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Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields
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The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is ex-
tended to atoms in crossed electric and magnetic fields. We present a semiclassical quantization of the hydro-
gen atom in crossed fields, which succeeds in resolving individual lines in the spectrum, but is restricted to the
strongest lines of eachn manifold. By means of a detailed semiclassical analysis of the quantum spectrum, we
demonstrate that it is the abundance of bifurcations of closed orbits that precludes the resolution of finer
details. They necessitate the inclusion of uniform semiclassical approximations into the quantization process.
Uniform approximations for the generic types of closed-orbit bifurcations are derived, and a general method
for including them in a high-resolution semiclassical quantization is devised.
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I. INTRODUCTION

Closed-orbit theory was first introduced by Du and De
@1# and Bogomolny@2# some 20 years ago to interpret th
modulations observed in the photoabsorption spectra of
drogenic Rydberg atoms in a magnetic field close to the i
ization threshold. Since that time, it turned out to be a po
erful and flexible tool for the semiclassical interpretation o
variety of spectra. It has been used to describe atom
electric@3# as well as parallel@4,5# or crossed@6–8# electric
and magnetic fields. In the case of nonhydrogenic atoms
influence of the ionic core can be modeled either by me
of an effective classical potential@9,10# or in terms of quan-
tum defects@11,12#. Recently, closed-orbit theory has eve
been shown to be applicable to the spectra of simple m
ecules in external fields@13#.

A complete description of photoabsorption spectra
quires the calculation of the energiesEn of the excited
atomic states and the strengths of the spectral lines, whic
characterized by the dipole matrix elements^ i uDun& between
the initial stateu i & and the Rydberg stateun&, whereD is the
component of the dipole operator describing the polariza
of the exciting laser field. These quantities are neatly su
marized in the response function

g~E!52
1

p
^ i uDG~E!Du i &52

1

p (
n

^ i uDun&u2

E2En1 i e
, ~1!

where

G~E!5(
n

un&^nu
E2En1 i e

~2!

denotes retarded Green’s function.
The closed-orbit theory provides a semiclassical appro

mation to the quantum response function~1!, which splits
into a smooth part and an oscillatory part of the form

gosc~E!5(
c.o.

Ac.o.~E!eiSc.o.(E), ~3!
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where the sum extends over all classical closed orbits s
ing from the nucleus and returning to it after having be
deflected by the external fields,Sc.o. is the classical action o
the closed orbit, and the amplitudeAc.o. describes its stability
and its starting and returning directions. Its precise form
pends on the geometry of the external fields. In Sec. III
will be specified for crossed-field systems without a ro
tional symmetry.

Although the closed-orbit sum~3! appears to provide a
straightforward means of calculating the response func
from the classical closed orbits, this is actually not the c
because the sum usually diverges for real energiesE. Thus,
the quantal information cannot be extracted directly from
semiclassical expansion. One particular and widely ap
cable method to overcome the convergence problems of
closed-orbit sum is semiclassical quantization by harmo
inversion@14,15#. For the hydrogen atom in a magnetic fiel
this method has been shown@16# to be capable of extracting
semiclassical eigenenergies and transition matrix elem
from a closed-orbit sum.

In the present paper we will investigate how these res
can be generalized to the hydrogen atom in crossed ele
and magnetic fields. This problem is considerably har
than the treatment of the diamagnetic hydrogen atom, wh
possesses a rotational symmetry around the field axis. Du
that symmetry, in classical mechanics the angular momen
around the field axis is conserved. So is, in quantum mech
ics, the magnetic quantum numberm. In crossed fields, the
rotational symmetry is broken. As a consequence, the se
tion rules for them quantum number no longer hold, and
multitude of additional lines appears in the quantum sp
trum. At the same time, the determination of classical clo
orbits gets significantly more difficult because three nonse
rable degrees of freedom have to be dealt with. A deta
description of the intricate pattern of closed orbits and th
bifurcations was given in an accompanying paper@17#. That
data forms the basis of the present work, where the semic
sical treatment of the crossed-fields hydrogen atom will
dealt with, and we will freely use the nomenclature intr
duced in Ref.@17#.

After the essential properties of the crossed-fields Ham
tonian have been summarized in Sec. II, we start, in Sec.
©2003 The American Physical Society11-1
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BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063411 ~2003!
with a derivation of the closed-orbit formula~3! in the con-
text of theS-matrix formulation of closed-orbit theory intro
duced recently by Granger and Greene@18#. We show that
the framework can be extended to the crossed-fields s
tion, and we clarify some misleading conclusions arrived
in Ref. @18#. Section IV describes the quantum spectrum u
der study, and Sec. V compares it to a semiclassical spec
in low resolution. In Sec. VI, the results of a high-resoluti
semiclassical quantization using the technique of harmo
inversion are presented. The semiclassical spectrum corr
identifies the strongest spectral lines, but it fails to descr
finer details of the quantum spectrum. In Sec. VII, we co
pare a quantum recurrence spectrum to the classical da
show that the principal source of this difficulty lies in th
abundance of closed-orbit bifurcations. Uniform approxim
tions provide a tool to cope with the divergences introduc
into semiclassical spectra by bifurcations of classical orb
A general technique for their construction is described
Sec. VIII, and uniform approximations for the two types
generic codimension-1 bifurcations identified in Ref.@17# are
derived. Finally, in Sec. IX we demonstrate how unifor
approximations can be incorporated into recurrence spe
thus paving the way for their inclusion into the hig
resolution semiclassical quantization by harmonic inversi

II. THE CLASSICAL HAMILTONIAN

Throughout this work, we will assume the magnetic fie
to be directed along thez axis and the electric field to b
directed along thex axis. In atomic units, the Hamiltonia
describing the motion of the atomic electron then reads

H5
1

2
p22

1

r
1

1

2
BLz1

1

8
B2r21Fx, ~4!

where B and F denote the magnetic- and electric-fie
strengths, respectively,r 25x21y21z2, r25x21y2, andLz
is the z component of the angular momentum vector.
virtue of the scaling properties of Hamiltonian~4!, if all clas-
sical quantities are multiplied by suitable powers of the sc
ing parameter

w[B21/3, ~5!

the dynamics can be shown not to depend on the energE
and the field strengthsB and F separately, but only on the
scaled energyẼ5w2E and the scaled electric-field streng
F̃5w4F. In particular, classical actions scale according
S5wS̃. Thus, the semiclassical limit of large classical a
tions corresponds to the limit of largew.

The way of recording a quantum spectrum that is b
suited for semiclassical investigations is scaled-energy s
troscopy. A spectrum then consists of a list of the scal
parameterswn characterizing the quantum states for giv
scaled energyẼ and scaled electric-field strengthF̃. Scaled-
energy spectroscopy offers the advantage that the under
classical dynamics does not change across the spectru
will be adopted throughout this work.
06341
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III. THE S-MATRIX FORMULATION OF CLOSED-ORBIT
THEORY

A. General formalism

The basic observation fundamental to all of the clos
orbit theory is a partition of space into physically distin
regions. In the core region close to the nucleus, the Rydb
electron interacts in a complicated manner with all electro
of the ionic core. This interaction is manifestly quantum m
chanical in nature, it cannot be described in the framework
semiclassical theories. On the other hand, the interactio
the Rydberg electron with the external fields is much wea
in the core region than its interaction with the core, so t
the fields can safely be neglected. Therefore, a descriptio
the core obtained in the field-free case can be used. In
ticular, the initial state of the photoabsorption process is
sumed to be localized in the core region and not to be in
enced by the external fields.

In the long-range region far away from the nucleus, on
other hand, the external fields play a dominant role, wher
there is no interaction with the ionic core except for t
Coulomb attraction of its residual charge. In this region,
dynamics of the Rydberg electron is well suited for a sem
classical description. It is independent of the details of
ionic core.

In order to establish a link between the dynamics in
core and long-range regions, a matching region is assume
exist at intermediate distances from the nucleus where b
the external fields and the interaction with the core are n
ligible. Thus, in the matching region the simple physics of
electron subject to the residual Coulomb field of the core
observed.

Recently, Granger and Greene@18# proposed a formula-
tion of the theory based on ideas borrowed from quantu
defect theory. Their formulation achieves a clear separa
between properties of the external field configuration and
ionic core, which are encoded in separateS matrices. Suit-
able approximations to the core and the long-rangeS matri-
ces can be derived independently. Therefore, the forma
can be expected to allow a generalization of closed-o
theory to atoms with ionic cores exhibiting more comp
cated internal dynamics than have been treated so far.

The derivation given by Granger and Greene treated
case of an atom in a magnetic field only. It will now b
extended in such a way that it holds for combined elec
and magnetic fields with arbitrary field configurations.
this end, the ansatz and basic formulas of Granger
Greene’s theory will be summarized in this section. A mo
detailed treatment can be found in their paper@18#. In sub-
sequent sections, we will then turn to a discussion of
long-range scattering matrices pertinent to crossed exte
fields.

To lay the foundation for a definition of theSmatrices, we
pick a basis setCk

core and Ck
LR of wave functions of the

Rydberg electron valid in the core and long-range regio
respectively, and expand in terms of spherical harmonics

Ck
core(LR)~r ,q,w!5

1

r (
k8

Yk8~q,w!Fk8k
core(LR)

~r !. ~6!
1-2
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SEMICLASSICAL QUANTIZATION OF THE HYDROGEN . . . PHYSICAL REVIEW A67, 063411 ~2003!
The channel indexk is to be understood as a double ind
( l ,m) characterizing the spherical harmonics. When study
a complicated atom with more than one relevant state of
core, additional information can be included in the chan
functionsYk .

In the matching region, the radial function matricesFcore

and FLR can both be expressed in terms of radial Coulo
functions. We use the functionsf k

1(r ) and f k
2(r ) satisfying

outgoing- and incoming-wave boundary conditions, resp
tively, given by Ref.@19# and choose the radial functions
be of the form@47#

Fk8k
core

~r !52 i @ f k8
1

~r !Sk8k
core

2 f k8
2

~r ! dk8k#, ~7!

Fk8k
LR

~r !52 i @ f k8
1

~r ! dk8k2 f k8
2

~r ! Sk8k
LR

#. ~8!

Physically, these choices mean that the basis functionCk
core

is a superposition of a single incoming wave in channelk and
the outgoing waves in different channels produced from it
scattering off the core. Similarly,Ck

LR consists of an outgo
ing wave in channelk and the returning waves generated
scattering off the external fields. The scattering matricesScore

and SLR thus summarize the physical properties of the c
and the external fields, respectively. They are determined
the condition that the radial functions obey suitable bound
conditions, i.e.,Fcore is regular at the origin, whereasFLR

vanishes or satisfies outgoing-wave boundary condition
infinity for bound and free states, respectively. For hydrog
Score is the identity matrix.

Following previous work by Robicheaux@20#, Granger
and Greene derive the following expression for the respo
function ~1!:

g5 i d†@112~ScoreSLR!12~ScoreSLR!212~ScoreSLR!3

1•••#d, ~9!

where the vectord comprises the energy-dependent dipo
matrix elements

dk~E!5^Ck
core~E!uDu i & ~10!

between the initial state and the core-region channel w
functions. For hydrogen they can be computed explic
~see, e.g., Ref.@1# or @21#!.

The terms of series~9! embody contributions from path
where the Rydberg electron takes 0, 1, 2, etc. trips out
the long-range region and back to the core before interfe
with the initial outgoing wave. In the semiclassical appro
mation,SLR will be given in terms of closed orbits. A return
ing wave is associated with each returning classical orbit.
a general ionic core, it is scattered into all directions. T
parts of the wave scattered into the outgoing direction o
closed orbit will then follow this orbit until they return to th
core again. Thus, core scattering leads to a concatenatio
different closed orbits@11,12#. In hydrogen, the Coulomb
center scatters the incoming wave back into its direction
incidence, so that there is no coupling of closed orbits. Te
describing repeated scattering off the external fields
06341
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therefore absent from the sum, and the hydrogen respo
function can be decomposed into a smooth part

g05 i d†d, ~11!

which is the same as in the field-free case and contains
rect’’ contributions where the electron does not scatter off
external fields at all, and an oscillatory part

gosc52i d†SLRd ~12!

generated by the electron going out into the long-range
gion and being scattered back to the nucleus. It is this p
that describes the impact of the external fields.

The basis for a semiclassical approximation is provid
by the retarded Green’s functionG(x,x8;E) describing the
propagation of the electron fromx8 to x at the energyE. It
can be expanded in terms of the channel functions as

G~x,x8;E!5
1

rr 8
(
kk8

Yk~q,w!G̃kk8~r ,r 8;E!Yk8
* ~q8,w8!

~13!

with

G̃kk8~r ,r 8;E!5rr 8^kuG~x,x8;E!uk8&. ~14!

The long-range scattering matrix is related to Green’s fu
tion matrix by @18#

SLR5
1

ip
@ f 2~r 0!#21G~r 0 ,r 0!@ f 2~r 0!#21, ~15!

wherer 0 is the matching radius,f 2 is the diagonal matrix

f kk8
2

~r !5 f k
2~r !dkk8 ~16!

comprising the radial wave functions, andG(r ,r 8) denotes
the part ofG̃(r ,r 8) satisfying incoming-wave boundary con
ditions at the final radiusr. The latter condition ensures tha
only electron paths approaching the matching radius fr
the long-range region contribute toSLR, whereas paths tha
traverse the core region are omitted.

B. Closed-orbit theory for crossed-fields systems

To obtain a semiclassical approximation to the long-ran
scattering matrix, we make use of the semiclassical Gre
function derived by Gutzwiller@22#

Gscl~x,x8;E!5
2p

~2p i !(n11)/2 (
class. traj.

AuDuexpS iS2 i
p

2
s D ,

~17!

where the sum extends over all classical trajectories lead
from x8 to x at the energyE, n is the number of degrees o
freedom,S is the classical action along the trajectory,s the
number of caustics along the trajectory, and
1-3



q
n’

i
a

re

y
ha
g

tte
r

tio

es

d,
x
he
in

tc
ar

g

-

rm

jec-
the
es,

the
ant

sed

a-

BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063411 ~2003!
D5detS ]2S

]x]x8

]2S

]x]E

]2S

]E]x8

]2S

]E2

D ~18!

is the amplitude for the contribution of the trajectory. By E
~14!, we obtain a semiclassical approximation to Gree
function matrix

Gkk8
scl

~r 0 ,r 0 ;E!5
2p

~2p i !2
r 0

2E dqdq8dwdw8sinq

3sinq8Yk* ~q,w!Yk8~q8,w8!

3 (
class. traj.

AuDuei (S(r 0 ,r 0)2ps/2). ~19!

As usual in semiclassics, the integrals will be evaluated
the stationary-phase approximation. It yields a sum over
classical trajectories, leaving the matching sphere at a di
tion given by (q i ,w i) and returning to it at (q f ,w f). The
condition that G(r 0 ,r 0) obeys incoming-wave boundar
conditions at the final radius translates into the condition t
only orbits going out from the matching sphere into the lon
range region and then returning tor 0 are to be included,
whereas orbits passing through the core region are omi
If all factors in the integrand except for the exponential a
assumed to vary slowly, the stationary-phase approxima
reads

Gkk8
scl

~r 0,r 0 ;E!52pr 0
2(

i→f
sinq isinq fYk* ~q f ,w f !Yk8~q i ,w i !

3
AuDs.p.u

AUdet
]2S

]~q8,w8,q,w!2
U

3expS iS~r 0 ,r 0!2 i
p

2
~s1k!D , ~20!

wherek is the number of negative eigenvalues of the H
sian matrix ofS occurring in the prefactor.

Because the initial state is assumed to be well localize
is clear that the outgoing waves generated by the photoe
tation originate in the immediate neighborhood of t
nucleus. Therefore, only trajectories leaving the match
sphere radially need to be included in Eq.~20!. By the same
token, the trajectories can be assumed to return to the ma
ing radius radially. Thus, they are parts of closed orbits st
ing precisely at the nucleus and returning there.

By transforming~18! to spherical coordinates and makin
use of the relations
06341
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]x
5p,

]S

]E
5t, ~21!

the amplitude factorD for radial trajectories can be simpli
fied to

D52
1

ṙ ṙ 8r 2r 82sinq sinq8
det

]~pq8 ,pw8 !

]~q,w!
. ~22!

The determinants occurring in Eq.~20! combine to

det
]~pq8 ,pw8 !

]~q,w! S det
]2S

]~q8,w8,q,w!2D 21

5det
]~pq8 ,pw8 ,pq ,pw!

]~q,w,pq ,pw! S det
]~2pq8 ,2pw8 ,pq ,pw!

]~q8,w8,q,w!
D 21

5det
]~q8,w8!

]~pq ,pw!
. ~23!

With these results, Green’s function matrix assumes the fo

Gkk8
scl

~r 0 ,r 0 ;E!52p(
c.o.

Asinq isinq f

Au ṙ ṙ 8u

3
Yk* ~q f ,w f !Yk8~q i ,w i !

AUdet
]~pq

f
,pw

f
!

]~q i ,w i !
U

3eiS(r 0 ,r 0)2 ip(s1k)/2. ~24!

The determinant in the denominator of Eq.~24! measures
the dependence of the final angular momenta of the tra
tory upon the starting angles. As it stands, it suffers from
singularities of the spherical coordinate chart: At the pol
neither the anglew nor the angular momentapq andpw are
well defined, so that close to the poles, the calculation of
determinant becomes numerically unstable. The determin
can be rewritten in the form@21,23#

det
]~pq f

,pw f
!

]~q i ,w i !
5sinq isinq fM ~25!

with a 232-determinantM devoid of any singularities. The
parameterM was already used in Ref.@17# to study the bi-
furcations of closed orbits. We showed there that a clo
orbit bifurcates if and only ifM50. With form ~25! of the
stability determinant, the semiclassical Green’s function m
trix reads

Gkk852p(
c.o.

1

Au ṙ ṙ 8u

Yk* ~q f ,w f !Yk8~q i ,w i !

AuM u

3expS iS~r 0 ,r 0!2 i
p

2
~s1k!D , ~26!
1-4
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SEMICLASSICAL QUANTIZATION OF THE HYDROGEN . . . PHYSICAL REVIEW A67, 063411 ~2003!
which is free of any singularities introduced by the spheri
coordinates.

By virtue of Eq. ~15!, the semiclassical long-range sca
tering matrix reads

Skk8
LR

52i(
c.o.

1

Au ṙ ṙ 8u

1

f k
2~r 0!

1

f k8
2

~r 0!

3
Yk* ~q f ,w f !Yk8~q i ,w i !

AuM u
eiS(r 0 ,r 0)2 ip(s1k)/2.

~27!

This expression can be further simplified if, for excited sta
close to the ionization threshold, the radial wave function

f l
2~r !'2 iArH 2l 11

(2) ~A8r ! ~28!

are approximated by the zero-energy wave functions, and
Hankel functions are replaced with their asymptotic for
for large arguments@24#:

Hn
(2)~x!'A 2

px
expS 2 ix1 i

p

2
n1 i

p

4 D . ~29!

This approximation leads to

Slm,l 8m8
LR

522p(
c.o.

~21! l 1 l 8
Ylm* ~q f ,w f !Yl 8m8~q i ,w i !

AuM u

3expS i @S~r 0 ,r 0!12A8r 0#2 i
p

2
~s1k! D ,

~30!

because, due to the conservation of energy,ṙ 2/251/r if E
50. In Eq. ~30!, the channel indicesk5( l ,m) are finally
written out explicitly.

For a radial trajectory in a hydrogen atom going out fro
the nucleus tor 5r 0 at zero energy, the action isA8r 0, so
that

Sc.o.5S~r 0 ,r 0!12A8r 0 ~31!

is the action of a closed orbit, measured from its start at
nucleus to its return. The semiclassical long-rangeS matrix
finally reads

Slm,l 8m8
LR

522p(
c.o.

~21! l 1 l 8
Ylm* ~q f ,w f !Yl 8m8~q i ,w i !

AuM u

3expS iSc.o.2 i
p

2
~s1k! D . ~32!

Both the actionSc.o. and the stability determinantM are
evaluated at the nucleus rather than on the matching sph
The response function is given by
06341
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gosc~E!54p(
c.o.

Y* ~q f ,w f !Y~q i ,w i !

AuM u
expS iSc.o.2 i

p

2
m D ,

~33!

where the Maslov indexm5s1k11 was increased by 1 to
absorb an additional phase, and the function

Y~q,w!5(
lm

~21! ldlmYlm~q,w!, ~34!

with the core-region matrix elementsdlm given by Eq.~10!,
characterizes the initial state and the exciting phot
Throughdlm , the functionY(q,w) is energy dependent. In
accordance with the choice of zero-energy radial wave fu
tions in theS-matrix elements,Y(q,w) will be evaluated at
zero energy. This approximation has proven accurate in
applications of closed-orbit theory considered in the lite
ture so far. However, from theS-matrix theory derivation it is
obvious that the energy dependence of both the dipole ma
elementsdlm and theS-matrix elements can easily be in
cluded should the need arise. The semiclassical resp
function ~33! has anticipated form~3! with

Ac.o.54p
Y* ~q f ,w f ! Y~q i ,w i !

AuM u
ei (p/2)m. ~35!

IV. THE SCALED QUANTUM SPECTRUM

If Schrödinger’s equation for the crossed-fields hydrog
atom is rewritten in terms of the scaled energy and the sc
electric field strength, a quadratic eigenvalue problem for
scaling parameterw is obtained. An exact numerical metho
of solution for the quadratic eigenvalue problem has beco
available only recently@25#. We resort to the method intro
duced by Main@15#, which relies on an approximate linea
ization of the eigenvalue problem to compute eigenvalue
a small spectral interval. The accuracy of the linearizat
can be verified by comparing results that were calcula
using different overlapping intervals. The eigenvalues
obtained to a relative accuracy of at least 1027, which is far
beyond the typical accuracy of semiclassical approximatio
so that the algorithm is well suited to this study.

In the following we will discuss quantum and semiclas
cal photoabsorption spectra obtained for the scaled en
Ẽ521.4 and the scaled electric field strengthF̃50.1 with
the initial stateu2p0& and light linearly polarized along the
magnetic field axis. A quantum spectrum for these param
values is shown in Fig. 1. As for a semiclassical analysis~see
Sec. VII! it is essential to have as many eigenvalues av
able as possible, the calculation was extended up tow
5100. The spectrum shown in Fig. 1 contains nearly 30 0
lines, many of which are too weak to be discernible in t
plot.

The eigenenergies of the field-free hydrogen atom sat

E5w22Ẽ52
1

2n2
, ~36!
1-5
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FIG. 1. Quantum photoabsorption spectrum at the scaled energyẼ521.4 and the scaled electric field strengthF̃50.1. The initial state
is u2p0&, the light is polarized along the magnetic-field axis. The plot shows the squared dipole matrix elements, which for graphica
are multiplied byw. The strengths of the extraordinarily strong lines of the lowestn manifolds atw,7.5 are scaled down by a factor of 0.2
lo
r-

h
re

ar
e
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en-

rp-
las
iz.
so that in the scaled spectrum the unperturbedn manifolds
appear equidistantly spaced at

w5A22Ẽn. ~37!

These spacings can clearly be recognized in Fig. 1. At
values ofw, neighboringn manifolds are isolated. Furthe
more, in this region the magnetic quantum numberm is
nearly conserved. This is apparent from the fact that eacn
manifold contains a central group of strong levels cor
sponding tom50, which can be excited even atF̃50, and
adjacent groups of considerably weaker levels withm
561. Levels with higher magnetic quantum numbers
too weak in this region to be seen in the figure. At high
values ofw, the conservation ofm is violated, and individual
n manifolds acquire strong side bands. At even higherw,
06341
w

-

e
r

differentn manifolds strongly overlap. Throughout the spe
tral range shown, groups of strong lines indicating the c
ters of differentn manifolds are clearly discernible.

V. LOW-RESOLUTION SEMICLASSICAL SPECTRA

A semiclassical approximation to a scaled photoabso
tion spectrum is obtained if the closed-orbit theory formu
of Sec. III B are rewritten in terms of scaled quantities, v

gosc~w!5
1

w (
c.o.

Ãc.o.exp~ iwS̃c.o.! ~38!

with
1-6
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Ãc.o.54p
Y* ~q f ,w f ! Y~q i ,w i !

AuM̃ u
ei (p/2)m. ~39!

When low-resolution photoabsorption spectra are to
calculated from Eq.~38!, a method of cutoff must be adopte
to deal with the divergence of the semiclassical closed-o
sum. For this section, we choose a Gaussian cutoff, i.e.,
~38! is replaced with

gs
osc~w!5

1

w (
c.o.

Ãc.o.expS iwS̃c.o.2
S̃c.o.

2

2s2D , ~40!

so that orbits with scaled actions larger than the cutoff ac
s are smoothly suppressed. This smoothing corresponds
convolution of the quantum signal with a Gaussian of wid
1/s.

To facilitate the comparison of Eq.~40! with the convo-
luted quantum spectrum, we added the smooth part of
spectrum togs

osc, which was calculated by convoluting th
quantum spectrum with a Gaussian of width 1/s51. This
function is broad enough to wipe out the distinction betwe
neighboring principal quantum numbers. Results obtai
for s520 ands550 are shown in Fig. 2. In both cases it
apparent that the large-scale structure of equidistant princ
quantum numbers is well reproduced by the semiclass
approximation. In the quantum spectra, the substructure
the individualn shells can be discerned to a certain degr
given by the smoothing width 1/s. In the case ofs520,

FIG. 2. Smoothed quantum~upper halves! and semiclassica
~lower halves, inverted! photoabsorption spectra with cut-off actio
~a! s520 and~b! s550.
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much of this fine structure is also present in the semiclass
spectrum, but often the agreement is not good quantitativ
In particular, the peaks corresponding to the low
n-manifolds are considerably wider in the semiclassical th
in the quantum spectrum.

If the cutoff action is increased tos550, finer details are
resolved in the quantum spectrum. At the same time,
semiclassical closed-orbit sum becomes more oscillator
reproduce this fine structure. It appears, however, to
somewhat overoscillatory, developing structures absent f
the quantum spectrum. This type of behavior is typical
closed-orbit sums in nonintegrable systems. Thus, it can
questioned if the low-resolution closed-orbit sum can me
ingfully be extended to even longer orbits. A high-resoluti
quantization based on the present semiclassical approx
tion will be presented in the following section.

VI. HIGH-RESOLUTION SEMICLASSICAL SPECTRA

For the calculation of a scaled semiclassical spectrum,
method of semiclassical quantization by harmonic invers
of d function signals@14,26# can be applied. This techniqu
requires the inclusion of closed orbits up to a maximu
scaled action, i.e., it replaces the Gaussian cutoff used for
low-resolution semiclassical spectra presented in the pre
ing section with a rectangular cutoff. A rough estimate f
the required cutoff action can be obtained by means of p
turbation theory@21#:

S̃max528pẼn. ~41!

For the caseẼ521.4 andn59, i.e., w515.06, this esti-
mate yieldsS̃max/2p'50.

According to Eq.~41!, to compute levels at high quantum
numbersn a long semiclassical signal is needed, which c
be hard or even impossible to obtain. We calculated clo
orbits up toS̃max/2p5200, so that the orbital data is avai
able for nearly 18 000 closed-orbit multiplets. However, f
reasons to be described in Sec. VII a useful semiclass
signal can be constructed up toS̃max/2p'60270 only, so
that from the above estimate, the semiclassical calcula
cannot reach manifolds much higher thann510. On the
other hand, the semiclassical approximation must be
pected to yield more accurate results for higher quant
numbers. Thus, when a high-resolution semiclassical sp
trum is to be calculated, a compromise must be made
tween the contradictory requirements of describing a spec
region at sufficiently high quantum numbers and with a s
ficiently low spectral density. For the harmonic analysis
the closed-orbit sum we applied the method ofd function
decimated signal diagonalization@26,27#, which yields not
only semiclassical eigenvalues and amplitudes, but also
error parameter estimating the precision of the eigenvalu
Results obtained forẼ521.4 and F̃50.1 with a signal
length of S̃max/2p560 are compiled in Table I. The tabl
contains the quantum eigenvalues ofw and their dipole ma-
trix elements for the levels satisfying^2p0uDu f &2.0.7. It is
obvious at a glance that out of the multitude of spectral lin
1-7
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TABLE I. Semiclassical and quantum eigenvalueswf of the scaling parameter forẼ521.4 and F̃50.1. See text for a detailed
description. The dipole matrix elements^2p0uDu f &2 were obtained from a quantum spectrum.

n wf ~scl.! wf ~qm.! ^2p0uDu f &2 n wf ~scl.! wf ~qm.! ^2p0uDu f &2
9.88321 1.3617
9.91431 3.1145
9.97747 1.7474

10.05366 10.05912 51.0512
6 10.09551 10.09621 20.9313

10.15461 10.15378 7.0060
10.24076 0.9608
10.26612 2.0777
10.31803 1.9385

11.56497 2.5663
11.60898 11.60820 2.5875
11.66889 11.67341 2.3104
11.72048 11.73128 32.8808

7 11.75121 16.7278
11.78850 10.0092
11.84856 5.6249
11.92188 1.9229
11.95821 1.7923
12.01338 2.4821

13.23441 1.3668
13.25629 2.5141
13.30255 1.9971

13.36921 13.36913 2.8189
13.40177 13.40568 30.8875

8 13.44313 13.43744 16.0829
13.48737 13.48146 4.8263

13.54340 4.3111
13.59258 1.0747
13.61133 1.9475
13.65111 1.4081
13.70866 2.9676

14.91192 2.1880
14.94654 2.9922
14.99711 1.4563

9 15.06960 15.06470 3.2226
15.07888 25.1866
15.10074 8.4317
de

T
vi
am

o
ge
t

ft’’
m

06341
15.12905 15.12748 10.3140
15.17892 15.17491 2.2476
15.23623 15.23830 3.1064
15.26111 15.27005 1.7749

15.30024 2.3710
15.34449 1.0296
15.40389 3.3462

16.57908 0.7173
16.58435 1.7007
16.60357 1.7437

16.64355 16.63843 2.9662
16.69069 16.69180 0.9974
16.74965 16.75258 22.9143

16.76016 3.4901
10 16.78346 16.78269 11.1809

16.81329 16.81827 6.6898
16.86870 0.9825

16.93431 16.93323 2.0584
16.94303 1.4143
16.96000 1.4406
16.99085 2.3893
17.09909 3.5870
17.25847 0.7647

18.25950 2.1201
18.27572 0.9781
18.29004 2.6665
18.33096 2.7709

18.42131 18.42600 20.2420
18.45136 6.1451
18.45555 3.5970

11 18.47472 18.47149 7.2231
18.50996 4.0510
18.61835 1.7975
18.62818 1.2089
18.64563 2.2348
18.68226 2.2558
18.79427 3.6707

18.93585 18.95442 1.0263
be-
end

t
pec-
be

t
er, a

are
with intensities varying over many orders of magnitu
~most of which are not contained in the table! only the stron-
gest lines were detected in the semiclassical spectrum.
semiclassical eigenvalues given are characterized by ha
small imaginary parts, small error parameters, and large
plitudes as well as being stable with respect to a variation
numerical parameters. The calculation operates at the ed
convergence, and in a few cases one can be in doubt whe
a level should be included according to these fairly ‘‘so
criteria, but in general a clear decision can be made. Se
he
ng

-
f
of

her

i-

classical values for the transition strengths are not given
cause they are not reasonably well converged and dep
strongly on the numerical parameters.

One might expect that in eachn manifold the stronges
lines are detected semiclassically, and in general this ex
tation is confirmed by the numerical data. This can clearly
seen, e.g., in the manifoldn56, which contains the mos
stably converged lines in the spectrum. There are, howev
few conspicuous exceptions, e.g., atn57, where strong
lines are missing, whereas comparatively weak lines
1-8
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SEMICLASSICAL QUANTIZATION OF THE HYDROGEN . . . PHYSICAL REVIEW A67, 063411 ~2003!
found. Forn55, no lines at all can be computed from th
given semiclassical signal. If the signal length is decrease

S̃max/2p550, the three strongest lines appear in the spect
in this manifold.

At higher n, the number of strong lines in the quantu
spectrum increases. So does the number of lines in the s
classical spectrum untiln511, where only three semiclass
cal lines are found. They appear rather arbitrarily scatte
across the quantum spectrum, and their convergence is n
bly worse than in lower manifolds. It is clear that in thisn
shell the semiclassical quantization with the given signa
about to break down. Atn512, no lines can be detecte
semiclassically. As, from the above discussion, this fail
was to be expected because the required signal length
comes too large, the obvious way to improve converge
seems to be to use a longer signal. However, if the sig
length is increased toS̃max/2p570, no reasonably converge
semiclassical lines can be found in anyn manifold. Neither
are results improved if the technique of harmonic invers
of cross-correlated closed-orbit sums@16,28# is applied. This
method has proven powerful in reducing the signal len
required in a semiclassical quantization. In the present c
however, because the cross correlation increases the
number of frequencies obtained from the harmonic inv
sion, the true eigenvalues are hidden among a multitud
spurious frequencies, and no useful results can be obtai

For the time being, therefore, the results given in Tab
represent what can be achieved in the semiclassical qu
zation of the crossed-fields hydrogen atom. They confirm
applicability of the closed-orbit theory approach, in pri
ciple, but they also reveal a fundamental problem in
present formulation. It is clear that the signal length availa
is sufficient for a stable signal analysis. Thus, if the semic
sical results are not good, the semiclassical signal its
rather than the signal analysis, must be to blame. This c
clusion is confirmed by the observation that an increa
signal length destroys the results rather than improves th
We therefore start searching for a flaw in the construction
the semiclassical photoabsorption spectrum.

A conspicuous problem lies in the fact that the set
closed orbits available is incomplete. In no series of rotat
or vibrators can arbitrarily long orbits be calculated. In t
case of vanishing electric field, there is a critical angleqc
that the starting angles of both rotators and vibrators
proach as the orbits get longer. This convergence indic
that the orbits approach a separatrix between two familie
tori in phase space. If sufficiently long orbits are studie
there are many closed orbits with very similar initial cond
tions, so that the numerical search for closed orbits m
eventually fail.

The region of phase space where the unknown orbits
located is lying close to a separatrix, so that it is high
unstable. The orbits can therefore be expected not to con
ute much to the semiclassical signal. The magnitude of
orbit’s contribution to the closed-orbit sum~33! is deter-
mined mainly by its stability determinantM. Figure 3 shows
the stability determinants of the vibrator orbits forẼ
521.4, F̃50.1 as a function of the scaled action. Differe
06341
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series of vibrators can clearly be discerned in the plot. I
indeed unstable orbits with largeM̃ that are missing in the
data set, but on the other hand the stability determinant
the missing orbits are not large enough to regard the co
sponding semiclassical amplitudes as negligibly small. B
cause a vast majority of orbits has smallM̃ and was found,
one can still hope that useful results can be obtained from
semiclassical signal, at least for quantum states not locate
the separatrix region in phase space, but it is clear that
quality of the semiclassical signal is reduced by its inco
pleteness.

To assess in detail the detrimental effect of the miss
orbits and of any other sources of error that may exist,
carry out a semiclassical analysis of the quantum spectr

VII. SEMICLASSICAL RECURRENCE SPECTRA

According to Eq.~38!, in a scaled photoabsorption spe
trum every closed orbit contributes a purely sinusoid
modulation towg(w). This contribution can be extracte
from the spectrum either by a conventional Fourier transfo
or by means of a high-resolution method. The spectral an
sis yields information about classical orbits returning to t
nucleus. For this reason, the transformed spectrum is refe
to as a recurrence spectrum. High-resolution methods@15#
extract the scaled actions and scaled semiclassical am
tudes of individual orbits and thus yield more complete
formation about the semiclassical spectrum than the Fou
transform, but they fail if the average density of closed orb
per unit of scaled action is too large. By contrast, due to
linearity the Fourier transform can be applied to any part
the recurrence spectrum with equal ease and numerical
bility, irrespective of the spectral density. In dense regions
will not be able to identify individual closed orbits, but
will nevertheless yield a recurrence spectrum that can
compared to the classical data. In this section we will pres
results obtained by both the Fourier transform and a hi
resolution method. The semiclassical recurrence spectra
be compared to classical results in order to identify the r
son why the semiclassical signal is only partially suitable
a semiclassical quantization.

Using either method, it is essential to note that the se

FIG. 3. Stability determinants of vibrators as a function of t

action for Ẽ521.4, F̃50.1.
1-9
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BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063411 ~2003!
classical closed-orbit formula cannot be expected to y
accurate results for the lowest levels. Thus, the lown mani-
folds must be excluded from the semiclassical analysis,
the analysis is based on the quantum spectrum given in
interval @wmin ,wmax# instead of @0,wmax#. Furthermore, to
minimize the impact of boundary effects due to the fin
length of the semiclassical spectrum, a smooth Gaussian
off with width k centered atw05(wmin1wmax)/2 is intro-
duced. The smoothing replaces the peaks of the semiclas
recurrence spectrum by Gaussians of width 1/k. The recur-
rence spectra presented here were calculated from the q
tum spectrum shown in Fig. 1, forẼ521.4 andF̃50.1,
with wmin520, wmax5100, and k510. For the high-
resolution recurrence spectra, the method ofd function deci-
mated signal diagonalization was used.

For low-scaled actions, where only a few closed orb
exist, the high-resolution analysis can be applied. Results
shown in Fig. 4, which compares both the scaled actions
the real and imaginary parts of the semiclassical amplitu
extracted from the quantum spectrum to the classical res
For most closed orbits, the agreement is excellent. Exc
tions occur for the shortest orbits, where the actions of ro
tor and vibrator orbits are too similar to be resolved by
harmonic inversion. At somewhat larger actions, the th
orbits in each group fall apart into two rotator orbits wi
similar actions and a vibrator orbit with a slightly larger a
tion.

These observations can be made even more clearly if

FIG. 4. High-resolution recurrence spectrum forẼ521.4 and

F̃50.1. Sticks and squares: semiclassical closed-orbit amplitu
Stars: harmonic inversion of the quantum spectrum.
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absolute values of the amplitudes are considered. They
shown in Fig. 5, where the results of the high-resoluti
analysis are also compared to those of the Fourier transfo
Notice that for the Fourier transform the semiclassical a
plitude is given by the area under a peak rather than the p
height, so that an immediate comparison to the hig
resolution results is difficult. In Fig. 5, the Fourier transfor
was arbitrarily scaled, so that the peak heights roughly ma
the values of the high-resolution amplitudes. For isolated
bits identified both in the Fourier transform and the hig
resolution spectrum, the agreement between the two meth
is excellent. Where several peaks overlap in the semiclass
spectrum, no direct comparison is possible because the
phases cannot be determined from the figure.

Figure 5 also extends the results shown in Fig. 4 to hig
actions. In this region the density of closed orbits starts
increase because, on the one hand, rotators of the first s
exist and, on the other, bifurcations of closed orbits gene
additional orbits. Apart from the fact that many orbits cann
be identified individually even by the high-resolutio
method, the most conspicuous feature of Fig. 5 is that
many orbits the semiclassical amplitudes calculated from
classical data are considerably larger than those extra
from the quantum spectrum. In some cases, this is obviou
a glance, but a closer inspection of the figure reveals that
phenomenon is rather common. Some specific cases wi
described in detail in Sec. VIII.

s.

FIG. 5. Absolute value of the recurrence spectrum. Sticks
squares: semiclassical closed-orbit amplitudes. Stars: harmoni
version of the quantum spectrum. Solid curve, inverted: Fou
transform~arbitrary units!.
1-10
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FIG. 6. Absolute valueR(S̃) of the recurrence spectrum withk510 ~see text!. Upper part: Fourier transform of the quantum spectru
Lower part~inverted!: smoothed semiclassical recurrence spectrum.
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The occurrence of exceedingly large semiclassical am
tudes is a well-known problem of both closed-orbit a
periodic-orbit theory. It is associated with bifurcations
classical orbits, where, in the case of closed orbits, the
bility determinantM vanishes and the closed-orbit amplitu
~35! diverges. Close to the bifurcation,M is small. The semi-
classical amplitude of the bifurcating orbit is therefore lar
and exceeds the value determined from the quantum s
trum. In a classical context, we have shown previously@17#
that vanishingM is both a necessary and sufficient conditi
for a bifurcation of closed orbits. In the context of semicla
sical closed-orbit theory, it is necessary to overcome the
vergence of the closed-orbit formula occurring close to
bifurcation. This problem will be addressed in Sec. VIII, a
ter the impact of the bifurcations on the semiclassical sig
at hand has been investigated further.

Although, in Fig. 5, the vibrator orbits are sufficient
06341
li-
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al

isolated to be resolved by both the harmonic inversion a
the Fourier transform across the entire range of actions,
rotators occur in groups of several orbits having nearly id
tical actions. They are not resolved properly by eith
method. Instead, the Fourier transform produces peaks
scribing the collective contribution of the orbits in a grou
The harmonic inversion fits this contribution with fewer a
tions and amplitudes than the actual number of orbits.
though the results can be expected to reproduce the qua
spectrum fairly well, the principal virtue of the high
resolution analysis—that it is capable of giving individu
rather than collective contributions—is lost. It is therefo
pointless to extend the high-resolution analysis to higher
tions unless a significantly longer quantum spectrum can
obtained, and only the Fourier transform will be used hen
forth.

Figure 6 displays the Fourier recurrence spectrum w
1-11
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BARTSCH, MAIN, AND WUNNER PHYSICAL REVIEW A67, 063411 ~2003!
smoothingk510 for scaled actions up toS̃/2p5100 and
compares it to the semiclassical spectrum. These results
tend the semiclassical analysis of quantum spectra to sig
cantly longer orbits than investigated in previous studi
They allow a verification of the closed-orbit theory all th
way up to the long orbits. It is immediately apparent fro
the figure that the quantum recurrence spectrum retain
pronounced peak structure. This is to be expected from
closed-orbit theory, and indeed the peak locations are g
by the actions of closed orbits for long as well as for sh
orbits. The basic idea of the closed-orbit theory that rec
rence peaks are related to classical closed orbits is there
confirmed in principle even for very long orbits.

Even for the largest actions considered, the quantum
semiclassical recurrence spectra agree quantitatively
some peaks. For most peaks, however, the peak heigh
the quantum and semiclassical spectra disagree. There
quantum peaks that are smaller in the semiclassical spec
or even completely absent. They can be attributed to mis
orbits. On the other hand, in many cases the semiclas
peaks are significantly higher than the quantum peaks, so
times by several orders of magnitude. Exceedingly h
peaks can be traced back to bifurcations of closed orbit
the possibility is ignored that a quantum peak can be sm
because orbits missing in the semiclassical spectrum in
fere destructively with the orbits present. This latter mec
nism becomes the more implausible the larger the semic
sical peak is in comparison to the quantum peak.

Taken together, the effects of missing orbits and of bif
cating orbits distort the semiclassical recurrence spectrum
the point where it can no longer be expected to provid
suitable basis for a quantization. A close inspection of
recurrence spectrum suggests that the problem posed b
furcating orbits is more severe. Exceedingly high peaks
cur frequently. In addition, the very fact that they are hi
increases their detrimental effect on the semiclassical ph
absorption spectrum. Unless a suitable scheme for dea
with bifurcating orbits can be devised, no improvement
the semiclassical signal can be expected. We therefore tu
a description of the semiclassical treatment of bifurcat
orbits by means of uniform approximations.

VIII. UNIFORM APPROXIMATIONS

A. The construction of uniform approximations

Exceedingly large contributions of single orbits to a sem
classical spectrum arise when the orbits are too close
bifurcation to be regarded as isolated, as is implicitly
sumed by the stationary-phase approximation used in
derivation of the closed-orbit formula. Uniform approxim
tions that furnish a collective contribution of several nea
coincident trajectories were developed in the context of
semiclassical theory of molecular collisions~see, e.g., Refs
@29,30#!. They were introduced in the periodic-orbit theo
by Ozorio de Almeida and Hannay@31#. Their original ap-
proach was extended by different authors@32–35#, so that
today uniform approximations are a well-established too
semiclassical physics. In Ref.@17#, we identified two types
06341
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of generic closed-orbit bifurcations of codimension 1. T
pertinent uniform semiclassical approximations will be d
rived in what follows.

In most cases of interest, a bifurcation destroys real or
and turns them into complex ghost orbits that exist in
complexified classical phase space. Ghost orbits can y
palpable contributions to semiclassical spectra@35,36#. In
particular, their knowledge is essential for the construction
uniform approximation. For the generic closed-orbit bifurc
tions, the ghost orbits were described along with the r
orbits in Ref.@17#.

Of particular importance is the observation that bifurc
tions of codimension higher than 1 are relevant to semic
sics, although on a classical level they are not generic
encountered. They appear as sequences of generic bifu
tions, which, if the individual bifurcations are sufficientl
close, must be described collectively by a single unifo
approximation. Several examples of uniform approximatio
for these complicated bifurcation scenarios have been
scribed in the literature@35,37–39#.

The principal requirement a uniform approximation mu
satisfy is to asymptotically reproduce the known isolate
orbits approximation when the distance from the bifurcat
grows large, because in this limit the stationary-phase
proximation can be expected to be accurate. In the followi
we will advocate a somewhat heuristic technique for the c
struction of a uniform approximation, which is easy
handle and yields a smooth interpolation between
asymptotic isolated-orbits approximations on either side
the bifurcation. It will first be described in general term
Subsequently, uniform approximations describing the gen
types of codimension-1 bifurcations of closed orbits will
derived.

A bifurcation scenario is described by a normal for
Fa(t) depending onn>1 variablest andm>1 parameters
a, such that for any fixed value of the parametersa there are
stationary points ofFa(t) corresponding to the closed orbi
involved in the bifurcation. The parametersa must then de-
pend on the energyE to reproduce the bifurcations of th
closed orbits.

For the uniform approximation we make the ansatz

C~E!5I ~a!eiS0(E) ~42!

with

I ~a!5E
Rn

dntp~ t !eiFa(t). ~43!

Here, the functionsS0(E) andp(t) as well as the paramete
valuesa(E) have to be determined. All of them must b
smooth functions ofE.

To find the asymptotic behavior of uniform approximatio
~42! far from the bifurcations, Eq.~43! is evaluated in the
stationary-phase approximation, which yields

C~E!'(
t i

~2p i !n/2 p~ t i !

AuHFa~ t i !u
ei [S0(E)1Fa(t i )]e2 ipn i /2,

~44!
1-12
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where the sum extends over all stationary pointst i of Fa(t)
that are real at the givena, HFa is the Hessian determinan
of Fa , and n i is the number of negative eigenvalues
HFa(t i). This expression is supposed to reproduce
isolated-orbits approximation

C~E!'(
c.o.i

Ai~E!eiSi (E). ~45!

In this case, the sum extends over all closed orbits invol
in the bifurcation that are real at the given energyE. If the
normal formFa(t) has been chosen suitably, there is a o
to-one correspondence between these orbits and the sta
ary pointst i . A comparison of Eqs.~44! and~45! yields the
conditions

Si~E!5S0~E!1Fa~ t i ! ~46!

and

Ai~E!5
~2p i !n/2 p~ t i !

AuHFa~ t i !u
e2 ipn i /2. ~47!

These equations must be valid for real orbits. In most bif
cation scenarios, all orbits are real at least at certain ener
In these cases, it appears natural to postulate~47! also to hold
for ghost orbits. The parameter values one obtains are
smooth functions of the energy even at the bifurcatio
where the orbits become ghosts. In some instances, bifu
tions involving only ghost orbits occur@39,40#. In these
cases, condition~47! still produces smoothly varying param
eters and enforces the desired asymptotics.

The numbersn i of negative eigenvalues change disco
tinuously at a bifurcation. For orbits that are real on eith
side of the bifurcation, so do the Maslov indices contained
the semiclassical amplitudesAi . These changes must com
pensate each other if the valuesp(t i) are to be continuous
across the bifurcation. For these orbits, therefore, the cha
of the Maslov index occurring in a bifurcation must be equ
to the change inn i and can be determined from the norm
form. For ghost orbits, the Maslov indices are not well d
fined classically. They must be chosen such as to makep(t i)
continuous.

The normal form parametersa and the actionS0(E) can
be determined from Eq.~46!. They usually turn out to be
unique. The amplitude functionp(t), on the contrary, is un-
known. Once the parametersa have been found, Eq.~47!
specifies its valuesp(t i) at the stationary points ofFa(t).
These values, of course, do not suffice to identifyp(t)
uniquely, so that there is considerable freedom in the cho
of p(t). Usually, if there arek orbits participating in the
bifurcation scenario, we will approximatep(t) by a polyno-
mial of degreek21. This choice is justified by the observa
tion that the uniform approximation is needed only close t
bifurcation, where all orbits are close tot50. Thus, in the
spirit of the stationary-phase approximation, the domin
contributions to integral~43! stem from the neighborhood o
t50, whereas the regions of larget do not contribute. A
suitable approximation top(t) must therefore be precis
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close to the origin. This is achieved by a Taylor series
pansion that leads to the polynomial ansatz.

Simple as it might appear, however, this choice can br
about a mathematical difficulty: A polynomialp(t) diverges
as t→`, so that there is no guarantee that integral~43! will
converge. If it does not, its divergence is an artifact of t
choice ofp(t), because by construction the regions of lar
t should not significantly influence the value of the integr
In this case, a suitable regularization scheme must be
plied. It can be justified by verifying that the regularize
integral possesses the correct asymptotics.

A slightly simpler form of the uniform approximation i
obtained if the functionp(t) is assumed to be a constan
This approximation does not exactly reproduce the des
asymptotics, but as the transition across the bifurcat
mainly results in a change of the stationary points ofFa(t)
rather than essential changes inp(t), it can be expected to
capture the principal features.

It is clear from the above description that there is a cert
arbitrariness in the procedure. This arbitrariness can be
duced to the choice of a suitable amplitude functionp(t),
because by the splitting lemma and the classification th
rems of catastrophe theory@41# the uniform approximation
can always be brought into form~42! by a suitable coordi-
nate transformation, provided a normal formFa(t) equiva-
lent to the actual action function is given.

In the following sections, uniform approximations for th
two generic codimension-1 bifurcations described in R
@17# will be derived along the lines given here. They turn o
to be analogous to those for isochronous and period-doub
bifurcations of periodic orbits given by Schomerus and S
ber @33#.

B. The fold catastrophe uniform approximation

The simplest closed-orbit bifurcation is the creation
two orbits in a tangent bifurcation. It is described by the fo
catastrophe

Fa~ t !5 1
3 t32at. ~48!

This normal form has stationary points att56Aa, which
are real ifa.0. Its stationary values are

F~6Aa!57 2
3 a3/2. ~49!

By Eq. ~46!, the actionsS1 andS2 of the bifurcating orbits
must satisfy

S15S0~E!2 2
3 a3/2,

S25S0~E!1 2
3 a3/2. ~50!

For these equations to hold, one must assumeS1,S2 if the
orbits are real and ImS1.0, ImS2,0 if they are ghosts.
These conditions determine how the orbits are to be ass
ated with the stationary points ofFa(t). Equation~50! can
be solved for
1-13
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S0~E!5
S11S2

2
~51!

and

uau5~ 3
4 uS22S1u!2/3. ~52!

The observation that the bifurcating orbits are real ifa.0
and ghosts ifa,0 fixes the sign ofa. BothS0(E) anda have
thus been determined.

For the semiclassical amplitudes, Eq.~47! yields

A15
Ap

uau1/4
p~1Aa!e1 ip/4,

A25
Ap

uau1/4
p~2Aa!e2 ip/4. ~53!

With the ansatz

p~ t !5
p0

2p
1

p1

2p
t ~54!

for the amplitude functionp(t), we can solve for the param
etersp0 andp1 to obtain

p05Apuau1/4e2 ip/4~A11 iA2!,

p15Ap
uau1/4

Aa
e2 ip/4~A12 iA2!. ~55!

The uniform approximation thus takes the form

C~E!5~p0I 01p1I 1!eiS0(E) ~56!

with

I k5
1

2pE dt tkeiFa(t). ~57!

The integralI 0 can be evaluated in terms of the Airy functio
@24# as

I 05Ai ~2a!, ~58!

whereasI 1 is given by its derivative

I 15 i
d

da
I 052 iAi 8~2a!. ~59!

With these results, uniform approximation~56! can be com-
puted once the classical quantitiesS1 , S2 and A1 ,A2 are
known. After some rearrangements, Eq.~56! can be found to
agree with the uniform approximation derived by Schome
and Sieber@33# for isochronous bifurcations of periodic o
bits, although its present form is much simpler.
06341
s

C. The cusp catastrophe uniform approximation

The normal form for the symmetrized cusp catastrophe
given by

Fa~ t !5
1

4
t42 1

2 at2. ~60!

It has stationary points att50 andt56Aa and describes a
pitchfork bifurcation, where two asymmetric orbits bifurca
off an orbit invariant under a reflection. We denote their a
tions and amplitudes bySsym, Sasym and Asym, Aasym, re-
spectively, whereAasym is understood to be the cumulativ
amplitude of both asymmetric orbits.

As Fa(t50)50, the reference actionS0(E) must be
chosen equal to the action of the symmetric orbit. The act
difference is given by the stationary value ofFa(t), which is
a2/4, so that

DS5Ssym2Sasym5
1

4
a2, ~61!

and

a562ADS. ~62!

The parametera has to be chosen positive if the asymmet
orbits are real, and negative otherwise. Here,DS was as-
sumed to be positive. If it is not, the normal formFa(t) must
be replaced with2Fa(t), which changes the sign of th
stationary values.

Due to the reflection symmetry, the amplitude functi
must be an even function oft. We make the ansatz

p~ t !5p01p2t2 ~63!

and solve Eq.~47! for the coefficients

p05A a

2p
Asymeip/4,

p25
e2 ip/4

2Apa
~Aasym2A2iAsym!. ~64!

The complete uniform approximation reads

C~E!5E dt p~ t !eiFa(t)5p0I 01p2I 2 ~65!

with

I k5E dt tkeiFa(t). ~66!

The integralI 0 can be evaluated analytically in terms of th
Bessel functions@42#:

I 05
p

2
Auaue2 ia2/8Feip/8J21/4S a2

8 D1sgnae2 ip/8J1/4S a2

8 D G .
~67!
1-14
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Although it is not apparent at first sight,I 0 is a smooth func-
tion of a. This can be verified if the series expansion@24#

Jn~x!5S x

2D n

r n~x! ~68!

with r n(x) a power series inx2 is used. In terms ofr n(x),

I 05
p

2
e2 ia2/8F2eip/8r 21/4S a2

8 D1
a

2
e2 ip/8 r 1/4S a2

8 D G ,
~69!

which is indeed smooth. The second integralI 2 can be evalu-
ated from

I 25E dt2i
d

da
eiFa(t)52i

dI0

da
5 ipAuaue2 ia2/8H S 1

2a
2 i

a

4D
3Feip/8J21/4S a2

8 D1sgnae2 ip/8J1/4S a2

8 D G
1

a

8
eip/8FJ25/4S a2

8 D2J3/4S a2

8 D G
1sgna

a

8
e2 ip/8FJ23/4S a2

8 D2J5/4S a2

8 D G J . ~70!

This derivation contains an interchange of differentiation a
integration, which achieves a regularization of the diverg
integral I 2. It can be justified by verifying that the
asymptotic behavior of Eq.~70! for a→6` agrees with the
stationary-phase approximation to Eq.~66!.

IX. UNIFORMIZED RECURRENCE SPECTRA

The formulas derived in the preceding sections give
uniform approximations directly in terms of the semiclassi
actions and amplitudes. This circumstance makes them
to apply to scaled spectra: we simply putS5wS̃ and Ac.o.

5w21Ãc.o.. As w is varied, the bifurcation is not encoun
tered because the classical mechanics does not chang
that the isolated-orbits approximation does not actually
verge. However, ifw is small, the action differences betwee
the bifurcating orbits are also small, so that the presenc
the bifurcation is felt and the isolated-orbits formula pr
duces exceedingly large contributions. For largew, the action
differences also grow large, so that the isolated-orbits
proximation should be recovered in the limit of largew.

These findings are illustrated in Fig. 7 for a pitchfo
bifurcation taking place in the first series of rotators a
repetition numberm557. At Ẽ521.4, the bifurcation takes
place at the scaled electric field strengthF̃50.090 14. The
data shown in Fig. 7 were calculated forẼ521.4 andF̃
50.2, which are sufficiently far away from the bifurcatio
for the asymptotic regime to be reached within the range
w shown. As anticipated, in the limit ofw→` the complete
uniform approximation agrees with the isolated-orbits f
mula. The simple approximation also reproduces the b
correctly, but it has a smaller amplitude.
06341
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The scaled uniform approximation can be used to impro
the semiclassical recurrence spectrum, but this requires s
effort. Although the isolated-orbits approximation yieldsd
function peaks in the recurrence spectrum, which are
placed with Gaussians due to the smoothing of the rec
rence spectrum~see Sec. VII!, the uniform approximation is
a complicated function ofw. It must be subjected to a nu
merical Fourier transform in the same way as the quan
spectrum if its contribution to the recurrence spectrum is
be evaluated. Because a bifurcation involves orbits w
roughly equal actions, the uniform approximation will pr
duce a recurrence peak at the appropriate action. An exam
is shown in Fig. 8. It was calculated for the bifurcation a
ready described in Fig. 7. The Gaussian smoothing use
Sec. VII was replaced with a rectangular window, so tha
number of side peaks appear. In this case, the Fourier tr
form of both the uniform approximation and the isolate
orbits approximation was taken over the rectangular wind
wP@40,60#. The bifurcating orbits have the scaled actio
S̃/2p'21.86, which is where the Fourier peaks are cente

FIG. 7. Uniform approximation for a scaled spectrum~see text
for a description of the bifurcation!. Solid line: uniform approxima-
tion @Eq. ~65!#. Short-dashed line: simple uniform approximatio
with constantp(t). Long-dashed line: isolated-orbits approxim
tion.

FIG. 8. Contribution to the recurrence peak calculated from
uniform approximation~solid line! and the isolated-orbits approxi

mation ~dashed line! for the same bifurcation as in Fig. 7,Ẽ

521.4 andF̃50.1.
1-15
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in both approximations. The peak produced by the unifo
approximation is considerably smaller.

If this uniformization procedure is carried out for all e
cessively high bifurcation peaks, it should be possible
bring the semiclassical recurrence spectrum in Fig. 6 i
agreement with its quantum counterpart. In practice, ho
ever, several obstacles stand in the way. First of all, in m
cases ghost orbits must be included in the uniform appr
mation. They must be found and identified as pertinent t
given bifurcation before the uniformization can be pe
formed. Furthermore, even if all relevant orbits are re
those orbits connected with each other in a bifurcation m
be recognized in the data set. This is by no means an
task. For example, if in a given series of rotators and fo
given winding number a quartet of orbits appears, there
two different doublet orbits out of which they may have b
furcated, and it is not clear, in general, which of them m
be taken for the uniform approximation. In a single case,
can be found out fairly comfortably by hand. If many orb
are to be classified, however, it is essential to do the group
automatically. We have not yet been able to devise a prac
algorithm for this task, so that an automatized uniformizat
of all bifurcation peaks is presently impossible.

Apart from these rather technical difficulties, there a
also some obstacles of more fundamental importance. C
sider, e.g., the two high semiclassical peaks atS̃/2p'25 in
Fig. 5. They are notably too high, and they are well isola
from neighboring recurrence peaks, so that they may ap
to be the ideal testing ground for the uniformization proc
dure. These peaks are generated by vibrators with repet
numbersm541 andm542, respectively. The pertinent b
furcation scenarios were described in Figs. 17 and 18 of R
@17#. The ‘‘simple’’ scenario taking place atm541 consists
of two orbits being generated in the rotational symme
breaking atF̃50, followed by a tangent bifurcation destroy
ing one of them and a third orbit. To smooth this bifurcati
peak, a uniform approximation describing the complete s
nario must be found, which requires the construction o
suitable normal form. Although a uniform approximation f
the symmetry-breaking is available@43–45#, the derivation
of the pertinent normal form relies on principles differe
from the catastrophe theory classification used here, and
not clear how these two can be united into a single nor
form. Thus, the construction of a uniform approximation f
this bifurcation scenario, and even more so for the m
os
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complicated scenario atm542, remains an open problem t
be solved in the future. It can be solved within the fram
work of uniformization presented in Sec. VIII A, but wil
require a way of constructing normal forms.

The approach to high-resolution semiclassical quant
tion relies on the harmonic inversion of a Fourier tran
formed semiclassical spectrum, i.e., of a recurrence sp
trum. The above method of uniformizing the bifurcatio
induced excessively high recurrence peaks in a semiclas
spectrum would therefore, if it could be implemented sy
tematically, also pave the way for the inclusion of unifor
approximations into a high-resolution semiclassical quant
tion, which has not been possible so far. We were able
demonstrate the feasibility of our method by way of exam
for the hydrogen atom in an electric field@46#, which is less
demanding classically. Its application to the crossed-fie
hydrogen atom, however, remains open for future work.

X. CONCLUSION

For the first time, a high-resolution semiclassical quan
zation of the hydrogen atom in crossed electric and magn
fields has been presented. It achieved the identification of
strong spectral lines in differentn manifolds. By means of a
detailed semiclassical analysis of the pertinent quan
spectrum, it was shown that bifurcations of closed orbits p
a crucial role in the semiclassical spectrum and preclude
resolution of finer details in the semiclassical spectrum. Th
pose a particular challenge to the semiclassical quantiza
because they require a special treatment by uniform appr
mations.

A simple heuristic scheme for the construction of unifor
approximations has been proposed. Its simplicity and e
cacy was demonstrated by a derivation of the uniform
proximations for the codimension-1 generic bifurcations
closed orbits.

We have devised a general method for the inclusion
uniform approximations in a high-resolution semiclassi
quantization by harmonic inversion. In a recent publicati
@46# it was successfully applied to the hydrogen atom in
electric field. In the case of the crossed-fields hydrogen at
the diversity and complexity of the bifurcation scenarios e
countered so far hinders the systematic implementation
the uniformization procedure. The treatment of all releva
bifurcations and the calculation of a detailed semiclass
spectrum thus remain challenging tasks for future studie
ys.
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