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Modulational instability of Gross-Pitaevskii-type equations in 1¿1 dimensions
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The modulational instability of the nonlinear Schro¨dinger ~NLS! equation is examined in the case with a
quadratic external potential. This study is motivated by recent experimental results in the context of matter
waves in Bose-Einstein condensates~BECs!. The theoretical analysis invokes a lens-type transformation that
converts the Gross-Pitaevskii into a modified NLS equation without explicit spatial dependence. This analysis
suggests the particular interest of a specific time-varying potential@;(t1t* )22#. We examine both this
potential, as well as the time-independent one numerically and conclude by suggesting experiments for the
production of solitonic wave trains in BECs.
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I. INTRODUCTION

Intensive studies of Bose-Einstein condensates~BECs! @1#
have drawn much attention to nonlinear excitations in the
Recent experiments have achieved to generate topolo
structures, such as vortices@2# and vortex lattices@3#, as well
as solitons. Especially, as far as the latter are concerned,
types of solitons have been created, namely,dark solitons
@4–6# for condensates with repulsive interactions andbright
ones @7# for condensates with attractive interactions. Da
solitons are density dips characterized by a phase jump o
wave function at the position of the dip, and, thus, can
generated by means of phase-engineering techniques. B
solitons, which were only recently created in BECs of7Li,
are characterized by a localized maximum in the density p
file without any phase jump across it. In the relevant exp
ments, this type of soliton was formed upon utilizing a Fe
bach resonance to change the sign of the scattering le
from positive to negative. An interesting question conce
how such solitary wave structures may arise~i.e., which is
the underlying physical mechanism for their manifestat
and how they may be generated! in this context of matter
waves in BECs.

It is well known that the dynamics of the BEC wave fun
tion is described~at the mean-field level, which is an increa
ingly accurate description, as the zero-temperature limi
approached! by the Gross-Pitaevskii~GP! equation, a variant
of the well-known nonlinear Schro¨dinger ~NLS! equation
@8#, which incorporates an external trapping potential te
In the context of the ‘‘traditional’’ NLS equation~without the
external potential!, perhaps the most standard mechani
through which bright solitons and solitary wave structu
appear is through the activation of the modulational insta
ity ~MI ! of plane waves. In this case, the continuous wa
~CW! solution of the NLS equation becomes unstable
wards the generation of a chain of bright solitons. It is t
purpose of this work to demonstrate that, under certain c
ditions, this may also happen in the case of the GP equa
as well.

The MI is a general feature of continuum as well as
discrete nonlinear wave equations and its demonstrat
1050-2947/2003/67~6!/063610~8!/$20.00 67 0636
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span a diverse set of disciplines, ranging from fluid dynam
@9# ~where it is usually referred to as the Benjamin-Feir
stability! and nonlinear optics@10# to plasma physics@11#.
Additionally, the MI has been examined recently in the co
text of optical lattices in BECs both in one-dimensional~1D!
and quasi-one-dimensional systems, as well as in mult
dimensions. In such settings, it has been predicted theo
cally @12,13# and verified experimentally@14,15# to lead to
destabilization of plane waves, and in turn to delocalizat
in momentum space~equivalent to localization in position
space and the formation of solitary wave structures!.

In this paper, we discuss the MI conditions for the co
tinuous NLS equation in 111 dimensions~1 spatial and 1
temporal!,

iut1uxx1suuu2u1V~x!u50, ~1!

in the presence of the external potentialV(x). This equation
is actually a dimensionless effective GP equation, which
scribes the evolution of the wave function of a quasi-on
dimensional cigar-shaped BEC subject to definite conditi
~see below!. In this context, we will consider the harmon
potential

V~x!52k~ t !x2, ~2!

which is relevant, in particular, to experimental setups
which the ~magnetic! trap is strongly confined in the two
directions, while it is much shallower in the third one@1#.
The prefactork(t) is typically fixed in current experiments
but adiabatic changes in the strength~and, in fact, even in the
location of the center! of the trap are experimentally feasible
hence we examine the more general time-dependent cas

A self-consistent reduction of a 3D GP equation to a
NLS equation with external potential can be provided
means of the multiple-scale expansion~see, e.g., Ref.@12#
for details!. In the case of a cigar-shaped BEC such an
pansion exploits a small parameterd25(Nas /a0)k!1,
whereN is the number of atoms,as is thes-wave scattering
length,a05A\/mv0 is the longitudinal harmonic-oscillato
length, v0 is the harmonic frequency, andm is the atomic
©2003 The American Physical Society10-1
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THEOCHARISet al. PHYSICAL REVIEW A 67, 063610 ~2003!
mass. The parameterd indicates the relative strength of th
two-body interactions as compared to the kinetic energy
the atoms. In the case at hand, when the finite-size eff
along the cigar axes are of primary interest, the same s
parameter defines strong confinement cross section an
the cigar axis by the conditiona' /a0;dAk (a' is the trans-
verse harmonic-oscillator length!.

It is worth pointing out that, for example, for a BEC o
N5104 of 23Na atoms (as'2.75 nm), having characteristi
sizesa05300 mm anda'510 mm one obtainsk'0.11 and
d2'0.01. It should be noted that herein different values ok
were used @as well as time-dependent traps whe
k5k(t)—see below#.

In this reduction, the complex fieldu(x,t) in Eq. ~1! rep-
resents the rescaled mean-field wave function of the con
sate according to

C~r ,t !5
d

a'as
~1/2!

e2 iv'te2r2/(2a'
2 )u~dx/a' ,d2v't/2!,

~3!

whereC(r ,t) is the original order parameter,r5(y,z), v'

is the harmonic frequency corresponding to the cross sec
and physical space and time coordinates are used. Res
tively, in the reduced and rescaled GP equation~1!, x is nor-
malized to the harmonic-oscillator lengtha' , time is nor-
malized to the corresponding oscillation period, the poten
V(x) is measured in units of\2a'

2 /8m, andu(x,t) is a func-
tion of order one,u(x,t)5O(1).

In the present papera0 will be a varying quantity, and
then in the estimatesa0 should be understood as an effecti
averaged quantity. Notice also that in Eq.~1!, the subscripts
denote partial derivatives with respect to the index, whiles
52sign(as)P$1,21% illustrates the focusing (11) or de-
focusing (21) nature of the nonlinearity~which represents
the attractive or repulsive nature of the interatomic inter
tions, respectively@1#!.

After briefly reviewing ~in Sec. II! the MI for the NLS
case, we proceed to our main aim that is to study this in
bility in the context of the GP of Eq.~1!, with the potential of
Eq. ~2!. In Sec. III, we show that a lens-type transformatio
which transforms the GP equation into a relatively simp
form of the NLS equation, provides insight in the latter ca
Two interesting cases are singled out: the case wherek(t)
[k ~i.e., for a fixed trap! and the case ofk(t);(t1t* )22,
which naturally arises in this setting. In Sec. IV, we inves
gate these cases numerically and find a variety of interes
results including the generation of solitary wave trains. T
result indicates that the MI is indeed an underlying physi
mechanism explaining the formation of matter-wave soli
trains. Finally, we conclude with the discussion of Sec.
which suggests this method as an experimental techniqu
the generation of soliton patterns in BEC.

II. MODULATIONAL INSTABILITY FOR NLS

We start by recalling the results for the modulational s
bility of the NLS ~1! without an external potential, i.e., fo
V(x)[0:
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iut1uxx1suuu2u50. ~4!

We look for perturbed plane-wave solutions of the form

u~x,t !5~f1eb!exp@ i $~qx2vt !1ec~x,t !%#, ~5!

analyzing theO(e) terms as

b~x,t !5b0exp@ ib~x,t !#, c~x,t !5c0exp@ ib~x,t !#.
~6!

Using b(x,t)5Qx2Vt, the dispersion relation connectin
the wave numberQ and frequencyV of the perturbation
~see, e.g., Ref.@8#! is found to be of the form

~2V12qQ!25Q2~Q222sf2!. ~7!

This implies that the instability region for the NLS in th
absence of an external potential, appears for perturba
wave numbersQ2,2f2, and, in particular,only for focusing
nonlinearities~to which we will restrict our study from this
point onwards!.

A natural question is how this instability is manifested f
wave numbers that satisfy the above condition. An exam
is shown in Fig. 1.

There are two principal ways in which the instability ca
be detected~see Fig. 1!. One of them is by probing the
maxima of the original plane wave~notice that to avoid
problems with the boundaries, the simulation shown in
figure was performed with periodic boundary conditions!. In
the modulationally unstable case, we have periodic rec
rence of structures with very large amplitude, while in t
modulationally stable case ofQ52, the perturbation only
causes small amplitude oscillations. In the Fourier pictu
the unstable perturbation generates sidebands of higher
monics as is well known@16#, while similar structures are
absent in the modulationally stable case.

III. MODULATIONAL INSTABILITY FOR NLS WITH
QUADRATIC POTENTIAL

The quadratic potential of Eq.~2! is clearly the most
physically relevant example of an external potential in t
BEC case, given the harmonic confinement of the atoms
the experimentally used magnetic traps@1#.

To examine the MI related properties in this case, we
a lens-type transformation@8# of the form

u~x,t !5,21exp@ i f ~ t !x2#v~z,t!, ~8!

where f (t) is a real function of time,z5x/,(t) and t
5t(t). To preserve the scaling, we choose@8,17#

t t51/,2. ~9!

The resulting equations can be satisfied by demanding t

f t524 f 22k~ t !, ~10!

,t /,54 f ,2. ~11!

Taking into account Eq.~9!, the last equation can be solve
0-2
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FIG. 1. The evolution of the
maximum amplitude~left panels!
and the Fourier transform at th
ending time of the simulation
~right panels!, for a modulation-
ally unstable caseQ51 ~top pan-
els! and a modulationally unstable
case Q52 ~bottom panels!. An
initial perturbation of 0.05 sin(Qx)
was added to the uniform solutio
of f51.
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f ~s!dsD . ~12!

This problem of finding the time dependence of the para
eters is then reduced to the solution of Eq.~10!.

Upon the above conditions, the equation forv(z,t) be-
comes

ivt1vzz1uvu2v22ilv50, ~13!

where

f ,25l, ~14!

and genericallyl is real and depends on time. Thus, w
retrieve NLS with an additional term, which represents eit
growth ~if l.0) or dissipation~if l,0).

A particularly interesting case is that ofl constant. Then
from the system of equations~9!–~11! and ~13!, it follows
that k must have a specific form.f , ,, and t can then be
determined accordingly. In fact, the system of equations~9!–
~11! and ~13! with l constant has as its solution

k~ t !5~ t1t* !22/16, ~15!

f ~ t !5~ t1t* !21/8, ~16!

,~ t !52A2lAt1t* , ~17!

t~ t !5 lnS t1t*

t*
D Y8l. ~18!

Notice that as per the assumption of an imaginary phas
the exponential of Eq.~8!, that our considerations are vali
06361
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only for lPR. In the above equations,t* is an arbitrary
constant whose sign is related to the sign ofl; t* l.0 and
which essentially determines the ‘‘width’’ of the trap at tim
t50 according to Eq.~15!. Notice thatt* ,0 @i.e., the case
of dissipation in Eq.~13!# describes a BEC in a shrinkin
trap, while the caset* .0 @i.e., the case of growth in Eq
~13!# corresponds to a broadening condensate.

In this case the modulational condition remains u
changed, but nowv satisfies the dispersion relationv5q2

2f212ıl, so the growth~if l.0) or dissipation~if l
,0) is inherent in Eq.~5!. Moreover, all the terms are modu
lated by the constant growth~or decay! rate exp(2lt), and
the instability ~when present! will be developing according
to the formv;exp@i(Qz2Vrt)1(n12l)t# with V5V r1 in
andV r52qQ.

If k5k(t) is not given by Eq.~15!, thenl must be time
dependent@e.g.,l[l(t)]. Here, one cannot directly perform
the MI analysis. However, still in this case, we have co
verted the explicit spatial dependence into an explicit tem
ral dependence. An important example of this type~the sim-
plest one, in fact! is the case ofk(t)[k5const. Then,

f ~ t !52
Ak

2
tan@2Ak~ t1t* !#, ~19!

,~ t !5,~0!
cos@2Ak~ t1t* !#

cos~2Akt* !
, ~20!

t~ t !52
cos2~2Akt* !

,~0!2

f ~ t !

k
. ~21!
0-3
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FIG. 2. The evolution of an initial condition of the form of Eq.~22! for the time-dependent potential of Eq.~15!. The left panels show
the case ofQ51, while the right ones the case ofQ52. The panels show, respectively: the profile ofuu(x)u2 at t540, in the top panel, the
same profile is shown in a semilogarithmic plot in the second from the top panel~clearly indicating the exponential nature of the localiz
tion!. The time evolution of the maximum amplitude of the configuration is shown in the third~from the top! panel, while the bottom pane
shows a detail of the top one~indicating the clearly solitary structure of the corresponding pulses!.
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This case imposes a time-periodic driving term in Eq.~13!
with frequency 4Ak, which is nothing but the oscillation
frequency naturally following from the Ehrenfest theorem.
this viewpoint, the phase divergence attn5p(n
11/2)/(2Ak)2t* ~wheren50,61,62, . . . ) isunderstand-
able. Indeed, in the case at hand, the ‘‘chirp’’ initial conditio
means existence of a current at the initial moment of tim
Due to the quadratic potential, this current periodica
changes the direction~which is a straightforward conse
quence of the Ehrenfest theorem!. The change of the curren
direction is accompanied by the phase singularity.

From the above it is clear that the most interesting ca
in the setting with the harmonic potential are the ones w
the inverse square dependence~of the trap amplitude, for a
given x) on time of Eq.~15!, as well as the one the regula
harmonic trap of constant amplitude. In both of these ca
as well as more generally, the lens transformation sugg
the equivalence with a NLS equation with a gain. In the
special cases of interest, the gain is constant or time perio
suggesting that similar phenomenology to the one of
06361
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regular NLS may be present. A note of caution worth mak
here is that in reality in this case, the evolution takes place
the setting of Eq.~1!, rather than that of Eq.~13!. The moti-
vation, however, is that upon suitable choice of the init
condition ~and for the types of traps discussed above!, the
two equations~the GP and the NLS with the gain term! are
equivalent at initial times, hence one may expect that th
instability that is present in the latter will manifest itself
some manner in the former.

However, to examine the details of the time evolution
this instability, we perform numerical simulations of the E
~1! with appropriately chosen modulationally stable as w
as modulationally unstable initial conditions.

IV. NUMERICAL MANIFESTATIONS OF THE
MODULATIONAL INSTABILITY FOR NLS WITH

QUADRATIC POTENTIAL

A. Time-dependent potential

Perhaps the most interesting case~due to the suggeste
analogy with an NLS with a constant coefficient gain, whe
0-4
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MODULATIONAL INSTABILITY OF GROSS-PITAEVSKII- . . . PHYSICAL REVIEW A 67, 063610 ~2003!
the modulational stability analysis can be performed! is the
case ofk(t)5(t1t* )22/16, which we now examine numer
cally.

Notice that in our numerical investigations, we will app
a loss term to Eq.~1! close to the boundaries to emulate t
loss of particles from the trap.

The first case that we studied in this setting was the on
an initial condition

u~x,t !5expS i
x2

8t*
D @11e cos~Qx!#, ~22!

suggested by Eqs.~8! and~15!–~17!. e was typically chosen
in the range 0.0120.1 without significant variation in the
qualitative nature of the results. The parametert* was set to
1. The results are shown in Fig. 2, for the case ofQ51 ~left
panels! andQ52 ~right panels!.

It is clear from the time evolution shown in the figure th
in this setting we obtain~and that is one of the main finding
of this work! a soliton wave train, formed as a result of the
instability, starting from such a modulated plane-wave init
condition. An interesting feature of the obtained soliton tra
is that emerging solitons are of approximately equal sha
~amplitudes! in the presence of a broadening parabolic p
tential; in the case when the latter is static, created solit
have essentially different shapes depending on their posit
in space, see, e.g., Fig. 4.

One can argue that this outcome may not be a result of
modulational instability given that both modulational
stable and unstableQ’s lead to such a manifestation. How
ever, a careful inspection of the details of the evolution~see
also the short-time runs reported below! outrules that possi-
bility. In particular, the two features that happen for modu
tionally unstable wave numbers are the following.
06361
of

l

es
-
s

ns

e

-

~a! The instability is manifestedat earlier times~see, in
particular, the comparison of the third panels of Fig. 2!.

~b! The instability leads tolarger amplitudesin the modu-
lationally unstable regime~see, e.g., the comparison of th
fourth panels of Fig. 2!, than in the modulationally stable
one. This is also clearly shown in Fig. 3, where the ca
with differentQ in the perturbation have been examined~for
amplitude of the original plane wavef51), showing a
clearly larger amplitude tendency for ‘‘unstable wave nu
bers’’ of Q,A2 in this case.

The reason why in practice the instability occurs in bo
cases is that the dynamics of the potential in Eq.~1! mix the
wave numbers of the original perturbation and eventua

FIG. 3. The maximal amplitude~over space and time! for runs
up to t540 is shown for different values of the wave numberQ of
the perturbation.
-
f

a-

s

FIG. 4. The cases ofQ51
~left panels! andQ52 ~right pan-
els! are shown for the initial con-
dition of Eq. ~23!. The top panel
shows the evolution of the maxi
mum amplitude as a function o
time ~for short times!, the middle
panel shows the mod squared sp
tial profile for t53 ~the dashed
line here illustrates the trap at thi
time!, while the bottom panel
shows Fourier transform for the
same time (t53). t* 55 has been
used here.
0-5
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THEOCHARISet al. PHYSICAL REVIEW A 67, 063610 ~2003!
result in the excitation of modulationally unstable one
However, this only happens later~because first the modula
tionally unstableQ’s need to be excited! and with a smaller
amplitude in this case.

We also tried a different initial condition motivated by th
experimental settings that led to the observation of bri
matter-wave solitons@7#. In particular, in these settings,
Feshbach resonance is used to tune the sign of the nonlin
ity @in the case of Eq.~1! the sign ofs], starting from the
repulsive case ofs,0 and getting to the attractive case
s.0, as time evolves in the experiment. Given that in
case ofs,0, the ground state of the system consists~ap-
proximately! of the so-called Thomas-Fermi~TF! cloud @1#,
we initialized the system in such a state, emulating the t
~in the duration of the experiment! in which the system is a
s,0 and evolved the system from such an initial conditio
In this case,u(x,t50) is of the form

u~x,t50!5uTF@11e cos~Qx!#. ~23!

uTF5Amaxx„0,m2V(x,t50)… @1#. The chemical potentialm
is chosen asm51 in this case.

A particular example of this type fore50.1, Q51 ~left
panels!, andQ52 ~right panels! is shown in Fig. 4.

In this case, we only show short-time dynamics, beca
at longer times the Thomas-Fermi~which is not functionally
close to the ground state of the case withs51) will be
destroyed, leading to large amplitude localized excitatio
independent of the initial value ofQ. In fact, this short time
experiment illustrates all the points that we made ab
~modulationally stable and unstable! short-time evolution
previously. The modulationally unstable case ofQ51 rap-
idly develops the instability and deforms into a solitary wa
train pattern. On the contrary, for the short-times reported
Fig. 4, the modulationally stable case is limited to ben
oscillations of small amplitude. In the case ofQ51, the
sidebands clearly form, indicating the manifestation of
MI. However, notice also, as highlighted previously, that
the case ofQ52, the dynamics of Eq.~1! eventually tends
to excite modulationally unstable wave numbers and he
will also result~for longer times! in localization.

B. Time-independent potential

In the case in which the potential is time independent,
first ~once again! tried an initial condition with a modulation
added to the plane wave in the form

u511e cos~Qx!. ~24!

Notice that in this case the chirp was not used in the ini
condition as it does not rid the equation of the explicit te
poral dependence.

In this case the findings, once again forQ51 and Q
52, are shown in Fig. 5.e50.05 was used in Eq.~24!; k
50.0001.

In both cases, for the GP equation, due to the presenc
the potential, the condensate will become peaked towards
center, gradually as time evolves. However, the developm
06361
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of the instability is clear from the comparison of the corr
sponding amplitudes of the oscillation of the norm field a
function of time.

The case with the Thomas-Fermi initial condition of E
~23! is shown in Fig. 6.k50.0025 in this case and onc
again the cases ofQ51 andQ52 are shown in the left and
right panels, respectively.

The development of the instability for short times is on
again clear for the modulationally unstable case ofQ51,
leading to the formation of a wave train, while in the mod
lationally stable case, the perturbation is not amplified. F
longer times, the destruction of the TF cloud will eventua
lead in both cases to the generation of very strongly locali
patterns. However, in essence here, we take advantage o
separation of time scales for the appearance of the MI
for the destruction of the TF, to illustrate in the short-tim
evolution, the development of the former instability.

FIG. 5. The time evolution of the amplitude atx50
„uu(0,t)u2

… is shown in the left panel forQ51 and in the right one
for Q52. The comparison of the GP Equation~solid line! with the
corresponding case for the NLS~dotted line! is also illustrated.
0-6
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FIG. 6. Same as Fig. 4, but for the case ofk(t)50.00255const. The left panels correspond toQ51 and the right ones toQ52.
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V. CONCLUSIONS

In this work, we have examined the problem of modu
tional instabilities of plane waves in the context of Gros
Pitaevskii equations with an external~in particular, qua-
dratic! potential. The motivation for this study was its dire
link to current experimental realizations of Bose-Einste
condensates.

A lens transformation was used to cast the problem i
rescaled space and time frame~in a way very reminiscent o
the scaling in problems related to focusing@8,17#!. In this
rescaled frame, the external potential can be viewed a
form of external growth. For specific forms of temporal d
pendence of the prefactor of the harmonic potential@e.g., for
k(t)5(t1t* )22/16], the resulting growth term is constan
06361
-
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In such a context once again the MI analysis can be car
through completely, producing similar conditions, but now
the dynamically rescaled frame/variables~which can be ap-
propriately recast in the original variables!. This singles out
the case of a temporally dependent potential of inve
square dependence with time. Another case which was
examined due to its direct relevance to the experiment
the one of the constant amplitude trap.

Both of these cases were analyzed theoretically and t
studied in detail numerically. The theoretical predictions
modulational instability were verified by the numerical e
periments. This was most clearly identified for short-tim
dynamical evolution results that permit to clearly identify t
instability through the formation of localized pulses a
trains thereof. For longer times, trains are also formed
0-7
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modulationally stable cases~due to the eventual excitation i
the dynamics of unstable wave numbers!. However, there are
still ‘‘stronger’’ signatures of the instability in the unstab
cases~such as the larger amplitude of the resulting exc
tions in such cases!.

The main aim of this work is to advocate the use of t
MI as an experimental tool to generate solitonic trains
Bose-Einstein condensates. Our theoretical investigation
numerical findings clearly support the formation of su
trains in the context of the GP equation initialized with
appropriate modulation and possibly a chirp. The latter
needed in the case of the time-dependent trap that we
examined herein and which we argue may also be interes
to try to create in experimental settings. Let us note in pa
ing that traps with this type of time dependence of th
amplitude have also been suggested as being of intere
quite different setups such as the study of explosi
implosion dualities for the quintic~critical! GP @18#. How-
ever, our findings should be observableeven withoutthe
v.

06361
-

nd

s
ve

ng
s-
r
in
-

time-dependent trap, as we have demonstrated. The appr
ate modulation in the condensate initial condition can
generated by placing the condensate in an optical lattice@19#,
while the chirp can also be produced using appropri
phase-engineering techniques that are currently experim
tally available; see, e.g., Ref.@5#. We believe that such ex
periments are within the realm of present experimental ca
bilities and hope that these theoretical findings may motiv
their realization in the near future.
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