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Lattice solitons in Bose-Einstein condensates
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We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive
or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the
presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the
position of the energy eigenvalue within the associated band structure. These include lattice solitons in con-
densates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as
nonlinear modes that exhibit atomic population cutoffs.
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I. INTRODUCTION

In recent experiments Bose-Einstein condensates~BEC!
have been successfully loaded in optical lattices@1,2# and,
ever since, this field has attracted considerable atten
Subsequently, lattice effects, such as squeezed states@3#,
Bloch oscillations@4#, Josephson-junction arrays@5#, super-
fluid and dissipative dynamics@6#, dispersion@7,8#, Talbot
effects@9#, and Landau-Zener tunneling@10# have been ex-
perimentally demonstrated. In addition to that, several th
retical works have investigated the linear properties of s
lattices@11,12#.

In these experiments, carried out at ultralow temperatu
the wave function of the condensed atoms obeys a Gr
Pitaevskii equation which is mathematically equivalent to
so-called nonlinear Schro¨dinger equation. The optical lattic
involved is created by the interference of laser beams,
the properties of the atoms are characterized by the depth
period of this optically induced potential. When the period
potential wells are deep enough, the atom density tend
increase at the potential minima, thus creating, essentially
array of optical traps. Because of proximity, atoms can t
nel between adjacent traps and, as a result, they bec
quantum mechanically coupled. In principle, if the BEC
oms are loaded on one site, the condensate is expecte
disperse in time to all the other sites.

In the regime where the atomic density is high, the co
densate behaves nonlinearly, giving rise to a host of differ
phenomena@13–19#. An interesting manifestation of th
nonlinearity is the existence of self-localized BEC states
lattice solitons@13,14#. These entities are possible when t
nonlinearity compensates for atom dispersion caused by
tersite tunneling. These lattice solitons are characterized
the position of their eigenvalue within theE2k band struc-
ture. In the case where only the first band is considered
the potentials happen to be deep enough, these self-loca
states are better known as discrete solitons simply bec
they can be described by the tight-binding approximati
On the other hand, when the eigenenergy is located in
gap between two successive bands, these self-localized s
are known as gap solitons@20,21# and, for relatively shallow
potentials, are described by coupled-mode equations@22#.
Here, we will use the termlattice soliton to generally de-
scribe all the families of self-localized solutions that ex
1050-2947/2003/67~6!/063608~9!/$20.00 67 0636
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inside a periodic potential~or lattice!. Experimentally, dis-
crete solitons have been first demonstrated in self-focus
arrays of nonlinear waveguides@23# etched onto an
Al xGa12xAs substrate in one dimension@24#. Recently, using
optical induction techniques@25#, both self-focusing and
self-defocusing discrete solitons have been observed in
dimension@26,27# and, subsequently, for the first time, i
two-dimensions@28#.

In general, the validity of the approximate descriptio
used to describe lattice solitons depends heavily on the
ture of the underlying problem. For example, the tigh
binding approximation is only accurate when the wave fu
tion is highly confined into the potential minima, i.e., whe
the potentials are deep and well separated. In addition
cannot account for a second band, thus, limiting its accur
close to the edge of the first Brillouin zone. Similarly, th
coupled-mode theory used to describe gap solitons is v
when the energies are close to the gap and for shallow
tentials. Strictly speaking, an accurate solution can only
obtained by exactly solving the full nonlinear Schro¨dinger
equation with a periodic potential. In Ref.@25#, such lattice
solitons that exist at the base and edge of the first Brillo
zone were found for both one- and two-dimensional crys
by numerically solving a saturable nonlinear Schro¨dinger
equation. In the same work, it was also shown that the
crete model fails to predict the transport properties of latt
~gap! solitons at the edge of the first Brillouin zone. In a
interesting work, Mandeliket al. @29# demonstrated the ex
istence of nonlinear Floquet-Bloch modes in nonlinear wa
guide arrays. Finally, Louiset al. @30# predicted the existence
of families of spatially localized matter-wave gap solito
and analyzed their stability.

Here, we use a general approach to identify lattice s
tons in BEC with both attractive and repulsive atomic inte
actions. Our analysis is based on the solution of the me
field nonlinear Schro¨dinger equation with a periodic
potential. Such a model was first used in Ref.@25# to identify
lattice soliton solutions in saturable media. Two types of l
tice solitons were found in that paper: self-focusing discr
solitons, residing on the semi-infinite band gap as well
self-defocusing lattice solitons with eigenvalues in the fi
band gap. In Ref.@30# the families of these lattice soliton
~i.e., gap modes for repulsive condensates and lattice so
on the semi-infinite band gap for attractive condensa!
©2003 The American Physical Society08-1
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were obtained and characterized according to their posi
inside the band structure.

In this paper we systematically study lattice solitons
Bose-Einstein condensates. New families of lattice solit
are found and classified according to their position inside
band structure. More specifically, when the eigenvalue is
cated in the semi-infinite gap, we show that, except from
so-called discrete solitons, other classes of nonlinear mo
that exhibit atomic population cutoffs and cannot be p
dicted by the tight-binding approximation, can exist. Wh
the eigenvalue lies inside a band gap, gap lattice solitons
found for repulsive as well as for attractive condensates.
shown that close to the first band the gap modes bec
relatively broad and their wave function can be appro
mated by the Floquet-Bloch mode of the correspond
band. On the other hand, when the eigenvalue is close to
second band, these modes become highly confined insid
lattice ~exhibiting a cusplike behavior!. Finally, we compare
the results found here with those obtained from approxim
procedures based on the tight-binding approximation or
coupled-mode theory.

II. BOSE-EINSTEIN CONDENSATES INSIDE A LATTICE

The evolution of the mean-field wave functionC of a
Bose-Einstein condensate in an optical trap obeys the Gr
Pitaevskii equation@31,32#

i\
]C

]t
52

\2

2m
¹2C1V~r !C1guCu2C, ~1!

where \ is Planck’s constant,m is the atomic mass,g
54pas\

2/m is the nonlinear coefficient that takes into a
count the mean field produced by the other bosons, andas is
the s-wave scattering length. In Eq.~1!,

V~r !5E0 sin2S px

L D1
1

2
m@vx

2x21v'
2 ~y21z2!# ~2!

describes both the trap potential and that arising from
periodic, optically induced, interference pattern. In Eq.~2!,
vx andv' are the trap frequencies,L is the lattice period,m
is the mass of the atoms, andE0 is the potential depth~usu-
ally measured with respect to the recoil energy!. The trap is
elongated along thex direction~i.e., v'@vx). If we express
the wave function asC(x,y,z;t)5U(y,z)c(x,t), and de-
compose the potential asV(x,y,z)5Vx(x)1V'(y,z) then,
due to the high confinement in they-z plane, U approxi-
mately satisfies

2
\2

2m
¹'

2 U1
1

2
mv'

2 r2U5E'U. ~3!

Equation~3! can be solved analytically and its first~zero-
node! eigenfunction is given by

U5Amv'

p\
expF2

mv'

2\
~y21z2!G , ~4!
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with an eigenvalueE'5\v' . By integrating in they-z
plane, applying the transformationc→c exp(2iv't), and
assuming that the frequency of the trap (vx) is much bigger
than the lattice frequency 2p/L, one can obtain

i\
]c

]t
52

\2

2m
cxx1E0 sin2~px/L !c12\v'asucu2c.

~5!

It is more convenient to use dimensionless quantities
normalizing T5t/T0 , X5x/(L/2), c5u/L1

1/2, and V0

5E0 /Er , and chooseT05mL2/4\, L15v'uasumL2/2\,
andEr54\2/mL2. After these transformations,

i
]u

]T
52

1

2

]2u

]X2
1V0 sin2S px

2 Du1suuu2u, ~6!

where s5sgn(as). In recent BEC experiments in lattice
87Rb atoms were used to produce the condensate. For87Rb
atoms,m51.4310225 kg, while thes-scattering lengthas
55.77 nm is positive, resulting in repulsive interaction
Typical values of the lattice spacing can vary between
and 1.6mm, whereas the lattice depth~normalized toEr)
can beV0&22. Here, we assume a lattice spacing of 1mm
and a normalized potential depthV0510, unless stated oth
erwise. Attractive nonlinearities are also possible,
example, for 7Li atoms (m50.115310225 kg, as
521.457 nm). We would like to mention that Eq.~6! pos-
sesses an integral of motion,

N5E
2`

`

uuu2dX, ~7!

which, physically, accounts for the conservation of the nu
ber of atoms in the condensate.

III. BAND STRUCTURE

TheE2k band structure of the lattice interacting with th
condensate plays an important role, since it determines b
properties of the matter waves under linear conditions.
find the band structure we assume that the linear part of
~6! admits solutions of the formu5v exp(2iET), thus ob-
taining the following eigenvalue problem:

Ev52
1

2

]2v

]X2
1V0 sin2S pX

2 D v. ~8!

Over the years several methods have been developed to
such eigenvalue problems. Here, we use the plane-w
method that provides a generic algorithm for periodic pot
tials @33# ~see the Appendix!. A typical band structure of Eq
~8! for V0510 andL51 mm is shown in Fig. 1. For values
of E inside the energy bands, Eq.~8! possesses periodic so
lutions, better know as Floquet-Bloch~FB! modes. Accord-
ing to Bloch’s theorem, the Floquet-Bloch modes, i.e., t
eigenfunctions of Eq.~8!, are characterized by their momen
tum k inside the lattice. More specifically, a FB mode wi
momentumk can be expressed asvk(X)5Vk(X)exp(ikX),
8-2
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LATTICE SOLITONS IN BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A67, 063608 ~2003!
where Vk(X) is a periodic function with the period of th
lattice. Notice that at the base and the edge of each b
(k50,p/2) the eigenfunctionsvk(X) are always real. In Fig
2 such modes located at the base and the edge of the
louin zone are depicted for the first four bands. At the bas
the Brillouin zone, and since exp(ikX)5exp@ik(X12)#, vk
will have the period of the lattice. At the edge of the zon
exp(ikX)52exp@ik(X12)#, and thus,vk will have period 4
~i.e., twice the period of the lattice!. Particular nonlinear FB
modes have been recently demonstrated in both one and
dimensions@15–17#. According to their momentum, thes
modes can be modulationally stable or unstable.

Inside the band gaps, exponentially decaying modes
exist. These modes can be obtained by using, for exam
the plane-wave method, where now the lattice momentum
allowed to be complex. Approximate expressions for th
modes and their rate of decay inside the first band gap ca
found by keeping only the first-order resonant terms in
plane-wave expansion~see the Appendix for details! as long
as the potentials are not very deep. Along these lines,
finds that the energy at the edge of the first band isp2/8
1V0/4, whereas at the edge of the second isp2/813V0/4,
and thus the energy band gap isV0/2. Furthermore, the deca
rate of these modes inside the band gap is given by

ki
2522E2

p2

4
1V01pA2E2V01~V0 /p!2. ~9!

As we will see later, Eq.~9! also describes the rate of deca
of the soliton tails at eigenvalueE. This should have been
anticipated since the low-amplitude tails can be accura
described in the linear regime. From Eq.~9! it is easy to see
that whenE is close to one of the bands,ki becomes very
small and the soliton tails decay very slowly at6`. The
fastest decay is achieved close to the center of the band
~when V0 is small!, and more specifically forE5p2/8
1V0/22V0

2/8p2. The decaying modes inside the band g
are then given by

v5Fcos
f

2
cos

pX

2
1sin

f

2
sin

pX

2 Ge2kix, ~10!

FIG. 1. A typical band structure forV0510 and L51 mm.
Curves I–V correspond to the first five bands, respectively. For
example, the band gap between bands III and IV, and IV and V
very small.
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where f5arctan(b/a) and a5p2/81V0/22ki
2/22E, b

5kip/2. Similar expressions can also be obtained for eig
values below the first band~semi-infinite gap!. At the edges
of the first band gap, i.e., inside the first and the second b
when k5p/2, the Floquet-Bloch mode are approximate
given by cos(pX/2) and sin(pX/2), respectively. Equation
~10! is a product of an exponentially decaying function wi
a periodic function inX. The periodic part is a linear supe
position of the Floquet-Bloch modes at the edges of the
bands. The closer the eigenvalue is to one band, the m
this periodic function will look like the correspondin
Floquet-Bloch mode~see the Appendix!.

IV. LATTICE SOLITONS

Immobile lattice solitons can only be found within th
gaps as nonlinear defect modes. To find such self-locali
states, we assume that Eq.~6! admits solitons of the form
u(x)exp(2iET), and thus,

is
is

FIG. 2. The linear Floquet-Bloch modes forV0510 and L
51 mm. The left~right! column corresponds to the base~edge! of
the Brillouin zone. The four rows~from top to bottom! correspond
to the first four bands, respectively.
8-3
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Eu52
1

2

]2u

]X2
1V0 sin2S px

2 Du1su3. ~11!

Equation ~11! is then solved numerically. These se
localized states are characterized by the position of t
eigenenergies inside the gaps. Physically, the nonlinea
provides the potential necessary to ‘‘connect’’ the tw
exponentially decaying modes to a homoclinic orbit. W
found that lattice solitons exist for both attractive and rep
sive atom interactions.

A. Repulsive interactions

When the nonlinearity is repulsive, lattice solitons do n
exist below the first band shown in Fig. 1. This is because
effective dispersion at the base of the first Brillouin zone
positive or normal. On the other hand, in the same reg
~repulsive! lattice solitons can exist inside the band gaps
Eq. ~8!. We have isolated the first two families of these la
tice solitons. In Fig. 3, the normalized atom numberN of
these solutions is depicted as a function of the eigenva
WhenE approaches the left edgeEL, j of the j th band gap~of
Fig. 3!, N goes to zero, whereas close to the right edgeER, j
of the band gaps, the solutions become highly nonlin
Qualitatively, this can be explained by looking at the effe
tive dispersion inside the band structure. WhenE approaches
EL, j , the dispersion is anomalous and, thus, broad~low-
amplitude! lattice solitons can be supported even for sm
values of the nonlinearity. On the other hand, since the
persion on the right side of each band gap is normal, a la
amount of nonlinearity is required to form a lattice solito
Considering that close toER, j , the tails of the solution will
decay slowly, the envelope of the lattice soliton will exhibi
cusplikebehavior.

In Fig. 4 typical lattice solitons in repulsive condensa
are depicted. Close to the edge of the first Brillouin zo
@Fig. 4~a!#, the maximum atomic densityuuu2, as well asN,
are very small. As we can see, the form of the soliton can
approximated by the corresponding Floquet-Bloch mode@see
Fig. 2~b!# multiplied by an envelope function. This envelop

FIG. 3. Number of atoms,N, as a function of the eigenvalueE,
for repulsive condensates withV0510 andL51 mm. Regions I,
III, and V correspond to the semiinfinite gap and the first two ba
gaps, whereas, the shaded regions II and IV depict the first
bands, respectively.
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is broad~occupying many lattice sites! and decay slowly at
6` according to Eq.~9!. Going deeper inside the band ga
the solitons become more and more localized inside the
tice, and their tails can be expressed as a superposition o
Floquet-Bloch modes at the edges of the first band gap. A
can be seen in Fig. 4~b!, when the eigenvalue gets close
the edge of the second Brillouin zone, the form of the solit
tails can be described by the corresponding Floquet-Bl
mode. This becomes obvious by comparing the tails of
soliton solution of Fig. 4~b! with Fig. 2~d!. Furthermore,
since from Eq.~9! ki→0 when E→ER, j , the soliton tails
decay very slowly. The behavior of the oscillations of t
lattice soliton at its peak atom density is very much differe
from that at its tails, and cannot be described by the co
sponding Floquet-Bloch mode. Physically, this happens
cause close to the edge of the second band the effec
diffraction is mainly affected by the second band~and much
less by the first band!. As a result, a high degree of nonlin
earity is required to support a lattice soliton~that will now
have a cusplike envelope!. Using similar arguments, one ca
describe the lattice solitons in the second band gap@Figs.
4~c! and 4~d!# ~between the edge of the second and the th
Brillouin zones!. Similar solutions can be found inside th
nth band gap, although the width of each band gap decre
with increasingn.

B. Attractive interactions

In the case of condensates with attractive interactions,
have also found the first three families of lattice solitons.
Fig. 5 the number of atoms vs the eigenvalue is depic
whenV0510 andL51 mm. The first family of lattice soli-
tons exists in the semi-infinite gap that can be found be
the first band. Such solitons can exist as a result of the
mal effective dispersion at the base of the first band. In t
case, the band gap is semi-infinite, and thus, the form of
soliton tails can always be approximated by the FB mode
the base of the first zone multiplied by an exponentially d
caying exp(2kix) amplitude, whereki increases by going

d
o

FIG. 4. Lattice solitons in repulsive condensates. The first a
the second row depict solitons in the first and second band g
respectively. The left~right! column shows typical soliton solution
with energies close toEL, j (ER, j ) for j 51,2.
8-4
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LATTICE SOLITONS IN BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A67, 063608 ~2003!
deeper into the gap. Thus, the solutions become narrowe
the eigenvalueE decreases. In Fig. 6 such a lattice soliton
depicted. In this case~i.e., V0510 andL51 mm), there is
clearly a local maximum in the atom density at each pot
tial minimum.

Lattice solitons in attractive condensates can also e
inside the band gaps. In Fig. 7 such self-localized soluti
are depicted. The properties of these solutions can be q
tatively described by using similar arguments. In contras
the repulsive case, nowN becomes small on the right side o
each band gap of Fig. 5, whereas, the lattice solitons bec
highly nonlinear on the left side of each gap. Close to
edge of the second Brillouin zone the effective lattice disp
sion is normal; the solutions become broad occupying m
lattice sites, and can be approximated by the FB mode a
edge of the second Brillouin zone shown in Fig. 2~d!. As the
eigenvalue decreases inside the first band gap, the Floq
Bloch modes become mixed and the lattice soliton beco
more localized inside the lattice. Finally, close to the edge
the first band, the effective diffraction becomes anomal
and a highly nonlinear, cusplike mode is required to supp
a lattice soliton@Fig. 7~a!#. Figures 7~c! and 7~d! show typi-
cal lattice solitons in the second band gap with eigenval
close to the base of the second and the third bands, res
tively.

FIG. 5. Number of atoms,N, as a function of the eigenvalueE,
for attractive atom interactions. Regions I, III, and V correspond
the semi-infinite gap and the first two band gaps, whereas
shaded regions II and IV depict the first two bands, respectivel

FIG. 6. A typical form of a lattice soliton~solid curve! in attrac-
tive condensates with eigenvalue in the gap below the first band
v0510 and L51 mm. The dotted curve represents the period
lattice potentialV.
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C. Nonlinear modes with a cutoff

The families of lattice solitons previously described ha
a common property. In one limit~close to one band! the
number of atoms~N! approaches zero, whereas in the oth
limit ~close to the second band or for very small values oE
when the gap is semi-infinite!, these solitons become highl
nonlinear. Except these families, we were able to isolate
ditional families that represent new types of nonlinear mo
with atomic population cutoffs, i.e., the number of atoms~N!
never goes to zero, but, instead, exhibits a threshold va
N0. These modes can either exist in the semi-infinite gap
inside finite band gaps. The existence of this type of latt
solitons can be qualitatively understood as follows. The n
linearity is responsible for an effective potentialuuu2 that
modifies the lattice potential that the atoms experience. A
a certain threshold additional bound modes form, which,
turn, allow additional higher order lattice solitons in the a
ray. In Fig. 8 theN-E diagram of the three first nonlinear od
modes with eigenvalues inside the semi-infinite band ga

o
e

or

FIG. 7. Lattice solitons~solid curves! for attractive atom inter-
actions whenV0510 andL51 mm. The first~second! row depicts
lattice solitons in the first~second! band, whereas the left~right!
column corresponds to the left~right! edge of each band gap in Fig
5. The dotted curves represent the periodic lattice potentialV.

FIG. 8. Number of atoms,N, as a function of the eigenvalueE
for the first three even lattice solitons with a cutoff. The vertic
shaded area shows the width of the first Brillouin zone. Branc
I–III correspond to the first three modes, respectively.
8-5
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shown. Typical odd soliton profiles are depicted in Fig.
Note that in these solutions the eigenfunction goes to z
and has two peaks at the center site—a behavior that ca
be accounted within the tight-binding approximation. Ev
nonlinear modes with a cutoff are also shown in Fig. 10.
would like to mention that this type of nonlinear lattice so
tons with a cutoff cannot be predicted by the tight-bindi
approximation because the original expansion is not co
plete, accounting only for solutions localized in the latti
minima.

D. Stability

We have performed a series of numerical simulations
test the stability of these solutions. A random perturbat
was added to the exact solution atT50 to make sure that al
the linear perturbation eigenmodes are exited. Using a s
step Fourier method, we numerically solve Eq.~6! and moni-
tor the time evolution of the BEC lattice soliton. We ha
found that the lattice soliton that resides below the first ba
is always stable~i.e., the atom densityuuu2 does not change
with T). The solitons that reside in the band gaps can
either stable or unstable depending on their eigenenergie
general, we found that the lattice solitons are stable i
region close to the band, which allows broad lattice soli
solutions. Going deeper into the band gap, the solutions
come narrower, and after a certain threshold they beco
unstable. In Fig. 11 typical evolution of lattice solitons wi
eigenenergies in the second band gap are depicted for87Rb
atoms. The eigenenergy of the lattice soliton of Fig. 11~a! is
close to the edge of the second band,E59.55, and propa-
gates without any change for over 3 sec. On the other h
the soliton of Fig. 11~b! with eigenvalueE510 turns out to
be is unstable.

V. COMPARISON WITH THE RESULTS
OF THE TIGHT-BINDING APPROXIMATION

AND COUPLED-MODE THEORY

To complete our discussion, it may be useful to disc
our results within the context of approximate theories. S

FIG. 9. Typical field profiles of the first two odd lattice soliton
with a cutoff in attractive condensates.

FIG. 10. Typical field profiles of even lattice solitons with
cutoff in attractive condensates.
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eral approximate procedures have been developed to
proximate the solutions of a nonlinear Schro¨dinger equation
with a periodic potential. Two of these models are exte
sively used in the literature: the tight-binding approximati
and the coupled-mode theory@34#. We will illustrate how
these models are obtained and discuss about the regim
their validity. In both cases the starting point is the nonline
Schrödinger equation with a periodic potential,

i
]u

]T
52

1

2

]2u

]X2
1F~x!u1suuu2u, ~12!

where, for the description of optically induced lattices
Bose-Einstein condensates,F(x)5V0 sin2(pX/2D), andD is
the period of the lattice.

A. Tight-binding approximation

The tight-binding approximation@34# is extensively used
to describe solitons in periodic lattices. It provides a simp
fied model that can provide accurate results when the or
nal assumptions are valid. Here, we compare this model w
the mean-field equation and present necessary condition
the regimes of its validity.

We first assume that the Floquet-Bloch modesv are
highly confined into the lattice. This basic assumption in t
tight-binding approximation implies that only the first ban
of the complete band structure is considered and allows
decomposition of the wave functionu into a sum of local
modes,fn . Each of these local modes corresponds to
lowest order linear eigenfunction of each potential in iso
tion, which is located at the minimum of thenth potential
well. Thus,f satisfies the linear eigenvalue problem,

FIG. 11. Evolution~a! of a stable lattice soliton withE59.55
and ~b! of an unstable lattice soliton withE510, for V0510, L
51 mm in 87Rb condensates. Both eigenenergies reside in the
ond band gap of the dispesion curve.
8-6
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Ef52
1

2

]2f

]X2
1F0~x!f, ~13!

where F0(X) is given by F0(X)5V0 sin2(pX/2D) when
uXu,1, F0(X)5V0 for uXu.1, andE is the corresponding
eigenvalue. An alternative base can be that of a Wan
function @35#. Usingf as the building element of the expa
sion, one can write

u~x,t !5(
n

cn~T!fn~X!exp~2 iET!, ~14!

wherefn(X)5f(X2nD). We substitute Eq.~14! into Eq.
~12!, multiply with fm , and integrate overx. The resulting
equation reads

i(
n

^fmufn& ċn1E (
nÞm

^fmufn&cn

52
1

2 (
nÞm

^fmufnXX&cn1s(
n

^fmufn
3&ucnu2cn

1^fmuDFm~X!fm&cm1 (
nÞm

^fmuF~X!fn&cn ,

~15!

where we made use of the Dirac notation,^fmufn&
5*fm* fndX, DFm5F(X)2F0(X2Dm), and fmX

5]fm /]X. Each eigenfunction of Eq.~13!, which belongs
in the discrete spectrum, decays exponentially outside
potential with a rate of decay equal toki

252(V02E). Thus,
the coupling between second neighbors will be much sma
compared to the first-order coupling. Notice that the tig
binding approximation is valid whenki

2@1, and so

^fmuf (m61)XX&'ki
2^fmufm61&@^fmufm61&. ~16!

Then, normalizingfn such that^fnufn&51, Eq. ~15! be-
comes

i ċn5Vcn2k~cn111cn21!1gucnu2cn , ~17!

which is the usual form of the tight-binding approximatio
Equation ~17! is in agreement with the results obtaine
in Ref. @13#. In Eq. ~17!, V5(1/2)^fmufmXX&
1^fmuDFm(X)fm& is a shift in the eigenvalue
due to the perturbation in the original potential,k
5(1/2)^fmuf (m61)XX&1^fmuF(X)fm61& is the coupling
coefficient between adjacent wells, andg5s^fmufm

3 & is the
effective nonlinearity. Equation~17! is known as the discrete
nonlinear Schro¨dinger equation~DNLS!. It is instructive to
discuss the regime where the approximation applies.

In the tight-binding model it is assumed that the ato
density is highly confined into each potential minimum th
in turn, implies that the potentials have to be deep enoug
is in this regime that the Floquet-Bloch modes of the fi
band can be described by the discrete model. On the o
hand, if the potentials are deep, they might also have m
06360
er

e

er
-

,
It
t
er
re

modes~discrete eigenfunctions! that are not accounted~only
the zero-node mode is considered!.

Nonlinear corrections are not considered in the form
the eigenmodes of Eq.~13!. These corrections become sig
nificant in the case of a high-density condensate.

Higher order bands are not taken into account. As a res
in the tight-binding description, the in-phase lattice solito
in attractive condensates and thep out-of-phase lattice soli-
tons in repulsive condensates share exactly the same pro
ties in the DNLS lattice @using the transformationcn
→(21)ncn along withT→2T, thep out-of-phase solution
transforms into the in-phase mode#, such that, for example
they both exist in a semi-infinite band gap. In the focusi
regime~when the condensate is attractive!, lattice solitons do
exist in a semi-infinite band gap. However, in the defocus
regime ~i.e., when the condensate is repulsive! lattice soli-
tons can be found in the finite band gap between the first
the second band, and thus, the eigenvalue is located
bounded domain. This has several implications. As the eig
value increases inside the band gap, the Floquet-Bl
modes become mixed, and thus Eq.~14! fails to describe the
form of the solution. This is why the rate of decay of th
soliton tails, E52k cosh(ki), does not globally agree with
Eq. ~9!.

In expansion~14!, fn is always in phase~with zero phase
difference alongx). On the other hand, in a periodic lattic
the phase varies continuously alongx. As a consequence, i
was shown in Ref.@25# that the lattice solitons exhibit trans
port anomalies that depend on their initial momentum with
the Brillouin zone as compared with the tight-binding mod

Finally, different types of solutions@such as those show
in Figs. 9 and 10#, do not have equivalence in the tigh
binding description, due to the constraints of the origin
expansion~14!.

B. Coupled-mode theory

Wave propagation close to a gap resonance of a peri
cally modulated lattice has been studied extensively us
coupled-mode theory. According to the coupled-mode
scription, the wave functionu is expanded in Fourier mode
as

u5(
n

un exp@2 iET1 iknX#, ~18!

where k5p/2D. Assuming that the potential is relativel
shallow, only then561 terms of Eq.~18! are important,
and thus,u can be expanded into a forward and a backw
wave,

u5uf exp@2 i ~ET2kX!#1ub exp@2 i ~ET1kX!#.
~19!

Substituting Eq.~19! into Eq. ~12!, keeping the terms tha
resonate at the edge of first Brillouin zone~first band gap!,
and assuming that the material dispersion is small~broad
solutions!, results into the coupled-mode equations@22#,
8-7
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i S ]uf

]T
1c

]uf

]X D1kub1s~ uuf u212uubu2!uf50, ~20!

i S ]ub

]T
2c

]ub

]X D1kuf1s~ uubu212uuf u2!ub50, ~21!

where E5V0/21(p/2D)2, c5p/D, and k5V0/4. We
would like to mention that, due to that the sinusoidal form
the potential of the optically induced lattice and the exp
sion into one forward and one backward wave, coupl
mode theory can only be applied in the first band gap. T
dispersion relation of Eqs.~20! and ~21! can be obtained by
assuming plane-wave solutions of the formuf ,b}exp(ilX
2ivT), and is given byl25(v22k2)/c2. Notice that gap
solitons that reside outside the edge of the Brillouin zone
also be considered by Eqs.~20! and ~21! by assuming an
additional phase tilt between the forward and the backw
wave.

Clearly, the original expansion~19! in the coupled-mode
equation is accurate as long as higher order terms exclu
from Eq. ~18! are not very important. This is true when th
potentials are relatively shallow, and thus, Eq.~19! repre-
sents the Floquet-Bloch modes inside the band gap~see the
Appendix!. On the other hand, when the potential is de
higher order terms of expansion~18! become important and
can no longer be ignored. Higher order corrections to
coupled-mode equation have also been studied in the lit
ture @36#. However, the resulting equations become rat
cumbersome even by considering first-order corrections.

Finally, the linear dispersion relation of Eqs.~20! and~21!
is hyperbolic and centered at the edge of the first Brillo
zone, whereas, the dispersion curve of Eq.~12! ~outside the
band gaps! is periodic ink. As a result, the coupled-mod
equations can be applied in the regime where this hyperb
approximation is accurate.

VI. CONCLUSIONS

We have systematically studied the properties of latt
solitons in Bose-Einstein condensates with either attrac
or repulsive atom interactions. This was done by exac
solving the mean-field Gross-Pitaevskii equation in the pr
ence of a periodic potential. We have found other families
lattice soliton solutions, which are characterized by the po
tion of the energy eigenvalue within the associated b
structure. These include lattice solitons in attractive and
pulsive condensates that exist in finite or semi-infinite g
as well as nonlinear modes that exhibit atomic populat
cutoffs.

APPENDIX: PLANE-WAVE METHODS

The eigenvalue problem of Eq.~8! can be written as

Ev52
1

2

]2v

]X2
1F~X!v, ~A1!
06360
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whereF(x) is a periodic potential with periodD. To solve
Eq. ~A1!, we make use of the periodicity of the potential a
expand it as

F~X!5(
n

UGn
exp~ iGnX!, ~A2!

whereGn52pn/D are the reciprocal lattice vectors. Assum
ing that the lattice is finite, and using periodic boundary co
ditions, we can expand the solutionF(X) as

v5(
n

Ckn
exp~ iknX!, ~A3!

wherekn52pn/a, and a is the length of the lattice. After
these substitutions, Eq.~A1! reduces to

S k2

2
2EDCk1(

G
Ck2GUG50. ~A4!

Solving Eq.~A4! the band structure and the correspondi
Floquet-Bloch modes can be computed. The accuracy of
method depends on the number of plane waves considere
the expansion, as well as on the form and the depth of
potential. In Bose-Einstein condensates, the potential~cre-
ated by the interference of laser beams, is given byF(X)
5V0 sin2(pX/D). In this case, only three coefficients of E
~A2! will be nonzero, namely,U05V0/2 and UG1

5U2G1

52V0/4. Thus, when the potential is relatively shallow, th
defect modes between the first and the second bands ca
accurately described by keeping only two terms of the
pansion,

Fk2

2
1U02EGCk1UG1

Ck2G1
50, ~A5!

F ~k2G1!2

2
1U02EGCk2G1

1U0Ck50. ~A6!

Inside the first band gap, the lattice momentum will, in ge
eral, be complex,k5p/D1 ik i . The resulting compatibility
condition of Eqs.~A5! and ~A6! reads

F1

2 S p

D D 2

1
V0

2
2

ki
2

2
2EG2

1S kip

D D 2

5S V0

4 D 2

. ~A7!

By solving Eq.~A7!, one can find the rate of the decay of th
soliton tails,

ki
2522E2

p2

D2
1V01

2p

D
A2E2V01~DV0/2p!2.

~A8!

The value ofE inside the band gap where the fastest d
cay of the defect mode is achieved can be found
setting ]ki /]E50 and is given by E5p2/2D21V0/2
2D2V0

2/32p2. Furthermore, the form of a defect eigenmo
inside the band gap is
8-8
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v5Fcos
f

2
cos

pX

D
1sin

f

2
sin

pX

D Ge2kiX, ~A9!

where

f5arctan~b/a! ~A10!

and a5p2/2D21V0/22ki
2/22E, b5kip/D. The Floquet-

Bloch modes at the edge of the first and the beginning of
second Brillouin zone~denoted byv7) can be found by set
ting E→p2/2D21V0/4 or E→p2/2D213V0/4, ki

2→0, and
taking into account thatf is a continuous function. In
these two limits,f→0,p, and the Floquet-Bloch mode ar
given by

v25cos~pX/D !, v15sin~pX/D !. ~A11!
on

A

A.

o,

ys

.
tt

d
D.

-

.

ck

s

06360
e

Equation~A9! can then be written as a linear superpositi
of the Floquet-Bloch modev7(X),

v5Fv2~X!cos
f

2
1v1~X!sin

f

2 Ge2kiX. ~A12!

As E increases inside the band gap,f also increases from 0
to p, and the form of the corresponding defect mode is
rectly affected by the position of the eigenvalue inside
band gap. More specifically, when the eigenvalue is close
the first~second! band, the periodic modulations will have
cosinusoidal~sinusoidal! form, whereas, in between they wi
be mixed with coefficients that are determined by the po
tion of the eigenvalue inside the band gap.
ys.
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