentA becomes less dominant while the condensed

boson component,, increaseqdFig. 6(a) — 6(d)]. At the 3N o _
same time, the temperature dependencd afeviates from  pe(w,u=0)= - —+1|(pn+ Vow?—A%)12
the weak-coupling BCS theory. At e = —2 in Fig. §d), A ek w?—A?
is dominated byg,, (although the Cooper-pair component
also exists due to the Feshbach coupling effdntthis case, w [ 5 <1
ém is well described by the BEC order parameterN/2 + —m_l (=N =A%)

w2—

atoms in a free Bose gas, given by

N e XO(VA+u?~0)
Ve e

where® (x) is the step function. On the other hand, when

O(w—A), (5.3

We denotegy, = in Fig. 6 as “BEC.” is negative in the BEC regime, one finds
In the intermediate region of the BCS-BEC crossover,
(and alsoA and ¢,,) becomes double valued neg&g. For 3N o)
example, in Fig. (), the two self-consistent values fdr at prlo.p<0)=—| ——=—==+1
T.=0.213T¢ (ETE, whereL stands for lower transition tem- 8eF w®—A?
peraturg are zero and 0.%4. In this case, when one de- = T
creases the temperatur&, jumps abruptly afT:. This is X (pt N +A%)10 (0 VAT u?).
because the phase transition is suppressed by superfluid (5.9

particle-particle fluctuations, once the phase transition oc-

curs, the opening up of the fermion quasiparticle excitatiorln this case, the Fermi quasiparticle excitation gap is found
gap A strongly suppresses these fluctuation effects, whiclio be VA%+ u?, rather thaml. This reflects the fact that the
accelerates the increase Bf On the other hand, when we threshold energy of free fermion excitations is given|py
raise the temperature from below, since the superfluid fluc?/hen #<0. In the BEC limit (u=v<—=zg), we have|p|
tuations are suppressed by the excitation gap, we can excegdA and the excitation gap reduces|jo|.

T; staying in the superfluid phase up to a higher temperature Figure 8a) shows the excitation spectrum of the BCS-
(=TY. In Fig. 6b), we see thafT"=0.215T¢, slightly Bogollub_ov quaS|part|cIes_|n the BCS-BEC crossover. In the
higher thanTt. At T?, A vanishes discontinuously. This BCS~ regime ¢=s¢), we find a peak at the excitation edge

kind of the first-order transition has been discussed in th&’=24 in the spectrum. This is the well-known coherence

literature of highT. superconductivity with strong fluctua- Peak discussed in the superconductivity literafi8€], and

tions in the Cooper channgg] the.qua5|pa.1rt|cle spectrum is found to be the BCS type in this
Figure 7 shows that the chemical potenjials decreased €dime. This coherence is absent wher0, where the ex-

as the system approaches the BEC regime Q). The tem-  Citation gap gradually changes framnto || as the threshold

perature dependence gf is found to be weak belowWw, energy 2 is lowered. Sinceu=v in the BEC regime, the

(except just belowT, in the crossover regimecompared energy gap (/u?+A?) becomes larger for lower values of

with the normal phase. As discussed in Sec. lll, the chemicah the BEC regime.

potential is temperature independent beldwin both the Figure 8b) shows the momentum distribution function of

BCS limit (u=¢g) and the BEC limit u=v). Figure 7  Fermi atoms af =0 [37], which is given by

shows that this feature also holds in the intermediate region

of the BCS-BEC crossover except just beldw, at least for 2t _ &p

the model parameters we have chosen. 0p={CpsCpo) = 2 o E.l" (5.9
Now that we have calculated self-consistently the values .

of the composite order parameﬁeras function of botil and  Since the energy gap in Ep=1 /§g+32 is larger for smaller
2v, we can use the results to discuss the spectrum of thgyyes of the threshold energy 2the steep decrease v)fJ
BCS-Bogoliubov single-particle Green’s function. The eXCl- around w(T=0) at »/er=2 gradually disappears asds
tation spectrum of the BCS-Bogoliubov quasiparticles islowered. In addition, the magnitude oﬁ decreases as one

given by approaches the BEC regime due to the decrease of the
chemical potentialu(T=0), which reflects the fact that
1 most Fermi atoms fornib bosons in the BEC regime. The
—_ IM[G4(p,i +io)], 5.2 quantity v, also enters into the Bogoliubov transformation
pr(©) ™ % [Culplom—o . 62 [37] to the BCS quasiparticles
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FIG. 8. (a) Density of states of the BCS-Bogoliubov quasiparti-  FIG. 10. Temperature dependence of the Goldstone phonon ve-
cles atT=0. Forv/eg=1, the threshold energy of the quasiparticle locity v, (@ v/iep=2, (b) vieg=1. BCS labels the Anderson-
excitations is given byo=A, at which a coherence peak appears. Bogoliubov phonon velocity given by the weak-coupling BCS
For v/eg<0, the coherence peak is absent and the spectrum startseory, where we usg&, from Fig. 2 andu from Fig. 7.

from w=(u2+A2)Y2 The excitation density of states approaches ) _
that for a free Fermi gas of atomg(w) = (3N/4e¥?) (w+w)¥2in ~ T1=0 as obtained from Eq4.12. In the BCS regime %
the high-energy region(b) Momentum distribution functionn; ~ =eg), the mode velocityv , agrees with the well-known
E(_ng?m) of Fermi atoms witho-spin component aT=0. The  Anderson-Bogoliubov phonon velocity,=vg//3 in Eq.
solid circle indicates the chemical potenta{T=0). (4.16). [At vieg=2, we obtainv_FZ 21(0)/m=0.92 for

71 —uch +v.c (5.6 1(0)=0.84ef, which givesv ,=0.53.] As the threshold

pI EPEpl T Fpr bl ' energy 2 is lowered,v, decreases sharply and approaches

wherey], is a creation operator of a BCS-Bogoliubov qua-the Bogoliubov phonon mode given by Ed.20. Figure 9

siparticle anmﬁfl—vs. indicate; thabd)_ is strongly_ dependent on the threshold en-
ergy 2v in a uniform Fermi gas.
B. Velocity of the Goldstone phonon mode Figure 10 shows the velocity of the Goldstone mode at

finite temperatures, obtained from E4.9). In Fig. 10a), v,

Figure 9 shows the velocity of the Goldstone maedgat s found to be well described by the Anderson-Bogoliubov

0 mode in the weak-coupling BCS theof®CS in the figure
0.6 — in the whole temperature region, as expected for the value
05 | v=_2gg. On the other hand; , becomes less than the BCS
’ result for the Anderson-Bogoliubov mode as the threshold
04 | energy 2 is decreased. This is shown in Fig.(fhp Since
i the order parametek vanishes discontinuously due to the
03 ) . ; ) )
e fluctuation effect discussed in the preceding sectiop,
02t shows a finite jump at in Fig. 10b).
oLt C. Dispersion relation of the Goldstone mode
0 15 1 05 0 05 1 15 2 Figure 11 shows the dispersion of the Goldstone mode at
V/E, T=0.5T.. In the BCS regimdFig. 11(a)], the gapless dis-

persion is convex and is confined below the excitation gap at

FIG. 9. Velocity of the Goldstone phonary (normalized to the 2A. This convex dispersion relation gradually changes to a
Fermi velocity at T=0 in the BCS-BEC crossover region. concave one as one goes from paralgo (d) in Fig. 11. In
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FIG. 11. Dispersion relation of the Goldstone mode Tat
=0.5T, for different values ofv. The solid lines show the disper-
sion obtained from Eq94.9 and (4.10. At v/ieg=2, Eq.(4.10
has an additional very high-energy solution around-= 2.4 (see
Fig. 12.

the BEC limit (v<<0), the dispersion is particlelikg?, char-

acteristic of freeb bosons. Indeed, the dispersion in Fig.

11(d) is well described byw=q?/2M, except for the region
of linear dispersionrw=uv ,4q at very smallq.
In the BCS regime, Eq(4.10 also has a high-energy

solution atw/ep=2.4, as shown in Fig. 12. This solution is
also obtained af ;. Since the energy of this solution is close

to the threshold energy of the excitation spectrum of free
bosons asp,—o=2v—2u=2.3%¢ (1=0.84), we inter-
pret this high-energy solution as an internal excitation bf a

boson. They are not the amplitude oscillations of the order

parameter.

Finally, we briefly comment on the approximate Egs.

(4.9 and (4.10. Since the excitation gap2 strongly sup-
presses the fermion quasiparticle excitations far belQw

3 V/.8F=2.
25+
2 .
&
= 15+t (5.10) —
3 eq.(5.10)
1 L
0.5 ¢ T=0.5TC_

0 T 1 1 1
0 0.2 0.04 0.06 0.08 0.1 0.12 0.14
a/px

FIG. 12. The high-energy solution of E.10 in the case of
vlieg=2, for T=0.5T.. The lower-energy solution is the Goldstone
mode, shown in Fig. 1&).
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FIG. 13. Spectral weight of the renormalized boson,
pB(q,w)=*(1/77)|m[1511(q,w)], and the structure functions
S11(g,w) and S,,(q,w). These results are far=2¢¢ (in the BCS
region andg=0.020¢. The inset shows two different approxima-
tions for the dispersion relation of the Goldstone modeT Al
=0.99: (1) and(2) are obtained from Eq$4.9) and(4.10, respec-
tively.

the intraband terms oﬂf} and also the Landau damping

below 2A are less important af=0.5T;. As a result, Egs.
(4.9 and (4.10 both give good approximations to the solu-
tion of Eq. (4.7) at T=0.5T., and give almost the same

results below A, as shown in Figs. 14) and 11b) (solid
lines). On the other hand, the interband terms given by the
second lines in Eq$3.20—(3.25 give rise to Landau damp-
ing when w=2A. Thus, above &, Egs.(4.9) and (4.10
may have different solutions, because they do not include the
imaginary part in the same way. Indeed, the dashed line

above A shown in Fig. 11b) is a solution of Eq(4.10), but

is not obtained from Eq4.9). In such a case, a more careful
analysis is necessary to obtain the correct dispersion relation.
However, since the fermion quasiparticles are absent in the
BEC limit (v<<0), the Landau damping becomes weak in
the BEC regime even nedr;. As a result, Eqs(4.9) and
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FIG. 14. Same plots as in Fig. 13, forer andq=0.15¢. In FIG. 15. Same plots as in Fig. 13, for=0 (crossover region
the inset, the peak energy gives the peak positioS,iiq, w) at andq=0.3pg.
T/T.=0.99.

_ _ _ _ =0 for T/T;=0.99, which indicates the presence of a large
(4.10 give almost identical results in the whole energy re-number of thermally excited fermion quasiparticles expected

gion. at this temperature. This collective mode in the thermally
excited fermions has been discussed in superconductivity lit-
D. Spectral weight and damping of the Goldstone mode erature[35].

In Secs. VB and V C, we considered the Goldstone mode At low temperatures, When the Landau damping bec‘?”.‘es
neglecting the Landau damping. In this section, we evaluat/6aker. the Anderson-Bogoliubov mode appears as a visible

the damping from the width of the collective mode in the P€aK iNps(d, ) andS,,(q, ) as shown in Fig. 14. The peak
structure functiorS;;(q,@.,) in Eq. (4.1 as well as in the width becomes narrower at lower temperatures, reflecting the

b-boson spectral density weaker Landau damping by fermior{i&t T=0, it becomes
a sharpés-function peak. The peak position @/ e=0.021)
1 . at T/T,=0.5 agrees well with the dispersion relation shown
pe(d,w)=——IM[D13(q,w-)]. (5.7 in Fig. 11(a).
Since the Anderson-Bogoliubov mode is a collective
In Figs. 13—16, we show theboson excitation spectrum, Phase oscillation of the Cooper-pair order paramétethe
as well as the phas8,, and amplitudeS;; structure func- appearance of this mode js(q,w) indicates the presence
tions for T, belowT.. In Fig. 13, we find that the Anderson- ©f the coupling between thie bosons and the phase fluctua-
Bog0|iubov Goldstone mode does not appear as a Visib|80n5 of A. On the other hand, no peak structure is observed
peak in the spectrum a/T.=0.99. (The inset in Fig. 13 except for the central peak at=0 in the amplitude structure
shows that the mode energydde-=0.01 forq=0.02pr.)  functionS;; shown in Fig. 13. Only a slight structure appears
This means that the Anderson-Bogoliubov mode is overat w/eg=0.02 atT/T.=0.7, as shown in paft) of Fig. 17.
damped neaf . because of strong Landau damping from the(The peak atw/e£=0.07 in Fig. 17 is the amplitude mode at
thermally excited fermion quasiparticles. We note thatthe edge of interband excitations=2A.) This is because
Sy, ) and S;y(q,w) both exhibit strong central peaks at the amplitude-phase couplidd?, is very weak in the BCS
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9; 40 | | FIG. 17. The amplitude structure functi®;(qg, ) is shown in
A (a) and theb-boson spectrunpg(qg, ) is shown in(b) for v/eg
20 | ; ] =2 (BCS region andT/T.=0.7. In panel@) the extremely small
ji structure visible atw/e=0.02 is due to the Anderson-Bogoliubov
0 . - . mode. The larger peak at/eg=0.07 is the amplitude mode. How-
0 002 004 006 008 O ever, since the excitation gap is also @& =20.068, this mode co-

0 /& incides with the edge of the interband excitations. In pdhgethe
peak on the left is the Anderson-Bogoliubov mode, while the broad
FIG. 16. Same plots as in Fig. 13 for= — e (BEC region and peak atw/ep corresponds to the high-energy solution shown in Fig.
q=0.3pg. 12. A very small peak ab/e-=0.068 in panelb) is located at the

regime, so that the collective phase oscillation does no‘?XCItatlon gap 2.

strongly couple into the amplitude fluctuations. o ) )
As shown in Fig. 12, Eq(4.10 also has a high-energy indicates that the amplitude-phase coupling becomes stron-

solution in the BCS regime at/sz=2. This solution is the 9€r as 2 is decreased. Although the amplitude fluctuations
strong resonance ing(q, ), as shown in partb) of Fig. 17. described by1; are not impqrtant_ in the BCS regime, we
In Fig. 14, we find a broad peak By, at T/T,=0.99. As cannot neglect these fluctuations in the BCS-BEC crossover
shown in the inset in Fig. 14, the peak position is different’®9'Me-
from the one expected from Eqgl.9) and(4.10. However,
since this resonance shows gapless behavior, it clearly must
be the Goldstone modéThe difference shown in the inset is
due to the Landau-damping effecindeed, the peak energy ~ An important problem is how to experimentally observe
atT/T.=0.5 agrees well with the dispersion in Fig.(il As  the Goldstone mode discussed in Secs. IV and V. In this
expected, Landau damping from fermions becomes weak asection, we show that the density-density correlation func-
one approaches the BEC regime. Whesg0, we can ob- tion 133 defined in Eq.3.19 exhibits this mode as a pole.
serve the sharp peak structure even rigain Figs. 15 and This correlation function can be experimentally probed by
16, and the peak position always agrees well with the dispemany techniques, including two-photon Bragg scattering
sion relation given in Fig. 11. The dispersion relation of the[49].
Goldstone mode approaches the temperature-independentSince the Goldstone mode is associated with the collec-
particlelike one in the BEC regime, and hence the temperative phase fluctuations of the Cooper pairs, a coupling be-
ture dependence of the peak energy in Fig. 16 is weak. tween density fluctuations and phase fluctuations is neces-
We also find in Figs. 14-16 that the Goldstone modesary in order for the Goldstone mode to appear in the
appears in the amplitude structure fac®nr(q,»), which  spectrum exhibited byIss(q,w ). In this regard, we note

VI. DENSITY-DENSITY CORRELATION FUNCTION
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M= + €TI0 )y ‘ tion in Eq. (4.19 and neglects terms of the order of

WotDy O((a/pg)?)). However, as in the case of the amplitude-phase
correlation functiod1$,, this coupling effect becomes stron-
----- ger as one goes into the BCS-BEC crossover regime. Then
the density-density correlation functiolz; is found to

:
0
)

_____ couple with superfluid fluctuation@mplitude and phageia
" - 115, andI1Y;, as shown diagrammatically in Fig. 18.
The density-density correlation functidihgs given by the
% _____ % HF-RPA is obtained by extending the method discussed in
+
- - - Sec. IV of Ref[40]. When we introduce a8 3-matrix cor-
relation functionﬁ={1‘[ij} (i,j=1,2,3), which involves the
o density-density correlation function as the (33)-component,
I = ’ (8, 1-2) we obtain an equation similar to E¢#.2), namely,
FIG. 18. The density-density correlation functibhy; coupled 1. 11
with superfluid amplitude and phase fluctuations describedilpy I=11° 1+ =UTI° (6.2)
(i,j=1,2) (shaded bubblgsII; and I13, describe phase-density 2
correlations, whild1?, andI13, give the amplitude-density correla- —
tions. Here, the interaction 8 3 matrix U is defined by
that a phase-density coupling exists in fermion superfluidity Un Ulz 0
because of the presence of the Josephson effect. This cou- _ _
pling is described by13, (andI13,) defined in Eq(3.24). In =| Uz Ux 0], (6.2)
contrast to the amplitude-phase correlation functlfbfftz, 0 0 O

which is very weak in the BCS regimél ), is finite even if

one works with the approximation in E@4.15. Besides \where Uijz{u_gfv“vf)o\i\/*l}ij, If we include a density-
I19;, density fluctuations also couple with superfluid fluctua-density interaction term to our coupled fermion-boson model
tions through amplitude-density coupliif, (andI13,) de-  in Eq.(2.1), it would be included as the (3,3)-component in
fined in Eq.(3.25. This coupling is not important in the BCS Eq. (6.2). The density-density correlation function is ob-
regime, becausH{, vanishes when one uses the approxima-ained from the (3,3)-component of E@.1),

H33

H33: Hg3+ 7 y (63)

v V2
1 1 1 V5
1+ 7[H21+H32]_ 7[H22_Hgﬂ+ 2 + 2z [T19,119,— 119,115,]

where the numerator is 1 .
S33(q, )=~ ;[nB(w)+1]Im[H33(q,| vp—@4)].

RIEAVER PRSI EAVER IERSIEAVERTES 69

At low temperatures in Figs. 18 and 19b) (BCS regime,

and at all the temperatures in Figs.(d9and 19d) (BEC
regime, we can clearly see the Goldstone mode as a reso-
nant peak inSz3(g,w). The peak position is the same as that
in the spectra shown in Figs. 13-16. Since the density-
density correlation functiotl 353 can be measured more eas-

) ) ) ) ily than the phase correlation functidih,,, and may be the
Each term in EQ(64) involves correlation functions be- most useful way of observing the Goldstone mode.
tween density fluctuations and superfluid fluctuations, such

asI19; andI1%;.

Figure 19 shows the dynamic structure function related to
the spectral density of the density-density correlation func- In this paper we have investigated the BCS-BEC cross-
tion over in the superfluid phase of a uniform gas of Fermi atoms

T V3
_J’__
4 4

Hge=
— 2 115, —Vl[HO T19,+ T13,119]
321l 5 LitaitlisT Haolls

Va
- 7[H21H33_ngn(1)3]- (6.4
VIl. SUMMARY AND DISCUSSION
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viee=2, q/p,= 0.02 s vie=1, q/p,=0.15 regime because the system is then dominatedbhyol-
(@ ecules, with the suppression of the Fermi quasiparticle spec-
trum. Thus, except in a small region negg in the BCS
regime, the Goldstone mode appears as a strong resonance
both in the spectrum of the phase correlation function and in
the excitation spectrum df bosons. As a way to experimen-
tally observe this Goldstone mode, we noted that since the
amplitude and phase fluctuations couple with the density-
fluctuations, one can observe this collective mode in the
spectrum of the density-density correlation function
v — © I155(q,w ). In cigar-shaped trapped Fermi gases, the direct
2} Th=09 - s — @ observation of a density fluctuation pulse might be possible,
in analogy with the observation of a Bogoliubov phonon in a
superfluid Bose gas with a very weak axial trapping potential
2 i [50]. We also note that two photon Bragg scattering experi-
ments provide a convenient way of studying density fluctua-
L tions in a trapped atomic g449-52. In such experiments,
0 002 004 006 008 O1 0 002 004 006 008 0.1 ImIT35(qg, ) is measured directly, rather th&g(q, w) [52].
ol&: ol It is important to remember that our treatment of the BCS-
) BEC crossover leaves out several important contributions. In
_ FIG. 19. Spectrum of the dynamic structure funct®(d.«) oy calculation of various response functions, we always ig-
n ::h.e Big'BlicTcgossﬁver' Thekmomemum Vﬁ'”eGS T‘(:e the Sahme Pored the fermion self-energy arising from the coupling to
Irﬂodlcge& —16. The sharp peak structure Is the Goldstone phonog,, oy Bose-condensed bosdi3d]. In the crossover re-

' gion, these two-particle states are strongly damped. The nu-
merical results given in Secs. V and VI show how Landau
damping due to fermions decreases as we approach the BEC

with a Feshbach resonance. Going past the simple weakegime (small or negative values of/zg). This is simply
coupling mean-field theory, we included the strong-couplingbecause more and more fermions are forming the bound
effect originating from the pairing interaction associated withstates. However, we expect new forms of damping to arise in
a Feshbach resonance. We have extended our previous watke BEC region, namely, the Landau and Baliaev damping
[12-14 at and abovd . to the superfluid region beloW,.  associated with the interaction between Bogoliubov excita-
We showed that the superfluid order parameter continuoushjons[53].
changes from the Cooper-pair amplitudle= UZ (c_, Cy) We also note that to illustrate our theory of the superfluid
in the BCS regime to the square root of the number of constate, we have used a relatively weak-coupling strength pa-
densedb molecules¢,,=(b,-() associated with the Fesh- rameterg, describing the Feshbach resonance. In Sec. IV of
bach resonance in the BEC regime, as one lowers the thresRef.[14], we presented calculations of the BCS-BEC cross-
old energy 2 of the Feshbach resonance. In the intermediat@ver transition temperature for a very broad Feshbach reso-
regime in the BCS-BEC crossover, superfluidity is describechance considered in Refd.1,15. In the case of largg,, the
by the composite order paramet®e= A — g, ., [8,9,17. crossover can occur even if the thresholdi very large. In
The Goldstone mode is one of the most fundamental phethis case, the Cooper pairs dominate overkti®sons in the
nomena in an ordered system with spontaneous breakdowBEC phase.
of a continuous symmetry. In this paper, we investigated how In this paper, we have not considered the effect of a trap.
the Anderson-Bogoliubov mode, which is the GoldstoneThe atomic density profile in the BCS-BEC crossover in a
mode in the BCS superfluidity, changes to the Bogoliubowirap was recently investigated within the LDA by the authors
phonon mode in the BCS-BEC crossover. The velocity of theat and aboveT, [13,14], using the coupled fermion-boson
Goldstone mode 4 strongly depends on the threshold en-model, and aff=0 by Peraliet al. [28], using the strong-
ergy 2v, and decreases as one approaches the BEC regimgoupling BCS modef26]. A trap potential also leads to vari-
The Anderson-Bogoliubov phonon mode may be a usefupus discrete low-energy collective modes associated with the
way of monitoring the BCS-BEC crossover. Since it is diffi- confined geometry, and it will be interesting to study how
cult to strongly modify the strength of the pairing interaction these collective oscillations behave in the BCS-BEC cross-
in metallic superconductors, the tunable pairing interactiorpver. This will be the subject of a future paper, but we con-
associated with the Feshbach resonance in Fermi atomigude with a few brief remarks on this. In the BCS limit of
gases gives one a unique tool to clarify the physics in théur model, one has the extensive theoretical W8tk32,53
BCS-BEC crossover region. on the Cooper-pair condensate modes in trapped Fermi
We also investigated the damping of the Goldstone modegases. To be specific, we consider the quadrupole mgge
The fermion Landau damping of the Goldstone mode due te= V2w, (Wherewy is the trap frequency of a spherical trap
coupling to fermions becomes weak far beldw, reflecting  This is an analog of the Goldstone phonon mode in a uni-
the fact that the thermal excitation of fermion quasiparticleform system. Ifwq is greater than the effective threshold
is negligible. This damping effect is always weak in the BEC2A . for breaking up Cooper-pairs, this mode is damped and

Si(q,w) &
Si(q,w) &

Saz(q,a)) &
Saa(q,a)) &
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has small spectral weig82]. However, as one approaches and damping, which could be used as an experimental sig-
the BCS-BEC crossover, the spectral weight of the fermiomature.

quasiparticles decreases, shifting to the quadrupole mode

wq. In the BEC limit, the modewg= 2w, is the well-

known quadrupole oscillation of a trapped Bose [g#%54. ACKNOWLEDGMENTS
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