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Lattice solitons in Bose-Einstein condensates
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We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive
or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the
presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the
position of the energy eigenvalue within the associated band structure. These include lattice solitons in con-
densates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as
nonlinear modes that exhibit atomic population cutoffs.
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I. INTRODUCTION inside a periodic potentialor lattice. Experimentally, dis-
crete solitons have been first demonstrated in self-focusing
In recent experiments Bose-Einstein condenséBEsC) arrays of nonlinear waveguide§23] etched onto an
have been successfully loaded in optical lattife®2] and, Al,Ga, _,As substrate in one dimensi¢24]. Recently, using
ever since, this field has attracted considerable attentiomptical induction technique$25], both self-focusing and
Subsequently, lattice effects, such as squeezed sfadles self-defocusing discrete solitons have been observed in one-
Bloch oscillations[4], Josephson-junction arrays], super- dimension[26,27] and, subsequently, for the first time, in
fluid and dissipative dynamids], dispersion[7,8], Talbot  two-dimensiong28].
effects[9], and Landau-Zener tunneliid0] have been ex- In general, the validity of the approximate descriptions
perimentally demonstrated. In addition to that, several theoused to describe lattice solitons depends heavily on the na-
retical works have investigated the linear properties of suctiure of the underlying problem. For example, the tight-
lattices[11,12. binding approximation is only accurate when the wave func-
In these experiments, carried out at ultralow temperaturegion is highly confined into the potential minima, i.e., when
the wave function of the condensed atoms obeys a Grosshe potentials are deep and well separated. In addition, it
Pitaevskii equation which is mathematically equivalent to thecannot account for a second band, thus, limiting its accuracy
so-called nonlinear Schdinger equation. The optical lattice close to the edge of the first Brillouin zone. Similarly, the
involved is created by the interference of laser beams, andoupled-mode theory used to describe gap solitons is valid
the properties of the atoms are characterized by the depth an¢chen the energies are close to the gap and for shallow po-
period of this optically induced potential. When the periodictentials. Strictly speaking, an accurate solution can only be
potential wells are deep enough, the atom density tends tobtained by exactly solving the full nonlinear Sctiimger
increase at the potential minima, thus creating, essentially, aequation with a periodic potential. In R¢R5], such lattice
array of optical traps. Because of proximity, atoms can tunsolitons that exist at the base and edge of the first Brillouin
nel between adjacent traps and, as a result, they beconzene were found for both one- and two-dimensional crystals
quantum mechanically coupled. In principle, if the BEC at-by numerically solving a saturable nonlinear Sclinger
oms are loaded on one site, the condensate is expected ¢quation. In the same work, it was also shown that the dis-
disperse in time to all the other sites. crete model fails to predict the transport properties of lattice
In the regime where the atomic density is high, the con{gap solitons at the edge of the first Brillouin zone. In an
densate behaves nonlinearly, giving rise to a host of differeninteresting work, Mandelilet al. [29] demonstrated the ex-
phenomena 13—-19. An interesting manifestation of the istence of nonlinear Floquet-Bloch modes in nonlinear wave-
nonlinearity is the existence of self-localized BEC states oguide arrays. Finally, Louist al.[30] predicted the existence
lattice solitong13,14]. These entities are possible when theof families of spatially localized matter-wave gap solitons
nonlinearity compensates for atom dispersion caused by irand analyzed their stability.
tersite tunneling. These lattice solitons are characterized by Here, we use a general approach to identify lattice soli-
the position of their eigenvalue within tie—k band struc-  tons in BEC with both attractive and repulsive atomic inter-
ture. In the case where only the first band is considered andctions. Our analysis is based on the solution of the mean-
the potentials happen to be deep enough, these self-localizéiéld nonlinear Schrdinger equation with a periodic
states are better known as discrete solitons simply becaug®tential. Such a model was first used in R&b] to identify
they can be described by the tight-binding approximationlattice soliton solutions in saturable media. Two types of lat-
On the other hand, when the eigenenergy is located in théce solitons were found in that paper: self-focusing discrete
gap between two successive bands, these self-localized statgslitons, residing on the semi-infinite band gap as well as
are known as gap solito20,21] and, for relatively shallow self-defocusing lattice solitons with eigenvalues in the first
potentials, are described by coupled-mode equatj@@%  band gap. In Ref[30] the families of these lattice solitons
Here, we will use the terntattice solitonto generally de- (i.e., gap modes for repulsive condensates and lattice soliton
scribe all the families of self-localized solutions that existon the semi-infinite band gap for attractive condensates
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were obtained and characterized according to their positiowith an eigenvalueE, =% w, . By integrating in they-z

inside the band structure. plane, applying the transformatio#i— ¢ exp(—iw, t), and
In this paper we systematically study lattice solitons inassuming that the frequency of the trap,) is much bigger

Bose-Einstein condensates. New families of lattice solitonshan the lattice frequencys2/L, one can obtain

are found and classified according to their position inside the

band structure. More specifically, when the eigenvalue is lo- ., ¢ h? (] oh 2
cated in the semi-infinite gap, we show that, except from the '™ gt 2m Vot Bosint(arx L)y+2hw, asll*y.
so-called discrete solitons, other classes of nonlinear modes (5)

that exhibit atomic population cutoffs and cannot be pre- ) ) ) N
dicted by the tight-binding approximation, can exist. Whenlt IS more convenient to use dlmensmnleSZS quantities by
the eigenvalue lies inside a band gap, gap lattice solitons afeormalizing T=t/T,, X=x/(L/2), ¢=ulL;", and V,
found for repulsive as well as for attractive condensates. It issEo/E;, and chooseTo=mL%/4%i, Li=w, |a|mL*/2,
shown that close to the first band the gap modes becom@NdE,=4%%/mL?. After these transformations,

relatively broad and their wave function can be approxi-

mated by the Floquet-Bloch mode of the corresponding ou 1 Ju Vo sir?
band. On the other hand, when the eigenvalue is close to the T2 ax2 +Vosl
second band, these modes become highly confined inside the

lattice (exhibiting a cusplike behaviprFinally, we compare ~ where o=sgn(as). In recent BEC experiments in lattices,
the results found here with those obtained from approximaté’Rb atoms were used to produce the condensate &fRiy

procedures based on the tight-binding approximation or thgtoms,m=1.4x10 2° kg, while the s-scattering lengthag

u+o|ul?u, (6)

mX
2

coupled-mode theory. =5.77 nm is positive, resulting in repulsive interactions.
Typical values of the lattice spacing can vary between 0.4
Il. BOSE-EINSTEIN CONDENSATES INSIDE A LATTICE and 1.6um, whereas the lattice deptimormalized toE,)

) ) ) can beVy=<22. Here, we assume a lattice spacing gfith
The evolution of the mean-field wave functioh of a a9 a normalized potential depth,= 10, unless stated oth-
Bose-Einstein condensate in an optical trap obeys the Grosgryise. Attractive nonlinearities are also possible, for

Pitaevskii equatio31,32 example, for ’Li atoms (m=0.115<10 ?°kg, a
2 =—1.457 nm). We would like to mention that E@) pos-
iﬁ%= _ ;L—mVZ\If+V(r)‘If+g|\If|2\If, (1)  sessesan integral of motion,
— - 2
where 7 is Planck’s constantm is the atomic massg N—f_x|u| dX, @)

=4magh?/m is the nonlinear coefficient that takes into ac-
count the mean field produced by the other bosonsaansl  which, physically, accounts for the conservation of the num-

the swave scattering length. In E@l), ber of atoms in the condensate.
X 1 IIl. BAND STRUCTURE
V(r)=Eosin2(T +smwx’+ol(y?+22)] ()
The E—k band structure of the lattice interacting with the

. . - condensate plays an important role, since it determines basic
describes both the trap potential and that arising from th%roperties of the matter waves under linear conditions. To

periodic, apically induced, interfergnce pattgrn_ In_ E2), find the band structure we assume that the linear part of Eq.
wy, andw, are the trap frequenciek,is the lattice periodm (6) admits solutions of the formi=v exp(~iET), thus ob-

is the mass of the atoms, aig is the potential deptkusu- taining the following eigenvalue problem:
ally measured with respect to the recoil engrgyhe trap is

elongated along the direction(i.e., w, > w,). If we express 1 d% X

the wave function asb(x,y,z;t)=U(y,z) ¥(x,t), and de- Ev=———+Vosin2<—)v. (8
compose the potential ag(x,y,z)=V,(x)+V, (y,z) then, 2 gx? 2

due to the high confinement in thez plane,U approxi-

mately satisfies Over the years several methods have been developed to solve

such eigenvalue problems. Here, we use the plane-wave
2 1 method that provides a generic algorithm for periodic poten-
— =V2U+ -mw?p?U=E,U. (3) tials[33] (see the Appendjx A typical band structure of Eq.
2m 2 (8) for Vo=10 andL=1 um is shown in Fig. 1. For values
of E inside the energy bands, E@®) possesses periodic so-
lutions, better know as Floquet-Blo¢kB) modes. Accord-
ing to Bloch’s theorem, the Floquet-Bloch modes, i.e., the
eigenfunctions of Eq(8), are characterized by their momen-
4) tum k inside the lattice. More specifically, a FB mode with
' momentumk can be expressed ag(X)=V(X)exp(ikX),

Equation(3) can be solved analytically and its fir&ero-
node eigenfunction is given by

. me _m(l)J_ 2 2
U=/ p—r exp{ % (y“+2z9)
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FIG. 1. A typical band structure fo¥y=10 andL=1 pm. Vo Vo
Curves |-V correspond to the first five bands, respectively. For this _05
example, the band gap between bands Il and IV, and IV and V is _1 »
very small.
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where V,(X) is a periodic function with the period of the
lattice. Notice that at the base and the edge of each ban

) f
(k=0,7/2) the eigenfunctions,(X) are always real. In Fig. 05 © it @
2 such modes located at the base and the edge of the Bril
louin zone are depicted for the first four bands. At the base of"_; v
the Brillouin zone, and since exgK)=exdik(X+2)], vy 1
will have the period of the lattice. At the edge of the zone, 45 -

exp(kX)=—exdik(X+2)], and thusp, will have period 4
(i.e., twice the period of the lattigeParticular nonlinear FB ’ X
modes have been recently demonstrated in both one and tw

. ) 0 )
dimensions[15—17. According to their momentum, these (@ (
modes can be modulationally stable or unstable. 1 1
Inside the band gaps, exponentially decaying modes alst, v
. . . 0 0
exist. These modes can be obtained by using, for example
the plane-wave method, where now the lattice momentum is 1
allowed to be complex. Approximate expressions for these -1

modes and their rate of decay inside the first band gapcanb _——% 5 G
found by keeping only the first-order resonant terms in the X X
plane-wave expansiofsee the Appendix for detajlas long FIG. 2. The linear Floguet-Bloch modes fak,=10 and L
as the potentials are not very deep. Along these lines, one ; MT.L 'I.'he left (right) column corresponds to thg baaelge of
finds that the energy at the edge of the first bandr8 the Brillouin zone. The four row&from top to bottom correspond
+V/4, whereas at the edge of the secondrfé8+3V,/4, to the first four bands, respectively.

and thus the energy band gap/igi2. Furthermore, the decay

rate of these modes inside the band gap is given by
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where ¢=arctan@la) and a=w?/8+Vy2—k*[2—E, B
=k;7/2. Similar expressions can also be obtained for eigen-
values below the first ban@emi-infinite gap. At the edges

of the first band gap, i.e., inside the first and the second band
when k= 7/2, the Floquet-Bloch mode are approximately
As we will see later, Eq(9) also describes the rate of decay 9IVen by cosgX/2) and singX/2), respectively. Equation

of the soliton tails at eigenvaluE. This should have been (10) is a product of an exponentially decaying function with

anticipated since the low-amplitude tails can be accuratel§t Periodic function inx. The periodic part is a linear super-
described in the linear regime. From E§) it is easy to see position of the Floquet-Bloch modes at the edges of the two

that whenE is close to one of the bandk, becomes very ba}nds. '_rhe. closer _the eigenvalue'is to one band, the. more
small and the soliton tails decay very slowly ate. The this periodic function will look like the corresponding
fastest decay is achieved close to the center of the band g&pPduet-Bloch modésee the Appendix

(when V, is smal), and more specifically folE=7%/8

+Vo/2—V2/872. The decaying modes inside the band gap IV. LATTICE SOLITONS

are then given by

2 i 2
k?=—2E— Z+V0+7T\/2E—VO+(VO/7T) ()

Immobile lattice solitons can only be found within the
gaps as nonlinear defect modes. To find such self-localized

¢ X ¢ mX states, we assume that E&) admits solitons of the form
= — —+ — Sin— iX ’ i .
v COSZ cos 2 sin 2 s! 2 e (10 u(x)exp(—iET), and thus,
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FIG. 3. Number of atomd\, as a function of the eigenvalle
for repulsive condensates witjy=10 andL=1 xm. Regions I,

Ill, and V correspond to the semiinfinite gap and the first two band
gaps, whereas, the shaded regions Il and IV depict the first two

bands, respectively. FIG. 4. Lattice solitons in repulsive condensates. The first and

the second row depict solitons in the first and second band gaps,
respectively. The leftright) column shows typical soliton solutions
with energies close t&_ ; (Eg;) for j=1,2.

1 9°u )
Eu=—5 —; +Vpsir 3

2 9X

92 X 3
u-+ou®. (11

is broad(occupying many lattice sitesand decay slowly at

] ) ] + o according to Eq(9). Going deeper inside the band gap,
Equation (11) is then solved numerically. These self- g 5olitons become more and more localized inside the lat-
localized states are characterized by the position of theifice and their tails can be expressed as a superposition of the
eigenenergies inside the gaps. Physically, the nonlinearity|oquet-Bloch modes at the edges of the first band gap. As it
provides the potential necessary to “connect” the tWOcan he seen in Fig.(d), when the eigenvalue gets close to
exponentially decaying modes to a homoclinic orbit. Weihe edge of the second Brillouin zone, the form of the soliton
found that lattice solitons exist for both attractive and repul-5iis can be described by the corresponding Floquet-Bloch

sive atom interactions. mode. This becomes obvious by comparing the tails of the
soliton solution of Fig. &) with Fig. 2(d). Furthermore,
A. Repulsive interactions since from Eq.(9) ki—0 whenE—Eg;, the soliton tails

decay very slowly. The behavior of the oscillations of the
exist below the first band shown in Fig. 1. This is because th attice soliton at its peak atom density is very much different

effective dispersion at the base of the first Brillouin zone is rom that at iis tails, and cannot be (_:Iescrlbe_d by the corre-
positive or normal. On the other hand, in the same regimépondlng Floguet-Bloch mode. Physically, this happens be-

. : : R ause close to the edge of the second band the effective
(repulsive lattice solitons can exist inside the band gaps of S .
Eq. (8). We have isolated the first two families of these Iat_dlffractlon IS 'malnly affected by the S"?‘Cond bafaohd much
tice solitons. In Fig. 3, the normalized atom numidénof less by the first bandAs a result, a high degree of nonlin-

these solutions is depicted as a function of the eigenvalu earity is required to support a lattice solit@hat will now

. en'ave a cusplike envelopeJsing similar arguments, one can
WhenEapproaches the left edge ; of thejth bqnd garof describe the lattice solitons in the second band [féps.
Fig. 3), N goes to zero, whereas close to the right eEge

of the band gaps, the solutions become highly nonlinear4(c) and 4d)] (between the edge of the second and the third

o . . . Brillouin zones. Similar solutions can be found inside the

Qualitatively, this can be explained by looking at the effec- .
) . S nth band gap, although the width of each band gap decreases
tive dispersion inside the band structure. Wikeapproaches with increasingn
E_ ;. the dispersion is anomalous and, thus, broaayv- ’
amplitude lattice solitons can be supported even for small
values of the nonlinearity. On the other hand, since the dis-
persion on the right side of each band gap is normal, a large In the case of condensates with attractive interactions, we
amount of nonlinearity is required to form a lattice soliton. have also found the first three families of lattice solitons. In
Considering that close tBg;, the tails of the solution will  Fig. 5 the number of atoms vs the eigenvalue is depicted
decay slowly, the envelope of the lattice soliton will exhibit awhenV,=10 andL=1 um. The first family of lattice soli-
cusplikebehavior. tons exists in the semi-infinite gap that can be found below

In Fig. 4 typical lattice solitons in repulsive condensatesthe first band. Such solitons can exist as a result of the nor-
are depicted. Close to the edge of the first Brillouin zonemal effective dispersion at the base of the first band. In this
[Fig. 4@], the maximum atomic density|?, as well asN,  case, the band gap is semi-infinite, and thus, the form of the
are very small. As we can see, the form of the soliton can baoliton tails can always be approximated by the FB mode at
approximated by the corresponding Floquet-Bloch n{ege  the base of the first zone multiplied by an exponentially de-
Fig. 2(b)] multiplied by an envelope function. This envelope caying expEkx) amplitude, wherek; increases by going

When the nonlinearity is repulsive, lattice solitons do not

B. Attractive interactions
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FIG. 5. Number of atomd\, as a function of the eigenvalle
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the semi-infinite gap and the first two band gaps, whereas the X

shaded regions Il and IV depict the first two bands, respectively. FIG. 7. Lattice solitongsolid curve$ for attractive atom inter-

actions when/y=10 andL=1 um. The first(second row depicts
deeper into the gap. Thus, the solutions become narrower 4gtice solitons in the firstsecond band, whereas the leftight)
the eigenvalu€ decreases. In Fig. 6 such a lattice soliton iscolumn corresponds to the Iefight) edge of each band gap in Fig.
depicted. In this casé.e., Vo=10 andL=1 um), there is 5. The dotted curves represent the periodic lattice potevitial
clearly a local maximum in the atom density at each poten-
tial minimum. C. Nonlinear modes with a cutoff

Lattice solitons in attractive condensates can also exist The families of lattice solitons previou5|y described have
inside the band gaps. In Fig. 7 such self-localized solutiong, common property. In one limifclose to one bandthe
are depicted. The properties of these solutions can be quakwumber of atomgN) approaches zero, whereas in the other
tatively described by using similar arguments. In contrast tdimit (close to the second band or for very small value& of
the repulsive case, notW becomes small on the right side of when the gap is semi-infinitfethese solitons become highly
each band gap of Fig. 5, whereas, the lattice solitons becom®nlinear. Except these families, we were able to isolate ad-
highly nonlinear on the left side of each gap. Close to theditional families that represent new types of nonlinear modes
edge of the second Brillouin zone the effective lattice disperwith atomic population cutoffs, i.e., the number of atofN$
sion is normal; the solutions become broad occupying manyiéver goes to zero, but, instead, exhibits a threshold value
lattice sites, and can be approximated by the FB mode at tho- These modes can either exist in the semi-infinite gap or
edge of the second Brillouin zone shown in Figd)2As the  inside finite band gaps. The existence of this type of lattice
eigenvalue decreases inside the first band gap, the Floqueolitons can be qualitatively understood as follows. The non-
Bloch modes become mixed and the lattice soliton becomelnearity is responsible for an effective potentiail® that
more localized inside the lattice. Finally, close to the edge omodifies the lattice potential that the atoms experience. After
the first band, the effective diffraction becomes anomaloug certain threshold additional bound modes form, which, in
and a highly nonlinear, cusplike mode is required to supporturn, allow additional higher order lattice solitons in the ar-
a lattice soliton{Fig. 7(a)]. Figures Tc) and 7d) show typi-  ray. In Fig. 8 theN-E diagram of the three first nonlinear odd
cal lattice solitons in the second band gap with eigenvaluegodes with eigenvalues inside the semi-infinite band gap is
close to the base of the second and the third bands, respec-

tively. 60

0.4 \III

E=3.03

40

0.2 v N \”
Y SRR AR AR AR RARRRRAET: q

-20  -10 0 10 20 -10 -5 0 5
X E
FIG. 6. Atypical form of a lattice solitofisolid curve in attrac- FIG. 8. Number of atomdy, as a function of the eigenvalle

tive condensates with eigenvalue in the gap below the first band fdior the first three even lattice solitons with a cutoff. The vertical
vo=10 andL=1 um. The dotted curve represents the periodic shaded area shows the width of the first Brillouin zone. Branches
lattice potentialV. I-III correspond to the first three modes, respectively.
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FIG. 9. Typical field profiles of the first two odd lattice solitons
with a cutoff in attractive condensates.

(b)
shown. Typical odd soliton profiles are depicted in Fig. 9. A
Note that in these solutions the eigenfunction goes to zero 4 ‘\E\A
and has two peaks at the center site—a behavior that cannot NS
be accounted within the tight-binding approximation. Even uf? \,\\%?{\'L-: 3
nonlinear modes with a cutoff are also shown in Fig. 10. We :‘“’\\@;&;\:— 2 o
would like to mention that this type of nonlinear lattice soli- 0 A“A@AVL;;@ 1 &
tons with a cutoff cannot be predicted by the tight-binding 4 2 0 2 4 0 =
approximation because the original expansion is not com- X (Lm)
plete, accounting only for solutions localized in the lattice
minima. FIG. 11. Evolution(a) of a stable lattice soliton witlE=9.55
and (b) of an unstable lattice soliton witk=10, for V,=10, L
D. Stability =1 um in 8Rb condensates. Both eigenenergies reside in the sec-

We have performed a series of numerical simulations t®"d band gap of the dispesion curve.
test the stability of these solutions. A random perturbation
was added to the exact solutionTat O to make sure that all eral approximate procedures have been developed to ap-
the linear perturbation eigenmodes are exited. Using a splifsroximate the solutions of a nonlinear Sctfirger equation
step Fourier method, we numerically solve E8).and moni-  with a periodic potential. Two of these models are exten-
tor the time evolution of the BEC lattice soliton. We have sjvely used in the literature: the tight-binding approximation
found that the Iqttice soliton that resides below the first bangnd the coupled-mode theof@4]. We will illustrate how
is always stabléi.e., the atom densitju|? does not change these models are obtained and discuss about the regimes of

with T). The solitons that reside in the band gaps can bgneir validity. In both cases the starting point is the nonlinear
either stable or unstable depending on their eigenenergies. 'E“)‘chr"cdinger equation with a periodic potential
general, we found that the lattice solitons are stable in a ’

region close to the band, which allows broad lattice soliton

solutions. Going deeper into the band gap, the solutions be- Ju 1 62u
come narrower, and after a certain threshold they become iﬁ:_ §—2+F(x)u+a|u|2u, (12
unstable. In Fig. 11 typical evolution of lattice solitons with 2

eigenenergies in the second band gap are depicted’Riy
atoms. The eigenenergy of the lattice soliton of Figalis
close to the edge of the second bakgs 9.55, and propa-
gates without any change for over 3 sec. On the other han
the soliton of Fig. 1(b) with eigenvalueE= 10 turns out to
be is unstable.

where, for the description of optically induced lattices in
@ose—Einstein condensatéy(x) =V, sirf(mX/2D), andD is
the period of the lattice.

V. COMPARISON WITH THE RESULTS A. Tight-binding approximation

OF THE TIGHT-BINDING APPROXIMATION The tight-binding approximatiof34] is extensively used
AND COUPLED-MODE THEORY to describe solitons in periodic lattices. It provides a simpli-
To complete our discussion, it may be useful to Oliscusfied model that can proyide accurate results when the origi—
our results within the context 6f approximate theories Sev?1a| assumptlons are .Vahd' Here, we compare this moq_el with
' the mean-field equation and present necessary conditions for
the regimes of its validity.
We first assume that the Floquet-Bloch modesare
v highly confined into the lattice. This basic assumption in the
10 tight-binding approximation implies that only the first band
of the complete band structure is considered and allows the
a decomposition of the wave functiom into a sum of local
10 20 modes, ¢,,. Each of these local modes corresponds to the
lowest order linear eigenfunction of each potential in isola-
FIG. 10. Typical field profiles of even lattice solitons with a tion, which is located at the minimum of theh potential
cutoff in attractive condensates. well. Thus, ¢ satisfies the linear eigenvalue problem,

E=257 (a) A E=232 (b)

4
2

]
N
[=3

1
[}

x O
(=]
n
o
|
-
o

x O
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(92
&—X(iJrFo(X)(ﬁ,

5 (13

where Fo(X) is given by Fo(X)=V,sird(mX/2D) when
|X|<1, Fo(X)=V, for [X|>1, andE is the corresponding

PHYSICAL REVIEW A7, 063608 (2003

modes(discrete eigenfunctionghat are not accounte@nly
the zero-node mode is consideyred

Nonlinear corrections are not considered in the form of
the eigenmodes of Eq13). These corrections become sig-
nificant in the case of a high-density condensate.

Higher order bands are not taken into account. As a result,

eigenvalue. An alternative base can be that of a Wannief, he tight-binding description, the in-phase lattice solitons

function[35]. Using ¢ as the building element of the expan-
sion, one can write

u(x,t)=2>, co(T)gn(X)exp(—iET), (14)

where ¢,(X) = ¢(X—nD). We substitute Eq(14) into Eq.
(12), multiply with ¢,,, and integrate ovex. The resulting
equation reads

@ <¢>ml¢n>én+En§m (bl nyCn

1
- E n;m <¢m|¢nxx>cn+ UEn: <¢’m| ¢§>|Cn|zcn

(Sl AR bt 2 (Sl FO) br)Cn,
(15
where we made use of the Dirac notatiof,|d,)

=[¢EPndX, AF,=F(X)—Fo(X—Dm), and ¢mx
=d¢,,/IX. Each eigenfunction of Eq13), which belongs

in attractive condensates and theout-of-phase lattice soli-
tons in repulsive condensates share exactly the same proper-
ties in the DNLS lattice[using the transformatiorc,
—(—1)"c, along withT— —T, the 7 out-of-phase solution
transforms into the in-phase mddsuch that, for example,
they both exist in a semi-infinite band gap. In the focusing
regime(when the condensate is attraciviattice solitons do
exist in a semi-infinite band gap. However, in the defocusing
regime (i.e., when the condensate is repulgivattice soli-

tons can be found in the finite band gap between the first and
the second band, and thus, the eigenvalue is located in a
bounded domain. This has several implications. As the eigen-
value increases inside the band gap, the Floquet-Bloch
modes become mixed, and thus Et) fails to describe the
form of the solution. This is why the rate of decay of the
soliton tails, E=2k coshk;), does not globally agree with
Eqg. (9).

In expansion14), ¢, is always in phaséwith zero phase
difference along«). On the other hand, in a periodic lattice
the phase varies continuously alorgAs a consequence, it
was shown in Ref[25] that the lattice solitons exhibit trans-
port anomalies that depend on their initial momentum within
the Brillouin zone as compared with the tight-binding model.

in the discrete spectrum, decays exponentially outside the Finally, different types of solutiongsuch as those shown

potential with a rate of decay equal k6= 2(Vg—E). Thus,

the coupling between second neighbors will be much smalle? )
t.expansion(14).

compared to the first-order coupling. Notice that the tigh
binding approximation is valid Whekf>l, and so

(Dl D 130 ~ KX Dol b 1) Dol D= 1)

Then, normalizinge, such that{¢,|#,)=1, Eq. (15 be-
comes

(16)

ich=Vecp—k(ChyrtChog)+ 7’|Cn|2Cn=

17

which is the usual form of the tight-binding approximation.
Equation (17) is in agreement with the results obtained

in Ref. [13. In Eq. (17, V=(1/2)ém dmx0
+{Ppm|AF (X)) is a shift in the eigenvalue
due to the perturbation in the original potentiak

= (1/2)( pml P(m=1)xx) T {Pm|F(X) dm=1) is the coupling
coefficient between adjacent wells, ape o( | 43 is the
effective nonlinearity. Equatiofl?) is known as the discrete
nonlinear Schrdinger equatio(DNLS). It is instructive to
discuss the regime where the approximation applies.

in Figs. 9 and 1@ do not have equivalence in the tight-
inding description, due to the constraints of the original

B. Coupled-mode theory

Wave propagation close to a gap resonance of a periodi-
cally modulated lattice has been studied extensively using
coupled-mode theory. According to the coupled-mode de-
scription, the wave function is expanded in Fourier modes
as

u=>, u,exd —iET+iknX], (18)

where k= 7/2D. Assuming that the potential is relatively
shallow, only then=+*1 terms of Eq.(18) are important,
and thusu can be expanded into a forward and a backward
wave,

u=usexd —i(ET—kX)]+u,exgd —i(ET+kX)].
(19

In the tight-binding model it is assumed that the atom
density is highly confined into each potential minimum that,
in turn, implies that the potentials have to be deep enough. Bubstituting Eq.(19) into Eq. (12), keeping the terms that
is in this regime that the Floquet-Bloch modes of the firstresonate at the edge of first Brillouin zoffest band gap
band can be described by the discrete model. On the oth@nd assuming that the material dispersion is srffaibad
hand, if the potentials are deep, they might also have moreolutions, results into the coupled-mode equati$@g],

063608-7
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[ dug JUg 5 5 whereF(x) is a periodic potential with perio®. To solve
7 HCox | T KUpt o(Jud?+2[up|*u=0, (200  Eq.(A1), we make use of the periodicity of the potential and
expand it as
au au .
i(&—f—c&—; + kus+ o(|up|?+ 2|ug|Hup,=0, (21) F(X)=§n‘, Ug, expliGpX), (A2)

whereG,,=2mn/D are the reciprocal lattice vectors. Assum-

_ 2 _ _
where .E_V°/2+(.7T/2D) , ¢=m/D, and ’.‘_VO_/4' We ing that the lattice is finite, and using periodic boundary con-
would like to mention that, due to that the sinusoidal form Ofditions we can expand the soluti&i(X) as

the potential of the optically induced lattice and the expan-
sion into one forward and one backward wave, coupled-

mode theory can only be applied in the first band gap. The v=2 Cy expiknX), (A3)
dispersion relation of Eq$20) and(21) can be obtained by n

assuming plane-wave solutions of the folmpexexp{AX wherek,=27n/a, anda is the length of the lattice. After

—iwT), and is given bya?=(w?— k?)/c?. Notice that gap th S
; . ) o ese substitutions, E¢A1) reduces to
solitons that reside outside the edge of the Brillouin zone can G1)

also be considered by Eq&0) and (21) by assuming an K2

additional phase tilt between the forward and the backward (E— E Ck+2 Cr_cUg=0. (A4)
G

wave.

Clearly, the original expansiofl9) in the coupled-mode
equation is accurate as long as higher order terms exclud
from Eq. (18) are not very important. This is true when the
potentials are relatively shallow, and thus, Ef9) repre-

Splving Eg.(A4) the band structure and the corresponding
ogquet-Bloch modes can be computed. The accuracy of the
method depends on the number of plane waves considered in

sents the Floguet-Bloch modes inside the band (gap the the expansion, as well as on the form and the depth of the

. o potential. In Bose-Einstein condensates, the poteiitia-
Appendné. On the other hanq, when the p(_)tentlal 'S deep’ated by the interference of laser beams, is givenFIifX)
higher order terms of expansi@h8) become important and —V, sirf(7X/D). In this case, only three coefficients of E
can no longer be ignored. Higher order corrections to tthZSJ will be ndnzero name,l U );V 2 andU~ —U 9.
coupled-mode equation have also been studied in the litera- ’ Y-o=Vo !
ture [36]. However, the resulting equations become rather= ~ Vo/4. Thus, when the potential is relatively shallow, the
cumbersome even by considering first-order corrections. defect modes between the first and the second bands can be

Finally, the linear dispersion relation of Eq20) and(21) ~ accurately described by keeping only two terms of the ex-
is hyperbolic and centered at the edge of the first BrillouinPansion,
zone, whereas, the dispersion curve of E®) (outside the

2
band _gap)s is periodic _in k._ As a re;ult, the coupled-mode _ k—+Uo—E Ci+Ug.Cy_.=0, (A5)
equations can be applied in the regime where this hyperbolic 2 1 1
approximation is accurate.
(k—Gyp)?
T"‘UO_E Ck*Gl—’_UOCk:O' (A6)

VI. CONCLUSIONS

We have systematically studied the properties of latticdnside the first band gap, the lattice momentum will, in gen-
solitons in Bose-Einstein condensates with either attractiv€ral, be complexk= /D +ik; . The resulting compatibility
or repulsive atom interactions. This was done by exactlycondition of Egs(A5) and (A6) reads
solving the mean-field Gross-Pitaevskii equation in the pres- 5 ) ) )
ence of a periodic potential. We have found other families of }( m Vo k_| _
lattice soliton solutions, which are characterized by the posi- 2
tion of the energy eigenvalue within the associated band
structure. These include lattice solitons in attractive and reBy solving Eq.(A7), one can find the rate of the decay of the
pulsive condensates that exist in finite or semi-infinite gapsoliton tails,
as well as nonlinear modes that exhibit atomic population

cutoffs. 2 m 2m 2
k?=—2E— F+VO+ FJZE—VOHDVO/ZW) :

ki’lT

D

D

+ 273 (A7)

2_ VO
4

APPENDIX: PLANE-WAVE METHODS (A8)
The eigenvalue problem of E¢B) can be written as The value ofE inside the band gap where the fastest de-
cay of the defect mode is achieved can be found by
) setting dk;/JE=0 and is given byE=m2/2D2+Vy/2
Ev=— 1ov, F(X)v, (A1)  —D?V@/327°. Furthermore, the form of a defect eigenmode
2 5x? inside the band gap is
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X ¢ X Equation(A9) can then be written as a linear superposition

v= coszcosFJrsinESinF e kX (A9)  of the Floquet-Bloch mode - (X),

where

b= arctar §la) (AL0) v= v,(X)cos(zf+v+(X)sin§ e kX, (A12)

and o= m2/2D?+Vy/2—k?/2—E, B=k;w/D. The Floquet-

Bloch modes at the edge of the first and the beginning of thés E increases inside the band gapalso increases from 0
second Brillouin zonédenoted by -) can be found by set- to 7, and the form of the corresponding defect mode is di-
ting E— w2/2D%+ V,l4 or E— 72/2D?+3V,/4, k*—0, and  Trectly affected by the position of the eigenvalue inside the
taking into account thatp is a continuous function. In band gap. More specifically, when the eigenvalue is close to

these two limits,¢— 0,7, and the Floguet-Bloch mode are the first(second band, the periodic modulations will have a
given by cosinusoidalsinusoidal form, whereas, in between they will

be mixed with coefficients that are determined by the posi-
v_=cog7X/D), v,=sin(7X/D). (A11) tion of the eigenvalue inside the band gap.
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