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Modulational instability of Gross-Pitaevskii-type equations in 1+1 dimensions
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The modulational instability of the nonlinear Sctioger (NLS) equation is examined in the case with a
quadratic external potential. This study is motivated by recent experimental results in the context of matter
waves in Bose-Einstein condensa(B&ECS. The theoretical analysis invokes a lens-type transformation that
converts the Gross-Pitaevskii into a modified NLS equation without explicit spatial dependence. This analysis
suggests the particular interest of a specific time-varying potefidk+1t*)~2]. We examine both this
potential, as well as the time-independent one numerically and conclude by suggesting experiments for the
production of solitonic wave trains in BECs.
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[. INTRODUCTION span a diverse set of disciplines, ranging from fluid dynamics
[9] (where it is usually referred to as the Benjamin-Feir in-
Intensive studies of Bose-Einstein condenséB#=Cs [1]  stability) and nonlinear optic$10] to plasma physic§11].
have drawn much attention to nonlinear excitations in themAdditionally, the MI has been examined recently in the con-
Recent experiments have achieved to generate topologictxt of optical lattices in BECs both in one-dimensio(teD)
structures, such as vorticE] and vortex lattice§3], as well ~ and quasi-one-dimensional systems, as well as in multiple
as solitons. Especially, as far as the latter are concerned, twimensions. In such settings, it has been predicted theoreti-
types of solitons have been created, namebik solitons ~ cally [12,13 and verified experimentallj14,19 to lead to
[4—6] for condensates with repulsive interactions might ~ destabilization of plane waves, and in turn to delocalization
ones[7] for condensates with attractive interactions. Darkin momentum spacgequivalent to localization in position
solitons are density dips characterized by a phase jump of th&ace and the formation of solitary wave structures
wave function at the position of the dip, and, thus, can be In this paper, we discuss the MI conditions for the con-
generated by means of phase-engineering techniques. Brigtiiuous NLS equation in +1 dimensiong1 spatial and 1
solitons, which were only recently created in BECs‘tf, temporal,
are characterized by a localized maximum in the density pro-
file without any phase jump across it. In the relevant experi- iU+ Uyt s|ul?u+V(x)u=0, (1)
ments, this type of soliton was formed upon utilizing a Fesh-
bach resonance to change the sign of the scattering length the presence of the external potentigk). This equation
from positive to negative. An interesting question concernds actually a dimensionless effective GP equation, which de-
how such solitary wave structures may arige., which is  scribes the evolution of the wave function of a quasi-one-
the underlying physical mechanism for their manifestationdimensional cigar-shaped BEC subject to definite conditions
and how they may be generajeid this context of matter (see below In this context, we will consider the harmonic
waves in BECs. potential
It is well known that the dynamics of the BEC wave func-
tion is describedat the mean-field level, which is an increas- V(x)=—k(t)x?, (2
ingly accurate description, as the zero-temperature limit is
approacherby the Gross-PitaevskiiGP) equation, a variant Which is relevant, in particular, to experimental setups in
of the well-known nonlinear Schdinger (NLS) equation ~ Which the (magneti¢ trap is strongly confined in the two
[8], which incorporates an external trapping potential termdirections, while it is much shallower in the third of#].
In the context of the “traditional” NLS equatiotwithout the ~ The prefactoik(t) is typically fixed in current experiments,
external potentia) perhaps the most standard mechanisnbut adiabatic changes in the strengiind, in fact, even in the
through which bright solitons and solitary wave structureslocation of the centerof the trap are experimentally feasible,
appear is through the activation of the modulational instabilhence we examine the more general time-dependent case.
ity (M) of plane waves. In this case, the continuous wave A self-consistent reduction of a 3D GP equation to a 1D
(CW) solution of the NLS equation becomes unstable to-NLS equation with external potential can be provided by
wards the generation of a chain of bright solitons. It is themeans of the multiple-scale expansitsee, e.g., Refl12]
purpose of this work to demonstrate that, under certain corfor details. In the case of a cigar-shaped BEC such an ex-
ditions, this may also happen in the case of the GP equatiopansion exploits a small paramete®=(Nag/ao)k<1,
as well. whereN is the number of atoms is the swave scattering
The Ml is a general feature of continuum as well as oflength,ay,= V#%/mw, is the longitudinal harmonic-oscillator
discrete nonlinear wave equations and its demonstrationgngth, wq is the harmonic frequency, and is the atomic
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mass. The parametér indicates the relative strength of the iUg+ Uyt s|uj?u=0. (4)
two-body interactions as compared to the kinetic energy of
the atoms. In the case at hand, when the finite-size effecid/e look for perturbed plane-wave solutions of the form
along the cigar axes are of primary interest, the same small )
parameter defines strong confinement cross section and to ~ U(t)=(p+eb)exdi{(ax—wt) +eg(x,)}], (5
the cigar axis by the conditiom, /ag~ s\k (a, is the trans-
verse harmonic-oscillator length

It is worth pointing out that, for example, for a BEC of — i — i
N=10" of #Na atoms &;~2.75 nm), having characteristic PO =boexd1B0)] - ¥Ox.)=doexd1A(x1)]. 6)
sizesay =300 um anda, =10 um one obtaink~0.11 and
5%~0.01. It should be noted that herein different valuek of Using 8(x,t)=Qx—Qt, the dispersion relation connecting
were used [as well as time-dependent traps wherethe wave numbeQ and frequency() of the perturbation

analyzing theO(¢€) terms as

k=k(t)—see belov. (see, e.g., Ref8]) is found to be of the form
In this reduction, the complex field(x,t) in Eq. (1) rep- s o 5
resents the rescaled mean-field wave function of the conden- (=Q+29Q)“=Q%(Q°—2s¢7). (7)

sate according to This implies that the instability region for the NLS in the

absence of an external potential, appears for perturbation
e*i%te*fZ’(Zaf)u(5x/aL 82w t12), wave number§?<2¢?, and, in particularonly for focusing
nonlinearities(to which we will restrict our study from this
(3)  point onwards
A natural question is how this instability is manifested for

yvhere\lf(r,t) IS the original order parametars= (v.2), o, ._wave numbers that satisfy the above condition. An example
is the harmonic frequency corresponding to the cross sectiof <hown in Fig. 1

e_md physmal space and time coordinates are us_ed. ReSPeC-There are two principal ways in which the instability can
tively, in the reduced and rescaled GP equatibnx is nor- be detectedsee Fig. 1 One of them is by probing the
malized to the harmonic-oscillator leng# , time is nor- axima of the original plane wavénotice that to avoid
malized to the corresponding ozscillation period, the potemia[)nroblems with the boundaries, the simulation shown in the
V(x) is measured in units df?a’/gm, andu(x,t) is a func- figure was performed with periodic boundary conditipris
tion of order oneu(x,t)=0(1). _ _ the modulationally unstable case, we have periodic recur-
In the present paped, will be a varying quantity, and  rence of structures with very large amplitude, while in the
then in the estimates, should be understood as an effective moqulationally stable case @=2, the perturbation only
averaged quantity. Notice also that in Ed)), the subscripts  cayses small amplitude oscillations. In the Fourier picture,
denote partial derivatives with respect to the index, while the unstable perturbation generates sidebands of higher har-
= —sign(as) € {1,— 1} illustrates the focusing{1) or de-  monics as is well knowri16], while similar structures are

focusing (—1) nature of the nonlinearitwhich represents apsent in the modulationally stable case.
the attractive or repulsive nature of the interatomic interac-

tions, respectivelyl]). IIl. MODULATIONAL INSTABILITY FOR NLS WITH

After briefly reviewing (in _Sec_. 1) the_ MI for the NLS QUADRATIC POTENTIAL
case, we proceed to our main aim that is to study this insta-
bility in the context of the GP of Ed1), with the potential of The quadratic potential of Eq2) is clearly the most
Eq. (2). In Sec. Ill, we show that a lens-type transformation,physically relevant example of an external potential in the
which transforms the GP equation into a relatively simplerBEC case, given the harmonic confinement of the atoms by
form of the NLS equation, provides insight in the latter casethe experimentally used magnetic trdfis.
Two interesting cases are singled out: the case wkére To examine the MI related properties in this case, we use
=k (i.e., for a fixed trap and the case ok(t)~ (t+t*) 2, a lens-type transformatigi8] of the form
which naturally arises in this setting. In Sec. IV, we investi- _ . 5
gate these cases numerically and find a variety of interesting ux,t)=€""exdif ()x“Jv({,7), ®
results including the generation of solitary wave trains. This . . .
result indicates that the Ml is indeed an underlying physicaf'vhere f(t) is a real functpn of time,/=x/¢(t) and r
mechanism explaining the formation of matter-wave soliton 7(t). To preserve the scaling, we chodse17]

V(rt)=———
aLa(SlIZ)

trains. Finally, we conclude with the discussion of Sec. V, r=1/0? (9)
which suggests this method as an experimental technique for ! '
the generation of soliton patterns in BEC. The resulting equations can be satisfied by demanding that
Il. MODULATIONAL INSTABILITY FOR NLS fi=—4f>—k(1), (10
We start by recalling the results for the modulational sta- € 1¢=4f¢2. (11
bility of the NLS (1) without an external potential, i.e., for
V(x)=0: Taking into account Eq.9), the last equation can be solved
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t only for N e R. In the above equation$;} is an arbitrary
€(t)=€(0)ex 4fof(3)d3 : (12)  constant whose sign is related to the signoft* A >0 and

which essentially determines the “width” of the trap at time

This problem of finding the time dependence of the parami=0 according to Eq(15). Notice thatt* <0 [i.e., the case

eters is then reduced to the solution of EL).
Upon the above conditions, the equation {diZ,7) be-
comes

iv,+ v+ v]Pv—2iNv=0, (13
where
(14

and genericallyn is real and depends on time. Thus, we

retrieve NLS with an additional term, which represents eithe

growth (if A\>0) or dissipation(if A <0).

A particularly interesting case is that af constant. Then
from the system of equation®)—(11) and (13), it follows
that k must have a specific fornf.,, ¢, and = can then be
determined accordingly. In fact, the system of equati@s
(11) and(13) with A constant has as its solution

k(t)=(t+t*) 216, (15)
f(t)=(t+t*) /8, (16)
((t) =22\t + 7, (17
T(t)—ln<tt*t*) /sx. (18

Notice that as per the assumption of an imaginary phase in

the exponential of Eq(8), that our considerations are valid

r

of dissipation in Eq.(13)] describes a BEC in a shrinking
trap, while the cas¢* >0 [i.e., the case of growth in Eq.
(13)] corresponds to a broadening condensate.

In this case the modulational condition remains un-
changed, but now satisfies the dispersion relatiasn= g°
—¢2+2iI\, so the growth(if A>0) or dissipation(if A
<0) is inherent in Eq(5). Moreover, all the terms are modu-
lated by the constant growtfor decay rate exp(27), and
the instability (when presentwill be developing according
to the formv ~exdi(Q{—Q,7)+(v+2\)7] with Q=Q,+iv
and(,=2qQ.

If k=k(t) is not given by Eq(15), then\ must be time
dependente.g.,A=X\(t)]. Here, one cannot directly perform
the MI analysis. However, still in this case, we have con-
verted the explicit spatial dependence into an explicit tempo-
ral dependence. An important example of this tyfee sim-
plest one, in fagtis the case ok(t)=k=const. Then,

f(t)=— \Q(tar[Z\/E(tth*)], (19
B cog 2 k(t+t*)]

e(t)—e(O)—Cqu&t*) : (20)

(= co(2kt*) f(t) 21

€(0)2 k-~
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FIG. 2. The evolution of an initial condition of the form of E@2) for the time-dependent potential of Ed.5). The left panels show
the case ofQ=1, while the right ones the case ©=2. The panels show, respectively: the profildwfx)|? att=40, in the top panel, the
same profile is shown in a semilogarithmic plot in the second from the top peleally indicating the exponential nature of the localiza-
tion). The time evolution of the maximum amplitude of the configuration is shown in the (aoh the top panel, while the bottom panel
shows a detail of the top on@dicating the clearly solitary structure of the corresponding pulses

This case imposes a time-periodic driving term in ELB) regular NLS may be present. A note of caution worth making
with frequency 4/k, which is nothing but the oscillation here is that in reality in this case, the evolution takes place in
frequency naturally following from the Ehrenfest theorem. Inthe setting of Eq(1), rather than that of Eq13). The moti-
this Viewpoint, the phase divergence a]tn: 7T(n VatiOI.’]_, hOWeVer, is that upon Suitablelchoice of the initial
+1/2)/(2yK) —t* (wheren=0,+1,+2, ...) isunderstand- condition (and for the types of traps discussed abpvke

able. Indeed, in the case at hand, the “chirp” initial condition WO €quationsthe GP and the NLS with the gain terrare

means existence of a current at the initial moment of time€duivalent at initial timeshence one may expect that the

Due to the quadratic potential, this current periodicallymStab'“ty that is present in the latter will manifest itself in
S o . some manner in the former.
changes the directiorfwhich is a straightforward conse-

f the Ehrenfest theorgriihe ch fth t However, to examine the details of the time evolution of
quence of the Ehrentest theor € change ot the current ;g instability, we perform numerical simulations of the Eq.
direction is accompanied by the phase singularity.

- h ) 1) with appropriately chosen modulationally stable as well
From the above it is clear that the most interesting casegg modulationally unstable initial conditions.

in the setting with the harmonic potential are the ones with

the inverse square dependerioé the trap amplitude, for a IV. NUMERICAL MANIFESTATIONS OF THE
givenx) on time of Eq.(15), as well as the one the regular MODULATIONAL INSTABILITY FOR NLS WITH
harmonic trap of constant amplitude. In both of these cases, QUADRATIC POTENTIAL

as well as more generally, the lens transformation suggests
the equivalence with a NLS equation with a gain. In these
special cases of interest, the gain is constant or time periodic, Perhaps the most interesting casiele to the suggested
suggesting that similar phenomenology to the one of thenalogy with an NLS with a constant coefficient gain, where

A. Time-dependent potential
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the modulational stability analysis can be performnisdthe 26
case ok(t)=(t+t*) 2/16, which we now examine numeri- 250
cally.

24 1

Notice that in our numerical investigations, we will apply
a loss term to Eq(l) close to the boundaries to emulate the
loss of particles from the trap.

23F 4

))

o

The first case that we studied in this setting was the one ofE **[ 1

an initial condition 5" il |
=

X2 Pl |

u(x,t)=ex i§ [1+ecogQx)], (22) = | _

18F E
suggested by Eq$8) and(15)—(17). € was typically chosen
in the range 0.0%0.1 without significant variation in the
gualitative nature of the results. The paramétewas set to T R T e T L
1. The results are shown in Fig. 2, for the cas®ef 1 (left Q

panels andQ=2 (right panel$.

It is clear from the time evolution shown in the figure that
in this setting we obtaiand that is one of the main findings
of this work a soliton wave train formed as a result of the
instability, starting from such a modulated plane-wave initial
condition. An interesting feature of the obtained soliton train (&) The instability is manifestedt earlier times(see, in
is that emerging solitons are of approximately equal shapegarticular, the comparison of the third panels of Figy. 2
(amplitude$ in the presence of a broadening parabolic po- (b) The instability leads téarger amplitudesn the modu-
tential; in the case when the latter is static, created solitongtionally unstable regimésee, e.g., the comparison of the
have essentially different shapes depending on their positiorfourth panels of Fig. 2 than in the modulationally stable
in space, see, e.g., Fig. 4. one. This is also clearly shown in Fig. 3, where the cases

One can argue that this outcome may not be a result of theith differentQ in the perturbation have been examirtéat
modulational instability given that both modulationally amplitude of the original plane wave=1), showing a
stable and unstabl®’s lead to such a manifestation. How- clearly larger amplitude tendency for “unstable wave num-
ever, a careful inspection of the details of the evolufisee  bers” of Q< J2 in this case.
also the short-time runs reported bejogutrules that possi- The reason why in practice the instability occurs in both
bility. In particular, the two features that happen for modula-cases is that the dynamics of the potential in &¢.mix the
tionally unstable wave numbers are the following. wave numbers of the original perturbation and eventually

1.7 4

FIG. 3. The maximal amplitudéver space and timédor runs
up tot=40 is shown for different values of the wave numigeof
the perturbation.
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result in the excitation of modulationally unstable ones. 8
However, this only happens lat@recause first the modula-
tionally unstableQ’s need to be excitedand with a smaller
amplitude in this case.

We also tried a different initial condition motivated by the
experimental settings that led to the observation of bright,
matter-wave solitong7]. In particular, in these settings, a =—
Feshbach resonance is used to tune the sign of the nonlinea 7
ity [in the case of Eq(1) the sign ofs], starting from the =1
repulsive case 0§<0 and getting to the attractive case of —
s>0, as time evolves in the experiment. Given that in the
case ofs<0, the ground state of the system consigtg-
proximately of the so-called Thomas-Ferr(irF) cloud[1],
we initialized the system in such a state, emulating the time
(in the duration of the experimenin which the system is at
s<0 and evolved the system from such an initial condition.

In this caseu(x,t=0) is of the form

u(x,t=0)=uqg[ 1+ ecogQx)]. (23

Ure= vmax(0,u— V(x,t=0)) [1]. The chemical potentigk
is chosen ag.=1 in this case.

A particular example of this type for=0.1, Q=1 (left
panel$, andQ=2 (right panel$ is shown in Fig. 4.

In this case, we only show short-time dynamics, because¥ __
at longer times the Thomas-Fervhich is not functionally =
close to the ground state of the case with 1) will be o
destroyed, leading to large amplitude localized excitations 3
independent of the initial value @. In fact, this short time
experiment illustrates all the points that we made about
(modulationally stable and unstablshort-time evolution
previously. The modulationally unstable case@# 1 rap-
idly develops the instability and deforms into a solitary wave
train pattern. On the contrary, for the short-times reported in 0.8 T T y T y T T
Fig. 4, the modulationally stable case is limited to benign 0 s % ¢ 19 2
oscillations of small amplitude. In the case Q=1, the
sidebands clearly form, indicating the manifestation of the F|G. 5. The time evolution of the amplitude at=0
MI. However, notice also, as highlighted previously, that in(u(0)|?) is shown in the left panel fo®=1 and in the right one
the case 0fQ=2, the dynamics of Eq.1) eventually tends for Q=2. The comparison of the GP Equati¢solid line) with the
to excite modulationally unstable wave numbers and henceorresponding case for the NL@otted ling is also illustrated.
will also result(for longer timeg in localization.

of the instability is clear from the comparison of the corre-
B. Time-independent potential sponding amplitudes of the oscillation of the norm field as a

In the case in which the potential is time independent, wgunction of time. o N
first (once againtried an initial condition with a modulation The case with the Thomas-Fermi initial condition of Eq.

added to the plane wave in the form (23) is shown in Fig. 6.k=0.0025 in this case and once
again the cases @=1 andQ=2 are shown in the left and
u=1+ecogQx). (24 right panels, respectively.

The development of the instability for short times is once

Notice that in this case the chirp was not used in the initialagain clear for the modulationally unstable caseQof 1,
condition as it does not rid the equation of the explicit tem-leading to the formation of a wave train, while in the modu-
poral dependence. lationally stable case, the perturbation is not amplified. For

In this case the findings, once again f@=1 and Q longer times, the destruction of the TF cloud will eventually
=2, are shown in Fig. 56=0.05 was used in Eq24); k lead in both cases to the generation of very strongly localized
=0.0001. patterns. However, in essence here, we take advantage of the

In both cases, for the GP equation, due to the presence skparation of time scales for the appearance of the Ml and
the potential, the condensate will become peaked towards tHer the destruction of the TF, to illustrate in the short-time
center, gradually as time evolves. However, the developmergvolution, the development of the former instability.
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FIG. 6. Same as Fig. 4, but for the casek¢f) =0.0025=const. The left panels correspond@s=1 and the right ones tQ=2.

V. CONCLUSIONS In such a context once again the MI analysis can be carried

. . through completely, producing similar conditions, but now in

~ In this work, we have examined the problem of modula-he gynamically rescaled frame/variableghich can be ap-
tional instabilities of plane waves in the context of Gross-propriately recast in the original variabjedhis singles out
Pitaevskii equations with an externgh particular, qua- the case of a temporally dependent potential of inverse
dratic) potential. The motivation for this study was its direct square dependence with time. Another case which was also
link to current experimental realizations of Bose-Einsteinexamined due to its direct relevance to the experiment was
condensates. the one of the constant amplitude trap.

A lens transformation was used to cast the problem in a Both of these cases were analyzed theoretically and then
rescaled space and time frartie a way very reminiscent of studied in detail numerically. The theoretical predictions for
the scaling in problems related to focusif§17]). In this  modulational instability were verified by the numerical ex-
rescaled frame, the external potential can be viewed as periments. This was most clearly identified for short-time
form of external growth. For specific forms of temporal de-dynamical evolution results that permit to clearly identify the
pendence of the prefactor of the harmonic poterigad., for  instability through the formation of localized pulses and
k(t)=(t+t*)"?/16], the resulting growth term is constant. trains thereof. For longer times, trains are also formed for
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modulationally stable casédue to the eventual excitation in time-dependent trap, as we have demonstrated. The appropri-

the dynamics of unstable wave numbekdowever, there are ate modulation in the condensate initial condition can be

still “stronger” signatures of the instability in the unstable generated by placing the condensate in an optical Idttige

cases(such as the larger amplitude of the resulting excita-while the chirp can also be produced using appropriate

tions in such casgs phase-engineering techniques that are currently experimen-
The main aim of this work is to advocate the use of thetg|ly available; see, e.g., Re]. We believe that such ex-

MI as an experimental tool to generate solitonic trains inperiments are within the realm of present experimental capa-

Bose-Einstein condensates. Our theoretical investigation angliities and hope that these theoretical findings may motivate
numerical findings clearly support the formation of suchineir realization in the near future.

trains in the context of the GP equation initialized with an
appropriate modulation and possibly a chirp. The latter is
needed in the case of the time-dependent trap that we have
examined herein and which we argue may also be interesting
to try to create in experimental settings. Let us note in pass- P.G.K. gratefully acknowledges support from a University
ing that traps with this type of time dependence of theirof Massachusetts Faculty Research Grant, from the Clay
amplitude have also been suggested as being of interest Mathematics Institute, and from the NSF through Grant No.
quite different setups such as the study of explosionDMS-0204585. V.V.K. gratefully acknowledges support
implosion dualities for the quinti¢critical) GP[18]. How-  from the European COSYC Grant No. HPRN-CT-2000-
ever, our findings should be observaldgen withoutthe  00158.
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