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Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields
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The Smatrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is ex-
tended to atoms in crossed electric and magnetic fields. We present a semiclassical quantization of the hydro-
gen atom in crossed fields, which succeeds in resolving individual lines in the spectrum, but is restricted to the
strongest lines of eaammanifold. By means of a detailed semiclassical analysis of the quantum spectrum, we
demonstrate that it is the abundance of bifurcations of closed orbits that precludes the resolution of finer
details. They necessitate the inclusion of uniform semiclassical approximations into the quantization process.
Uniform approximations for the generic types of closed-orbit bifurcations are derived, and a general method
for including them in a high-resolution semiclassical quantization is devised.
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I. INTRODUCTION where the sum extends over all classical closed orbits start-
ing from the nucleus and returning to it after having been
Closed-orbit theory was first introduced by Du and Delosdeflected by the external fieldS, ,, is the classical action of
[1] and Bogomolny{2] some 20 years ago to interpret the the closed orbit, and the amplitudg , describes its stability
modulations observed in the photoabsorption spectra of hyand its starting and returning directions. Its precise form de-
drogenic Rydberg atoms in a magnetic field close to the ionpends on the geometry of the external fields. In Sec. IlI, it
ization threshold. Since that time, it turned out to be a pow-will be specified for crossed-field systems without a rota-
erful and flexible tool for the semiclassical interpretation of ational symmetry.
variety of spectra. It has been used to describe atoms in Although the closed-orbit surfB) appears to provide a
electric[3] as well as parallel4,5] or crossed6—8] electric  straightforward means of calculating the response function
and magnetic fields. In the case of nonhydrogenic atoms, thgom the classical closed orbits, this is actually not the case
influence of the ionic core can be modeled either by meanpecause the sum usually diverges for real ener§i€Bhus,
of an effective classical potentig®,10] or in terms of quan-  the quantal information cannot be extracted directly from the
tum defects[11,12. Recently, closed-orbit theory has even semiclassical expansion. One particular and widely appli-
been shown to be applicable to the spectra of simple molcable method to overcome the convergence problems of the
ecules in external fieldgL3]. closed-orbit sum is semiclassical quantization by harmonic
A complete description of photoabsorption spectra reinversion[14,15. For the hydrogen atom in a magnetic field,
quires the calculation of the energids, of the excited this method has been shoyh6] to be capable of extracting
atomic states and the strengths of the spectral lines, which semiclassical eigenenergies and transition matrix elements
characterized by the dipole matrix eleme(it|n) between  from a closed-orbit sum.
the initial statei) and the Rydberg state), whereD is the In the present paper we will investigate how these results
component of the dipole operator describing the polarizatiortan be generalized to the hydrogen atom in crossed electric
of the exciting laser field. These quantities are neatly sumand magnetic fields. This problem is considerably harder
marized in the response function than the treatment of the diamagnetic hydrogen atom, which
possesses a rotational symmetry around the field axis. Due to
1. ) (i|D|n)|? that symmetry, in classical mechanics the angular momentum
g(E)=— ;<||DG(E)D||>: T2 E_Exie 1) around the field axis is conserved. So is, in quantum mechan-
A " ics, the magnetic quantum number In crossed fields, the
rotational symmetry is broken. As a consequence, the selec-
tion rules for them quantum number no longer hold, and a
multitude of additional lines appears in the quantum spec-
G(E)=S I}l @) trum. At the same time, the determination of classical closed
4 E—E,tie orbits gets significantly more difficult because three nonsepa-
rable degrees of freedom have to be dealt with. A detailed
denotes retarded Green’s function. d_escrip'gion of the ?ntric_ate pattern of clo_sed orbits and their
The closed-orbit theory provides a semiclassical approxiplfurcatlons was given in an accompanying pajief]. That_
mation to the quantum response functii, which splits d_ata forms the basis of the presgnt work, where the sermclas—
into a smooth part and an oscillatory part of the form sical treatment of the.crossed—flelds hydrogen atom v_V|II be
dealt with, and we will freely use the nomenclature intro-
duced in Ref[17].
gosc(E):E Aco(E)eiSco(®), 3) After the essential prop_erties_ of the crossed-fiel_ds Hamil-
co. tonian have been summarized in Sec. Il, we start, in Sec. lll,

where
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with a derivation of the closed-orbit formul®) in the con-  lll. THE S-MATRIX FORMULATION OF CLOSED-ORBIT
text of theSmatrix formulation of closed-orbit theory intro- THEORY
duced recently by Granger and GredAg&]. We show that
the framework can be extended to the crossed-fields situa-
tion, and we clarify some misleading conclusions arrived at The basic observation fundamental to all of the closed-
in Ref.[18]. Section IV describes the quantum spectrum un-orbit theory is a partition of space into physically distinct
der study, and Sec. V compares it to a semiclassical spectruragions. In the core region close to the nucleus, the Rydberg
in low resolution. In Sec. VI, the results of a high-resolution electron interacts in a complicated manner with all electrons
semiclassical quantization using the technique of harmonief the ionic core. This interaction is manifestly quantum me-
inversion are presented. The semiclassical spectrum correctghanical in nature, it cannot be described in the framework of
identifies the strongest spectral lines, but it fails to describgemiclassical theories. On the other hand, the interaction of
finer details of the quantum spectrum. In Sec. VII, we com-the Rydberg electron with the external fields is much weaker
pare a quantum recurrence spectrum to the classical data ito the core region than its interaction with the core, so that
show that the principal source of this difficulty lies in the the fields can safely be neglected. Therefore, a description of
abundance of closed-orbit bifurcations. Uniform approxima-the core obtained in the field-free case can be used. In par-
tions provide a tool to cope with the divergences introducedicular, the initial state of the photoabsorption process is as-
into semiclassical spectra by bifurcations of classical orbitssumed to be localized in the core region and not to be influ-
A general technique for their construction is described inenced by the external fields.
Sec. VIII, and uniform approximations for the two types of  Inthe long-range region far away from the nucleus, on the
generic codimension-1 bifurcations identified in H&fZ] are  other hand, the external fields play a dominant role, whereas
derived. Finally, in Sec. IX we demonstrate how uniform there is no interaction with the ionic core except for the
approximations can be incorporated into recurrence spectr&oulomb attraction of its residual charge. In this region, the
thus paving the way for their inclusion into the high- dynamics of the Rydberg electron is well suited for a semi-
resolution semiclassical quantization by harmonic inversionclassical description. It is independent of the details of the
ionic core.

In order to establish a link between the dynamics in the
core and long-range regions, a matching region is assumed to

Throughout this work, we will assume the magnetic fieldexist at intermediate distances from the nucleus where both
to be directed along the axis and the electric field to be the external fields and the interaction with the core are neg-
directed along thes axis. In atomic units, the Hamiltonian ligible. Thus, in the matching region the simple physics of an
describing the motion of the atomic electron then reads  electron subject to the residual Coulomb field of the core is

A. General formalism

Il. THE CLASSICAL HAMILTONIAN

observed.
1,11 1., Recently, Granger and Greefit8] proposed a formula-
H=3p= +35BL+gBp™+Fx (4)  tion of the theory based on ideas borrowed from quantum-

defect theory. Their formulation achieves a clear separation
where B and F denote the magnetic- and electric-field _bet_ween prophe_rtkl]es of the egted”?a' field (g)tnflgtu_ratlonsar)fl the
strengths, respectively2=x2+y2+ 22, p2=x2+y2, andL, ionic core, which are encoded in separ&tenatrices. Suit-

is the z component of the angular momentum vector. Byable approximations to the core and the long-raSgeatri-

virtue of the scaling properties of Hamiltonié#), if all clas- ces can be derived independently. Th_erefore, the formallsm
sical quantities are multiplied by suitable powers of the scal<an be expected t_o 6‘.”°V.V a generah_za@tpn of closed—orplt
ing parameter theory_ to atoms Wlth_ ionic cores exhibiting more compli-
cated internal dynamics than have been treated so far.
The derivation given by Granger and Greene treated the
case of an atom in a magnetic field only. It will now be

the d . be sh ‘1o d q the eri extended in such a way that it holds for combined electric
€ dynamics can be Shown not to depend on the energy 5,4 magnetic fields with arbitrary field configurations. To

and the field ftrength andF separately, but only on the this end, the ansatz and basic formulas of Granger and

scaled energf =w’E and the scaled electric-field strength Greene’s theory will be summarized in this section. A more

F=w*F. In particular, classical actions scale according todetailed treatment can be found in their paf8]. In sub-

S=wS. Thus, the semiclassical limit of large classical ac-Sedquent sections, we will then turn to a discussion of the

tions corresponds to the limit of large long-range scattering matrices pertinent to crossed external
The way of recording a quantum spectrum that is besfields.

suited for semiclassical investigations is scaled-energy spec- 10 lay the foundation for a definition of tematrices, we

troscopy. A spectrum then consists of a list of the scalingPick a basis set{*® and W, of wave functions of the

parameterswv,, characterizing the quantum states for givenRydberg electron valid in the core and long-range regions,

scaled energf and scaled electric-field strengfh Scaled- respectively, and expand in terms of spherical harmonics:

energy spectroscopy offers the advantage that the underlying 1

classmal dynamics does not .change across the spectrum. It x[rﬁore(LR)(r,ﬁ,(p):— 2 Yk,(ﬁ,go)Fﬁ?Le(LR)(r). (6)

will be adopted throughout this work. r

w=B""? (5)
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The channel index is to be understood as a double indextherefore absent from the sum, and the hydrogen response
(I,m) characterizing the spherical harmonics. When studyindunction can be decomposed into a smooth part

a complicated atom with more than one relevant state of the

core, additional information can be included in the channel go=1id"d, (12)
functionsY,.

In the matching region, the radial function matride®¥™  which is the same as in the field-free case and contains “di-
and F'R can both be expressed in terms of radial Coulombrect” contributions where the electron does not scatter off the
functions. We use the functiorfg (r) andf, (r) satisfying  external fields at all, and an oscillatory part
outgoing- and incoming-wave boundary conditions, respec-
tively, given by Ref[19] and choose the radial functions to g%%= 2i9T§LRQ (12)

be of the form[47]
generated by the electron going out into the long-range re-

core .\ _irft core_ ¢ — , gion and being scattered back to the nucleus. It is this part
Fieir) M3 lr) iend: @ that describes the impact of the external fields.

The basis for a semiclassical approximation is provided
by the retarded Green'’s functid®B(x,x’;E) describing the
propagation of the electron frox( to x at the energyE. It
can be expanded in terms of the channel functions as

Froe()=—i[f,(r) Sk fio (1) S, ®

Physically, these choices mean that the basis functg®
is a superposition of a single incoming wave in charkeshd
the outgoing waves in different channels produced from it by 1
scattering off the core. SimilarlyljkR consists of an outgo- G(x,x";E)= — E Yk(ﬂ,(p)ékkr(l’,r';E)Y:,(ﬂ',(p')
ing wave in channek and the returning waves generated by '
scattering off the external fields. The scattering matrg€s (13
and SR thus summarize the physical properties of the core
and the external fields, respectively. They are determined byith
the condition that the radial functions obey suitable boundary _
conditions, i.e.,F¢® is regular at the origin, whereds-R Gy (1,1 E)=rr"(k|G(x,x";E)[K"). (14
vanishes or satisfies outgoing-wave boundary conditions at
infinity for bound and free states, respectively. For hydrogenThe long-range scattering matrix is related to Green’s func-
S™r¢is the identity matrix. tion matrix by[18]

Following previous work by Robicheauj20], Granger
and Greene derive the following expression for the response

1
function (1): §LR=F[f(ro)]’1§(ro,r0)[i’(r0)]’1, (15

g=id[1+2(S"SR) +2(S"SR)2+ 255t R) wherer  is the matching radiud,” is the diagonal matrix
told © fiae (1= (0 16
where the vectod comprises the energy-dependent dipole . ) .
matrix elements comprising the radial wave functions, a@{r,r’) denotes
the part o@(r,r’) satisfying incoming-wave boundary con-
dy(E)=(V°"CE)|D|i) (10)  ditions at the final radius. The latter condition ensures that

only electron paths approaching the matching radius from
between the initial state and the core-region channel wavthe long-range region contribute &%, whereas paths that
functions. For hydrogen they can be computed explicitlytraverse the core region are omitted.
(see, e.g., Ref.1] or [21]).

The terms of serie¢9) embody contributions from paths B. Closed-orbit theory for crossed-fields systems

where the Rydberg electron takes 0, 1, 2, etc. trips out into
the long-range region and back to the core before interferin%
with the initial outgoing wave. In the semiclassical approxi- >¢
mation, SR will be given in terms of closed orbits. A return-
ing wave is associated with each returning classical orbit. By

To obtain a semiclassical approximation to the long-range
attering matrix, we make use of the semiclassical Green’s
function derived by Gutzwillef22]

a general ionic core, it is scattered into all directions. The gscy x/:E)= 2m > /|D|ex;{i8—i ZO.>,
parts of the wave scattered into the outgoing direction of a (271) ("2 giass tra. 2
closed orbit will then follow this orbit until they return to the (17)

core again. Thus, core scattering leads to a concatenation of

different closed orbitd11,17. In hydrogen, the Coulomb where the sum extends over all classical trajectories leading
center scatters the incoming wave back into its direction ofrom x’ to x at the energyE, n is the number of degrees of
incidence, so that there is no coupling of closed orbits. Termfreedom,S is the classical action along the trajectosythe
describing repeated scattering off the external fields ar@aumber of caustics along the trajectory, and
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2 2 aS aS

#?S S =P E-t (22)

axax’  IXIE
D=de 5 5 (18)  the amplitude factoD for radial trajectories can be simpli-

S IS fied to

JEIX'  JE? -
1 d(Py.Py)
D- JPoPe) o

- = et .
120120 H ’ J ﬁ,
is the amplitude for the contribution of the trajectory. By Eg. rrirertsind sing (9.¢)

(14), we obtain a semiclassical approximation to Green'srhe determinants occurring in E(20) combine to
function matrix

de*a(p%,p@( S )1
"9, 09l 2
Gy (1o, loiE)= - _)zréf d9d9’ dede’sin o (D0) |77 a0 9", 0,0)
i o / ’ )
. . :deﬂ(pﬂ,pwpa,m) eﬂ(—pﬁ.—pwpa,p@)
Xsind Yk(’a!(P)Yk’(i} P ) § ﬁ(l‘},(P,pﬁ,p‘p) - a(ﬁl,@,,ﬁ,QD)
X VID|e!Sroro) = mof2) (19 a9, ¢")
clagtraj. | | (19 =det——. (23)
a(pﬁ"pgo)

As usual in semiclassics, the integrals will be evaluated inWVith these results, Green’s function matrix assumes the form
the stationary-phase approximation. It yields a sum over all

classical trajectories, leaving the matching sphere at a direc- e E)=2a> vsind;sin 9y
tion given by (¥;,¢;) and returning to it at ¢;,¢¢). The kw(lo.MoiE)=27 \/—
c.o0. |rr’|

condition that G(rqy,ro) obeys incoming-wave boundary

conditions at the final radius translates into the condition that .
only orbits going out from the matching sphere into the long- XYk (91,00 Yo (Fi,0i)
range region and then returning tg are to be included,

whereas orbits passing through the core region are omitted. d Mp‘?f’p“’f)

If all factors in the integrand except for the exponential are eta( 3,00

assumed to vary slowly, the stationary-phase approximation _ _

reads X eIS(rO,ro)flﬂ'(UJr K)/2. (24)

The determinant in the denominator of Eg4) measures
G (rorg:E)=2mr2> sind:sindY* (95,00 Y (D o the dependence of the final angular momenta of the trajec-
c(ToroiE) ng SINOeYi(Fr @) Yic (91.01) tory upon the starting angles. As it stands, it suffers from the
singularities of the spherical coordinate chart: At the poles,
V[Ds | neither the angle nor the angular momenta, andp, are

X well defined, so that close to the poles, the calculation of the
\/ S determinant becomes numerically unstable. The determinant
det—— can be rewritten in the forr21,23
a9 @', 9,¢)°
- a(pﬁfipcpf) i .
Xexp(iS(ro,ro)—iE(aﬂ) , (20) Aot g, o SnvisindiM (25

with a 2X 2-determinant devoid of any singularities. The
where « is the number of negative eigenvalues of the HesParameteiM was already used in Reff17] to study the bi-
sian matrix ofS occurring in the prefactor. furcations of closed orbits. We showed there that a closed
Because the initial state is assumed to be well localized, {prit bifurcates if and only iM =0. With form (25) of the
tation originate in the immediate neighborhood of thelrix reads
nucleus. Therefore, only trajectories leaving the matching

sphere radially need to be included in EB0). By the same 1 Yi(O,00) Y (9, 00)
token, the trajectories can be assumed to return to the match- G =272 \/—, \/—
ing radius radially. Thus, they are parts of closed orbits start- o N|rr'| M

ing precisely at the nucleus and returning there. -
By transforming(18) to spherical coordinates and making xexpl iS(rg,ro)—i—(o+x) (26)
use of the relations ’ 2 ’
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which is free of any singularities introduced by the spherical 9 S o
coordinates. g°qE)=4m>, RGN CITL) exp( iSC_O_—ig,u),
By virtue of Eq.(15), the semiclassical long-range scat- c.0. VM| 33

tering matrix reads

where the Maslov index = o+ k+ 1 was increased by 1 to
SI(_R —ZiE 1 1 1 absorb an additional phase, and the function
k

o N|rr’| fic(ro) fi(ro)

* . .
k (O1,00)Yie (D, 91) iS(ro.10) - Im(ot K)2

VM| with the core-region matrix elemends,, given by Eq.(10),

characterizes the initial state and the exciting photon.

(27 Throughd,,,, the function)(,¢) is energy dependent. In
accordance with the choice of zero-energy radial wave func-

Yions in theSmatrix elements)(¥,¢) will be evaluated at
zero energy. This approximation has proven accurate in all
_ . 2 applications of closed-orbit theory considered in the litera-
fr(n)~—iVrHEL,(V8r) (28) tuﬁg so far. However, from th‘ématyr/ix theory derivation it is

are approximated by the zero-energy wave functions, and th bvious that the energy dependence of both the dipole matrix

Hankel functions are replaced with their asymptotic forms® ementsd, and theSmatn_x elements can ea_sny be in-
for large argumentsd]; cluded should the need arise. The semiclassical response

function (33) has anticipated fornG3) with
) 2 T T
H 7 (x)~ x X —iXtigvtip

This approximation leads to

yw,@):% (—1)'dimYim(9,¢), (34)

This expression can be further simplified if, for excited state
close to the ionization threshold, the radial wave functions

. (29) y*(’ﬁf,@f) y(ﬂi'goi)ei(ﬂ'/z)[.t.

A =
co =T \/M

IV. THE SCALED QUANTUM SPECTRUM

(39

LR o Yim(O6, @0 Y (95, 00) . _ _
Smtrm = —27>, (- 1) T If Schradinger’s equation for the crossed-fields hydrogen
C.0.

atom is rewritten in terms of the scaled energy and the scaled
electric field strength, a quadratic eigenvalue problem for the
scaling parametew is obtained. An exact numerical method
of solution for the quadratic eigenvalue problem has become
(30) available only recently25]. We resort to the method intro-
duced by Main15], which relies on an approximate linear-
because, due to the conservation of energig=1/r if E ization of the eigenvalue problem to compute eigenvalues in
=0. In Eq. (30), the channel indice&=(I,m) are finally & small spectral interval. The accuracy of the linearization
written out explicitly. can be verified by comparing results that were calculated

For a radial trajectory in a hydrogen atom going out fromusing different overlapping intervals. The eigenvalues are
the nucleus ta =r, at zero energy, the action ig8r,, so  Obtained to a relative accuracy of at least L0which is far

Xexp(i[S(rO,r0)+2J8_r0]—ig(o+K)

that beyond the typical accuracy of semiclassical approximations,
so that the algorithm is well suited to this study.
S.0=S(rg,lo)+2 /_8r0 (31) In the following we will discuss quantum and semiclassi-

cal photoabsorption spectra obtained for the scaled energy

is the action of a closed orbit, measured from its start at th&=—1.4 and the scaled electric field strendtk=0.1 with
nucleus to its return. The semiclassical long-raSgeatrix  the initial state|2p0) and light linearly polarized along the

finally reads magnetic field axis. A quantum spectrum for these parameter
values is shown in Fig. 1. As for a semiclassical anal{sis
YR (9,00 Y (O, @; Sec. VI)) it is essential to have as many eigenvalues avail-
SR=—2m> (—1)'"! im( ¢, #0 Y1 (61 able as possible, the calculation was extended umto
Y e ‘/|M_| =100. The spectrum shown in Fig. 1 contains nearly 30 000
- lines, many of which are too weak to be discernible in the
X ex;{ iSco—i E(a+ K)|. (32)  plot.
The eigenenergies of the field-free hydrogen atom satisfy
Both the actionS., and the stability determinari¥l are 1
evaluated at the nucleus rather than on the matching sphere. E=w 2E=— ——, (36)
The response function is given by 2n?
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FIG. 1. Quantum photoabsorption spectrum at the scaled efergy 1.4 and the scaled electric field strenfthk 0.1. The initial state
is |2p0), the light is polarized along the magnetic-field axis. The plot shows the squared dipole matrix elements, which for graphical reasons
are multiplied byw. The strengths of the extraordinarily strong lines of the loweastanifolds atw<7.5 are scaled down by a factor of 0.2.

so that in the scaled spectrum the unperturbhedanifolds  differentn manifolds strongly overlap. Throughout the spec-
appear equidistantly spaced at tral range shown, groups of strong lines indicating the cen-
ters of differentn manifolds are clearly discernible.
w=/—2En. (37)

These spacings can clearly be recognized in Fig. 1. At low V. LOW-RESOLUTION SEMICLASSICAL SPECTRA
values ofw, neighboringn manifolds are isolated. Further-

nmeoarrGI}, Icnor':zgrvreegl(‘)r%i;hies ?a%r::::;: fg)urﬁrlLuemfaZ?Eg?nesrach tion spectrum is obtained if the closed-orbit theory formulas
y ' PP of Sec. Ill B are rewritten in terms of scaled quantities, viz.

manifold contains a central group of strong levels corre-
sponding tom=0, which can be excited even Bt=0, and
adjacent groups of considerably weaker levels with os 1 ~ o~

=+1. Levels with higher magnetic quantum numbers are 9= W)= % Aco€XAIWSc0) (38)
too weak in this region to be seen in the figure. At higher

values ofw, the conservation ahis violated, and individual

n manifolds acquire strong side bands. At even higher with

A semiclassical approximation to a scaled photoabsorp-
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6000 [ ' ' ('qm) ] much of this fine structure is also present in the semiclassical
spectrum, but often the agreement is not good quantitatively.
4000 | 1 In particular, the peaks corresponding to the lowest
— 2000 | n-manifolds are considerably wider in the semiclassical than
z UU\J J kM M in the quantum spectrum.
o 0 U\d If the cutoff action is increased @=50, finer details are
£ ( P{ V J ’Mf resolved in the quantum spectrum. At the same time, the
¥ 2000 semiclassical closed-orbit sum becomes more oscillatory to
reproduce this fine structure. It appears, however, to be
-4000 | 1 somewhat overoscillatory, developing structures absent from
6000 L(@) (sc) the quantum spectrum. This type of behavior is ty_pical of
: : : : : : : closed-orbit sums in nonintegrable systems. Thus, it can be
10000 {gm) 1 questioned if the low-resolution closed-orbit sum can mean-
ingfully be extended to even longer orbits. A high-resolution
5000 | | quantization based on the present semiclassical approxima-
5 tion will be presented in the following section.
[<]
g 0 HH b"‘ VI. HIGH-RESOLUTION SEMICLASSICAL SPECTRA
? For the calculation of a scaled semiclassical spectrum, the
-5000 | | method of semiclassical quantization by harmonic inversion
of & function signalg 14,26 can be applied. This technique
-10000 H(b) {sc) | requires the inclusion of closed orbits up to a maximum
10 15 20 25 30 35 40 45 50 scaled action, i.e., it replaces the Gaussian cutoff used for the

low-resolution semiclassical spectra presented in the preced-

ing section with a rectangular cutoff. A rough estimate for
FIG. 2. Smoothed quanturtupper halves and semiclassical the required cutoff action can be obtained by means of per-

(lower halves, invertedohotoabsorption spectra with cut-off action turbation theory[21]:

(@) o=20 and(b) o=50.

w

Spax= — 87EN. (41)
- V(01,00 N0, 01)
Aco=4m — el (M2, (B9 For the cas€=—1.4 andn=9, i.e.,w=15.06, this esti-
\/M mate yieldsS,,,/27~50.
When low-resolution photoabsorption spectra are to be According to Eq/(41), to compute levels at high quantum

calculated from Eq(38), a method of cutoff must be adopted humbersn a long .semicla_lssical 5‘9”‘?" is needed, which can
to deal with the divergence of the semiclassical cIosed—orbi'Pe hard or even impossible to obtain. We calculated closed

sum. For this section, we choose a Gaussian cutoff, i.e., EQTbits up t0S,,,/27=200, so that the orbital data is avail-
(38) is replaced with able for nearly 18 000 closed-orbit multiplets. However, for

reasons to be described in Sec. VIl a useful semiclassical

.S, signal can be constructed up &,,,/2m~60— 70 only, so
WS¢0~ 252)" (40 that from the above estimate, the semiclassical calculation
cannot reach manifolds much higher thas10. On the

so that orbits with scaled actions larger than the cutoff actiofPther hand, the semiclassical approximation must be ex-
o are smoothly suppressed. This smoothing corresponds toRgcted to yield more accurate results for higher quantum

convolution of the quantum signal with a Gaussian of width"umbers. Thus, when a high-resolution semiclassical spec-
1o trum is to be calculated, a compromise must be made be-

To facilitate the comparison of E¢40) with the convo- tween the contradictory requirements of describing a spectral

luted quantum spectrum, we added the smooth part of thEegion at sufficiently high quantum numbers and with a suf-

spectrum tog®®, which was calculated by convoluting the ficiently low sp_ectral density. For the harmonic analysis of
the closed-orbit sum we applied the method dfunction

t t ith a G i f widtlr#1. Thi . . \ e . :
guartum Spectrum With a aussian of wi 1S Hecimated signal diagonalizatiq26,27], which yields not

neighboring principal quantum numbers. Results obtainetﬁ)nIy semiclassical gigenvalues and.a'mplitudes, .bUI also an
for =20 ando =50 are shown in Fig. 2. In both cases it is error parameter estlrgatlng the precision of the eigenvalues.
apparent that the large-scale structure of equidistant principgtesults obtained foe=—1.4 andF=0.1 with a signal
guantum numbers is well reproduced by the semiclassicdéngth of S,,,/27=60 are compiled in Table I. The table
approximation. In the quantum spectra, the substructure afontains the quantum eigenvaluesvwofind their dipole ma-
the individualn shells can be discerned to a certain degreetrix elements for the levels satisfyin@p0|D|f)?>0.7. Itis
given by the smoothing width &/ In the case ofe=20, obvious at a glance that out of the multitude of spectral lines

1 ~
gt;sr(W) = E Ac.o.ex
W Co.
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TABLE I. Semiclassical and quantum eigenvalues of the scaling parameter fdf=—1.4 andF=0.1. See text for a detailed
description. The dipole matrix elemer{p0|D|f)? were obtained from a quantum spectrum.

n w; (scl) w; (gm) (2p0|D|f)? n w; (scl) w; (am) (2p0|D|f)?
9.88321 1.3617 15.12905 15.12748 10.3140
9.91431 3.1145 15.17892 15.17491 2.2476
9.97747 1.7474 15.23623 15.23830 3.1064
10.05366 10.05912 51.0512 15.26111 15.27005 1.7749
6 10.09551 10.09621 20.9313 15.30024 2.3710
10.15461 10.15378 7.0060 15.34449 1.0296
10.24076 0.9608 15.40389 3.3462
10.26612 2.0777
10.31803 1.9385 16.57908 0.7173
16.58435 1.7007
11.56497 2.5663 16.60357 1.7437
11.60898 11.60820 2.5875 16.64355 16.63843 2.9662
11.66889 11.67341 2.3104 16.69069 16.69180 0.9974
11.72048 11.73128 32.8808 16.74965 16.75258 22.9143
7 11.75121 16.7278 16.76016 3.4901
11.78850 10.0092 10 16.78346 16.78269 11.1809
11.84856 5.6249 16.81329 16.81827 6.6898
11.92188 1.9229 16.86870 0.9825
11.95821 1.7923 16.93431 16.93323 2.0584
12.01338 2.4821 16.94303 1.4143
16.96000 1.4406
13.23441 1.3668 16.99085 2.3893
13.25629 2.5141 17.09909 3.5870
13.30255 1.9971 17.25847 0.7647
13.36921 13.36913 2.8189
13.40177 13.40568 30.8875 18.25950 2.1201
8 13.44313 13.43744 16.0829 18.27572 0.9781
13.48737 13.48146 4.8263 18.29004 2.6665
13.54340 4.3111 18.33096 2.7709
13.59258 1.0747 18.42131 18.42600 20.2420
13.61133 1.9475 18.45136 6.1451
13.65111 1.4081 18.45555 3.5970
13.70866 2.9676 11 18.47472 18.47149 7.2231
18.50996 4.0510
14.91192 2.1880 18.61835 1.7975
14.94654 2.9922 18.62818 1.2089
14.99711 1.4563 18.64563 2.2348
9 15.06960 15.06470 3.2226 18.68226 2.2558
15.07888 25.1866 18.79427 3.6707
15.10074 8.4317 18.93585 18.95442 1.0263

with intensities varying over many orders of magnitudeclassical values for the transition strengths are not given be-
(most of which are not contained in the tabtmly the stron- cause they are not reasonably well converged and depend
gest lines were detected in the semiclassical spectrum. Thatrongly on the numerical parameters.

semiclassical eigenvalues given are characterized by having One might expect that in eaah manifold the strongest
small imaginary parts, small error parameters, and large aniines are detected semiclassically, and in general this expec-
plitudes as well as being stable with respect to a variation ofation is confirmed by the numerical data. This can clearly be
numerical parameters. The calculation operates at the edge séen, e.g., in the manifold=6, which contains the most
convergence, and in a few cases one can be in doubt whethstably converged lines in the spectrum. There are, however, a
a level should be included according to these fairly “soft” few conspicuous exceptions, e.g., &7, where strong
criteria, but in general a clear decision can be made. Semlines are missing, whereas comparatively weak lines are
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found. Forn=5, no lines at all can be computed from the 20
given semiclassical signal. If the signal length is decreased to
S,ax/27=50, the three strongest lines appear in the spectrum 15

in this manifold.

At higher n, the number of strong lines in the quantum o
spectrum increases. So does the number of lines in the semi- , 10|
classical spectrum untii=11, where only three semiclassi- -
cal lines are found. They appear rather arbitrarily scattered
across the quantum spectrum, and their convergence is nota-
bly worse than in lower manifolds. It is clear that in this
shell the semiclassical quantization with the given signal is 0
about to break down. Ah=12, no lines can be detected
semiclassically. As, from the above discussion, this failure
was to be expected because the required signal length be- F|G. 3. Stability determinants of vibrators as a function of the
comes too large, the obvious way to improve convergencgciion forE=—1.4,E=0.1.
seems to be to use a longer signal. However, if the signal

length is increased ,,,/2m= 70, no reasonably converged series of vibrators can clearly be discerned in the plot. It is

semiclassical lines can be found in amynanifold. Neither  jyqeed unstable orbits with largd that are missing in the
are results improved if the technique of harmonic inversionyata set, but on the other hand the stability determinants of
of cross-correlated closed-orbit sufii$,28 is applied. This  he missing orbits are not large enough to regard the corre-

method has proven powerful in reducing the signal lengthyhonding semiclassical amplitudes as negligibly small. Be-

required in a semiclassical quantization. In the present case o . ~
T cause a vast majority of orbits has smisllland was found,
however, because the cross correlation increases the tota . ;
. : . one can still hope that useful results can be obtained from the
number of frequencies obtained from the harmonic inver-_ "~ . . ' :
emiclassical signal, at least for quantum states not located in

sion, the true eigenvalues are hidden among a multitude . R o
! . . e separatrix region in phase space, but it is clear that the
spurious frequencies, and no useful results can be obtained. ~ ;. . . ) ) -
quality of the semiclassical signal is reduced by its incom-

For the time being, therefore, the results given in Table |
leteness.

represent what can be achieved in the semiclassical quanfl)— To assess in detail the detrimental effect of the missing

zation of the crossed-fields hydrogen atom. They confirm th%rbits and of anv other sources of error that may exist. we
applicability of the closed-orbit theory approach, in prin- y y '

ciple, but they also reveal a fundamental problem in ircary out a semiclassical analysis of the quantum spectrum.

present formulation. It is clear that the signal length available
is sufficient for a stable signal analysis. Thus, if the semiclas- ~ VIl. SEMICLASSICAL RECURRENCE SPECTRA
sical results are not good, the semiclassical signal itself,
rather than the signal analysis, must be to blame. This co
clusion is confirmed by the observation that an increase
signal length destroys the results rather than improves the
We therefore start searching for a flaw in the construction c:E
the semiclassical photoabsorption spectrum.

A conspicuous problem lies in the fact that the set of

According to Eq.(38), in a scaled photoabsorption spec-
rum every closed orbit contributes a purely sinusoidal
odulation towg(w). This contribution can be extracted
om the spectrum either by a conventional Fourier transform
r by means of a high-resolution method. The spectral analy-
sis yields information about classical orbits returning to the
sE]ucleus. For this reason, the transformed spectrum is referred
o vibrtors cn arirly long 1 be Gl 1 e o 1 05 Sbasns e e el -
case of vanls_hlng electric field, there is a Cm'C?I angle tudes of individual orbits and thus yield more complete in-
that the starting a_ngles of both ro'Fators and wbrafcorg aPrormation about the semiclassical spectrum than the Fourier
proach as phe orbits get longer. T.h's convergence |n<_j!cat ansform, but they fail if the average density of closed orbits
that the orbits approach a separatrix between two families

tori in oh I sufficiently | bit tudied er unit of scaled action is too large. By contrast, due to its
ori in phase space. 1f sulliciently fong Oroits are studie linearity the Fourier transform can be applied to any part of
there are many closed orbits with very similar initial condi-

. X : the recurrence spectrum with equal ease and numerical sta-
tions, so tha_t the numerical search for closed orbits mu%ility, irrespective of the spectral density. In dense regions, it
eventually fail. il not be able to identify individual closed orbits, but it
The region of phase space where. the unknovyn.orb!ts argill nevertheless yield a recurrence spectrum that can be
located is lying qlose to a separatrix, so that it is hIghIYcompared to the classical data. In this section we will present
unstable. The orbits can the_refor(_a be expected hot to Contr”?'esults obtained by both the Fourier transform and a high-
ute. r’nuch to the_ semiclassical S|gnal._ The magnltude of aPesolution method. The semiclassical recurrence spectra will
orbit's contribution to the closed-orbit suf83) is deter- be compared to classical results in order to identify the rea-

mined mainly by its stability determinaM. Figure 3 shoxvs son why the semiclassical signal is only partially suitable to

the stability determinants of the vibrator orbits féf g semiclassical quantization.
=—1.4,F=0.1 as a function of the scaled action. Different ~ Using either method, it is essential to note that the semi-
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FIG. 4. High-resolution recurrence spectrum f+ —1.4 and FIG. 5. Absolute value of the recurrence spectrum. Sticks and
F=0.1. Sticks and squares: semiclassical closed-orbit amplitudesguares: semiclassical closed-orbit amplitudes. Stars: harmonic in-
Stars: harmonic inversion of the quantum spectrum. version of the quantum spectrum. Solid curve, inverted: Fourier

) . _transform(arbitrary unit3.
classical closed-orbit formula cannot be expected to yield

accurate results for the lowest levels. Thus, the fomani-  apsolute values of the amplitudes are considered. They are
folds must be excluded from the semiclassical analysis, i.eshown in Fig. 5, where the results of the high-resolution
the analysis is based on the quantum spectrum given in aghalysis are also compared to those of the Fourier transform.
interval [Wpin,Wmay] instead of[0wpa]. Furthermore, to  Notice that for the Fourier transform the semiclassical am-
minimize the impact of boundary effects due to the finitepjitude is given by the area under a peak rather than the peak
length of the semiclassical spectrum, a smooth Gaussian CUieight, so that an immediate comparison to the high-
off with width « centered ato= (Wpin+Wmad/2 is intro-  resolution results is difficult. In Fig. 5, the Fourier transform
duced. The smoothing replaces the peaks of the semiclassiGghs arbitrarily scaled, so that the peak heights roughly match
recurrence spectrum by Gaussians of widtk. IThe recur-  the values of the high-resolution amplitudes. For isolated or-
rence spectra presented here were calculated from the quaits identified both in the Fourier transform and the high-
tum spectrum shown in Fig. 1, fdf=—1.4 andF=0.1,  resolution spectrum, the agreement between the two methods
with Wp,i,=20, W,,=100, and «=10. For the high- is excellent. Where several peaks overlap in the semiclassical
resolution recurrence spectra, the method éinction deci-  spectrum, no direct comparison is possible because the peak
mated signal diagonalization was used. phases cannot be determined from the figure.

For low-scaled actions, where only a few closed orbits Figure 5 also extends the results shown in Fig. 4 to higher
exist, the high-resolution analysis can be applied. Results actions. In this region the density of closed orbits starts to
shown in Fig. 4, which compares both the scaled actions aniticrease because, on the one hand, rotators of the first series
the real and imaginary parts of the semiclassical amplitudesxist and, on the other, bifurcations of closed orbits generate
extracted from the quantum spectrum to the classical result@dditional orbits. Apart from the fact that many orbits cannot
For most closed orbits, the agreement is excellent. Exce@e identified individually even by the high-resolution
tions occur for the shortest orbits, where the actions of rotamethod, the most conspicuous feature of Fig. 5 is that for
tor and vibrator orbits are too similar to be resolved by themany orbits the semiclassical amplitudes calculated from the
harmonic inversion. At somewhat larger actions, the threelassical data are considerably larger than those extracted
orbits in each group fall apart into two rotator orbits with from the quantum spectrum. In some cases, this is obvious at
similar actions and a vibrator orbit with a slightly larger ac- a glance, but a closer inspection of the figure reveals that this
tion. phenomenon is rather common. Some specific cases will be

These observations can be made even more clearly if théescribed in detail in Sec. VIII.
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FIG. 6. Absolute valuiR(S) of the recurrence spectrum with= 10 (see text Upper part: Fourier transform of the quantum spectrum.
Lower part(inverted: smoothed semiclassical recurrence spectrum.

The occurrence of exceedingly large semiclassical ampliisolated to be resolved by both the harmonic inversion and
tudes is a well-known problem of both closed-orbit andthe Fourier transform across the entire range of actions, the
periodic-orbit theory. It is associated with bifurcations of rotators occur in groups of several orbits having nearly iden-
classical orbits, where, in the case of closed orbits, the stdical actions. They are not resolved properly by either
bility determinantM vanishes and the closed-orbit amplitude method. Instead, the Fourier transform produces peaks de-
(35) diverges. Close to the bifurcatioll is small. The semi- scribing the collective contribution of the orbits in a group.
classical amplitude of the bifurcating orbit is therefore largeThe harmonic inversion fits this contribution with fewer ac-
and exceeds the value determined from the quantum spetieons and amplitudes than the actual number of orbits. Al-
trum. In a classical context, we have shown previo(igl§i  though the results can be expected to reproduce the quantum
that vanishingM is both a necessary and sufficient conditionspectrum fairly well, the principal virtue of the high-
for a bifurcation of closed orbits. In the context of semiclas-resolution analysis—that it is capable of giving individual
sical closed-orbit theory, it is necessary to overcome the dirather than collective contributions—is lost. It is therefore
vergence of the closed-orbit formula occurring close to gpointless to extend the high-resolution analysis to higher ac-
bifurcation. This problem will be addressed in Sec. VIII, af- tions unless a significantly longer quantum spectrum can be
ter the impact of the bifurcations on the semiclassical signabbtained, and only the Fourier transform will be used hence-
at hand has been investigated further. forth.

Although, in Fig. 5, the vibrator orbits are sufficiently  Figure 6 displays the Fourier recurrence spectrum with
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smoothingx=10 for scaled actions up t6/27=100 and Of generic closed-orbit bifurcations of codimension 1. The

compares it to the semiclassical spectrum. These results eRertinent uniform semiclassical approximations will be de-
tend the semiclassical analysis of quantum spectra to signiffived in what follows.
cantly longer orbits than investigated in previous studies. In most cases of interest, a bifurcation destroys real orbits
They allow a verification of the closed-orbit theory all the and turns them into complex ghost orbits that exist in the
way up to the long orbits. It is immediately apparent from complexified classical phase space. Ghost orbits can yield
the figure that the quantum recurrence spectrum retains ifd@lpable contributions to semiclassical sped®&,36. In
pronounced peak structure. This is to be expected from thparticular, their knowledge is essential for the construction of
closed-orbit theory, and indeed the peak locations are giveHniform approximation. For the generic closed-orbit bifurca-
by the actions of closed orbits for long as well as for shorttions, the ghost orbits were described along with the real
orbits. The basic idea of the closed-orbit theory that recurorbits in Ref.[17].
rence peaks are related to classical closed orbits is therefore Of particular importance is the observation that bifurca-
confirmed in principle even for very long orbits. tions of codimension higher than 1 are relevant to semiclas-
Even for the largest actions considered, the quantum an®cs, although on a classical level they are not generically
semiclassical recurrence spectra agree quantitatively fg¥ncountered. They appear as sequences of generic bifurca-
some peaks. For most peaks, however, the peak heights tipns, which, if the individual bifurcations are sufficiently
the quantum and semiclassical spectra disagree. There &#9se, must be described collectively by a single uniform
quantum peaks that are smaller in the semiclassical spectrugPProximation. Several examples of uniform approximations
or even completely absent. They can be attributed to missinfpr these complicated bifurcation scenarios have been de-
orbits. On the other hand, in many cases the semiclassic&fribed in the literaturg35,37-39.
peaks are significantly higher than the quantum peaks, some- The principal requirement a uniform approximation must
times by several orders of magnitude. Exceedingly higrsatisfy is to asymptotically reproduce the known isolated-
peaks can be traced back to bifurcations of closed orbits ifrbits approximation when the distance from the bifurcation
the possibility is ignored that a quantum peak can be smalirows large, because in this limit the stationary-phase ap-
because orbits missing in the semiclassical spectrum interoximation can be expected to be accurate. In the following,
fere destructively with the orbits present. This latter mechaWwe Will advocate a somewhat heuristic technique for the con-
nism becomes the more implausible the larger the semiclagtruction of a uniform approximation, which is easy to
sical peak is in comparison to the quantum peak. handle and vyields a smooth interpolation between the
Taken together, the effects of missing orbits and of bifur-asymptotic isolated-orbits approximations on either side of
cating orbits distort the semiclassical recurrence spectrum té€ bifurcation. It will first be described in general terms.
the point where it can no longer be expected to provide &ubsequently, uniform approximations describing the generic
suitable basis for a quantization. A close inspection of thdypes of codimension-1 bifurcations of closed orbits will be
recurrence spectrum suggests that the problem posed by lerived.
furcating orbits is more severe. Exceedingly high peaks oc- A bifurcation scenario is described by a normal form
cur frequently. In addition, the very fact that they are high®a(t) depending om=1 variablest andm=1 parameters
increases their detrimental effect on the semiclassical photd such that for any fixed value of the parametetsere are
absorption spectrum. Unless a suitable scheme for dealingfationary points ofb,(t) corresponding to the closed orbits
with bifurcating orbits can be devised, no improvement ofinvolved in the bifurcation. The parameteasnust then de-
the semiclassical signal can be expected. We therefore turn #8nd on the energ§ to reproduce the bifurcations of the

a description of the semiclassical treatment of bifurcatingclosed orbits. o
orbits by means of uniform approximaﬂons_ For the uniform approximation we make the ansatz

V(E)=I(a)e'S® (42)
VIil. UNIFORM APPROXIMATIONS with

A. The construction of uniform approximations

Exceedingly large contributions of single orbits to a semi- l(a)= f nd“tp(t)e“"a“). (43)
classical spectrum arise when the orbits are too close to a K

bifurcation to be rggarded as isolated, as i_s implicitly aSyere. the functionsy(E) andp(t) as well as the parameter
sumed by the stationary-phase approximation used in th\(?aluesa(E) have to be determined. All of them must be
derivation of the closed-orbit formula. Uniform approxima- smooth functions oF

tions that furnish a collective contribution of several nearly To find the asymptotic behavior of uniform approximation

coincident trajectories were developed in the context of th?42) far from the bifurcations, Eq(43) is evaluated in the
semiclassical theory of molecular collisiofsee, e.g., Refs. stationary-phase approximatic’)n which yields

[29,30). They were introduced in the periodic-orbit theory
by Ozorio de Almeida and Hanndg1l]. Their original ap-

i\n/2 .
proach was extended by different authf82-35, so that WV(E)~ D _(277') p(t')ei[SO(E)-%-(ba(ti)]e—iwvi/Z'
today uniform approximations are a well-established tool of G VO ()]
semiclassical physics. In Rdf17], we identified two types (44)
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where the sum extends over all stationary potpisf @ ,(t) close to the origin. This is achieved by a Taylor series ex-
that are real at the givea $H®, is the Hessian determinant pansion that leads to the polynomial ansatz.

of ®,, and v; is the number of negative eigenvalues of Simple as it might appear, however, this choice can bring
HP,(t;). This expression is supposed to reproduce theabout a mathematical difficulty: A polynomial(t) diverges

isolated-orbits approximation ast—o, so that there is no guarantee that inte@4d® will
converge. If it does not, its divergence is an artifact of the
. _ i (E) choice ofp(t), because by construction the regions of large
V(E) 020, Ai(B)e™. (45) t should not significantly influence the value of the integral.

In this case, a suitable regularization scheme must be ap-
In this case, the sum extends over all closed orbits involvegblied. It can be justified by verifying that the regularized
in the bifurcation that are real at the given enefyif the  integral possesses the correct asymptotics.
normal form® 4(t) has been chosen suitably, there is a one- A slightly simpler form of the uniform approximation is
to-one correspondence between these orbits and the statiosbtained if the functiornp(t) is assumed to be a constant.
ary pointst; . A comparison of Eqsi44) and(45) yields the  This approximation does not exactly reproduce the desired

conditions asymptotics, but as the transition across the bifurcation
mainly results in a change of the stationary pointsbqft)
SI(E)=So(E) + P4(t)) (46)  rather than essential changesyift), it can be expected to
and capture the principal features.

Itis clear from the above description that there is a certain
arbitrariness in the procedure. This arbitrariness can be re-

£\n/2
A(E)= (2mi)" p(ti)efimi/z (47) duced to the choice of a suitable amplitude functju(t),
' V| 9P (1))] ' because by the splitting lemma and the classification theo-

rems of catastrophe theofy1] the uniform approximation
These equations must be valid for real orbits. In most bifurcan always be brought into forif#2) by a suitable coordi-
cation scenarios, all orbits are real at least at certain energiesate transformation, provided a normal fordn(t) equiva-
In these cases, it appears natural to post#itealso to hold  lent to the actual action function is given.
for ghost orbits. The parameter values one obtains are then In the following sections, uniform approximations for the
smooth functions of the energy even at the bifurcationgwo generic codimension-1 bifurcations described in Ref.
where the orbits become ghosts. In some instances, bifurcg7] will be derived along the lines given here. They turn out
tions involving only ghost orbits occuf39,40. In these to be analogous to those for isochronous and period-doubling
cases, conditiofd?) still produces smoothly varying param- bifurcations of periodic orbits given by Schomerus and Sie-
eters and enforces the desired asymptotics. ber[33].

The numbersy; of negative eigenvalues change discon-
tinuously at a bifurcation. For orbits that are real on either
side of the bifurcation, so do the Maslov indices contained in
the semiclassical amplitudes; . These changes must com-  The simplest closed-orbit bifurcation is the creation of
pensate each other if the valupét;) are to be continuous two orbits in a tangent bifurcation. It is described by the fold
across the bifurcation. For these orbits, therefore, the chandetastrophe
of the Maslov index occurring in a bifurcation must be equal
to the change iny; and can be determined from the normal
form. For ghost orbits, the Maslov indices are not well de-
fined classically. They must be chosen such as to mpgkg ~ This normal form has stationary points &t + \a, which

B. The fold catastrophe uniform approximation

d,(t)=1t3—at. (48)

continuous. are real ifa>0. Its stationary values are
The normal form parametessand the actior5y(E) can
be determined from Eq46). They usually turn out to be O (+Ja)=72a%2 (49

unique. The amplitude functiop(t), on the contrary, is un-

known. Once the parametesshave been found, Eq47) gy Eq. (46), the actionsS; andS, of the bifurcating orbits
specifies its valuep(t;) at the stationary points ob4(t).  myst satisfy
These values, of course, do not suffice to identifft)

uniquely, so that there is considerable freedom in the choice

of p(t). Usually, if there arek orbits participating in the

bifurcation scenario, we will approximafgt) by a polyno-

mial of degreek— 1. This choice is justified by the observa- S;=Sy(E) +3a%2 (50)

tion that the uniform approximation is needed only close to a

bifurcation, where all orbits are close te=0. Thus, in the For these equations to hold, one must ass@neS; if the
spirit of the stationary-phase approximation, the dominanbrbits are real and I1§,>0, ImS,<0 if they are ghosts.
contributions to integral43) stem from the neighborhood of These conditions determine how the orbits are to be associ-
t=0, whereas the regions of largedo not contribute. A ated with the stationary points d,(t). Equation(50) can
suitable approximation t@(t) must therefore be precise be solved for

S1=S(E) 3%
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S +S, C. The cusp catastrophe uniform approximation

So(E)= 5 (51)

The normal form for the symmetrized cusp catastrophe is
given by
and

1
3 23 Do(t) =~ t*—zat?. (60)
lal=(3]S,— S:)". (52 4

The observation that the bifurcating orbits are reahif0 It has stationary points at=0 andt= * ya and describes a
and ghosts i< 0 fixes the sign of. Both Sy(E) anda have pitchfork bifurcation, where two asymmetric orbits bifurcate
thus been determined. off an orbit invariant under a reflection. We denote their ac-

For the semiclassical amplitudes, E47) yields tions and amplitudes b$sym, Sasym and Asym, Aasym, re-
spectively, whered,q,mis understood to be the cumulative

J7 _ amplitude of both asymmetric orbits.
A= 1/4p(+ Jayeti™A, As ®,(t=0)=0, thg reference actioso(E) must be _
|al chosen equal to the action of the symmetric orbit. The action
difference is given by the stationary value®f(t), which is
Jr i a%/4, so that
A= P Jaje ' (53)
1
) AS= Ssym_ Sasym: Zazr (61
With the ansatz
and
Po P1
()y=s—+=—t (54
P 2n " 2n a=+2\AS. (62
for the amplitude functiom(t), we can solve for the param- The parametea has to be chosen positive if the asymmetric
eterspy and p, to obtain orbits are real, and negative otherwise. Hek&§ was as-
_ sumed to be positive. If it is not, the normal fohy(t) must
Po= V|a| Ve T A +iAy), be replaced with—®,(t), which changes the sign of the

stationary values.
a4 Due to the reflection symmetry, the amplitude function
e T AL—iAy). (55 must be an even function of We make the ansatz
a

Ja

The uniform approximation thus takes the form

|
Plz\/;

p(t)=po+ p,t? (63

and solve Eq(47) for the coefficients

W (E)=(polo+pyly)e'>® (56)
a .
with Po="\/5 ;A ™",
P J dt thei®a (57) e '™ .
K 2w . pZZm(Aasym_ \/§| -Asym)- (64)

The integrall y can be evaluated in terms of the Airy function The complete uniform approximation reads

[24] as
lo=Ai(~a), 59 w(E)- [ dt e O=pyiotpl, (69
wheread ; is given by its derivative with
I1=idilo=—iAi’(—a). (59) |k=J dt kel a0, (66)
a

With these results, uniform approximati¢®6) can be com- The integrall, can be evaluated analytically in terms of the
puted once the classical quantiti€s, S, and A;,A4, are  Bessel function$42]:

known. After some rearrangements, E56) can be found to

agree with the uniform approximation derived by Schomerus | =Z\/He‘iaz’8
and Siebef33] for isochronous bifurcations of periodic or- % 2

bits, although its present form is much simpler. (67)

e 1 +sgnae '),

a? a?
8 8/
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Although it is not apparent at first sight is a smooth func- 100
tion of a. This can be verified if the series expans|@4]
X 14
3,0=|5] 1.0 (68)
E
with r,(x) a power series ix? is used. In terms of ,(x), -
2 2 ;
T . . . a H
|O=Ee7|a2/8 2e|71-/8r_1/4 g + Eeflfrrlsrll4 § , 20 £
O 1 1 1 1
which is indeed smooth. The second intedratan be evalu- 0 20 40 60 80 100
ated from W
FIG. 7. Uniform approximation for a scaled spectrgsee text
_ . d iD () _ o dlo . —ia%8 1 a for a description of the bifurcationSolid line: uniform approxima-
l,= | dt2i —e'PaV=2i —=ism|ale ——i- . T : e
da da 2a 4 tion [Eqg. (65)]. Short-dashed line: simple uniform approximation
) 5 with constantp(t). Long-dashed line: isolated-orbits approxima-
/8 a —imgy |2 tion.
X|e'™J_q4 ) +sgnae J1/a B
5 ) The scaled uniform approximation can be used to improve
+Ee‘”’8 3 a- 3 a the semiclassical recurrence spectrum, but this requires some
8 ~S4 g o4 g effort. Although the isolated-orbits approximation yields
2 5 function peaks in the recurrence spectrum, which are re-
+sana e 78 ay_ (& placed with Gaussians due to the smoothing of the recur-
gnaze J_ 34 Js4 (70) . R
8 8 8 rence spectrunisee Sec. VI, the uniform approximation is

a complicated function ofv. It must be subjected to a nu-
This derivation contains an interchange of differentiation antyerical Fourier transform in the same way as the quantum
integration, which achieves a regularization of the divergenspectrum if its contribution to the recurrence spectrum is to
integral |,. It can be justified by verifying that the pe evaluated. Because a bifurcation involves orbits with
asymptotic behavior of Eq70) for a— * agrees with the  roughly equal actions, the uniform approximation will pro-

stationary-phase approximation to EG6). duce a recurrence peak at the appropriate action. An example
is shown in Fig. 8. It was calculated for the bifurcation al-
IX. UNIFORMIZED RECURRENCE SPECTRA ready described in Fig. 7. The Gaussian smoothing used in

Sec. VIl was replaced with a rectangular window, so that a

The formulas derived in the preceding sections give the,,her of side peaks appear. In this case, the Fourier trans-
uniform approximations directly in terms of the semlclassmalform of both the uniform approximation and the isolated-

actions and amplitudes. This circumstance makes them eagyyits approximation was taken over the rectangular window
to apply to scaled spectra: we simply ggtwS and Ac,.  we[40,60. The bifurcating orbits have the scaled action

=w 'A;,. As w is varied, the bifurcation is not encoun- &/2-~21.86, which is where the Fourier peaks are centered
tered because the classical mechanics does not change, so

that the isolated-orbits approximation does not actually di- 1200
verge. However, ifv is small, the action differences between
the bifurcating orbits are also small, so that the presence of 1000 |
the bifurcation is felt and the isolated-orbits formula pro-
duces exceedingly large contributions. For langehe action 800 r
differences also grow large, so that the isolated-orbits ap- a
proximation should be recovered in the limit of large g S00r
These findings are illustrated in Fig. 7 for a pitchfork 400 |
bifurcation taking place in the first series of rotators at a
repetition numbeg.=57. At E= — 1.4, the bifurcation takes 200 |
place at the scaled electric field strendth0.090 14. The Y o
data shown in Fig. 7 were calculated far=—1.4 andF 2 214 216 218 22 o920 o4
=0.2, which are sufficiently far away from the bifurcation &on
for the asymptotic regime to be reached within the range of
w shown. As anticipated, in the limit af—« the complete FIG. 8. Contribution to the recurrence peak calculated from the

uniform approximation agrees with the isolated-orbits for-uniform approximatior{solid line) and the isolated-orbits approxi-
mula. The simple approximation also reproduces the beat®ation (dashed ling for the same bifurcation as in Fig. &
correctly, but it has a smaller amplitude. =—-1.4 andF=0.1.
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in both approximations. The peak produced by the uniformcomplicated scenario at=42, remains an open problem to
approximation is considerably smaller. be solved in the future. It can be solved within the frame-
If this uniformization procedure is carried out for all ex- work of uniformization presented in Sec. VIII A, but will
cessively high bifurcation peaks, it should be possible taequire a way of constructing normal forms.
bring the semiclassical recurrence spectrum in Fig. 6 into The approach to high-resolution semiclassical quantiza-
agreement with its quantum counterpart. In practice, howtion relies on the harmonic inversion of a Fourier trans-
ever, several obstacles stand in the way. First of all, in manjormed semiclassical spectrum, i.e., of a recurrence spec-
cases ghost orbits must be included in the uniform approxitrum. The above method of uniformizing the bifurcation-
mation. They must be found and identified as pertinent to &hduced excessively high recurrence peaks in a semiclassical
given bifurcation before the uniformization can be per-spectrum would therefore, if it could be implemented sys-
formed. Furthermore, even if all relevant orbits are realtematically, also pave the way for the inclusion of uniform
those orbits connected with each other in a bifurcation musapproximations into a high-resolution semiclassical quantiza-
be recognized in the data set. This is by no means an easipn, which has not been possible so far. We were able to
task. For example, if in a given series of rotators and for alemonstrate the feasibility of our method by way of example
given winding number a quartet of orbits appears, there aréor the hydrogen atom in an electric fidld6], which is less
two different doublet orbits out of which they may have bi- demanding classically. Its application to the crossed-fields
furcated, and it is not clear, in general, which of them musthydrogen atom, however, remains open for future work.
be taken for the uniform approximation. In a single case, this
can be found out fairly comfortably by hand. If many orbits X. CONCLUSION
are to be classified, however, it is essential to do the grouping
automatically. We have not yet been able to devise a practica)a
algorithm for this task, so that an automatized uniformizationfie
of all bifurcation peaks is presently impossible.

For the first time, a high-resolution semiclassical quanti-
tion of the hydrogen atom in crossed electric and magnetic
Ids has been presented. It achieved the identification of the
: P strong spectral lines in differemt manifolds. By means of a

| Apart from thelse rafther tefchnécal d|ff|(|:glt|es, there arjetailed semiclassical analysis of the pertinent quantum
a_so some obstac es_o morg un gmenta [nportancg_ CO%’pectrum, it was shown that bifurcations of closed orbits play
sider, e.g., the two high semiclassical peakS/@r~25in 3 crycial role in the semiclassical spectrum and preclude the
Fig. 5. They are notably too high, and they are well isolatedresolution of finer details in the semiclassical spectrum. They
from neighboring recurrence peaks, so that they may appe@jpse a particular challenge to the semiclassical quantization
to be the ideal testing ground for the uniformization proce-hecause they require a special treatment by uniform approxi-
dure. These peaks are generated by vibrators with repetitiomations.
numbersy =41 andu =42, respectively. The pertinent bi- A simple heuristic scheme for the construction of uniform
furcation ScenariOS were described in F|gS 17 and 18 Of Reépproximations has been proposed' Its S|mp||c|ty and efﬁ_
[17]. The “simple” scenario taking place gt =41 consists cacy was demonstrated by a derivation of the uniform ap-
of two orbits being generated in the rotational symmetryproximations for the codimension-1 generic bifurcations of
breaking at-=0, followed by a tangent bifurcation destroy- closed orbits.
ing one of them and a third orbit. To smooth this bifurcation ~We have devised a general method for the inclusion of
peak, a uniform approximation describing the complete sceuniform approximations in a high-resolution semiclassical
nario must be found, which requires the construction of sguantization by harmonic inversion. In a recent publication
suitable normal form. Although a uniform approximation for [46] it was successfully applied to the hydrogen atom in an
the symmetry-breaking is availabld3—45, the derivation electric field. In the case of the crossed-fields hydrogen atom,
of the pertinent normal form relies on principles different the diversity and complexity of the bifurcation scenarios en-
from the catastrophe theory classification used here, and it isountered so far hinders the systematic implementation of
not clear how these two can be united into a single normathe uniformization procedure. The treatment of all relevant
form. Thus, the construction of a uniform approximation for bifurcations and the calculation of a detailed semiclassical
this bifurcation scenario, and even more so for the morespectrum thus remain challenging tasks for future studies.
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