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Closed orbits and their bifurcations in the crossed-field hydrogen atom
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A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is
presented. We develop a local bifurcation theory for closed orbits, which is analogous to the well-known
bifurcation theory for periodic orbits and allows identifying the generic closed-orbit bifurcations of codimen-
sion 1. Several bifurcation scenarios are described in detail. They are shown to have as their constituents the
generic codimension-1 bifurcations, which combine into a rich variety of complicated scenarios. We propose
heuristic criteria for a classification of closed orbits that can serve to systematize the complex set of orbits.
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I. INTRODUCTION field hydrogen atom. In Sec. Il, the symmetries of the Hamil-
tonian are briefly reviewed. Section |1l A presents the general
Closed-orbit theory1,2] has proven to be the key tool to framework of a local bifurcation theory of closed orbits, and
analyze the photoabsorption spectra of atoms in externdbec. Il B describes the generic codimension-1 bifurcations.
fields. It interprets spectral oscillations semiclassically inA discussion of complex ghost orbits is included in each case
terms of closed orbits of the underlying classical system, i.e because they are known to play an important role in semi-
of classical orbits starting at and returning to the nucleus. Alassic§19,20. In Sec. IV, the closed orbits in the hydrogen
complete semiclassical description of an atomic spectrur@tom in a magnetic field are surveyed. Section V then details
therefore requires a sufficiently detailed understanding of théhe bifurcation scenarios actually observed in the crossed-
classical closed orbits. In particular, the possible types ofi€ld system. It is shown that the elementary codimension-1
closed-orbit bifurcations must be described, so that the gerfiifurcations actually form the building blocks of the bifurca-
eration of new closed orbits upon varying the external fieldtion scenarios, but that in many cases complicated scenarios
strengths can be accounted for. consisting of several elementary bifurcations occur. In Sec.
For the hydrogen atom in a magnetic field, the systematicé“: a heuristic classification scheme for the closed orbits in
of closed orbits and their bifurcations has been known for £rossed fields is proposed, which is based on the well-known
long time[3—8]. For the hydrogen atom in crossed electric classification for the closed orbits in a magnetic field. The
and magnetic fields, the classical mechanics is much moractual semiclassical quantization of the crossed-field hydro-
complicated because three nonseparable degrees of freed@®n atom in the framework of closed-orbit theory, which is
have to be dealt with. Although a number of closed orbitsbased on the results presented here, is described in an accom-
have been identified in experimental or theoretical quantunPanying papef21].
spectrd 3,9—17, a systematic study of these orbits and their
bifurcations is still lacking. Il. THE CLASSICAL HAMILTONIAN

Considerable effort has been spent during the last decade Throuahout this work. we will assume the maanetic field
on the study of the classical mechanics of the crossed—fielg 19 U mag
0 be directed along the axis and the electric field to be

hydrogen atom in the limit of weak external fields3—17. . : . . o
The most important result in the present context is the find-d'reCteOI along the axis. In atomic units, the Hamiltonian

ing first described in Ref{14] that among the continuous describing the motion of the atomic electron then reads
infinity of periodic orbits of the unperturbed Kepler problem 1 1 1

there are four orbits that remain periodic even in the presence H= Epz— -+ 5BL+ ngp2+ Fx, (1)
of external fields. These fundamental periodic orbits can be

regarded as the roots of “family trees” of periodic orbits.
More complicated orbits are created out of the fundamental o+ of the angular momentum vector. By virtue of the scal-

orbits by bifurcations as the field strengths increase. ing properties of Hamiltoniar(1), the dynamics does not

However, none of the fundamental periodic orbits isde end on the enerag and the field strenath® and F
closed at the nucleus. Their knowledge therefore does not aid P ok g

in the classification of closed orbits. A first systematic Studyseparately, b‘Ht o-nly on the Ecaled enefyy B~ € gnd the

of closed orbits in the crossed-field system and their bifurcascaled electric-field strength=B"*%. Upon scaling, all

tions was performed by Wang and De[ds]. These authors classical quantities are multiplied by suitable powers of the

presented orderly sequences of bifurcations of planar closedagnetic-field strengtB. In particular, classical actions

orbits (i.e., orbits in the plane perpendicular to the magneticscale according t&=B~*3S. These scaling prescriptions

field), which they interpreted in terms of an integrable modelwill be used throughout this work.

Hamiltonian. The hydrogen atom in crossed fields does not possess any
In the present paper we undertake a systematic investiggontinuous symmetries, so that, apart from the energy, no

tion of closed orbits and their bifurcations in the crossed-constant of the motion exists, and three nonseparable degrees

herer?=x2+y?+ 2%, p2=x2+y?, andL, is thez compo-
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TABLE I. The symmetry transformations of the crossed-field orbit. Due to the close link between closed orbits and peri-
system: Transformation of initial and final angles and symmetryodic orbits, closed-orbit bifurcations can be described in the
conditions for doublets. Singlets satisf§j=9:=m/2 and ¢;  framework of periodic-orbit bifurcation theory developed by

BERAR Mayer[22,8]. In particular, in a magnetic field closed orbits
. » r ition h rbitr ling bifurcation
Transformation Symmetry conditions possess' epetitions, so that arbitramtupling bifurcations
5 , N v are possible.
' i f f In the presence of crossed electric and magnetic fields, the
. time-reversal invariance is broken, and no general connec-
2w e T e B ﬁi_ﬁf—j tion between closed orbits and periodic orbits remains. As a
T O mer % —er Pi=drande= gy consequence, the techniques of periodic-orbit bifurcation
C 79 —¢ 70 —¢ V=m—dande=—¢;

theory are no longer applicable, and a novel approach to the
classification of closed-orbit bifurcations must be found. In

of freedom have to be dealt with. There are, however, threl—ih's section, a general framework for the discussion of

discrete symmetry transformations of the crossed-field sysS'0sed-orbit bifurcations will be introduced. , ,
tem, namely,(i) the reflectionZ at the x-y plane, (ii) the The crucial step in the development of the bifurcation

combinationT of time reversal and a reflection at thez  theory of periqdic orbit; is the 'introduction of a Poin’care
plane, andiii) the combinatiorC=ZT of the above. We use sur_face, of section map in the nelghborhood of the orbit. The
the standard polar and azimuthal angieand ¢ to describe Poincaremap describes th_e dynamics of th_e degrees of free-
the starting and returning directions of a closed orbit. Thedom transverse to the orbit, and the orbit bifurcates when the
effects of the symmetry transformations on these are summéatansverse dynamics becomes resonant with the motion along
rized in Table I. the orbit. )

The application of these transformations to a given closed For periodic orbits, a Poincarmaap is specified by fixing
orbit yields a group of four orbits of equal length, so thata surface of section in phase space which is transverse to the
closed orbits occur in quartets. In particular cases, a closegrbit. For a pointP on the surface of section, the trajectory
orbit can be invariant under one of the symmetry transformastarting atP is followed until it intersects the surface of
tions. In this case, there are only two distinct orbits relatedsection again. This intersection point is defined to be the
by symmetry transformations. We will refer to them aZ,a image ofP under the Poincarmap. The periodic orbit itself
T, or C doublet, giving the transformation under which the returns to its starting point, so that it appears as a fixed point
orbits are invariant. The conditions for the initial and final of the Poincaremap.
angles that an orbit invariant under any of the transforma-  This prescription is not directly applicable to closed orbits
tions must satisfy are also given in Table I. In special casessecause they do not return to their starting point in phase
a closed orbit can be invariant under all three symmetryspace. Therefore, a trajectory starting on the surface of sec-
transformations. It then occurs as a singlet. tion might not intersect the surface again. To arrive at a

Among the symmetry transformations, the reflectibn  meaningful definition of a Poincamaap, one must use two
plays a special role in that it is a purely geometric transfor-syrfaces of section: the first transverse to the initial direction
mation. There is, therefore, an invariant subspace of thgf the orbit, and the second transverse to its final direction. A
phase space, viz. they plane perpendicular to the magnetic trajectory starting in the neighborhood of the closed orbit on
field. This plane is invariant under the dynamics and therethe initial surface of sectiol; will then have an intersection
fore forms a subsystem with two degrees of freedom. with the final sectionS;, so that a Poincarenap is well

In connection with bifurcations of orbits, it is essential for defined. As in the case of a periodic orbit, the Poincasp
semiclassical applications to study complex “ghost” orbits js symplectic.
along with the real orbits, i.e., to allow coordinates and mo-  ynjike periodic orbits, the notion of a closed orbit is not
menta to assume complex values. For ghost orbits, anoth@dyariant under canonical transformations. The distinction
reflection symmetry arises, viz. the symmetry with respect tetween position space and momentum space must therefore
complex conjugation. Since Hamiltonidf) is real, itis in-  pe kept. Let @ ,p;) and (s ,p;) be canonical coordinates on
variant under complex conjugation. Therefore, ghost orbitshe surfaces; and3 chosen so thag; andg; are position

always occur in pairs of conjugate orbits. space coordinates in the directions perpendicular to the ini-
tial or final directions of the orbit. The origins of the coordi-
Ill. CLOSED-ORBIT BIFURCATION THEORY nate systems are fixed so that the position of the nucleus is

;=0 or g;=0, respectively. Closed orbits are then charac-

terized byqg;=q;=0. In crossed fields three spatial dimen-
The dynamics of the hydrogen atom in a pure magnetisions must be dealt with, so that eachopfp;,q;,ps is a

field possesses time-reversal invariance if it is restricted téwo-dimensional vector. The reader may conveniently pic-

the subspace of vanishing angular momentum An elec-  tureq; andqs as Cartesian coordinates, although in this case

tron returning to the nucleus will rebound into its direction of the conjugate momentg; and p; diverge as the Coulomb

incidence and, due to that symmetry, retrace its previous trasingularity is approached. This difficulty can be overcome by

jectory back to its starting direction. Therefore, any closedneans of a Kustaanheimo-Stiefel regularizati@g]. Coor-

orbit is either periodic itself or it is one-half of a periodic dinates having the properties described above can then be

A. General theory
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TABLE Il. Overview of generating functions of different types 1 . 1
(cf. [26)). Fi(di.a1)= 50 Ro+af Sq+5q/ Tq 4)
Type Transformation Regular matrix

with matricesR,S, T, the map(2) is obtained if

Fi(gi,ar) pi=+dF1/dq;, ps=—3dF1/dq;
Fo(di,ps)  Pi=+dF2/dq;, di=+3dF,/dp;
Fs(pi,ar) gi=—dF3/dp;, pi=—3dF3/dq;
Fa(pi.pr)  di=—dF4/dp;, qi=+dF,/dp;

R=-DB™ !, T=-B17A,

O>» 0w

S=B !"=DB 'A-C. (5

The two expressions given f@& are equal by virtue of Eq.
(3). As expected, a generating function of type does not
exist if B is singular. A similar calculation can be carried out
for the other types of generating functions. For each type,
one of the matrice#\,B,C,D must be nonsingular. These
Oresults are given in Table Il. Locally, they can be extended to

: - ) .~ “nonlinear maps by means of the implicit function theorem.
with the p".i”eqf—o- In a Ies_,s geometrlca_l way of speakmg., Thus, at a bifurcation of closed orbits, the Poincarap
Cl?séd _Ozr%t)sz%anAbeagiiclgrb:gluatisorsl'cg??r?izseOL;Tiine(l%?f'oé]enericalIy possesses generating functions of all types except
?ésp' i -Apa . quation, cg F.. The most convenient choice is a function of type

ponding to the orbit the construction started with, is giver. The t f fi i iated with
by q¢(p;=0)=0. If the matrixB=dq; /Jp; is nonsingular at 4(Pi.Py). The transformation equations associated wi

AL e 0P 9 this type of generating function read

p;=0, this solution is locally unique and, by the implicit

shown to exist, as discussed in detail 4.

A closed orbit can start i; with arbitrary initial momen-
tum p;, but it must start in the plang;=0. The Poincare
map maps this plane into a Lagrangian manifoldip.
Closed orbits are given by the intersections of this manifol

function theorem, will persist upon the variation of param- 9F 9F
eters. Thus, the closed orbit cannot undergo a bifurcation qi=——4, qf=+—4. (6)
unlessM =deB=0. P 9Py

An overview of the bifurcation scenarios to be expected . : B
when deB=0 can be obtained from a description of the Closed orbits are characterized ¢py= ;=0. They therefore

possible modes of behavior of the Poiricanap. This can agree with the stationary points of thg function. The clas-
most conveniently be achieved if the Poin'cmab is repre- sification problem of closed-orbit bifurcation theory can thus

sented by a generating functip?5]. The generating function be_ rephrased as th_e problem to determme_ h.OW stationary
can be chosen to depend on any combination of initial antﬁ)OIntS of a real fqnctl_on chang_e upon the variation of param-
final positions and momenta, as long as they form a completégirs' This question is the subject of catastrophe thigty
set of independent coordinates. We adopt the well-know éatastro he th tudi th lvalued funci
conventions of Goldsteif25] for denoting different types of rophe _eory_ st 'e_s smooth real-va ue_ ) u_nc 1ons
generating functions, which are summarized in Table 1l.  f(X) andf(x) defined in a neighborhood of the origin in an
For a generic symplectic map, all possible sets of coordi-dimensional configuration space. They are said to be
nates and momenta are independent, so that generating furRduivalent if there is a diffeomorphisg(x) of the configu-
tions of any type exist. At a closed-orbit bifurcation, how- ration space, so that
ever, a degeneracy indicated by the condition ti@at -
=dqs/9p; be singular arises, so that care must be taken in f(x)=f((x)). (7)
choosing a generating function. Loosely speakingB ifs . . ) .
singular,p; cannot be determined fromy andg;, so that it Thfz coordinate transformatiof maps the stationary points
may be conjectured that no generating function of tffjge  of f to those off. In this sense, the distributions of stationary
exists. To confirm this conjecture, we study a linear symplecpoints off andf agree qualitatively. Without loss of gener-

tic map, ality, it can be assumed thaandf have stationary points at
the origin, because any stationary point can be moved there

Ar=A4i+Bpi,  pr=Ca+Dp;, @ by a coordinate transformation. After adding a constant, one
hasf(0)=0.
with four matricesA,B,C,D satisfying the symplecticity f is said to be structurally stable if any small perturbation
conditions[26] T of f[i.e., F(x)=f(x) + eg(x) with a smooth functiorg(x)

and sufficiently smalk] is equivalent tdf. Notice that catas-
ATC=C'A, B'D=D'B, A'D-C'B=1, trophe theory is a purely local theory. It is concerned with the
structural stability or instability of a single stationary point
and the pattern of stationary points that can be generated
from a structurally unstable stationary point by a small per-
turbation.
where T denotes the transpose. A generating function for the In the present context, nonbifurcating closed orbits corre-
linear map(2) must be quadratic in its variables. From the spond to structurally stable stationary pointd$=Qf because a
ansatz, small variation of parameters will bring about a variation of

AB'=BA", CD'=DC', AD'-BC'=1, (3
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. Pt P matrix at the origin. As the nondegenerate stationary point of
g is structurally stable, the behavior of the stationary points
N\ of f under a small perturbation is determineddwnly. The
AN number of relevant variables is thus omly which is called
i o — G the corank of the catastrophe. It will be assumed henceforth
(e that a splitting according to EQ10) has been carried out and
SO\ the nondegenerate partis ignored, so that the Hessian ma-
(a) (b) trix of f vanishes at the origin.
Under a small perturbation of the functibna degenerate
FIG. 1. Schematic plot of the Lagrangian manifojd=0 in%¢  stationary point will in general split into several distinct sta-
for the cases(@ B=dq;/dp;=0 and (b) D=dp;/dp;=0. The tionary points. This process will be used to model bifurca-
dashed lines indicate the position of the manifold at slightly variedtions of closed orbits. The degenerate stationary points rel-
parameter values. Only in caé® additional intersections with the evant to bifurcation theory are those of finite codimension,
planeqg;=0 can arise. i.e., those for which there are smooth functions

F,, which is small in the above sense and preserves th81(X) - - - Gk(X), so that any small perturbation dfis
stationary point. The most elementary result of catastrophgauivalent to

theory states that a stationary point of a functfas struc- _

turally stable if its Hessian matrix, i.e., the matrix of second F)=T(X)+a10:(x)+ ... + ag(X), (11)
derivatives off, is nonsingular. For the linear symplectic
transformation(2), the F, generating function is

with suitably chosen constants;. The functionF(x) is
called an unfolding of (x), because the degenerate station-
1 gt 1. .. ary point off can be regarded as a set of several stationary
Fa=5P ACTpi=p C 7 pit 5P C°Dpi, (8 points that accidentally coincide and are “unfolded” by the
parametersy; . The smallest value d€ which can be chosen
so that its Hessian determinant@t=p;=0 can be found to in Eq. (11) is called the codimension d¢f An unfolding off
be with k equal to the codimension &fis referred to as univer-
PF,  ?F, sal. . . .
> = In the bifurcation problem, the generating functiep de-
Ip dpidps | detB detD g  Pends on external control parameters . .. p, such as,
PF, °F, detC ©) e.g., the energy or the external field strengths. If, for a
ETET &pfz critical value of the parameterk, has a degenerate station-
ary point equivalent to that of, in a neighborhood of the
The Hessian matrix ofF, is thus singular if eitherB critical valueF, is equivalent to the unfoldingll), where
=9dq¢/dp; or D=4dp¢/dp; is. It has been shown above that the unfolding parameteks; are smooth functions of the con-
bifurcations of closed orbits can only occur if @&+0, i.e.,  trol parameterp; . The critical parameter values themselves

a bifurcating orbit corresponds to a degenerate stationarsire characterized by the condition that all unfolding param-
point of F,. The case déd =0 also leads to a degeneracy of eters vanish, i.e. by the set of equations

F,, but it cannot be associated with a closed-orbit bifurca-

tion. This can also be understood geometrically. As illus- ai(p1, - ...p)=0,

trated in Fig. 1, if deB=0, the Lagrangian manifold given

by ;=0 is tangent to the plarng; =0, so that it can develop L (12)
further intersections with that plane upon a small variation of
parameters. If ddd =0, the manifold is tangent to the plane
p:=0, whence, upon a variation of parameters, it can ac-
quil’e additional intersections with that plane, but not WithThese ardg equations il unknowns. They can “generica”y"
the planeq;=0, so that no bifurcation of closed orbits can opjy pe expected to possess a solutioks!, that is, the

arise. codimension of the degenerate stationary point must not be

_The discussion of stationary points with degenerate Hesp, qor than the number of external parameters. This construc-
sian matrices, also called “catastrophes,” is simplified con-

. o tion introduces a notion of codimension for bifurcations of
siderably by t.he spl|.tt|ng Igmma of catastrophg thefdg]. . closed orbits, which is entirely analogous to the codimension
It states that if the dimension of the configuration space is

and a functiorf on the confiauration space has a stationar of bifurcations of periodic orbits. Bifurcations of a codimen-
) . gure P3 Ysion higher than the number of external parameters cannot be
point at the origin whose Hessian matrix has ramkm, a

dinat ¢ be introduced i iah expected to occur because they are structurally unstable. Un-
EOO; |nda ef ?%/S e:“tl.' AL c_art1 € EE rto uced in a neign- gar 5 small perturbation of the system they would split into a
orhood ot the stationary point, so tha sequence of “generic” bifurcations of lower codimensions.

det

a(p1, ... p1)=0.

f(xlv L lxn):g(xll ERC ,Xm)+q(xm+1: e vxr'l)y
(10 B. Codimension-1 generic bifurcations

whereq is a nondegenerate quadratic forrmef m variables The considerations of the preceding section reduce the
and the functiorg has a stationary point with zero Hessian bifurcation theory for closed orbits to the problem of deter-
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mining all catastrophes having a codimension smaller thar
the number of external parameters. In particular, it explains
why only catastrophes of finite codimension are relevant. Ing 0
the crossed-field system, the number of parameters is two, i
the scaling properties are taken into account. However, we L T
will only describe bifurcations of codimension 1 in the fol- s — 2 [
lowing. They suffice to describe the bifurcations encountered_=
if a single parameter is varied while the second is kept fixed.&a
They also give a good impression of the codimension-2 sce:
narios because a bifurcation of codimension 2 must split into — —
a sequence of codimension-1 bifurcations as soon as any ¢ _ 2| /
the parameters is changed. g

For generic functions without special symmetries, a list of T |
catastrophes of codimensions up to 6 with their universal P— PR P PR
unfoldings is readily available in the literatuf27—29. The 2 1 0 1 2 2 1 0 1 2
classification of closed-orbit bifurcations presented here re- a a
lies on these results.

—_
[y
T

Imt
(=]

o
Im @,
(=]

N
'
N

Im &,

FIG. 2. The positions of stationary points, stationary values, and
second derivatives in the fold catastrophe. Solid lines indicate real
stationary points, and dashed lines the complex stationary points.

There is a single catastrophe of codimension 1, which haBotted lines are coordinate axes.
corank of 1 and is known as the fold catastrophe. Its univer-
sal unfolding is given by tities calculated for an actual bifurcation in Sec. V, the quali-
tative agreement will become clear.

The fold catastrophé€l3) describes the generation of two
closed orbits in a tangent bifurcation. As this is the only
generic catastrophe of codimension 1, it follows that the tan-
with a denoting the unfolding parameter. The fold has twogent bifurcation is the only possible type of closed-orbit bi-

1. The tangent bifurcation

D,y (1) = %ta—at, (13

stationary points at furcations. In particular, once it has been generated, a closed
orbit cannot split into several orbits, as periodic orbits typi-
t=+\a, (14) cally do. However, this statement needs some modification
where it assumes the stationary values d_ue to the presence of reflection symmetries in the crossed-
field system.
2 . . .
O, (*+a)= :§a3/2_ (15) 2. The pitchfork bifurcation
If the orbit under study is symmetric under one of the
The second derivative in the stationary points is reflections, i.e., it is a singlet or a doublet orbit, the generat-
ing functionF, in the neighborhood of this orbit must also
P(*\a)=*21a. (16)  possess this reflection symmetry. By this constraint, several

) ) ) of the elementary catastrophes are excluded altogether. For
The stationary points are realaf>0. If a<0, there are N0 gthers, the codimension is reduced because the unfolding can
stationary points on the real axis, because soluti@ds are only contain symmetric terms.
imaginary. These complex stationary points correspond t0 QOne additional catastrophe of codimension 1 arises, viz.

varied, a tangent bifurcation occurseat 0, where two com-

plex conjugate ghost orbits turn into two real orbits or vice 1 1
versa. D(t)= Zt4_ Eatz. (17

All qualitative features of the bifurcation are described by
the normal form(l3) The Stationary pOintS, i.e., the closed This normal form possesses the reflection Symmew
orbits, initially move apart as/a. A more detailed connec- —t, so that the origin is mapped onto itself under the sym-
tion between the properties of the normal form and themetry transformation. There is a stationary point at the origin
closed orbits can be made in the context of uniform semifor all values of the parametex, corresponding to a closed
classical approximations. The difference between the statiorgrbit which is invariant under the reflection. Additional sta-
ary values gives the action difference between the closeglonary points are located at
orbits, whereas the second derivatives—or, if the normal
form has a corank greater than 1, the Hessian t=+a. (19
determinants—at the stationary points are proportional to a
parameteM describing the stability of the closed orlfiee  They are real i>0, and are mapped onto each other under
Refs.[24,21]] for detail9. All these quantities are shown in a reflection. Thus, the symmetric cugy) describes a pitch-
Fig. 2. When they are compared to the corresponding quarferk bifurcation ata=0, where two asymmetric orbits bifur-
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FIG. 3. The positions of stationary points, stationary values, and 0 : ' ' : : : !

second derivatives in the cusp catastrophe. Solid lines indicate real
stationary points, and the dashed lines complex stationary points.
Dotted lines are coordinate axes. Note that the stationary values and

second derivatives are real even for complex stationary points. FIG. 4. Scaled actionS as functions of the starting anglés of

closed orbits in the DKP foE= —1.4.

cate off a symmetric orbit, generating a quartet from a dou- |\, c| 0SED ORBITS IN THE DIAMAGNETIC KEPLER

blet or a doublet from a singlet. PROBLEM
The stationary values at the asymmetric stationary points
are given by As a basis for the description of closed orbits in the

crossed-field hydrogen atom, we will choose the closed or-
bits in the diamagnetic Kepler problet®KP), i.e., in the
1 hydrogen atom in a pure magnetic field. For these orbits a
Pa( \/5): B Zaz’ (19 complete classification is availald—8]. It will now be re-
capitulated briefly.
For low scaled energieE— —, there are two funda-
and the second derivative is mental closed orbits. In one case, the electron leaves the
nucleus parallel to the magnetic field until the Coulomb at-
, traction forces it back. This orbit is purely Coulombic be-
Dy(+ Ja)=2a. (200 cause the electron does not experience a Lorentz force when
moving parallel to the magnetic field. The second closed

orbit lies in the plane perpendicular to the magnetic field. Its

Both the stationary values and the values of the second depape is determined by the combined influences of the Cou-
rivative are real even foa<0, when the stationary points |5 b and magnetic fields.

themselves are complex. Therefore, these stationary points pe 1o time-reversal invariance, both elementary orbits
correspond to ghost orbits having real actions and Stab'“tgossess arbitrary repetitions. As the scaled energy increases,
determinants. The existence of this remarkable type of ghogi,ch repetition of an elementary orbit undergoes a sequence
orbits is again a consequence of the reflection symmetry: A§¢ pis rcations labeled by an integer=1,2,3 . . . in order

the stationary point¢18) are imaginary, the reflectiot> ot jncreasing bifurcation energy. The orbits born in these

—t changes a stationary point and its stationary value intgy;, cations can be characterized by the repetition numpber
their complex conjugates. On the other hand, the stationany; y,q ifyrcating orbit and the bifurcation number They
\rIS;LIJeZ aLeos"tw;rtl)?tn:]:vrilger t:i]: Srelfrl]er:]:g?rn’ Sr(()) tgrety Vnaiﬁséebgre referred3] to as vibrators/,, if they bifurcate out of the

A g g y y property orbit parallel to the magnetic field, and as rotatBfsif they

referred to as a symmetric ghost orbit. . 4 .
The characteristic quantities of the symmetric cusp catasb'furcate OUt. of th? orbit perpendpglar B .
Further bifurcations create additional orbits from W¥ig

trophe are shown in Fig. 3 as a function afAgain, they . R
describe the qualitative behavior of the bifurcating orbits2NdR,, or “exotic” orbits not related to one of the two fun-
close to the bifurcation. It should be noted that the stationarfl@mental orbits. These orbits are of importance at scaled
values(19) are negative for all values o, so that for a €nergies higher than those considered in this work, S0 that
bifurcation described by Eq17), the actions of the asym- they will not be discussed further. For the scaled endtgy
metric orbits must be smaller than those of the symmetric= — 1.4, the scaled actions and starting angles of the closed
orbit. An alternative bifurcation scenario is described by theorbits are presented in Fig. 4. It can be seen that only orbits
dual cusp, viz. the negative of EqL7). The dual cusp is fitting into the classification scheme described above are
inequivalent to the regular cusp, but the scenario it describegresent. Furthermore, orbits having a common bifurcation
agrees with the above, except that the stationary values amiimberv lie on a smooth curve in the plot. For this reason,
the second derivatives change their signs, so that the actiomge will refer to orbits characterized by a fixedas a series

of the asymmetric orbits are now larger than that of the symef rotators or vibrators, respectively, and callthe series
metric orbit. number.
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30 S S 7 presents the orbital parameters for orbits involved in a
o - e . bifurcation of this kind. The panels show the real and imagi-
25 Mo, * e s, ox T nary parts of the starting angles of the orbits, the scaled
20 | T . e o actionsS, and the stability determinaril =det(dq;/dp;)
o « TRl x+ . (see Sec. lll A, whose zeros indicate the occurrence of a
z§ 15 | T, B T o bifurcation. These plots should be compared to Fig. 3, which
Ko X xR e « x P displays the scenario described by the symmetric cusp catas-
10 f e T, 1 trophe. The qualitative agreement between the catastrophe
. M . o theory predictions and the numerical findings is evident.
ST, T | A closer look at the asymmetric orbits reveals that they
0 . R have equal initial and final azimuthal angles= ¢, i.e.,
- ) 0 2 T they are not only closed, but also periodic orbits. The initial
@ and final angles of these orbits satigf{")= — ¢!{?) because

o _ _ they are symmetry partners, apft)= ¢!?) because they are
FIG. 5.. Scaled action§ a~nd azimuthal starting ang~le§ for periodic. Thus, they must fquiIlpi(l)z —goi(z). At the bifur-
planar orbits aE=—1.4 andF=0.03 (+ symbols andF=0.05  catjon, the initial angles of the two orbits must coincide, so
(X symbols. that a bifurcation can only take place when=0 or ¢,
=1, and it actually does take place every time one of these
conditions is fulfilled. This process can be seen in Fig. 5,

In the presence of a pure magnetic field, the atomic syse.g., atS/27~25. At F=0.03, the symmetric orbit has not
tem possesses a rotational symmetry around the field axis. Agt crossed the lineo;=, so that no bifurcation has oc-
a consequence, all closed orbits except for the orbit parallel|,req. AtE =0.05, this line has been crossed and two asym-
to the magnetic field occur in continuous one-parametefatric orbits have been created.
families obtained by rotating a single orbit around the sym- g the electric-field strength is increased, the dependence
metry axis. When a perpendicular electric field is added, they e starting angle on the repetition number ceases to be
rotational symmetry is broken. Out of each family, only two i Instead. th int lating the functidiie.
orbits survive[30], or, in other words, each family of orbits inear. instead, the curves interpola mg. € tunc '_G('$")

start to develop humps, so that at certain valueS,dfe., at

splits into two independent orbits.
certain repetition numbers, more than two possible values of

¢; exist. This development is illustrated in Fig. 8. The humps
indicate the occurrence of tangent bifurcations generating ad-

The splitting of a family of orbits upon the introduction of ditional pairs of singlet orbits. This is the type of bifurcation
an electric field can most clearly be seen for planar orbitsgescribed by the fold catastroptEs). Orbital parameters for
i.e., for orbits lying in the plane perpendicular to the mag-orbits involved in a bifurcation of this kind are shown in Fig.
netic field. Due to theZ symmetry, this plane is invariant 9. As for the pitchfork bifurcation, a comparison of that fig-
under the dynamics. Thus, the initial direction of an orbit canyre to the catastrophe theory predictions in Fig. 2 reveals that

V. CLOSED-ORBIT BIFURCATION SCENARIOS

A. Planar orbits

be specified by means of the azimuthal angjeonly. the bifurcation is well described qualitatively by the fold
Figure 5 shows the actions and initial directions of thecatastrophe.
planar orbits for a scaled energy &=—1.4 and scaled Once additional singlet orbits have been generated in a

electric-field strength& =0.03 andE=0.05. AtE=0, the tangent bifurcation, doublet orbits can be generated by pitch-
orbits bifurcate off a certain repetition of the planar closedfork bifurcations in the same way as from the original singlet

orbit of the diamagnetic Kepler problem. For I(ﬁ/vthey can orbits, i.e., a bifurcqtion will occur When_ev_er.a singlet Qrbit
therefore be assigned a repetition number that can clearly HOSS€S one of the lingg =0 or ¢; = . This is illustrated in
discerned in Fig. 5. ig. 10, which pjesents the~ tangent bifurcation already
As expected, there are two orbits for each repetition numshown in Fig. 9 aF~0.11. AtF=0.135, one of the orbits
ber, and they start in opposite directions from the nucleusthus generated crosses the line=0, and two doublet orbits
Moreover, the Starting ang|e varies |inear|y with the repeti_are created from it. Together, the two bifurcations form what
tion number. These findings are illustrated in Fig. 6, whereVang and Delo$18] call the “normal sequence” of bifurca-
for a few low repetition numbers one of the two orbits is tions, whereas a pitchfork bifurcation of a singlet orbit gen-
shown. It can be seen that the orbits consist of more andrated af- =0, which is not preceded by a tangent bifurca-
more “loops,” and that the starting angle increases regularlytion, is called a “truncated series.” These authors introduce
The shapes are symmetric with respect toxfexis because an integrable model Hamiltonian to explain why these kind
the orbits are invariant under tfietransformation, i.e., these of sequences can often be observed for planar orbits. The
orbits are singlets. bifurcation theory of Secs. Ill A and Il B sheds an alterna-
A few orbits in Fig. 5 do not fit into this simple scheme. A tive light on this question, suggesting that normal sequences
closer inspection reveals that these orbits are not singlets, buain actually be expected to occur even more generally than
Z doublets, and indeed they obviously occur in pairs. Theyin that context. Although the crossed-field system is close to
are generated by pitchfork bifurcations from singlets. Figurantegrable at the field strengths considered here, the same
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phenomenon also occurs at higher energies, where the dy-

namics is chaotic. It is the presence of a reflection symmetry

that makes pitchfork bifurcations not only of periodic orbits

’ [8,18], but also of closed orbits generic in codimension 1.

05 | ] The sequence of a tangent and a pitchfork bifurcation, rep-
resented as a sequence of a fold and a symmetric cusp catas-

Im o

Re o,
o
(=24 ]
o
o o

-1 1
& 1.5 ¢ 2 trophe, can be regarded as an unfolding of the symmetrized
@ 0'; i Li :) : 1 version of the butterfly catastropf20,28,
ﬂ'o O -~ P -
—05 F 1 Ar T 1 1 1 1
) . . el . . _Ti6_ T ath_ T g2
0.02 0.025 0.03 0.035 0.04  0.02 0.025 0.03 0.035 0.04 Pap(t) 6t 4at 2 bt?, @D

F F

which is of codimension 2, so that its unfolding can be ex-
pected to occur frequently in codimension 1. In this way,
catastrophes of higher codimensions provide a means to de-
scribe sequences of closed-orbit bifurcations, which is analo-
gous to how sequences of periodic-orbit bifurcations can be

: S - ; . : v . described by normal form expansions of higher order
Thick solid lines indicate singlet orbits, thin solid lines indicate y P 9

doublet orbits, and dashed line indicates ghost orbits symmetriLgl’Bz]'_ ) ) ) ) . ~
with respect to complex conjugation. Dotted lines indicate coordi- A third bifurcation can be dlsgerned in Fig. 10. At
nate axes. ~0.225, a singlet orbit generatedrat 0 and a singlet orbit

FIG. 7. Orbital parameters close to a pitchfork bifurcation cre-

ating aZ doublet of closed orbits from a singlet Bt= — 1.4, and
having a repetition number @i =10. ¢; is the azimuthal starting

angle,S the scaled action, antll the scaled stability determinant,
AS=5-27x5.898159 was introduced for graphical purposes.
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B RIS e F IR L FIG. 10. The bifurcation scenario taking place in the neighbor-
20 T s X R T IR o hood of the tangent bifurcation shown in Fig. A%=S-27
L i T M B X 26.2735). Thick solid lines indicate real singlet orbits, thin solid
& 15 S ”ﬁxﬁ;{x}gﬁﬁ T lines indicate reaZ doublet orbits, dashed lines indicate symmetric
2 N T R e ghost orbits, and dashed-dotted lines indicate asymmetric ghost or-
10 FX, o x o Tey kD Rt e T % bits. Dotted lines are coordinate axes.
+ +++xxx+++ xx+;+x+ x+xx+x++ xxx .
BEE, x L Te A e ; < E] changing the pattern of planar orbits as the electric-field
TR R S T strength is increased.
o4 L . . . . . .
0 ®) : s : + Besides the three bifurcations described above, in Fig. 10
"‘ 2 0 m/2 T three further zeros of the stability determinawtoccur for
@

certain real orbits, indicating the presence of even more bi-

FIG. 8. Scaled actions and azimuthal starting angles for planawrcat'or‘s',These b'_furcat'_ons 'nVOlVfa nonplanar orbits, i.e.,
orbits atE=—-1.4 and(a) F=0.2 and(b) F=0.5. Singlets are they are pitchfork bifurcations breaking tzesymmetry all
indicated by+ symbols, andZ doublets byx symbols. planar orblts_possess. They will t_)e dls_cussed further in sut_J—

sequent sections. At the moment it suffices to note that in this
) _ ) ) ~ scenario six individual bifurcations take place in a compara-
generated in the tangent bifurcation discussed above collidgyely small interval of the electric-field strength. This is the
and are destroyed. This is an instant of an inverse tangefst example of a phenomenon to be encountered repeatedly.
bifurcation, which can be described by the fold catastrophgn the crossed-field hydrogen atom bifurcations of closed

in the same way as the “regular” tangent bifurcation. It orbits abound. They exacerbate both the classical and the
forms the third bUIldIng block for the bifurcation scenario semiclassical treatment of the dynamics_

14 | ' ' ' 8.2 1 B. Nonplanar orbits
& 1'? S g02Ff The transition from the rotationally symmetric case of a
T 08¢ E_o.g I pure magnetic field to crossed fields occurs for nonplanar
g:i i :g-g B orbits in much the same way as for planar orbits. As soon as
g 15— . . e 1F . . . a small perpendicular electric field is present, a one-
% 0}, [ 1% 05 } parameter family of DKP orbits is destroyed and splits into
g:,_og R 1g 0 two isolated closed orbits. These orbits start in opposite di-
o Al ]y 05 rections with respect to the electric field, so that their azi-
"'1'2 — : —_ :13 — : ‘ muthal starting angles; differ by =, in complete analogy
= /ﬁ = 20 ] with what was shown in Fig. 5. An additional complication
r N§ _? _ — 1 arises because the polar starting angjles no longer bound
2 4L ¥ 2 2t ’ ] to the fixed valuerr/2, so that the two orbits will in general
: : ' St : : : . have differentd;. Figure 11 presents the polar starting
0.1 0.105 0';1 0.115 012 01 0105 0';1 0.115 0.2 angles and the scaled actions of the closed orbits for the

scaled energf = —1.4 in a pure magnetic field and for two
FIG. 9. Orbital parameters close to a tangent bifurcation of pladifferent perpendicular electric-field strengths. Only angles
nar orbits at aE=—1.4 and a winding number o =45. (AS  9;<w/2 need to be shown because orbits wit}r> /2 can
=S-27x26.512735.) Solid lines represent real orbits, and thebe obtained by & reflection. It is obvious from the figure
dashed-dotted lines represent ghost orbits. how a family of orbits splits in two isolated orbits, and how
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8
W
FIG. 11. Scaled actions and polar starting angles of closed orbits
atE=—1.4 andF =0 (pure magnetic field; symbol3, F=0.05
(X symbol$, andF =0.1 (] symbol3. Due to theZ symmetry, the
figure should be extended to be symmetric with respect to the line
9= ml2. &
W
the two orbits move apart as the electric-field strength is
increased. This process is the same for both rotator and vi-
brator orbits.
An exceptional role is played by the DKP orbit parallel to

the magnetic field. This orbit is isolated even in a pure mag-
netic field. In the presence of a perpendicular electric field it
is distorted and torn away from the magnetic field axis, but it _ _ _
remains isolated rather than splitting into two orbits. This ~FIG. 12. Scaled EC'[IOI‘IS andBoIar starting angles of closed orbits
process is also apparent from Fig. 11. Notice again thagt E=—1.4 and(a F=0.1, (b) F=0.6. Orbits are classified ac-

closed orbits in crossed fields do not possess repetitions. ArfiPrding to their symmetriesl’ doublets are indicated by sym-
repetition of the parallel DKP orbit gives rise to a closed Po!s,C doublets byx symbols, and quartets by symbols. Planar

o . - ~ orbits (Z doublets and singletsire omitted. Notice that the range of
orbit in crossed fieldgfor sufficiently smallF), but these actions shown is smaller ifb).

orbits are not repetitions of each other. They have, in particu-

lar, different starting angles. can be identified in Figs. 11 and (B2 The most obvious
The symmetries of the closed orbits are worth noting. Allconsequence of the bifurcations is the appearance of quartet

nonplanar orbits described so far are doublets. More pregrpits in each series of both rotator and vibrator orbits. They

Cisely, the vibrator orbits ar€ dOUbletS, i.e., they are invari- are generated by p|tchf0rk bifurcations from the adjacent

ant under thel operation. Their initial and final polar angles doublet orbits. As Fig. 13 reveals if it is compared to Fig. 7,
are small, as the orbits are mainly directed along the
magnetic-field axis. 0.95
For the rotator orbits the situation is more complex. They g4
have initial and final polar angles close 92, so thatitis %
conceivable that they can start at an angjje 7/2 “above” 093
thex-y plane and return aft;> 7/2 “below” that plane. This 0.92
is, in fact, the case for the rotators of the first series. They 04
turn out to beC doublets. v 02
The second series of rotators contains orbits which, in theg
case of a pure magnetic field, are composed of a first-serie™

. . 0.4
orbit and its Z-reflected counterpart. They therefore have 05 F

¥;= 9 and areT doublets. By the same token, orbits of the I§) 0 | |
third series return below the-y plane and areC doublets '0:5
again, and higher series of rotators alternatingly confain < 45 b ) N |

doublets andC doublets. The distribution of symmetries is 0.08 0.085 0.09 0095 01 008 0085 0095 0095 0.1

illustrated in Fig. 12a). It extends the data given in Fig. 11 to ~ ~

longer orbits and classifies the orbits according to their sym-

metries. FIG. 13. Orbital parameters close to a pitchfork bifurcation of a
So far, only orbits present at arbitrarily low electric-field first-series rotator and a repetition number.of 38. The bifurca-

strengths have been described. As the electric-field strengtion creates a quartet of orbits from @ doublet AS=5—27

increases, further bifurcations occur. Their general patterrx18.297 822).

F F
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g of E O _ o .
L, -05 ) 02 I FIG. 15. Destruction off-doublet orbits in a collision with a
02 5 =1  singlet orbit AS=S5—-2mx27.603 24).
s 05 1 01 F ]
? =
o =01t | that a tangent bifurcation can only create or destroy orbits
s , \ 02t , _ 4 having different actions, so that it can never involve two
008 01 012 0.4 008 01 012 0.14 orbits related by a symmetry transformation. Thus, the bifur-
F F cation must be of pitchfork type, and it must involve a

Z-symmetric planar orbit. Depending on whether the nonpla-
nar orbits colliding with the plane are doublets or quartets,
o the planar orbit must be a singlet oZaloublet, respectively.
(AS=S5S-2mx31.84035). If the destruction scenario is regarded in the direction of
decreasing field strengths, it appears as the creation of orbits
this bifurcation is very similar to a pitchfork bifurcation of \yjth brokenz symmetry from an orbit possessing this sym-
planar orbits. A difference arises because the amgls not metry. It is therefore th&Z-breaking analog of thd- and
restricted to a fixed value. As th@ symmetry concerns the C.symmetry breaking bifurcations described above. As this
azimuth angles, it still is predominantly the angfe that  type of bifurcation involves a planar orbit, it must give rise
shows a square root behavior at the bifurcation and obtaint% a zero in the stability determinalit of the planar orbit. In
an imaginary part when ghost orbits exist. Nevertheless, th?act the examples given in Figs. 15 and 16 for both the
polar angled; also acquires a small imaginary part. The realyesirction of a doublet and a quartet are two of the three

part of & apparently behaves linear close to the bifurcationy¢ rcations whose presence was inferred from Fig. 10 the
although for electric-field strengths above the critical value, &5, ssion of the planar orbits.

square root behavior must be present. It is too small t0 bé 1o geenario just described is not restricted to rotator or-
seen in the figure. Even though in quantitative termsdhe pjis As can be seen in Fig. 11, the short vibrator orbits can,

Sirreescet:ir?geiia?snltﬁemisrggi(?r?gztiggzlsveec?uienn(t:getr?;[utrﬁgticc{)l:]éritft even at low electric-field strengths, reach rather high values
bits are no longer constrained to be periodic. As the distanc8f ;. At F=0.15550 the first of them collides, a;

from the bifurcation is increased, the periodicity condition_?hﬁlz.' W|th.t|t§f2—&e2$ctedt_cou_nter%:?\rth and |sfatﬂn|h|llated.
¢ = @5 is increasingly, albeit slowly, violated. IS 1S a prichiork bifurcation in which one of the planar

The second important type of bifurcations is a tangen rbits W_'th repetition numbeyu_=1 ta_lk_es part. Similarly,
bifurcation introducing new doublet orbits into the series. °"9€r Vibrators are destroyed in collisions with planar rota-

The occurrence of this phenomenon can be noticed in FigI.OrS of the appropriate repetition numbers. This example

11, if the numbers of orbits of a given repetition number aredemonstrates that the distinction between vibrators and rota-

compared for different electric-field strengths. An example oflorS: .Wh_iCh was borrowed fro_m the case .Of vanishi_ng
this bifurcation is given in Fig. 14. The tangent bifurcation electric-field, does not apply, strictly speaking, if an electric-

involves both angles to roughly equal extent. The two dou-

FIG. 14. “Normal sequence” of hifurcations for nonplanar ro-
tator orbits of the second series and a repetition number-e54

blet orbits thus generated are implanted into the regular pat,, o4 f ™ 7 7 " ] o4 T T T T
tern of their series, so that one of them subsequently under® 0.2 1 0271 T

goes a pitchfork bifurcation which creates a quartet. This% -o.g I 1E -o.g I |
phenomenon is entirely analogous to the “normal sequence’™ g4 J w04t T

of bifurcations, which was found for planar orbits, except

that the quartet orbits thus generated are not periodic. .
As the electric-field strength increases, the rotator orbits, 0

of a given series are torn apart and span an ever wider inter = 04k |

val of 9; . Those orbits moving towards higher valuesdf 02 022024026028 0.3 02 0.22 024 026 0.28 03

eventually hit the plane};= #/2, where they collide with & ~

their Z-reflected partners and are destroyed. One might sus-

pect the destruction of the two orbits to occur in a tangent FIG. 16. Destruction of quartet orbits in a collision wizhdou-

bifurcation, but from the discussion of Sec. Il B, it is clear blet orbits AS=5— 27X 26.569 655).

= 04

AS/2r

M 2o =
. .

F F
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FIG. 17. Simple bifu~rcat~ion scenario for vibrator orbits of rep- 0 0.04 008 012 0 0.04 008 012
etition numberu=41 (AS=S—2mx24.502 21). F E

field is present. Although it is generally useful for rather high  FIG. 18. Complicated bifurcation scenario for vibrator orbits of

electric-field strengths, it can fail in some instances. This igepetition numbep =42 (AS=5-27x25.099 41).

clearly the case when a bifurcation involves both vibrator

and rotator orbits. the orbit, on the contrary, show any kind of special behavior.
A collision with the plane perpendicular to the magnetic|, particular,M is nonzero, so that there cannot be a bifur-

field occurs only for vibrators of low repetition numbers, and -ation of the ghost orbit.

only for vibrators that descend from the orbit parallel to the  1he cartesian components of the unit veator the start-

magnetic field. For longer orbits, the usual scenario is differ-mg direction are given in Fig. 19. For all of them either the

ent. At low electric-field strength there is, for sufficiently (oa) or the imaginary parts are small, so that their numerical

high repetition numbers, one orbit stemming from the orbitcicylation is hard. Nevertheless, to within the numerical ac-

parallel to the magnetic field and one or several pairs of

orbits created from nonparallel vibrators. It can be seen i Uracy all components are smoothFgy although the angles

Fig. 11, however, that for certain repetition numbers two ofYi ande; used to calculate them are not. Thus, the singular-

inese s canbe mising_ T Mappens uhen e descd U5, 01 10 1 farsomaten o Careser o
dant of the parallel orbit and one of the other vibrators anni—gﬁ coordinate chart is sinaular @=0. To elucidate the
hilate in a tangent bifurcation. A simple example of how this( ’9) . ! IS singul o ucl S

can come about is provided by the orbits with the repetitiondetalls in the case of ghost orbits, assume a~mo~del situation
numberw=41. Their bifurcations are illustrated in Fig. 17. Wheres,=cosd is exactly real ands,=1 at F=F,. For

Two of the orbits obviously bifurcate from a common family 9host orbits,s, is not bound to be smaller than 1, so that

atF =0, whereas the orbit proceeding from the parallel orbitgenerically, to first order im=F—F,, cosd;—1xe. There-
is isolated there and starts &f=0. It then merges with one

of the other orbits in a tangent bifurcation to form a pair of 601'; \

ghost orbits. < 014 |

This bifurcation is as simple as one could expect. For the§ -0.16 |
neighboring vibration number =42, the scenario is more -0.18 ¢
complicated. It is illustrated in Fig. 18. In this case, one of o2y
the orbits generated in the rotational symmetry breaking at 0

F=0, which is aT doublet, undergoes a pitchfork bifurca- & 107 \
tion and gives birth to a quartet of orbits before it annihilates® 20 t
with the descendant of the parallel orbit. The quartet then
collides with the third, leftovell doublet and is destroyed in
a second pitchfork bifurcation.

Corresponding to the three elementary bifurcations, there
are three ghost orbits involved in the scenario. For one of : : % : :
them, the starting angle$; and ¢; show a peculiar behavior 008 009 01 008 009 01
at the electric-field strengtk,=0.087 50: Whereas); ex- F F
hibits a square root behavior, changing from nearly real to FIG. 19. Cartesian components of the unit vect@pecifying
nearly imaginary values, the real part ¢f changes discon- the starting direction of the ghost orbits,&sindicose;, s,
tinuously by 7/2, and the imaginary part op; seems to =sind;sing;, s,=cosd;). Vertical dotted lines mark the field
diverge. Neither the action nor the stability determinant ofstrengthF ,=0.087 50 where the singularity of kmis encountered.
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fore, 9, \/e shows a square root behavior and changes from 0.8
purely real to purely imaginary values. At the same time, 06

sind;\e has a zero, so that fas,=sind; cose and Sy 0.4
=sin; sing; to assume finite values, sif and cosp; must 0.2 A MM
diverge asc Y2 This is only possible if the imaginary part «~ o HHHH{ LA
of ¢; is large. More precisely, if Inp;>0 is assumed to be 0.2 r
large, sing; and cosp; are proportional te@~ ¢, whence 04}

. -06 (a)

0.8 : : : .
(pi=z|ns+0(so) (22 0.2 ' ' ' '
0.15
achieves the desired divergence of girand cosp,. Now 0%; |
ReIne=In|¢| diverges ak =0, whereas Imle changes dis- 0 _ AL
continuously from 0 to* «, depending on what branch of 4 | | |
the logarithm is chosen. This behavior results in the observec 44 |
divergence of Imp; and a discontinuous jump in Rg of 015 |
size /2. 02| ®
In the actual scenaris, will not be exactly equal to 1 at - - - T -
F, because this is a situation of real codimension 2. How- 91
ever, if Ims, is small, the singular behavior described above (g5
will be closely approximated. Indeed, a closer look at the MMMM MM
starting angles reveals that they are actually smooth, bu~ 0 T LARAR -,V b
close toF =F, they change extremely. 005 VWWWU
It should be noted that the singularity described here car

occur for ghost orbits only. In the real case, as the phle 0.1 [ (o)

=0 on the real unit sphergvhich still has codimension)ds . . ; . .
0 20 40 60 80 100

approached, botk, ands, must vanish instead of assuming .
finite values, so that no divergences of any kind are required. T
FIG. 20. Rotator orbits of théa) first, (b) second, andc) third
VI. THE CLASSIFICATION OF CLOSED ORBITS series: scaled coordinateas a function of the scaled pseudotime

The fundamental classification scheme used in the abovlr E=—1.4 andF=0.2.
description of closed-orbit bifurcations is the distinction be-
tween rotators and vibrators. This distinction was adopted
from the case of vanishing electric-field strength, so it can beind minimum values of the coordinatare compared. For a
expected to be applicable if the electric field is not toorotator, they must have roughly equal absolute values,
strong. ForE=—1.4 andF=0.1, orbits can uniquely be whereas for a vibrator “above” the plane, the minimum
classified as rotators or vibrators of a certain series simply byalue is much smaller in magnitude than the maximum
inspection of Fig. 1@&). However, if the electric-field value.
strength is increased #=0.6[see Fig. 1fb)], all orbits get As shown in Fig. 21, this criterion gets better the higher
completely mixed up. The figure suggests that there is nthe series of the vibrator is chosen. For the vibrator of the
way to achieve a classification. first series, which is closest to the domain of rotators, the
Nevertheless, a classification can be achieved. Of coursexcursion into the lower half space is of the same order of
it can only be heuristic since it must gradually break downmagnitude as that into the upper half space. As the electric-
for strong electric fields. The criteria we are going to proposdield strength increases further, the vibrator orbit will become
are largely based on the behavior of theoordinate of the indistinguishable, by the present criteria, from a rotator of
motion as a function of time. To illustrate them, this function the second series.
is plotted for rotators of roughly equal length from different It has already been noted in Sec. V B that a rotator of the
series in Fig. 20. Figure 21 shows the analogous data fdirst series that starts from the nucleus into the upper half
vibrators. space returns to it from the lower half space, whereas a ro-
First of all, vibrators are connected to an orbit alongzhe tator of the second series returns from the upper half space.
axis in the pure magnetic field case. In this limit, the motionThis alternation between motion in the upper and lower half
takes place either “above” the-y plane, i.e., in the half spaces can be used to determine the series of a rotator.
spacez>0, or “below” the plane. Rotator motion, by con- To assign a series number to a vibrator, the beat structure
trast, takes place both above or below the plane. Rotators can z(7) can be used: As is apparent from Fig. 21, the minima
therefore be distinguished from vibrators if the maximumof z(7) oscillate between zero and some negative value. The
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FIG. 21. Vibrator orbits of théa) first, (b) second, andc) third w0l Ehd PR *
series: scaled coordinateas a function of the scaled pseudotime 5| S . *
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number of such oscillations gives the vibrator series
number. _ _ FIG. 22. Rotators of the first series fét=—1.4 and(a) F

The criteria described above readily lend themselves t0 &g 5 (1) E=0.4, and(c) E=0.6. C doublets are indicated by.
numerical implementation, so that the classification of orbitssympols, and quartets by * symbols.
can be achieved automatically. As an example, the rotators of
the first series are shown in Fig. 22 for three differentorbits, a bifurcation theory of closed orbits was developed
electric-field strengths. Although the neat “wiggly-line” and the generic bifurcations of codimension 1 were identi-
structure characterizing the series in Fig. 11 quickly breakdied.
down for larger electric-field strengths, the distinction be- A variety of bifurcation scenarios observed in the crossed-
tween different series persists. Figure@2hould be com- field system was described. They demonstrate that, even
pared to Fig. 1¢b). It might appear surprising that the messy though only two types of elementary bifurcations exist, they
looking set of orbits still permits a classification, but with the cOmbine into a variety of complicated bifurcation scenarios.
help of the criteria just described an ordered pattern of closedh® abundance of bifurcations exacerbates both a complete
orbits can still be discerned. In this sense, the classificatiofl@ssical description of the crossed-field hydrogen atom and

scheme derived from the DKP turns out to be remarkabiytS Semiclassical treatmef@l]. L
robust. Based on the classification of closed orbits in the

hydrogen atom in a magnetic field, heuristic criteria have
been proposed, which allow a systematization of closed
orbits for moderately high electric-field strengths. Although
the present analysis cannot yet claim to have achieved a
complete classification of closed orbits in the crossed-field

In this work, a systematic study of the closed classicahydrogen atom, it does give a detailed impression of how
orbits of the hydrogen atom in crossed electric and magnetigrbits bifurcate as the electric-field strength increases. It thus
fields has been carried out. As an important step towards iatroduces a high degree of order into the complex set of
complete understanding of the complicated pattern of closedlosed orbits.

VII. SUMMARY
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