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Superfluidity and collective modes in a uniform gas of Fermi atoms with a Feshbach resonance
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We investigate strong-coupling superfluidity in a uniform two-component gas of ultracold Fermi atoms
attractively interacting via quasimolecular bosons associated with a Feshbach resonance. This interaction is
tunable by the threshold energy 2n of the Feshbach resonance, becoming large as 2n is decreased~relative to
2«F , where«F is the Fermi energy of one component!. In recent work, we showed that the enhancement of this
tunable pairing interaction naturally leads to the BCS-BEC~Bose-Einstein condensation! crossover, where the
character of the superfluid phase transition changes from the BCS type to a BEC of composite bosons con-
sisting of preformed Cooper-pairs and Feshbach-induced molecules. In this paper, we extend our previous
work and study both the quasiparticles and the collective dynamics of the superfluid phase below the phase-
transition temperatureTc , limiting ourselves to a uniform gas. We show how the superfluid order parameter
changes from the Cooper-pair amplitudeD to the square root of the number of condensed molecules (fm)
associated with the Feshbach resonance, as the threshold energy 2n is lowered. In the intermediate coupling
regime, the superfluidity is shown to be characterized by an order parameter consisting of a superposition ofD
and fm . We also discuss the Goldstone mode associated with superfluidity, and show how its character
smoothly changes from the Anderson-Bogoliubov phonon in the BCS regime to the Bogoliubov phonon in the
BEC regime in the BCS-BEC crossover. The velocity of this Goldstone phonon mode is shown to strongly
depend on the value of 2n. We also show that this Goldstone mode appears as a resonance in the spectrum of
the density-density correlation function, which is experimentally accessible.

DOI: 10.1103/PhysRevA.67.063612 PACS number~s!: 03.75.Kk, 03.75.Ss, 74.20.Mn
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I. INTRODUCTION

One of the most challenging topics in current physics
the realization of superfluidity in a trapped atomic gas co
posed of two Fermi hyperfine states. A considerable exp
mental effort has already been made to cooldown Fe
atom gases, such as6Li and 40K @1–5#. The temperature can
now be lowered toT;0.2TF , where the Fermi gas should b
highly degenerate and the observation of superfluid beha
seems imminent@6#.

As a promising mechanism of BCS superfluidity with
high transition temperatureTc , making use of an atomic Fes
hbach resonance has attracted much attention@7–15#. The
Feshbach resonance describes quasimolecular bosons, w
can mediate a pairing interaction between Fermi atoms. T
pairing interaction is tunable by the threshold energy 2n of
the Feshbach resonance, and can become strong asn is
decreased relative to twice the Fermi energy of the ato
Using this strong paring interaction, one can hope to achi
a high value ofTc . Experimentally, the threshold energy 2n
can be controlled by a weak applied magnetic field. Ve
recently, this tunable interaction was observed in a Fermi
of 40K @16,17#.

In our recent work@12–14#, we pointed out the impor-
tance of fluctuations in the Cooper-channel in considerin
high-Tc superfluidity originating from the strong pairing in
teraction associated with a Feshbach resonance. We exte
the strong-coupling theory developed by Nozie`res and
Schmitt-Rink@18–21#, to include the effects of a Feshbac
resonance and the associated quasimolecular bosons
showed that these particle-particle fluctuations strongly s
pressTc from the value expected within the simple mea
1050-2947/2003/67~6!/063612~24!/$20.00 67 0636
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field BCS theory. In addition, the character of the phase tr
sition was shown to continuously change from the BCS ty
to a BEC~Bose-Einstein condensation! of composite bosons
~consisting of preformed Cooper-pairs and long-lived Fe
bach molecules! as the threshold energy 2n is lowered. Our
strong-coupling theory thus gave an upper limit ofTc

50.518TF for a Fermi gas in a harmonic trap potential@both
Tc and TF are proportional to the averaged trap frequen

v̄0[(v0xv0yv0z)
1/3] and Tc50.218TF for a uniform gas

@12–14#. These values are simply the BEC transition te
peratures, expressed in terms of the Fermi temperatureTF of
one of the Fermi components.

In this paper, we investigate the BCS-BEC crossover
the superfluid state, extending our previous work@12–14# to
the superfluid region belowTc . Going past the previous BCS
mean-field approximation@9,22–24#, we include strong fluc-
tuations around the BCS mean-field solution. We clarify h
the order parameter described by the Cooper-pair amplit
D5U(p^c2p↓cp↑& in the weak-coupling BCS theory
changes to the BEC order parameter related to the numb
condensed bosonsfm5^bq50& in the BCS-BEC crossover
Here,cps is the annihilation operator of a Fermi atom in on
of two hyperfine states (s5↑,↓) and bq is the annihilation
operator of the boson molecule associated with the Feshb
resonance.

In the field of trapped ultracold Fermi gases, a cruc
issue is to determine a clear unambiguous signature for
perfluidity @6,25–28#. Another important problem is how to
experimentally track the system in the BCS-BEC crosso
region. In this regard, the study of the Goldstone collect
mode is very useful since it is deeply related to the spon
©2003 The American Physical Society12-1
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neous breakdown of the gauge symmetry associated with
superfluid phase transition. The Goldstone mode is know
the Anderson-Bogoliubov mode in the BCS state@29#, while
it is the Bogoliubov phonon in the BEC phase@30#. In this
paper, we discuss how these collective modes change
one to the other as we go through the BCS-BEC crosso
We show that the velocity of the Goldstone phononvf

strongly depends on 2n, and thus it offers a way of observ
ing the BCS-BEC crossover phenomenon by tuning
threshold energy 2n in a cigar-shaped trap~where the gas is
fairly uniform in the axial direction!. We also show that the
Goldstone mode appears as a resonance in the spectru
the density-density correlation function.

The present paper only considers the superfluid phase
uniform two-component Fermi gas with an attractive int
action. In Ref.@14#, we discussed the same model at a
above the superfluid transition temperature for a trapped
using the local-density approximation~LDA !. The extension
of the present work to an inhomogeneous trapped gas wi
considered in the future. As well known, the low-energy c
lective modes in a trapped atomic gas~Fermi or Bose! are
strongly altered by the trap potential. However, the equi
lent of the Goldstone phonon modes we discuss in this pa
also arise in trapped two-component Fermi gases. These
energy collective modes have been extensively discusse
the recent literature@31–33# for the weak-coupling BCS
limit. In this paper, we discuss the physics of the Goldsto
phonon mode as a function of the threshold energy 2n. A
similar analysis remains to be done for the collective mo
of a trapped Fermi gas in the BCS-BEC crossover regio

This paper is organized as follows. In Sec. II, we pres
our coupled fermion-boson model. We explain how to
clude the strong-coupling~fluctuation! effect originating
from the Feshbach resonance in Sec. III. In Sec. IV, we c
sider the Goldstone mode. We first derive correlation fu
tions describing Cooper-pair fluctuations, as well as a ren
malized boson Green’s function for quasimolecu
associated with the Feshbach resonance, using the Har
Fock random-phase approximation~HF-RPA!. The Gold-
stone mode is then obtained from their poles. In Sec. V,
discuss the BCS-BEC crossover belowTc based on our nu-
merical results. We also discuss the BCS-BEC crossover
havior of the order parameter and the Goldstone pho
mode, as a function of 2n. In Sec. VI, we discuss the cou
pling of the Goldstone mode with density fluctuations. S
tion VII gives a summary and a brief discussion of trapp
Fermi gases.

II. COUPLED FERMION-BOSON MODEL

We consider a gas of Fermi atoms composed of t
atomic hyperfine states, coupled to molecular two-part
state. We describe the two hyperfine states using a p
dospin variables (5↑, ↓). The coupled fermion-boson
model Hamiltonian is given by@7–15,22–24#
06361
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H5(
ps

«pcps
† cps

2U (
p,p8,q

cp1 q/2↑
† c2p1 q/2↓

† c2p81q/2↓cp81 q/2↑

1(
q

@«Bq12n#bq
†bq

1gr(
p,q

@bq
†c2p1q/2↓cp1q/2↑1H.c.#. ~2.1!

Here, a Fermi atom and a quasimolecular boson associ
with the Feshbach resonance are, respectively, describe
the destruction operatorscps andbq . The kinetic energy of a
Fermi atom is«p[p2/2m and «Bq12n[q2/2M12n is the
excitation spectrum of theb-molecular bosons. Here, 2n rep-
resents the lowest excitation energy ofb bosons, also re-
ferred to as the threshold energy of the Feshbach resona
The last term in Eq.~2.1! describes the Feshbach resonan
with a coupling constantgr , which describes how ab mol-
ecule can dissociate into two Fermi atoms and how t
Fermi atoms can form oneb boson. The Hamiltonian in Eq
~2.1! also includes an attractive fermion-fermion interacti
2U (,0) arising from nonresonant processes@9#.

Since oneb Bose molecule consists of two Fermi atom
the boson massM52m and the conservation of the tota
number of particlesN imposes the relation

N5(
ps

^cps
† cps&12(

q
^bq

†bq&. ~2.2!

We incorporate this crucial constraint into the model Ham
tonian in Eq.~2.1! using a chemical potential,H[H2mN.
The resulting grand-canonical HamiltonianH has the same
form as Eq.~2.1!, except that the kinetic energies of Ferm
atoms andb bosons are replaced by«p→jp[«p2m and
«Bq12n→jBq[«Bq12n22m, respectively. In the latter re
placement, the factor of 2 in 2m reflects the fact that oneb
boson consists of two Fermi atoms.

In this paper, we investigate strong-coupling effects in
superfluid phase, as well as the Goldstone mode assoc
with superfluidity in the BCS-BEC crossover region. As
start, we consider a uniform Fermi gas and leave the effec
a trapping potential to future work. In this regard, we ha
shown in Refs.@12–14# that while a trap potential enhance
the transition temperatureTc in the BEC regime, the quali-
tative behavior ofTc in the BCS-BEC crossover is not ver
different from a uniform Fermi gas. Within weak-couplin
BCS theory, several papers have discussed collective ex
tions in a trapped Fermi gas with attractive interactions.~See,
for example, Refs.@31–33#.!

When the Feshbach coupling term is absent in Eq.~2.1!,
the fermions andb bosons are decoupled from each other.
this limit, a BCS superfluid phase transition of Fermi atom
and BEC transition ofb bosons can occur, at different tem
peratures. These two superfluid phases are, respectively
scribed by independent order parameters
2-2
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D[U(
p

^c2p↓cp↑&,

fm[^bq50&. ~2.3!

On the other hand, when the Feshbach resonance ter
present (grÞ0), we find the following identity in the equi
librium state:

05 i
dfm

dt
5 i K db0

dt L 5^@b0 ,H#&5~2n22m!fm1
gr

U
D.

~2.4!

Equation~2.4! gives @8,9#

fm52
gr

2n22m

D

U
. ~2.5!

This last result shows that the BEC order parameterfm and
the Cooper-pair order parameterD are no longer indepen
dent, due to the hybridization induced by the Feshbach re
nancegr . Both D andfm are finite in the superfluid phase
and there is a unique superfluid phase transition in
coupled fermion-boson model.

For later convenience, we define the following compos
order parameter@8,9,12#:

D̃[D2grfm. ~2.6!

We will find that D̃ corresponds to the excitation energy g
in the spectrum of fermion quasi-particles belowTc in the
BCS-BEC crossover regime.

III. STRONG-COUPLING EFFECTS ON SUPERFLUIDITY

A. Review of strong-coupling theory for Tc

In this section, we review the strong-coupling theory f
Tc discussed in our previous papers@12–14#. This formula-
tion is extended to the region belowTc in the following
sections.

In previous work @12–14#, we extended the strong
coupling theory developed by Nozie`res and Schmitt-Rink
@18# to the coupled fermion-boson model in Eq.~2.1!. The
equation forTc was obtained by using the Thouless criterio
which states that the superfluid phase transition occurs w
the particle-particle vertex functionG(q,v) describing the
Cooper-channel develops a pole atq5v50. Within the
t-matrix approximation in terms of2U and gr described
diagrammatically in Fig. 1~a!, this equation forTc is given
by

15Ueff(
p

tanh 2jp/2Tc

2jp
, ~3.1!

where

Ueff[U1gr
2 1

2n22m
~3.2!
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is an effective pairing interaction. The last term in Eq.~3.2!
describes the interaction mediated byb bosons associate
with the Feshbach resonance. Equation~3.1! is formally
identical to the equation forTc in an ordinary weak-coupling
BCS theory. However, the chemical potentialm in the kinetic
energyjp5«p2m of the Fermi atoms can deviate strong
from «F as one approaches the BEC regime~where«F is the
bare Fermi energy of one spin component!. This contrasts
with simple BCS theory, where one finds thatm.«F .

The chemical potentialm is determined by the equatio
for the total number of Fermi atoms, using the identityN5
2]V/]m. We include the effect of fluctuations in th
Cooper-channel@the first line in Fig. 1~b!# as well as the
Feshbach resonance@the second line in Fig. 1~b!# in the ther-
modynamic potentialV. The resulting equation relatingm
andN is

N5NF
012NB

02
1

b(
q,nn

eidnn
]

]m

3 ln@12@U2gr
2D0~q,inn!#P~q,inn!#. ~3.3!

FIG. 1. ~a! t-matrix approximation for the particle-particle sca
tering vertexG at Tc . The solid line represents the fermion Green
function. The first line in the figure involves the ladder processes
nonresonant interaction2U, while the second line involves the
Feshbach resonance described by theb-boson Green’s functionD0.
~b! Fluctuation contribution to the thermodynamic potentialV at
Tc . The first line represents the Cooper-channel particle-part
fluctuations associated with the nonresonant interaction2U, and
the second line describes the effect of the Feshbach resonance
pling gr . ~c! The shaded bubble includes ladder diagram scatte
processes by2U.
2-3
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Here, b51/T is the inverse of temperature,NF
0[2(pf (jp)

and NB
0[(qnB(jBq), where f («) and nB(«) represent the

Fermi and Bose distribution functions, respectively. The l
term in Eq.~3.3! describes the fluctuation contribution toN.
The b-boson Green’s function is given by

D0~r ,inn![
1

inn2jBq
, ~3.4!

where the Bose Matsubara frequency isnn52npT(n50,
61,62, . . . ). P(q,inn) is the correlation function of the
Cooper-pair field operatorF̂q[(pc2p1q/2↓cp1q/2↑ , given by

P~q,inn![E
0

b

dteinnt^Tt$F̂q~t!F̂q
†~0!%&

5
1

b (
p,vm

G0S p1
q

2
,ivm1 innDG0S 2p1

q

2
,ivmD

5(
p

12 f ~jp1q/2!2 f ~jp2q/2!

jp1q/21jp2q/22 inn
. ~3.5!

Physically,P(q,inn) describes fluctuations of Cooper pai
in the normal phase.G0(q,ivm) is a fermion thermal
Green’s function defined by

FIG. 2. ~a! The BCS-BEC crossover at the superfluid pha
transition temperatureTc in a gas of Fermi atoms with a Feshba
resonance, as a function of the threshold parametern. We take
gr /«F50.6, U/«F50.6 andvc /«F52. BCS labels the result in the
absence of fluctuation effects and BEC givesTc of a Bose-
condensed gas ofN/2 molecules of massM52m. ~b! The chemical
potentialm at Tc , shown as a function ofn. These results are from
Ref. @12#.
06361
t

G0~q,ivm!5
1

ivm2jp
, ~3.6!

where the Fermi Matsubara frequency isvm5(2m
11)pT (m50,61,62, . . . ).

The coupled equations~3.1! and~3.3! determineTc andm
self-consistently. In calculating these equations, a cutof
necessary to make the momentum summation converge
Refs. @12–14#, we simply introduced a Gaussian cuto

e2«p
2/vc

2
, which is also used in this paper.

The self-consistent solution (Tc andm) of these coupled
equations is summarized in Fig. 2. Whenn@«F , since the
chemical potential is at mostm&«F , the Feshbach-induce
contribution to the pairing interactiongr

2/(2n22m) in Eq.
~3.2! is small. In this regime, Fig. 2~a! shows that the super
fluid phase transition is well described by the weak-coupl
BCS theory with a~weak! pairing interaction2U. In addi-
tion, we see thatm.«F , as shown in Fig. 2~b!. However, the
chemical potentialm gradually deviates from«F as the
threshold energy 2n is lowered towards 2«F and below. In
particular, one findsm approachesn whenn,0. In this re-
gime, the Feshbach-induced pairing interactiongr

2/(2n
22m) in Eq. ~3.2! is large, andTc deviates significantly
from the prediction of weak-coupling BCS theory, as sho
in Fig. 2~a!. Since 2n is the lowest excitation energy ofb
bosons and their chemical potential is 2m, the situation 2n
52m, realized in the limit of large negative values ofn/«F ,
is equivalent to the condition of BEC in a noninteractin
Bose gas. Indeed, Fig. 2~a! shows thatTc corresponds pre-
cisely to the transition temperature of a free Bose gas ofN/2
atoms whenn/«F,21. These results show that the BCS
BEC crossover starts in the region where 2n52«F, at least
for small values ofgr . This crossover phenomenon can
simply controlled by the threshold energy 2n of the Fesh-
bach resonance.

We note that when one uses a large value of the Feshb
coupling parametergr , there is a small peak inTc in the
crossover to the BEC phase@15#. However, as we have dis
cussed in Sec. VII of Ref.@14#, this peak is spurious, being
result of not including the fermion self-energy due to co
pling to the Cooper-pair bound states. This was first poin
out in the context of a uniform electron gas by Haussma
@34#.

B. Strong-coupling theory belowTc

In order to formulate the analogous strong-coupli
theory belowTc , we separate out the fluctuations of Coop
pairs and condensedb bosons around their mean-field valu
denoted byD and fm, respectively@35,36#. For this pur-
pose, we write F̂q5^F̂q50&dq,01dF̂q and b̂q5fmdq,0

1dbq , whereF̂q is defined before Eq.~3.5!. Separating out
the fluctuation contribution to the Hamiltonian in Eq.~2.1!,
we obtain

-

2-4
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H5
D̃2

Ueff
1(

p
jp1(

p
Ĉp

†@jpt32D̃t1#Ĉp1(
q

jBqbq
†bq

1
gr

2 (
q

@bq
†rq

21bqrq
1#2

U

4 (
q

@r1qr12q1r2qr22q#.

~3.7!

Here, we have introduced the Nambu field operator
Fermi atoms asĈp

†[(cp↑
† ,c2p↓) and the corresponding 2

32 Pauli matricest i ( i 51,2,3) acting on the particle-hol
space@37#. The order parameterD̃ is defined by Eqs.~2.3!
and ~2.6!, which we can take to be real and proportional
t15(1 0

0 1) without loss of generality. In Eq.~3.7! and the
subsequent discussion, we use the generalized density o
tors rq

6[r16q6 ir26q , where

r j q[(
p

Cp1q/2
† t jCp2q/2 . ~3.8!

We note that r3q5(p,scp1q/2,s
† cp2q/2,s is the ordinary

density-fluctuation operator. Similarly, one has

r1q5(
p

@c2p2q/2↓cp2q/2↑1cp1q/2↑
† c2p1q/2↓

† #,

r2q5 i(
p

@c2p2q/2↓cp2q/2↑2cp1q/2↑
† c2p1q/2↓

† #, ~3.9!

and hence

rq
152(

p
cp1q/2↑

† c2p1q/2↓
† , rq

252(
p

c2p2q/2↓cp2q/2↑ .

~3.10!

The operatorsr1q andr2q describe, respectively, the ampl
tude and phase fluctuations of Cooper-pair field fluctuat
operatorF̂q . In Eq. ~3.7!, the fermion-fermion interaction is
seen to be neatly expressed as the sum of interactions
tween the amplitude fluctuations@2(U/4)(qr1qr12q# and
phase fluctuations@2(U/4)(qr2qr22q#. The Feshbach reso
nance is also expressed as an interaction between
b-bosons and the fluctuations described byrq

6 . In Eq. ~3.7!,
we have simply writtenr1q502^r1q50&→r1q50 and bq50
2fm→bq50.

Within the mean-field approximation described by t
third term in Eq.~3.7!, the fermion thermal Green’s functio
is conveniently discussed in terms of a 232 matrix Green’s
function

Ĝ~p,ivm!5
1

ivm2jpt31D̃t1

52
ivm1jpt32D̃t1

vm
2 1Ep

2
.

~3.11!

Here,Ep[Ajp
21D̃2 is the energy spectrum of fermion qu

siparticles below Tc , which we shall call the BCS-
Bogoliubov quasiparticle spectrum. Equation~3.11! reduces
to the mean-field BCS matrix Green’s function@37# when the
06361
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composite order parameterD̃ is replaced byD. The off-
diagonal ~static! self-energy ŜF[2D̃t1 comes from the
mean-field termD̃t1 appearing in the Hamiltonian in Eq
~3.7!. This self-energy corresponds to the mean-field d
grams shown in Fig. 3,

Ŝ (a)52t1

U

2b (
p,vm

Tr@t1Ĝ~p,ivm!#

52t1U(
p

D̃

2Ep
tanh

b

2
Ep ,

Ŝ (b)52t1

gr
2

4b
D0~0,0! (

p,vm

Tr@t2Ĝ~p,ivm!#

52t1

gr
2

2n22m (
p

D̃

4Ep
tanh

b

2
Ep ,

Ŝ (c)52t2

gr
2

4b
D0~0,0! (

p,vm

Tr@t1Ĝ~p,ivm!#

52t2

gr
2

2n22m (
p

D̃

4Ep
tanh

b

2
Ep , ~3.12!

wheret6[t16 i t2. In Eq. ~3.12!, Ŝ (b) andŜ (c) include the
pairing interaction mediated by a Feshbachb molecule de-
scribed by the propagatorD0 . Ŝ (a) comes from the~weak!
nonresonant interaction2U. The matrix self-energyŜF

5Ŝ (a)1Ŝ (b)1Ŝ (c) sums up to give

ŜF52t1Ueff(
p

D̃

2Ep
tanh

b

2
Ep52t1D̃. ~3.13!

In the last expression, we have used the gap equation in
~3.16!.

Using Eq.~3.11!, we see that

FIG. 3. The off-diagonal static mean-field self-energies in

232-matrix fermion Green’s functionĜ(p,ivm) given in Eq.
~3.11!. Diagram ~a! gives the contribution from the nonresona
interaction2U. Diagrams~b! and ~c! include the pairing interac-
tion mediated by a Feshbach molecular boson described by
b-boson Green’s functionD0(q,inn). In the diagrams~b! and ~c!,

t6[t16 i t2. SinceĜ(p,iv) in Eq. ~3.11! does not have at2 com-
ponent, a diagram similar to~a!, where t1 is replaced byt2, is
absent.
2-5
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D[U(
p

^c2p↓cp↑&5
U

2b (
p,vm

Tr@t1Ĝ~p,ivm!#

5U(
p

D̃

2Ep
tanh

b

2
Ep . ~3.14!

The order parametersfm andD can be obtained in term
of D̃ by using Eqs.~2.5! and ~2.6!, to give

D5
U

Ueff
D̃,

fm52
gr

2n22m

1

Ueff
D̃. ~3.15!

The equation for the composite order parameterD̃5D
2grfm can then be rewritten in the form

D̃5Ueff(
p

D̃

2Ep
tanh

b

2
Ep , ~3.16!

whereUeff is defined in Eq.~3.2!. This self-consistent equa
tion has the same form as the BCS gap equation if we
place D̃→D and m→«F . We also note that Eq.~3.16! re-
duces to theTc equation in Eq.~3.1! when D̃→0 @12#.

It is important to emphasize that the 232-matrix single-
particle Green’s function in Eq.~3.11! only includes self-
energy effects arising from the~off-diagonal! static mean
fields produced by the Cooper-pairs and the Bose-conde
b molecules. In the approximation we use in this paper,
frequency-dependent fermion self-energies associated
the order parameter collective modes are not included in
~3.11!. However, Eq.~3.11! does implicitly involve the self-
consistent renormalized values ofD̃ andm, as determined by
the order parameter fluctuations~for further discussion of
this kind of approximation, see Ref.@38#!. An improved
theory of the BCS-BEC crossover would be based on incl
ing the fermion self-energies arising from coupling to colle
tive modes@34#.

The chemical potentialm is determined from the equatio
for the total number of particlesN. As in our discussion of
the strong-coupling theory forTc @12–14#, we work with the
thermodynamic potentialV consisting of a static mean-fiel
part ([VMF) and a fluctuation part ([dV) originating from
the particle-particle Cooper channel, as modified by the F
hbach resonance. The self-consistent equation forN is given
using the identityN52]V/]m. The mean-field part is eas
ily obtained from the first four terms on the right-hand si
in Eq. ~3.7! @39#,

VMF5
D̃2

Ueff
1(

p
~jp2Ep!22T(

p
ln@11e2bEp#

1T(
q

ln@12e2bjBq#. ~3.17!
06361
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Our approximation for the fluctuation contributiondV
below Tc , corresponding to the contribution atTc shown in
Fig. 1~b!, is given diagrammatically in Fig. 4~a!. Among the
interaction terms in Eq.~3.7!, we first carry out perturbative
expansion in terms of2(U/4)(qr2qr22q , which describes
the interaction between the phase fluctuations ofD. Sum-
ming up the loop-type diagrams in Fig. 4~a!, we obtain the
phase fluctuation contribution todV

dV25
1

2b (
q,nn

lnF11
U

2
P22

0 ~q,inn!G . ~3.18!

In this nn summation and in the following equations, w
omit the important convergence factoreinnd, for simplicity of
notation. The generalized density correlation functi
P22

0 (q,inn) is defined by@35,36# ( i , j 51,2,3)

P i j ~q,inn!52E
0

b

dteinnt^Tt$r iq~t!r j 2q~0!%&

5
1

b (
p,vm

TrFt i ĜS p1
q

2
,ivm1 innD

3t j ĜS p2
q

2
,ivmD G , ~3.19!

where the second line ([P i j
0 ) is the approximation neglect

ing the effect of the interactions2U andgr .

FIG. 4. ~a! Fluctuation contributiondV to the thermodynamic
potential belowTc . The bubble shows the correlation functionP i j

0 .

~b! Correlation function of amplitude fluctuationsP̄11 involving a
coupling with phase fluctuations described by the response func
P22

0 . The shaded bubble includes multiscattering processes
2U. Since the 232-matrix fermion Green’s functionsG are given
in the Nambu representation,P i j

0 is formally described as a particle
hole bubble diagram.~In contrast,P is described by a particle
particle bubble diagram in Fig. 1 because the Nambu tw
component representation is not used there.!
2-6
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Equation~3.19! also defines other correlation function
which will be important, such asP11 and P12. Physically,
P11 andP22 describe, respectively, the amplitude and ph
fluctuations of Cooper pairs.P33 describes density fluctua
tions in the gas of Fermi atoms.P i j with iÞ j describes a
coupling between fluctuations, e.g.,P12 is a coupling of am-
plitude fluctuations with the phase fluctuations~amplitude-
phase coupling!.

Summing up the Matsubara frequencies in Eq.~3.19!, we
obtain @35,40#

P11
0 5(

p
S 12

jp1q/2jp2q/22D̃2

Ep1q/2Ep2q/2
D Ep1q/22Ep2q/2

~Ep1q/22Ep2q/2!21nn
2

3@ f ~Ep1q/2!2 f ~Ep2q/2!#

2(
p

S 11
jp1q/2jp2q/22D̃2

Ep1q/2Ep2q/2
D Ep1q/21Ep2q/2

~Ep1q/21Ep2q/2!21nn
2

3@12 f ~Ep1q/2!2 f ~Ep2q/2!#, ~3.20!

P22
0 5(

p
S 12

jp1q/2jp2q/21D̃2

Ep1q/2Ep2q/2
D Ep1q/22Ep2q/2

~Ep1q/22Ep2q/2!21nn
2

3@ f ~Ep1q/2!2 f ~Ep2q/2!#

2(
p

S 11
jp1q/2jp2q/21D̃2

Ep1q/2Ep2q/2
D Ep1q/21Ep2q/2

~Ep1q/21Ep2q/2!21nn
2

3@12 f ~Ep1q/2!2 f ~Ep2q/2!#, ~3.21!

P33
0 5(

p
S 11

jp1q/2jp2q/22D̃2

Ep1q/2Ep2
q
2

D Ep1q/22Ep2q/2

~Ep1q/22Ep2q/2!21nn
2

3@ f ~Ep1q/2!2 f ~Ep2q/2!#

2(
p

S 12
jp1q/2jp2q/22D̃2

Ep1q/2Ep2q/2
D

3
Ep1q/21Ep2q/2

~Ep1q/21Ep2q/2!21nn
2 @12 f ~Ep1q/2!2 f ~Ep2q/2!#.

~3.22!

The correlation functionsP i j
0 ( iÞ j ) describing the coupling

of different operators are given by

P12
0 5(

p
S jp1q/2

Ep1q/2
2

jp2q/2

Ep2q/2
D nn

~Ep1q/22Ep2q/2!21nn
2

3@ f ~Ep1q/2!2 f ~Ep2q/2!#

2(
p

S jp1q/2

Ep1q/2
1

jp2q/2

Ep2q/2
D nn

~Ep1q/21Ep2q/2!21nn
2

3@12 f ~Ep1q/2!2 f ~Ep2q/2!#, ~3.23!
06361
e
P23

0 52D̃nn(
p

S 1

Ep1q/2
2

1

Ep2q/2
D 1

~Ep1q/22Ep2q/2!
21nn

2

3@ f ~Ep1q/2!2 f ~Ep2q/2!#

1D̃nn(
p

S 1

Ep1q/2
1

1

Ep2q/2
D 1

~Ep1q/21Ep2q/2!
21nn

2

3@12 f ~Ep1q/2!2 f ~Ep2q/2!#, ~3.24!

P13
0 52D̃(

p

jp1q/21jp2q/2

Ep1q/2Ep2q/2

Ep1q/22Ep2q/2

~Ep1q/22Ep2q/2!
21nn

2

3@ f ~Ep1q/2!2 f ~Ep2q/2!#

2D̃(
p

jp1q/21jp2q/2

Ep1q/2Ep2q/2

Ep1q/21Ep2q/2

~Ep1q/21Ep2q/2!
21nn

2

3@12 f ~Ep1q/2!2 f ~Ep2q/2!#, ~3.25!

with P21
0 52P12

0 , P32
0 52P23

0 , and P31
0 5P13

0 . The
density-density correlation functionP33

0 and the related cou
pling correlation functionsP13

0 andP23
0 will be used in Sec.

VI, where we show that the Goldstone mode describing
collective phase oscillation of Cooper pairs has spec
weight in the density correlation function. This weight com
from the coupling to the amplitude-density (P13

0 ) and phase-
density (P23

0 ) correlation.
The factorEp1q/22Ep2q/2 in the denominator of the firs

line in Eqs.~3.20!–~3.25! describes scattering between exc
tations with momentap6q/2 in thesamequasiparticle band
Ep . For this reason, the first line in Eqs.~3.20!–~3.25! is
referred to as theintraband term @35#. Since the thermal
excitations of fermion quasi-particles are absent atT50, the
intraband term vanishes atT50. On the other hand, the
second line in Eqs.~3.20!–~3.25! is finite even atT50. The
factor Ep1q/21Ep2q/2 in the denominator describesinter-
band scattering betweenEp1q/2 and 2Ep2q/2, and thus the
second line in Eqs.~3.20!–~3.25! is called the interband
term. The intraband term is known to give rise to Land
damping of collective modesbelow the excitation gap 2D̃,
while the damping due to the interband term only exi
above2D̃ @35#. We note that the gap equation in Eq.~3.16!
can be neatly expressed in terms ofP22

0 in Eq. ~3.21!,
namely,

11
Ueff

2
P22

0 ~0,0!50. ~3.26!

The fluctuation contributiondV1 involving the amplitude
fluctuations of Cooper pairs is similarly obtained by su
ming up the loop-type diagrams in Fig. 4~a! associated with
the amplitude-amplitude interaction2(U/4)(qr1qr12q .
This gives

dV15
1

2b (
q,nn

lnF11
U

2
P11

0 ~q,inn!G . ~3.27!
2-7
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The phase and amplitude fluctuations are coupled with e
other through the amplitude-phase couplingP12

0 in Eq.
~3.23!. This additional coupling effect can be formally inco
porated intodV1 by replacingP11

0 (q,inn) in Eq. ~3.27! by

P̄11(q,inn), where

P̄11~q,inn![P11
0 ~q,inn!1P12

0 ~q,inn!

3
2U/2

11~U/2!P22
0 ~q,inn!

P21
0 ~q,inn!.

~3.28!

The second term describes the amplitude-phase couplin
fect through the coupling correlation functionsP12

0 andP21
0 .

Equation~3.28! is obtained by summing up the fluctuatio
diagrams shown in Fig. 4~b!.

In summary, the fluctuation contributiondVU to the ther-
modynamic potential involving only the nonresonant inter
tion 2U is the sum of Eqs.~3.18! and ~3.28! with P11

0

→P̄11. The sum is given by

dVU5
1

2b(
q,nn

lnS F11
U

2
P̄11~q,inn!GF11

U

2
P22

0 ~q,inn!G D
5

1

2b (
q,nn

lnS F11
U

2
P11

0 ~q,inn!GF11
U

2
P22

0 ~q,inn!G
2S U

2 D 2

P12
0 ~q,inn!P21

0 ~q,inn! D
5

1

2b (
q,nn

ln detF11
U

2
P̂0~q,inn!G

5
1

2b (
q,nn

Tr lnF11
U

2
P̂0~q,inn!G , ~3.29!

where we have used the well-known identity detÂ

5eTr[ln Â] in the last expression.P̂0(q,inn) is a 232-matrix
density correlation function, defined by

P̂0~q,inn!5S P11
0 P12

0

P21
0 P22

0 D . ~3.30!

Finally, we consider the fluctuation contributionsdVFR

from the Feshbach resonance term1
2 gr(q@bq

†rq
21bqrq

1# in
Eq. ~3.7!. First we sum up the diagrams described in F
4~a!, where the dashed line now represents theb-boson
Green’s functionD0(q,inn) in Eq. ~3.4!, to give

dVFR5
1

2b(
q,nn

Tr lnF12
gr

2

4
D̂0~q,inn!Ĵ0~q,inn!G .

~3.31!

Here,D̂0(q,inn) is a 232-matrix b-boson Green’s function
defined by
06361
ch

ef-

-

.

D̂0~q,nn!5
1

innt32jBq
52

innt31jBq

nn
21jBq

2
, ~3.32!

and Ĵ0(q,inn) is a 232-matrix correlation function~ne-
glecting the effect of2U andgr) defined by

Ĵ0~q,inn!52E
0

b

dteinnt

3K TtF S rq
2~t!r2q

1 ~0! rq
2~t!r2q

2 ~0!

rq
1~t!r2q

1 ~0! rq
1~t!r2q

2 ~0!
D G L .

~3.33!

Using the definitionrq
65r16q6 ir26q , we find thatĴ0 can

be expressed in terms of the matrix elements ofP̂0 as fol-
lows:

Ĵ052Ŵ21P̂0Ŵ

5S P11
0 1P22

0 1 i ~P12
0 2P21

0 ! P11
0 2P22

0

P11
0 2P22

0 P11
0 1P22

0 2 i ~P12
0 2P21

0 !
D ,

~3.34!

whereŴ is the unitary matrix

Ŵ5
1

A2
S 1 1

i 2 i D . ~3.35!

Next we renormalize the fluctuations in Eq.~3.31! by in-
cluding the effects of the nonresonant interaction2U on the
correlation functionĴ0(q,inn), working within the HF-
RPA. This results inĴ0(q,inn) in Eq. ~3.31! being replaced
by ĴU , where@35,36#

ĴU~q,inn!5F11
U

4
Ĵ0~q,inn!G21

Ĵ0~q,inn!. ~3.36!

The resulting expression fordVFR involves the fluctuation
effects related to both the nonresonant interaction2U and
the Feshbach resonance coupling parametergr , namely,

dVFR5
1

2b(
q,nn

Tr lnF12
gr

2

4
D̂0~q,inn!ĴU~q,inn!G

5
1

2b (
q,nn

Tr lnH 12
gr

2

4
D̂0~q,inn!

3F11
U

4
Ĵ0~q,inn!G21

Ĵ0~q,inn!J . ~3.37!

The total fluctuation contributiondV is given by the sum
of Eqs. ~3.29! and ~3.37!. Recalling the definition in Eq.
~3.34! and the relation Tr ln@11(U/2)P̂0#5Tr ln@Ŵ$1
1(U/4)Ĵ0%Ŵ21#5Tr ln@11(U/4)Ĵ0#, this sum can be writ-
ten as
2-8
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dV[dVU1dVFR

5
1

2b (
q,nn

Tr lnH 11
1

4
@U2gr

2D̂0~q,inn!#Ĵ0~q,inn!J .

~3.38!

Putting everything together, the total thermodynamic pot
tial V5VMF1dV is

V5
D̃2

Ueff
1(

p
~jp2Ep!22T(

p
ln@11e2bEp#

1T(
q

ln@12e2bjq
B
#1

1

2b

3(
q,nn

Tr lnH 11
1

4
@U2gr

2D̂0~q,inn!#Ĵ0~q,inn!J .

~3.39!

The equation for the total number of particles is then o
tained fromN52]V/]m.

In taking the derivative with respect tom, we note that the
order parameterD̃ also depends on the chemical potentialm,
in addition tojp[«p2m andjBq[«Bq12n22m. Thus, one
needs to calculate

]V

]D̃

]D̃

]m
5

]VMF

]D̃

]D̃

]m
1

]dV

]D̃

]D̃

]m
5

]dV

]D̃

]D̃

]m
. ~3.40!

In the last line, we have used the fact]VMF /]D̃50, which
holds whenD̃ satisfies the gap equation~3.16!. However, one
can show that]dV/]D̃ in Eq. ~3.40! is a higher-order cor-
rection within the perturbative approximation we are us
@41#, so that we can neglect the contribution in Eq.~3.40!.
Thus, the dependence ofD̃ on m only leads to higher-orde
corrections. The resulting equation forN is

N52fm
2 1(

p
F12

jp

Ep
tanh

b

2
EpG12(

q
nB~jq

B!

2
1

2b (
q,nn

]

]m
Tr lnH 11

1

4
@U2gr

2D̂0~q,inn!#

3Ĵ0~q,inn!J . ~3.41!

Here, it is understood that them derivative in the last term
only acts on the chemical potential involved injp andjBq .
Equations ~3.16! and ~3.41! give us the required self
consistent coupled equations forD̃ and m in the superfluid
phase belowTc . We will discuss our numerical self
consistent solutions of the coupled equations~3.16! and
~3.41! in Sec. V.

When one neglects the fluctuation contribution given
the last term in Eq.~3.41!, we obtain the mean-field expres
sion obtained in Ref.@24# in the context of high-Tc super-
conductivity. We also mention that Eq.~3.41! reproduces Eq.
06361
-

-

~3.3! for the normal phaseT>Tc , whereD5fm50. To see
this, we note that the second term on the right-hand sid
Eq. ~3.41! reduces to 2NF

0 in Eq. ~3.3!. In addition, since the
phase and amplitude fluctuations are indistinguishable w
D50, we find P11

0 5P22
0 , and thusĴ0 in Eq. ~3.34! be-

comes diagonal atTc . Noting that J11
0 (q,inn ,T5Tc)5

24P(q,inn) and J22
0 (q,inn ,T5Tc)524P(q,2 inn),

whereP(q,inn) is given in Eq.~3.5!, we find that the last
term in Eq. ~3.41! ([dN) reproduces the last term in Eq
~3.3!. More explicitly, we have

dN~Tc!52
1

2b (
q,nn

]

]m
ln†$12@U2gr

2D11
0 ~q,inn!#

3P~q,inn!%$12@U2gr
2D22

0 ~q,inn!#

3P~q,2 inn!%‡

52
1

b (
q,nn

]

]m
ln$12@U2gr

2D0~q,inn!#P~q,inn!%,

~3.42!

where we have used D11
0 (q,inn)5D0(q,inn) and

D22
0 (q,inn)5D0(q,2 inn) in the last line. Thus, Eq.~3.41! is

equivalent to Eq.~3.3! at Tc . Our present strong-coupling
theory giving the coupled equations~3.16! and~3.41! for the
superfluid phase is seen to smoothly go over to our previ
discussion atTc and above@12–14#.

Each term in Eq.~3.41! has a simple physical meaning
which is useful to discuss. The first term

2NB
c[2fm

2 52^bq50&
2 ~3.43!

gives twice the number of Bose-condensed bbosons. The
second term

NF[(
p

F12
jp

Ep
tanh

b

2
EpG ~3.44!

describes the number of Fermi quasiparticles. This exp
sion can be directly obtained fromNF5(p,s^cps

† cps& in Eq.
~2.2!. To understand the physical meanings of the last t
terms in Eq.~3.41!, it is convenient to divide them deriva-
tive in the last term into the derivative acting onjBq
5q2/2M12n22m in the b-boson Green’s function
D̂0(q,inn) and the derivative acting onjp5«p2m in
J0(q,inn) ([]/]mF). Using the identity

2(
q

nB~jBq!52(
q

F11
1

b (
nn

Tr@D̂0~q,inn!#G ,
~3.45!

we can write Eq.~3.41! as

N52NB
c 1NF12NB

n12NC, ~3.46!

whereNB
n andNC are defined by
2-9
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2NB
n[2(

q
F11

1

b (
nn

Tr@D̂~q,inn!#G ,
2NC[2

1

2b (
q,nn

]

]mF
Tr lnH 11

1

4
@U2gr

2D̂0~q,inn!#

3Ĵ0~q,inn!J . ~3.47!

Here, D̂(q,inn) is a renormalized 232-matrix thermal
b-boson Green’s function defined by

D̂~q,inn!5
1

innt32jBq2Ŝ~q,inn!
. ~3.48!

The b-boson matrix self-energy

Ŝ~q,inn![
gr

2

4
ĴU~q,inn!

5
gr

2

4 F11
U

4
Ĵ0~q,inn!G21

Ĵ0~q,inn!

~3.49!

describes the Feshbach coupling with Fermi atoms.
The renormalizedb-boson Green’s function in Eq.~3.48!

has the same form as that obtained by Kostyrko and R
ninger@24# calculated within the HF-RPA. ComparingNB

n in
Eq. ~3.47! with Eq. ~3.45!, we may interpretNB

n as the num-
ber of noncondensed bbosons, as renormalized by the Fe
hbach resonance. In analogy to our previous discussio
the strong-coupling theory forTc @12–14#, NC in Eq. ~3.47!
may be understood as the fluctuation contribution toN from
Cooper pairs associated with the~dynamical! pairing inter-
action given by

Ûeff~q,inn![U2gr
2D̂0~q,inn!. ~3.50!

We note that Ûeff(q50,inn50)5Ueff1̂, where Ueff5U
1gr

2/(2n22m) is the effective pairing interaction appearin
in the gap equation in Eq.~3.16!.

The renormalizedb-boson Green’s function in Eq.~3.48!
can be also written in the form

D̂~q,inn!5
1

i ñnt32 j̃Bq2kt1

52
i ñnt31 j̃Bq2kt1

ñn
21 j̃Bq

2 2k2
,

~3.51!

where the renormalized parameters are given by

i ñn[ inn2 i
gr

2

4
@PU122PU21#,

j̃Bq[jBq1
gr

2

4
@PU111PU22#, ~3.52!
06361
n-

-
of

k[
gr

2

4
@PU112PU22#.

The correlation functionsPUi j ( i , j 51,2) are the matrix el-
ements ofP̂U defined by

P̂U~q,inn!5F11
U

2
P̂0~q,inn!G21

P̂0~q,inn!. ~3.53!

More explicitly, we have

PU115
P̄11

11
U

2
P̄11

,

PU225
P̄22

11
U

2
P̄22

,

PU125
P12

0

F11
U

2
P11

0 GF11
U

2
P22

0 G2
U2

4
P12

0 P21
0

,

~3.54!

PU21~q,inn!52PU12~q,inn!.

Here, P̄11 is defined in Eq.~3.28! and P̄22 is similarly ob-
tained from Eq.~3.28! by interchanging 1↔2.

When we takeq5 inn50, the denominator of Eq.~3.51!
reduces to

j̃Bq50
2 2k~0,0!25F11

Ueff

2
P22

0 ~0,0!GF11
Ueff

2
P11

0 ~0,0!G
3

2n22m

11
U

2
P22

0 ~0,0!

2n22m

11
U

2
P11

0 ~0,0!

.

~3.55!

The expression in Eq.~3.55! clearly vanishes when the ga
equation in Eq.~3.26! is satisfied. This means that the exc
tation spectrum of the renormalizedb bosons described byD̂
is alwaysgaplessat q50 for T,Tc . This is a desired result
because the Bose-condensation ofb bosons characterized b
fm should be accompanied by the appearance of a Bogo
bov phonon~Goldstone! mode having a~uniform system!
gapless dispersion. Thus, the strong-coupling theory p
sented in this section correctly includes a gapless spect
for the symmetry breaking Goldstone mode. This result
not obtained if we use a static mean-field theory, neglect
the fluctuation contribution given by the last term of E
~3.41!. Within such a mean-field theory, theb-boson excita-
tion spectrum is given by«Bq12n22m, which always has a
finite excitation gapat q50. This gap is given bydE[2n
22m52gr

2/2PU22(0,0).0, assuming that the gap equ
2-10
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tion in Eq. ~3.26! is satisfied. We note thatPU22(0,0) is

defined in Eq. ~3.54!, with P̄22(0,0)5P22
0 (0,0) since

P12
0 (0,0)50.
The gapless behavior of the renormalizedb boson can be

also verified formally by noting that the Hugenholtz-Pin
theorem is verified, namely@24,42–44#,

S11~0,0!2S12~0,0!5
gr

2

2

P22
0 ~0,0!

11
U

2
P22

0 ~0,0!

52m22n.

~3.56!

Here, we have used the gap equation given in Eq.~3.26!.
In order to discuss the BCS-BEC crossover in the sup

fluid phase, one needs to solve the coupled equations~3.16!
and ~3.41! numerically. Results will be discussed in Sec.
Here, we briefly discuss limiting cases that can be trea
analytically.

When the threshold energy 2n of the b-boson excitation
spectrum is very large~BCS limit!, 2n@2m can be realized
because the chemical potentialm is at most the order of«F .
In this case, the Fermi atoms are dominant particles, w
the effects ofb molecules described byfm, nB(jBq) andD̂0

in Eq. ~3.41! can be neglected. In addition, since the last te
in Eq. ~3.41! is small when one is dealing with a weak no
resonant interaction2U, one can also drop this term. Thu
we see that Eq.~3.41! reduces toN5NF @whereNF is de-
fined in Eq. ~3.44!#, which simply givesm.«F if «F@T.
When this result is substituted into the gap equation in
~3.16! with Ueff→U and D̃→D ~note that 2n@2m!, one
obtains the usual BCS gap equation for the Cooper-pair o
parameterD.

In the opposite limit 2n&22«F ~BEC limit!, since the
b-boson branch has an energy lower than the two ferm
band energy, most Fermi atoms will combine to formb mol-
ecules and hence the fermion correlation functionsP i j be-
comes less important. Then the gap equation in Eq.~3.26!
can be rewritten as@see also Eq.~3.56!#

2m52n1
gr

2

2

P22
0 ~0,0!

11
U

2
P22

0 ~0,0!

→2n. ~3.57!

This says that the chemical potential has the energy of
bottom of theb-boson excitation spectrum. Substituting 2m

52n into Eq. ~3.41! with Ĵ0(q,inn)50, we obtain

N

2
5fm1(

q
nBS q2

2M D . ~3.58!

This is just the equation for BEC in an noninteracting u
form Bose gas withN/2 bosons of massM. Thus, the
coupled equations~3.16! and~3.41! reproduce both the BCS
phase and BEC phase for two limiting values of the Fe
bach molecular resonance threshold 2n.

We again remind the reader about the many-body
proximation our whole discussion is based. As we noted a
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Eq. ~3.16!, we have included the fluctuations of the ord
parametersD and fm in determining self-consistently th
values ofN andm. However, we have not included the e
plicit self-energy of the fermions due to these dynamic flu
tuations. For further discussion, see Refs.@38,34#.

We note that the diagrammatic approach we have use
this section can be shown to be equivalent to keepingGauss-
ian fluctuationsaround the mean-field order parametersD
andfm. Using the functional-integral formalism, which de
scribes such fluctuations in a very clear fashion, Rand
and coworkers@20,45# showed that the strong-coupling su
perconductivity theory atTc developed by Nozie`res and
Schmitt-Rink@18# can be understood as a Gaussian appro
mation for the fluctuations in the Cooper channel. When
extend this kind of formalism to the coupled fermion-bos
model in Eq.~2.1! belowTc , one finds the coupled equation
~3.16! and~3.41! @41#. Recently, Milsteinet al. @15# also em-
ployed this approach to the coupled fermion-boson mode
Eq. ~2.1! and obtained the equations forTc given in Eqs.
~3.1! and ~3.3!.

IV. GOLDSTONE MODES IN THE BCS-BEC
CROSSOVER REGION

A. Correlation function and b-boson Green’s function in the
HF-RPA

The Goldstone mode in fermion superfluidity~Anderson-
Bogoliubov! is a collective phase oscillation~phason! of
Cooper pairs, and thus it appears as a pole in the ph
correlation function P22(q,inn→v1 id). In the present
coupled fermion-boson model, we also expect a Bogoliub
phonon mode associated with the BEC ofb molecules char-
acterized by the Bose order parameterfm5^bq50&. This
mode appears in the excitation spectrum of theb-boson
Green’s functionD(q,t)52^Tt$bq(t)bq

†(0)%&. However,
since the Cooper-pair amplitudeD and theb-boson order
parameterfm are coupled with each other via the Feshba
resonance@see Eq.~2.5!#, these two Goldstone modes a
strongly hybridized.

In calculating the Goldstone mode, we have to be care
to use a consistent approximation for the self-energy
vertex correction. In this regard, apart from the chemi

FIG. 5. The correlation functionĴ(q,inn) is shown in~a! and

b-boson Green’s functionD̂(q,inn) is shown in~b!, both within the

HF-RPA. The shaded bubbleĴU(q,inn) shown in ~c! includes
RPA-type diagrams involving the nonresonant attractive interac
2U.
2-11
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potential, we recall that the gap equation in Eq.~3.16! is
obtained from the Hartree-Fock Green’s function in E
~3.11!. Thus, we should employ the HF-RPA formalism f
the correlation functionsP̂5$P i j % and b-boson Green’s
function @24,35,36#. Using the HF-RPA guarantees the ga
less behavior of the Goldstone mode.

In calculating the correlation functionP̂, it is convenient
to first considerĴ52Ŵ21P̂Ŵ @see Eq.~3.34!#. Within the
HF-RPA, Ĵ is described by the sum of the diagrams in F
5~a!. The summation gives

Ĵ5ĴUF12
1

4
gr

2D̂0ĴUG21

5Ĵ0F11
1

4
@U2gr

2D̂0#Ĵ0G21

,

~4.1!

where ĴU involves the effect of nonresonant interactio
2U using the HF-RPA, as shown in Fig. 5~c! and given by
Eq. ~3.36!. The correlation functionP̂ is then obtained from
the inverse relationP̂5 1

2 ŴĴŴ21, namely,

P̂5P̂0F11
1

2
@U2gr

2ŴD̂0Ŵ21#P̂0G21

. ~4.2!

More explicitly, the amplitude and phase correlation fun
tions P11 andP22 are given by

P11~q,inn!

5
P̃11

11
V1

2
P̃111

V2
2

4

P11
0 P22

0 2P12
0 P21

0

11
V1

2
P22

0

2V2

P12
0

11
V1

2
P22

0

,

P22~q,inn!

5
P̃22

11
V1

2
P̃221

V2
2

4

P11
0 P22

0 2P12
0 P21

0

11
V1

2
P11

0

2V2

P12
0

11
V1

2
P11

0

,

~4.3!

where

P̃11[P11
0 1P12

0

2
V1

2

11
V1

2
P22

0

P21
0 ,

P̃22[P22
0 1P21

0

2
V1

2

11
V1

2
P11

0

P12
0 , ~4.4!
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V1~q,inn![Re@Ueff~q,inn!#5U1gr
2 jBq

nn
21jBq

2
,

V2~q,inn![Im@Ueff~q,inn!#5gr
2 nn

nn
21jBq

2
. ~4.5!

Here, the lowest-order noninteracting correlation functio
P i j

0 are defined in Eqs.~3.20!–~3.25!. V1 describes
amplitude-amplitude and phase-phase interactions, whileV2
is an amplitude-phase coupling mediated byb molecules.
Since bothV2 andP12

0 vanish atq5 inn50, the denominator
of P22 in Eq. ~4.3! reduces to 11(Ueff/2)P22

0 (0,0). This
vanishes when the gap equation in Eq.~3.26! is satisfied
belowTc . This proves that the collective phase oscillation
always gapless atq50, a requirement of the Anderson
Bogoliubov ~Goldstone! mode.

The b-boson Green’s function consistent with treatingP̂
in the HF-RPA is shown in terms of diagrams in Fig. 5~b!.
The result is just the same as the renormalizedb-boson
Green’s functionD̂ given in Eq.~3.48!. As discussed at the
end of Sec. III B, the excitation spectrum ofD̂ is gapless at
q50 in the superfluid phase belowTc , which is again con-
sistent with the expected gapless Bogoliubov phonon mo

B. Goldstone mode

As discussed in the preceding section, the excitation sp
trum of the renormalizedb boson is determined by

det@D̂~q,inn→v1 id!21#50. ~4.6!

On the other hand, the collective phase oscillation and a
plitude oscillation are obtained from the poles ofP̂ as given
by Eq. ~4.2!

05detF11
1

2
@U2gr

2ŴD̂0Ŵ21#P̂0G
inn→v15v1 id

5det@D̂0~q,v1!#detF11
U

2
P̂0~q,v1!G

3detF D̂0~q,v1!212
gr

2

4
ĴU~q,v1!G

5

detF11
U

2
P̂0~q,v1!G

jBq
2 2v1

2
det@D̂~q,v1!21#. ~4.7!

Comparing Eq.~4.6! with Eq. ~4.7!, we see that the correla
tion functionsP i j ( i , j 51,2) and theb-boson Green’s func-
tion D̂ have the identical poles „unless det@1
1(U/2)P̂0(q,v1)# has zeros…. This equivalence is due to
hybridizing effects from the coupling between the amplitu
fluctuations, phase fluctuations, and theb bosons with the
amplitude-phase couplingP12

0 and the Feshbach resonan
couplinggr . Thus, in principle, we can consider either one
2-12
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the correlation functionsP i j or theb-boson Green’s function

D̂ when we want to study the Goldstone mode. We choos
work with the phase correlation functionP22 in Eq. ~4.3!, in
which case the dispersion relation of the collective mode
given by

11
V1

2
P̃221

V2
2

4

P11
0 P22

0 2P12
0 P21

0

11
V1

2
P11

0

2V2

P12
0

11
V1

2
P11

0

50.

~4.8!

Landau damping associated with thermally excited f
mion quasiparticles leads to an imaginary part of the osc
tion frequency and, apart fromT50, we have to look for a
complex solution to Eq.~4.8!. This requires a complicate
analysis. In this paper, for simplicity, we only consider t
real part of this equation@35,36#,

ReF 11
V1

2
P̃221

V2
2

4

P11
0 P22

0 2P12
0 P21

0

11
V1

2
P11

0

2V2

P12
0

11
V1

2
P11

0 G
50. ~4.9!

From this equation, we can obtain real frequencies as
proximate solutions. In order to check the validity of th
prescription, we also solve another approximate equation
the mode energy obtained from the renormalizedb-boson
Green’s function,
u-
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Re@D̂11
0 ~q,in→v1!21#50. ~4.10!

As for the damping of the collective mode, we investiga
this effect by examining the width of the peak of the colle
tive mode in the spectrum of the correlation functions giv
by Im@P11(q,v1)# and Im@P22(q,v1)#, as well as the
b-boson excitation spectrum given by Im@D̂11(q,inn
→v1)#. The structure function

Sj j ~q,v![2
1

p
@nB~v!11#Im@P̂ j j ~q,in→v1!# ~ j 51,2!.

~4.11!

is more convenient than Im@P̂ j j # in studying collective be-
havior, because a diffusive mode spectrum that arises~see
Sec. V D! appears as a central peak atv50 in Sj j , which
can be easily distinguished from collective modes appea
at a finite frequency. In contrast, this diffusive mode sho
up as a peak at afinite frequencyvd in Im@P̂ j j #, which
exhibits a structure of the kindv/(v21vd

2).

C. Goldstone mode at zero temperature

At zero temperature, since Landau damping is absent
modes below the excitation gap 2D̃, we can deal directly
with Eq. ~4.8! in determining the Goldstone mode for fre
quenciesv below the excitation gap. In the long waveleng
or phonon limit, we takev5vfq and expand Eq.~4.8! up to
the quadratic order in terms ofv andq. After some calcula-
tion, the velocity of the Goldstone modevf is given by
2mnf
2 5

B1
1

Ueff
2

gr
2

~2n22m!2

A1F h2
Ueff

2
1

2

Ueff

gr
2

~2n22m!2
S 11

U

2
P11

0 ~0,0!

@2n22m#Ueff
2hD G F11

Ueff

2
P11

0 ~0,0!G21

. ~4.12!
in
nce

s in
The factorsA andB are obtained from the expansion ofP22
0

as P22
0 (q,inn)5P22

0 (0,0)1Ann
21Bq2/2m, with the explicit

expressions

A5
1

4 (
p

1

Ep
3

,

B5(
p

F «p

D̃2

2Ep
5

1
jp

4Ep
3G . ~4.13!

Finally, the factorh is related to the amplitude-phase co
pling P12

0 , namely,

h[
P12

0 ~q,inn!

nn
U

T5nn50

52
1

2(p

jp

Ep
3

. ~4.14!
The second term in the denominator in Eq.~4.12! describes
the effect of amplitude-phase coupling~second order inh),
while the second term in the numerator and the third term
the denominator involve the effect of the Feshbach resona
coupling ~second order ingr).

1. BCS regime:2nš2«F

In the BCS limit (2n@2m), the terms involving the fac-
tor 1/(2n22m) can be neglected in Eq.~4.12!. In addition,
since the region near the Fermi surface dominates just a
ordinary weak-coupling BCS theory, we may take

(
p

g~jp!→N„m~0!…E
2`

`

djg~j!, ~4.15!

whereN„m(T50)… is the fermion density of states~DOS! at
2-13
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the Fermi surface. In this approximation,h coming from the
amplitude-phase correlation functionP12

0 vanishes, and Eq
~4.12! reduces to

vf5
1

A2m
AB

A
5

1

A3
v̄F , ~4.16!

where v̄F[A2m(0)/m. In evaluatingB, we have approxi-
mated«p appearing in Equation~4.13! by the Fermi energy
m(0). Eq. ~4.16! is the well-known velocity of the
Anderson-Bogoliubov phonon in the weak-coupling BCS
perfluidity @29,37,46#.

The same result as in Eq.~4.16! is given by the pole of the
phase correlation functionP22 in the BCS limit.P22 in this
limit is given by @taking P12

0 50, V15U, andV250 in Eq.
~4.3!#

P22~q,v1!5
P22

0 ~q,v1!

11
U

2
P22

0 ~q,v1!

5

2

U
P22

0 ~q,v1!

P22
0 ~q,v1!2P22

0 ~0,0!
.

~4.17!

Using P22
0 (q,v1)5P22

0 (0,0)2Av21Bq2/2m, we easily
find that the poles of Eq.~4.17! are phonons with the velocity
given by Eq.~4.16!. This shows that the Goldstone mode
the BCS limit is a pure collective phase oscillation of t
Cooper-pair order parameterD.

The amplitude-phase couplingP12
0 in Eq. ~3.8! vanishes

in the BCS limit when we use Eq.~4.15! and retain terms up
to O(q/pF), wherepF5Fermi momentum. In this case, th
amplitude mode is decoupled from Eq.~4.8!. This mode can
then be obtained from the amplitude correlation funct
working within the HF-RPA,

P11~q,v1!5
P11

0 ~q,v1!

11
U

2
P11

0 ~q,v1!

5

2

U
P11

0 ~q,v1!

P11
0 ~q,v1!2P22

0 ~0,0!
.

~4.18!

In particular, atq50, Eq. ~4.18! reduces to

P11~0,v1!5
P11

0 ~0,v1!

UN„m~0!…

1

tan21
v

A4D22v2

3
v

A4D22v2
~v<2D!

.
2P11

0 ~0,2D!

pUN„m~0!…

D

A4D22v2
~v.2D!.

~4.19!

Thus, althoughv52D is seen to be a branch cut rather th
a pole, a strong peak is expected at the excitation gav
06361
-

52D in the spectrum of the amplitude correlation functio
Im@P̂11# and henceS11(q,v) @46,47#.

2. BEC regime:nË0

In the BEC regime (n,0), since the chemical potentialm
approachesn as n decreases, the effective interactionUeff
defined in Eq.~3.2! is dominated by the Feshbach contrib
tion gr

2/(2n22m)@U. On the other hand, the correlatio

functionsP i j
0 become less dominant. Sinceumu.unu@D̃, the

energy gap is also less important in the excitation spect
of fermion quasiparticles, so that we can approximateEp

5A(«p2m)21D̃2.«p1unu. In this limiting case, Eq.~4.12!
reduces to

vf5
grD̃

A8m
F(

p

1

~«p1unu!3G 1/2

5
gr8D̃

A8m
F 3p

32un«Fu3/2G 1/2

,

~4.20!

where we have rescaled the Feshbach coupling asgrAN
→gr8 in the last expression. In evaluating thep summation in
Eq. ~4.20!, we have taken into account the correct ene
dependence of the DOS (}A«p) in contrast to the approxi-
mation in Eq.~4.15!. Sincefm is the dominant contribution
to D̃ in the BEC regime, Eq.~4.20! is proportional toANB

c

~whereNB
c 5fm

2 is the number of condensedb molecules!.
This dependence onNB

c is characteristic of the Bogoliubov
phonon mode in a Bose-condensed gas. Thus, Eq.~4.20! may
be regarded as the velocity of the Bogoliubov phonon as
ciated with a condensate ofb molecules. We also note tha
the expression in Eq.~4.20! gives as;1/unu3/4 and this ap-
proaches zero whenn→2`. In this limit, the superfluidity
is described by a BEC of a free gas withN/2 bosons having
the particlelike excitation spectrumv5q2/2M , with no
linear ~or phonon! component.

The Bogoliubov phonon associated with a Bose cond
sate of paired fermions has also been discussed in str
coupling superconductivity@45#, as well as for excitons in
optically excited semiconductors@38#. Equation~4.12! repro-
duces the Bogoliubov phonon velocity in strong-coupling s
perconductivity@45#. In this case, the Feshbach couplinggr
and theb boson are absent, while the nonresonant interac
2U is taken to be strong. Then Eq.~4.12! reduces to

vf5
1

A2m
B1/2F A1

U

2

h2

11
U

2
P11

0 ~0,0!G21/2

→ 1

A2m
F B~D̃50!

h2~D̃50!
(

p

D̃2

~«p1umu!3G 1/2

5
D̃

A8mumu
,

~4.21!

where we have taken the strong-coupling limit (U→`),
with m large and negative. The last expression can be sh
to be equivalent to the Bogoliubov phonon velocity in stro
coupling superconductivity, as discussed in Ref.@45#. Using

the strong-coupling expressions,D̃5(16/3p)1/2«F /ApFas
2-14
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and m521/2mas
2 @45#, where as is an s-wave scattering

length of the pairing interaction between fermions andpF is
the Fermi momentum, Eq.~4.21! reduces to a more familia
form

vf5FnBUB

M G1/2

. ~4.22!

Here, nB[N/2V is the number density of Cooper-pa
bosons ~where V is the volume of a system! and UB
[4paB /M (M52m) is an effective interaction betwee
Cooper pairs with ans-wave scattering lengthaB[2as .
HereUeff524pas/m is defined as in Eq.~3.2!.

V. BCS-BEC CROSSOVER IN THE SUPERFLUID PHASE:
NUMERICAL RESULTS

In this section, we present numerical results for the va
ous thermodynamic parameters and correlation functions
cussed in earlier sections, as one passes through the B
BEC crossover region. We give results as a function of
temperature in the superfluid phase (T,Tc) for different val-
ues of theb-molecule threshold 2n. We take the Fermi en
ergy«F , Fermi momentumpF , and Fermi velocityvF as the
units of energy, momentum and velocity, respectively, wh
«F , pF , and vF are all in the absence of coupling tob
bosons. As the unit for the number for particles, we take
total number of Fermi atomsN. Since the interactionsU and
gr always appear withN asUN andgr

2N, we rescale them a
UN→U and grAN→gr . As for the energy cutoff that is
necessary in the gap equation in Eq.~3.16! and the correla-
tion functions P i j

0 in Eqs. ~3.20!–~3.25!, we employ the

Gaussian cutoffe2(«p /vc)2
with vc52«F , as in our previous

work for Tc @12–14#. This choice of cutoff seems reasonab
Different cutoff magnitudes are physically equivalent
changing the magnitude of the effective pairing interacti
These different cutoffsvc;«F will lead to quantitative
changes in the size of the BCS-BEC crossover. We refe
Refs. @14,11# for further discussion of the choice of cuto
and renormalized interactions.

Since our ‘‘strong-coupling’’ theory is based on perturb
tive expansions with respect to2U andgr , these coupling
terms are assumed to be weak perturbations. For this rea
we takegr50.6«F andU50.3«F in all our numerical calcu-
lations. In Sec. IV of Ref.@14#, we have discussed the tran
sition temperatureTc in the BCS-BEC crossover for the cas
of a very broad@11,15# Feshbach resonance (gr@«F). In this
case, the Cooper pairs dominate in the crossover reg
which occurs at large values ofn. Analogous results would
be expected in the superfluid region discussed in the pre
paper.

A. Temperature dependence of the order parameter
and chemical potential

The self-consistent solutions (D̃,m) of the coupled equa
tions ~3.16! and ~3.41! are shown in Figs. 6 and 7. In Fig
6~a!, we find that the temperature dependence of the o
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parameterD̃[D2grfm agrees well with the BCS theor
~‘‘BCS’’ in the figure!. SinceD̃ determines the energy gap o

the fermion quasiparticle spectrum asEp5Ajp
21D̃2, the su-

perfluid character atn/«F52 is found to be the BCS type
However, Fig. 6~a! also shows a sizable difference betwe
D̃ and the Cooper-pair amplitudeD5(p^c2p↓cp↑&. This is
because the BEC order parameterfm5^bq50& is always in-
duced belowTc due to the Feshbach coupling effect in E
~2.5!, which contributes toD̃5D2grfm. As illustration,
when we substituten/«F52, gr /«F50.6, U/«F50.3, and
m/«F.0.84 into Eq.~2.5!, the contribution of the condense
b boson toD̃ is found to be2grfm50.517D at T50. This

FIG. 6. Temperature dependence of the superfluid order par

eterD̃[D2grfm in the BCS-BEC crossover region. We also sho
the separate Cooper-pair componentD and the Bose-condense
b-molecule componentfm . We takegr /«F50.6 andU/«F50.3,

while D̃ andD are normalized with respect to«F . The character of
the superfluidity changes from the BCS type to the BEC type as
goes from~a! to ~d!. In this figure, BCS labels the order paramet
given by the weak-coupling BCS theory which omits the partic
particle fluctuations. BEC labels the order parameterfm of a free
Bose gas ofN/2 atoms. Note the change in scale in~a!.

FIG. 7. The chemical potentialm as a function of temperature
for gr /«F50.6 andU/«F50.3. The solid circles show the supe
fluid phase transition temperature.
2-15
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means about one-third of the order parameterD̃ is associated
with fm even in the BCS regime atn/«F52.

As the threshold energy 2n is lowered, the Cooper-pai
componentD becomes less dominant while the condenseb
boson componentfm increases@Fig. 6~a! → 6~d!#. At the
same time, the temperature dependence ofD̃ deviates from
the weak-coupling BCS theory. Atn/«F522 in Fig. 6~d!, D̃
is dominated byfm ~although the Cooper-pair compone
also exists due to the Feshbach coupling effect!. In this case,
fm is well described by the BEC order parameter ofN/2
atoms in a free Bose gas, given by

fm
BEC5AN

2
A12S T

Tc
D 3/2

. ~5.1!

We denotefm
BEC in Fig. 6 as ‘‘BEC.’’

In the intermediate region of the BCS-BEC crossoverD̃
~and alsoD and fm) becomes double valued nearTc . For
example, in Fig. 6~b!, the two self-consistent values forD̃ at
Tc50.213TF ([Tc

L , whereL stands for lower transition tem
perature! are zero and 0.14«F . In this case, when one de
creases the temperature,D̃ jumps abruptly atTc

L . This is
because the phase transition is suppressed by supe
particle-particle fluctuations, once the phase transition
curs, the opening up of the fermion quasiparticle excitat
gap 2D̃ strongly suppresses these fluctuation effects, wh
accelerates the increase ofD̃. On the other hand, when w
raise the temperature from below, since the superfluid fl
tuations are suppressed by the excitation gap, we can ex
Tc

L staying in the superfluid phase up to a higher tempera
([Tc

H). In Fig. 6~b!, we see thatTc
H50.215TF , slightly

higher thanTc
L . At Tc

H , D̃ vanishes discontinuously. Thi
kind of the first-order transition has been discussed in
literature of high-Tc superconductivity with strong fluctua
tions in the Cooper channel@48#

Figure 7 shows that the chemical potentialm is decreased
as the system approaches the BEC regime (n,0). The tem-
perature dependence ofm is found to be weak belowTc
~except just belowTc in the crossover regime! compared
with the normal phase. As discussed in Sec. III, the chem
potential is temperature independent belowTc in both the
BCS limit (m5«F) and the BEC limit (m5n). Figure 7
shows that this feature also holds in the intermediate reg
of the BCS-BEC crossover except just belowTc , at least for
the model parameters we have chosen.

Now that we have calculated self-consistently the val
of the composite order parameterD̃ as function of bothT and
2n, we can use the results to discuss the spectrum of
BCS-Bogoliubov single-particle Green’s function. The ex
tation spectrum of the BCS-Bogoliubov quasiparticles
given by

rF~v![2
1

p (
p

Im@Ĝ11~p,ivm→v1 id!#, ~5.2!
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where Ĝ11(p,v1 id) is the ~11!-component of Eq.~3.11!.
When the chemical potentialm is positive, the excitation
spectrum in Eq.~5.2! has a finite gapD̃ as in the BCS theory,

rF~v,m>0!5
3N

8«F
3/2F S v

Av22D̃2
11D ~m1Av22D̃2!1/2

1S v

Av22D̃2
21D ~m2Av22D̃2!1/2

3Q~AD̃21m22v!GQ~v2D̃ !, ~5.3!

whereQ(x) is the step function. On the other hand, whenm
is negative in the BEC regime, one finds

rF~v,m,0!5
3N

8«F
3/2S v

Av22D̃2
11D

3~m1Av21D̃2!1/2Q~v2AD̃21m2!.

~5.4!

In this case, the Fermi quasiparticle excitation gap is fou

to beAD̃21m2, rather thanD̃. This reflects the fact that the
threshold energy of free fermion excitations is given byumu
when m,0. In the BEC limit (m.n!2«F), we haveumu
@D̃ and the excitation gap reduces toumu.

Figure 8~a! shows the excitation spectrum of the BC
Bogoliubov quasiparticles in the BCS-BEC crossover. In
BCS regime (n>«F), we find a peak at the excitation edg
v5D̃ in the spectrum. This is the well-known coheren
peak discussed in the superconductivity literature@37#, and
the quasiparticle spectrum is found to be the BCS type in
regime. This coherence is absent whenn<0, where the ex-
citation gap gradually changes fromD̃ to umu as the threshold
energy 2n is lowered. Sincem.n in the BEC regime, the

energy gap (Am21D̃2) becomes larger for lower values ofn
in the BEC regime.

Figure 8~b! shows the momentum distribution function o
Fermi atoms atT50 @37#, which is given by

vp
2[^cps

† cps&5
1

2S 12
jp

Ep
D . ~5.5!

Since the energy gapD̃ in Ep5Ajp
21D̃2 is larger for smaller

values of the threshold energy 2n, the steep decrease ofvp
2

aroundm(T50) at n/«F52 gradually disappears as 2n is
lowered. In addition, the magnitude ofvp

2 decreases as on
approaches the BEC regime due to the decrease of
chemical potentialm(T50), which reflects the fact tha
most Fermi atoms formb bosons in the BEC regime. Th
quantity vp also enters into the Bogoliubov transformatio
@37# to the BCS quasiparticles
2-16
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gp↑
† 5upcp↑

† 1vpc2p↓ , ~5.6!

wheregp↑
† is a creation operator of a BCS-Bogoliubov qu

siparticle andup
2[12vp

2 .

B. Velocity of the Goldstone phonon mode

Figure 9 shows the velocity of the Goldstone modevf at

FIG. 8. ~a! Density of states of the BCS-Bogoliubov quasipar
cles atT50. Forn/«F>1, the threshold energy of the quasipartic

excitations is given byv5D̃, at which a coherence peak appea
For n/«F<0, the coherence peak is absent and the spectrum s

from v5(m21D̃2)1/2. The excitation density of states approach
that for a free Fermi gas of atomsrF(v)5(3N/4«F

3/2)(v1m)1/2 in
the high-energy region.~b! Momentum distribution functionvp

2

[^cps
† cps& of Fermi atoms withs-spin component atT50. The

solid circle indicates the chemical potentialm(T50).

FIG. 9. Velocity of the Goldstone phononvf ~normalized to the
Fermi velocity! at T50 in the BCS-BEC crossover region.
06361
T50 as obtained from Eq.~4.12!. In the BCS regime (n
*«F), the mode velocityvf agrees with the well-known
Anderson-Bogoliubov phonon velocityvf5 v̄F /A3 in Eq.
~4.16!. @At n/«F52, we obtainv̄F5A2m(0)/m50.92vF for
m(0).0.84«F , which givesvf50.53vF .] As the threshold
energy 2n is lowered,vf decreases sharply and approach
the Bogoliubov phonon mode given by Eq.~4.20!. Figure 9
indicates thatvf is strongly dependent on the threshold e
ergy 2n in a uniform Fermi gas.

Figure 10 shows the velocity of the Goldstone mode
finite temperatures, obtained from Eq.~4.9!. In Fig. 10~a!, vf
is found to be well described by the Anderson-Bogoliub
mode in the weak-coupling BCS theory~BCS in the figure!
in the whole temperature region, as expected for the va
n52«F . On the other hand,vf becomes less than the BC
result for the Anderson-Bogoliubov mode as the thresh
energy 2n is decreased. This is shown in Fig. 10~b!. Since
the order parameterD̃ vanishes discontinuously due to th
fluctuation effect discussed in the preceding section,vf
shows a finite jump atTc in Fig. 10~b!.

C. Dispersion relation of the Goldstone mode

Figure 11 shows the dispersion of the Goldstone mod
T50.5Tc . In the BCS regime@Fig. 11~a!#, the gapless dis-
persion is convex and is confined below the excitation ga
2D̃. This convex dispersion relation gradually changes t
concave one as one goes from panels~a! to ~d! in Fig. 11. In

.
rts

FIG. 10. Temperature dependence of the Goldstone phonon
locity vf , ~a! n/«F52, ~b! n/«F51. BCS labels the Anderson
Bogoliubov phonon velocity given by the weak-coupling BC
theory, where we useTc from Fig. 2 andm from Fig. 7.
2-17
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Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 063612 ~2003!
the BEC limit (n,0), the dispersion is particlelikeq2, char-
acteristic of freeb bosons. Indeed, the dispersion in Fi
11~d! is well described byv5q2/2M , except for the region
of linear dispersionv5vfq at very smallq.

In the BCS regime, Eq.~4.10! also has a high-energ
solution atv/«F.2.4, as shown in Fig. 12. This solution
also obtained atTc . Since the energy of this solution is clos
to the threshold energy of the excitation spectrum of freb
bosons asjBq5052n22m52.32«F (m.0.84«F), we inter-
pret this high-energy solution as an internal excitation ofb
boson. They are not the amplitude oscillations of the or
parameter.

Finally, we briefly comment on the approximate Eq
~4.9! and ~4.10!. Since the excitation gap 2D̃ strongly sup-
presses the fermion quasiparticle excitations far belowTc ,

FIG. 11. Dispersion relation of the Goldstone mode atT
50.5Tc for different values ofn. The solid lines show the disper
sion obtained from Eqs.~4.9! and ~4.10!. At n/«F52, Eq. ~4.10!
has an additional very high-energy solution aroundv/«F52.4 ~see
Fig. 12!.

FIG. 12. The high-energy solution of Eq.~4.10! in the case of
n/«F52, for T50.5Tc . The lower-energy solution is the Goldston
mode, shown in Fig. 11~a!.
06361
r
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the intraband terms ofP i j
0 and also the Landau dampin

below 2D̃ are less important atT50.5Tc . As a result, Eqs.
~4.9! and ~4.10! both give good approximations to the sol
tion of Eq. ~4.7! at T50.5Tc , and give almost the sam
results below 2D̃, as shown in Figs. 11~a! and 11~b! ~solid
lines!. On the other hand, the interband terms given by
second lines in Eqs.~3.20!–~3.25! give rise to Landau damp
ing when v>2D̃. Thus, above 2D̃, Eqs. ~4.9! and ~4.10!
may have different solutions, because they do not include
imaginary part in the same way. Indeed, the dashed
above 2D̃ shown in Fig. 11~b! is a solution of Eq.~4.10!, but
is not obtained from Eq.~4.9!. In such a case, a more caref
analysis is necessary to obtain the correct dispersion rela
However, since the fermion quasiparticles are absent in
BEC limit (n,0), the Landau damping becomes weak
the BEC regime even nearTc . As a result, Eqs.~4.9! and

FIG. 13. Spectral weight of the renormalizedb boson,

rB(q,v)52(1/p)Im@D̂11(q,v)#, and the structure functions
S11(q,v) andS22(q,v). These results are forn52«F ~in the BCS
region! andq50.02pF . The inset shows two different approxima
tions for the dispersion relation of the Goldstone mode atT/Tc

50.99: ~1! and~2! are obtained from Eqs.~4.9! and~4.10!, respec-
tively.
2-18
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SUPERFLUIDITY AND COLLECTIVE MODES IN A . . . PHYSICAL REVIEW A67, 063612 ~2003!
~4.10! give almost identical results in the whole energy
gion.

D. Spectral weight and damping of the Goldstone mode

In Secs. V B and V C, we considered the Goldstone m
neglecting the Landau damping. In this section, we evalu
the damping from the width of the collective mode in t
structure functionSj j (q,v1) in Eq. ~4.11! as well as in the
b-boson spectral density

rB~q,v![2
1

p
Im@D̂11~q,v1!#. ~5.7!

In Figs. 13–16, we show theb-boson excitation spectrum
as well as the phaseS22 and amplitudeS11 structure func-
tions forT, belowTc . In Fig. 13, we find that the Anderson
Bogoliubov Goldstone mode does not appear as a vis
peak in the spectrum atT/Tc50.99. ~The inset in Fig. 13
shows that the mode energy isv/«F50.01 for q50.02pF .)
This means that the Anderson-Bogoliubov mode is ov
damped nearTc because of strong Landau damping from t
thermally excited fermion quasiparticles. We note th
S22(q,v) andS11(q,v) both exhibit strong central peaks

FIG. 14. Same plots as in Fig. 13, forn5«F andq50.15pF . In
the inset, the peak energy gives the peak position inS22(q,v) at
T/Tc50.99.
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v50 for T/Tc50.99, which indicates the presence of a lar
number of thermally excited fermion quasiparticles expec
at this temperature. This collective mode in the therma
excited fermions has been discussed in superconductivity
erature@35#.

At low temperatures, when the Landau damping becom
weaker, the Anderson-Bogoliubov mode appears as a vis
peak inrB(q,v) andS22(q,v) as shown in Fig. 14. The pea
width becomes narrower at lower temperatures, reflecting
weaker Landau damping by fermions.~At T50, it becomes
a sharpd-function peak.! The peak position (v/«F.0.021)
at T/Tc50.5 agrees well with the dispersion relation show
in Fig. 11~a!.

Since the Anderson-Bogoliubov mode is a collecti
phase oscillation of the Cooper-pair order parameterD, the
appearance of this mode inrB(q,v) indicates the presenc
of the coupling between theb bosons and the phase fluctu
tions of D. On the other hand, no peak structure is obser
except for the central peak atv50 in the amplitude structure
functionS11 shown in Fig. 13. Only a slight structure appea
at v/«F.0.02 atT/Tc50.7, as shown in part~a! of Fig. 17.
~The peak atv/«F.0.07 in Fig. 17 is the amplitude mode a
the edge of interband excitationsv52D̃.! This is because
the amplitude-phase couplingP12

0 is very weak in the BCS

FIG. 15. Same plots as in Fig. 13, forn50 ~crossover region!
andq50.3pF .
2-19
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Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 063612 ~2003!
regime, so that the collective phase oscillation does
strongly couple into the amplitude fluctuations.

As shown in Fig. 12, Eq.~4.10! also has a high-energ
solution in the BCS regime atn/«F52. This solution is the
strong resonance inrB(q,v), as shown in part~b! of Fig. 17.

In Fig. 14, we find a broad peak inS22 at T/Tc50.99. As
shown in the inset in Fig. 14, the peak position is differe
from the one expected from Eqs.~4.9! and~4.10!. However,
since this resonance shows gapless behavior, it clearly m
be the Goldstone mode.~The difference shown in the inset
due to the Landau-damping effect.! Indeed, the peak energ
at T/Tc50.5 agrees well with the dispersion in Fig. 11~b!. As
expected, Landau damping from fermions becomes wea
one approaches the BEC regime. Whenn<0, we can ob-
serve the sharp peak structure even nearTc in Figs. 15 and
16, and the peak position always agrees well with the dis
sion relation given in Fig. 11. The dispersion relation of t
Goldstone mode approaches the temperature-indepen
particlelike one in the BEC regime, and hence the tempe
ture dependence of the peak energy in Fig. 16 is weak.

We also find in Figs. 14–16 that the Goldstone mo
appears in the amplitude structure factorS11(q,v), which

FIG. 16. Same plots as in Fig. 13 forn52«F ~BEC region! and
q50.3pF .
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indicates that the amplitude-phase coupling becomes st
ger as 2n is decreased. Although the amplitude fluctuatio
described byP11 are not important in the BCS regime, w
cannot neglect these fluctuations in the BCS-BEC crosso
regime.

VI. DENSITY-DENSITY CORRELATION FUNCTION

An important problem is how to experimentally obser
the Goldstone mode discussed in Secs. IV and V. In
section, we show that the density-density correlation fu
tion P33 defined in Eq.~3.19! exhibits this mode as a pole
This correlation function can be experimentally probed
many techniques, including two-photon Bragg scatter
@49#.

Since the Goldstone mode is associated with the col
tive phase fluctuations of the Cooper pairs, a coupling
tween density fluctuations and phase fluctuations is ne
sary in order for the Goldstone mode to appear in
spectrum exhibited byP33(q,v1). In this regard, we note

FIG. 17. The amplitude structure functionS11(q,v) is shown in
~a! and theb-boson spectrumrB(q,v) is shown in ~b! for n/«F

52 ~BCS region! andT/Tc50.7. In panel~a! the extremely small
structure visible atv/«F.0.02 is due to the Anderson-Bogoliubo
mode. The larger peak atv/«F.0.07 is the amplitude mode. How

ever, since the excitation gap is also at 2D̃50.068, this mode co-
incides with the edge of the interband excitations. In panel~b! the
peak on the left is the Anderson-Bogoliubov mode, while the bro
peak atv/«F corresponds to the high-energy solution shown in F
12. A very small peak atv/«F.0.068 in panel~b! is located at the

excitation gap 2D̃.
2-20
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SUPERFLUIDITY AND COLLECTIVE MODES IN A . . . PHYSICAL REVIEW A67, 063612 ~2003!
that a phase-density coupling exists in fermion superfluid
because of the presence of the Josephson effect. This
pling is described byP23

0 ~andP32
0 ) defined in Eq.~3.24!. In

contrast to the amplitude-phase correlation functionP12
0 ,

which is very weak in the BCS regime,P23
0 is finite even if

one works with the approximation in Eq.~4.15!. Besides
P23

0 , density fluctuations also couple with superfluid fluctu
tions through amplitude-density couplingP13

0 ~andP31
0 ) de-

fined in Eq.~3.25!. This coupling is not important in the BCS
regime, becauseP13

0 vanishes when one uses the approxim

FIG. 18. The density-density correlation functionP33 coupled
with superfluid amplitude and phase fluctuations described byP i j

( i , j 51,2) ~shaded bubbles!. P23
0 and P32

0 describe phase-densit
correlations, whileP13

0 andP31
0 give the amplitude-density correla

tions.
-
uc

t
nc
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tion in Eq. ~4.15! and neglects terms of the order o
O„(q/pF)

2
…). However, as in the case of the amplitude-pha

correlation functionP12
0 , this coupling effect becomes stron

ger as one goes into the BCS-BEC crossover regime. T
the density-density correlation functionP33 is found to
couple with superfluid fluctuations~amplitude and phase! via
P23

0 andP13
0 , as shown diagrammatically in Fig. 18.

The density-density correlation functionP33 given by the
HF-RPA is obtained by extending the method discussed
Sec. IV of Ref.@40#. When we introduce a 333-matrix cor-
relation functionP̂5$P i j % ( i , j 51,2,3), which involves the
density-density correlation function as the (33)-compone
we obtain an equation similar to Eq.~4.2!, namely,

P̂5P̂0F11
1

2
ŪP̂0G21

. ~6.1!

Here, the interaction 333 matrix Ū is defined by

Ū[S Ū11 Ū12 0

Ū21 Ū22 0

0 0 0
D , ~6.2!

where Ū i j [$U2gr
2ŴD̂0Ŵ21% i j . If we include a density-

density interaction term to our coupled fermion-boson mo
in Eq. ~2.1!, it would be included as the (3,3)-component
Eq. ~6.2!. The density-density correlation function is ob
tained from the (3,3)-component of Eq.~6.1!,
P335P33
0 1

P̄33

11
V1

2
@P11

0 1P22
0 #2

V1

2
@P12

0 2P21
0 #1FV1

2

4
1

V2
2

4 G @P11
0 P22

0 2P12
0 P21

0 #

, ~6.3!
so-
at
ity-
s-

ss-
ms
where the numerator is

P̄33[FV1
2

4
1

V2
2

4 G @P31
0 P12

0 P23
0 2P31

0 P22
0 P13

0 1P32
0 P21

0 P13
0

2P32
0 P11

0 P23
0 #2

V1

2
@P31

0 P13
0 1P32

0 P23
0 #

2
V2

2
@P31

0 P23
0 2P32

0 P13
0 #. ~6.4!

Each term in Eq.~6.4! involves correlation functions be
tween density fluctuations and superfluid fluctuations, s
asP23

0 andP13
0 .

Figure 19 shows the dynamic structure function related
the spectral density of the density-density correlation fu
tion
h

o
-

S33~q,v![2
1

p
@nB~v!11#Im@P33~q,inn→v1!#.

~6.5!

At low temperatures in Figs. 19~a! and 19~b! ~BCS regime!,
and at all the temperatures in Figs. 19~c! and 19~d! ~BEC
regime!, we can clearly see the Goldstone mode as a re
nant peak inS33(q,v). The peak position is the same as th
in the spectra shown in Figs. 13–16. Since the dens
density correlation functionP33 can be measured more ea
ily than the phase correlation functionP22, and may be the
most useful way of observing the Goldstone mode.

VII. SUMMARY AND DISCUSSION

In this paper we have investigated the BCS-BEC cro
over in the superfluid phase of a uniform gas of Fermi ato
2-21



ea
in
ith
w

us

on
-
e
ia
e

h
o
o
n
o
th
n-
im
fu

fi-
on
io
m
th

d

le
C

ec-

ance
in

-
the
ity-
the
on
ect
le,
a

tial
ri-

ua-
,

S-
. In
ig-
to

nu-
au
BEC

und
e in
ing
ita-

id
pa-
of

ss-
so-

ap.
a
rs

n

-
the
w
ss-
n-
f

rmi

ni-
ld
nd

e
n

Y. OHASHI AND A. GRIFFIN PHYSICAL REVIEW A 67, 063612 ~2003!
with a Feshbach resonance. Going past the simple w
coupling mean-field theory, we included the strong-coupl
effect originating from the pairing interaction associated w
a Feshbach resonance. We have extended our previous
@12–14# at and aboveTc to the superfluid region belowTc .
We showed that the superfluid order parameter continuo
changes from the Cooper-pair amplitudeD5U(p^c2p↓cp↑&
in the BCS regime to the square root of the number of c
densedb moleculesfm5^bq50& associated with the Fesh
bach resonance in the BEC regime, as one lowers the thr
old energy 2n of the Feshbach resonance. In the intermed
regime in the BCS-BEC crossover, superfluidity is describ
by the composite order parameterD̃[D2grfm @8,9,12#.

The Goldstone mode is one of the most fundamental p
nomena in an ordered system with spontaneous breakd
of a continuous symmetry. In this paper, we investigated h
the Anderson-Bogoliubov mode, which is the Goldsto
mode in the BCS superfluidity, changes to the Bogoliub
phonon mode in the BCS-BEC crossover. The velocity of
Goldstone modevf strongly depends on the threshold e
ergy 2n, and decreases as one approaches the BEC reg
The Anderson-Bogoliubov phonon mode may be a use
way of monitoring the BCS-BEC crossover. Since it is dif
cult to strongly modify the strength of the pairing interacti
in metallic superconductors, the tunable pairing interact
associated with the Feshbach resonance in Fermi ato
gases gives one a unique tool to clarify the physics in
BCS-BEC crossover region.

We also investigated the damping of the Goldstone mo
The fermion Landau damping of the Goldstone mode due
coupling to fermions becomes weak far belowTc , reflecting
the fact that the thermal excitation of fermion quasipartic
is negligible. This damping effect is always weak in the BE

FIG. 19. Spectrum of the dynamic structure functionS33(q,v)
in the BCS-BEC crossover. The momentum values are the sam
in Figs. 13–16. The sharp peak structure is the Goldstone pho
mode.
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regime because the system is then dominated byb mol-
ecules, with the suppression of the Fermi quasiparticle sp
trum. Thus, except in a small region nearTc in the BCS
regime, the Goldstone mode appears as a strong reson
both in the spectrum of the phase correlation function and
the excitation spectrum ofb bosons. As a way to experimen
tally observe this Goldstone mode, we noted that since
amplitude and phase fluctuations couple with the dens
fluctuations, one can observe this collective mode in
spectrum of the density-density correlation functi
P33(q,v1). In cigar-shaped trapped Fermi gases, the dir
observation of a density fluctuation pulse might be possib
in analogy with the observation of a Bogoliubov phonon in
superfluid Bose gas with a very weak axial trapping poten
@50#. We also note that two photon Bragg scattering expe
ments provide a convenient way of studying density fluct
tions in a trapped atomic gas@49–52#. In such experiments
ImP33(q,v) is measured directly, rather thanS33(q,v) @52#.

It is important to remember that our treatment of the BC
BEC crossover leaves out several important contributions
our calculation of various response functions, we always
nored the fermion self-energy arising from the coupling
the non-Bose-condensed bosons@34#. In the crossover re-
gion, these two-particle states are strongly damped. The
merical results given in Secs. V and VI show how Land
damping due to fermions decreases as we approach the
regime ~small or negative values ofn/«F). This is simply
because more and more fermions are forming the bo
states. However, we expect new forms of damping to aris
the BEC region, namely, the Landau and Baliaev damp
associated with the interaction between Bogoliubov exc
tions @53#.

We also note that to illustrate our theory of the superflu
state, we have used a relatively weak-coupling strength
rametergr describing the Feshbach resonance. In Sec. IV
Ref. @14#, we presented calculations of the BCS-BEC cro
over transition temperature for a very broad Feshbach re
nance considered in Refs.@11,15#. In the case of largegr , the
crossover can occur even if the threshold 2n is very large. In
this case, the Cooper pairs dominate over theb bosons in the
BEC phase.

In this paper, we have not considered the effect of a tr
The atomic density profile in the BCS-BEC crossover in
trap was recently investigated within the LDA by the autho
at and aboveTc @13,14#, using the coupled fermion-boso
model, and atT50 by Peraliet al. @28#, using the strong-
coupling BCS model@26#. A trap potential also leads to vari
ous discrete low-energy collective modes associated with
confined geometry, and it will be interesting to study ho
these collective oscillations behave in the BCS-BEC cro
over. This will be the subject of a future paper, but we co
clude with a few brief remarks on this. In the BCS limit o
our model, one has the extensive theoretical work@31,32,53#
on the Cooper-pair condensate modes in trapped Fe
gases. To be specific, we consider the quadrupole modevQ

5A2v0 ~wherev0 is the trap frequency of a spherical trap!.
This is an analog of the Goldstone phonon mode in a u
form system. IfvQ is greater than the effective thresho
2Deff for breaking up Cooper-pairs, this mode is damped a

as
on
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has small spectral weight@32#. However, as one approache
the BCS-BEC crossover, the spectral weight of the ferm
quasiparticles decreases, shifting to the quadrupole m
vQ . In the BEC limit, the modevQ5A2v0 is the well-
known quadrupole oscillation of a trapped Bose gas@53,54#.
In this paper, we have seen that the Goldstone phonon m
in a uniform gas also persists in the BCS-BEC crossover,
the phonon velocity changes. In contrast, the quadrup
mode frequency does not depend explicitly on the interac
strength, having the same frequencyvQ5A2v0 in both the
BCS and BEC limits. What does change is its spectral we
r-

r-

as
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nd
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and damping, which could be used as an experimental
nature.
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