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Pulse-induced focusing of Rydberg wave packets
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We demonstrate that strong transient phase-space localization can be achieved by the application of a single
impulsive “kick” in the form of a short(600 psg unidirectional electric-field pulse to a strongly polarized,
quasi-one-dimensional Rydberg atom. The underlying classical dynamics is analyzed and it is shown that
phase-space localization results from a focusing effect analogous to rainbow scattering. Moreover, it is shown
that the essential features of the classical analysis remain valid in a quantum-mechanical treatment of the
system in terms of its phase-space Husimi distribution. The degree of phase-space localization is characterized
by the coarse-grained Renyi entropy. Transient phase-space localization is demonstrated experimentally using
extreme redshiftedn=0 potassium Stark states in the=351 manifold and a short probe pulse. The experi-
mental data are in good agreement with theoretical predictions. The localized state provides an excellent
starting point for further control and manipulation of the electron wave packet.
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[. INTRODUCTION otherwise chaotic phase space from which the electron can-
not escape.

There is much current interest in the control and manipu- In this work, we are concerned with the prerequisite of
lation of atomic wave functions to generate tailored wavetrapping i.e., the creation of a localized state in phase space
packetd1—3]. Such coherent control promises new opportu-prior to trapping. We demonstrate that strong transient phase-
nities for controlling chemical reactions and has potentiasPace localization can be obtained experimentally by the ap-
applications in, for example, data stordgé One important  Plication of a single HCP to a strongly polarized quasi-one-
step in this direction is to develop techniques to create elecdimensional Rydberg atom. This approach is based on an

tron wave packets that are localized in phase space. In eggrligr theoretical analysis of entropy dynamics in classical
Jonlinear system$1,8] in a classical Rydberg atom that

{grned out to be an extension of a scheme introduced previ-
[3.,5]. Efforts in this area date back to the early work by ously[3]. We present a detailed analysis of the classical dy-

L .7 namics associated with phase-space localization for both
Schralinger [6] where a quantum state was sought Wh'chone—dimensiona(lD) and three-dimensiondBD) systems

Initial “gedanken” ) imed . tand show that localization is a consequence of phase-space
nitial “gedanken” experiments were aimed at constructing ¢, ,sing in classical Coulomb systems that is analogous to
nondispersive minimum-uncertainty wave packets similar (q4inhow scattering. In addition, it is shown that the essential

“coherent” oscillator eigenstates. The latter follow Newton's a5t res of this classical analysis remain valid in quantum
laws of motion, while their widths in position and momen- gynamics through 1D quantum calculations based on the
tum remain at the minimum consistent with the Heisenbergime evolution of the Husimi distributiof®] of the nonsta-
uncertainty principle. Attempts to generate such electronigionary wave packet. Experimental evidence of transient
states in atoms failed because, in atoms, the energy levels as@ase-space localization is presented, which confirms the
not equispaced, leading to dephasing, i.e., any phase-spag®eoretical predictions.

localization of a Rydberg wave packet is transiémithout

external influence Nonetheless, even though phase-space Il. PHASE-SPACE LOCALIZATION IN 1D

localization is transient, such states can be “trapped” for

extended periods using a train of short unidirectional Consider initially a 1D hydrogen atom with Hamiltonian
electric-field pulses, termed half-cycle puls¢$CP9, and

later “released” simply by turning off the puls¢4]. Similar Ho—"_
ideas using microwaves have been proposed and have led to a2
a generalization of the concept of “nondispersive” wave

packets[5,7]. In both cases, trapping results because thavhereq and p denote the position and momentum of the
combination of the Coulomb interaction and the external peelectron, respectivelyatomic units are used throughout this
riodic driving field gives rise to sizable stable islands in anwork). Assume that the system is initially in an eigenstate

space, the easier it is to produce some desired final sta

2 1
—a with >0, (2.1
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impulsive momentum transfer or kick of magnitude is SCALED TIME, t=t/T,
applied to the electron at=0 directed toward the origin.
The time evolution of the system is described by the Schro
dinger equation for the Hamiltoniatd =H ,—gApd(t)
whose solution yields

FIG. 2. Time development of various observables following the
application of a kick with scaled strengttp,=nAp=—0.05to a
1D hydrogen atom initially in then=50 state:(a) scaled width of
the position distribution[rqo; (b) scaled width of the momentum

|W(t))=exp(—iH ) expliqgAp)|dp). (2.2)  distribution, o, ; (c) scaled effective area occupied by the phase-
space distributiongqoapo; (d) the coarse-grained Renyi entropy
The boost operator exfAp) simply shifts the initial state in  calculated using a grainindp,= 0.1 anddge=0.1. The results are
momentum space byAp and, subsequently, the time shown as a function of the scaled timg=t/T,,.
evolution is governed by the free-evolution operator

exp(=iHat). In terms of the eigenstatdsh,) of Hy (..,  =ké&(H.(q,p)—E,), wherek is a normalization constant.
Hal o) =Ealba).@=12,...), theelectron wave function |mmediately after the kick, at=0", this distribution be-
evolves in time accord|ng to comes p(c)(q,p,0+):k5(Hat(q’p7Ap)7 En) and corre-

sponds to a continuous spectral density
[W()=2 e "B lexpiqdp)| o)l da), (2.3

p“’(E):J dgdp'®(q,p,07) S(E—Ha(q,p))
which represents a “fully coherent” wave packet, i.e., a pure

state at each instant of tinjexpressed in terms of the den- B (2E)°[1 En—(Ap)2/2—E>2 £ -2
sity operatorp, Trp?(t)=Trp(t)]. Figure 1 shows the final- " 27|Ap[|2 Ap '
state energy distribution following the application of a kick 2.5

that delivers a scaled impulsepy=nAp=—0.05 to a 1D
“atom” initially in the n=50 state. FOE<O0, the quantum

S As is evident from Fig. 1, the predicted classical and quan-
spectral density is given by

tum spectral densities are very similar. Note that because the

O= _ 3 2_ 3 ; 2 system evolves freely after the kick, the energy distribution
POUE=E) =l S VO = Sulexriadp) o’ goeg ot change in time.

' The mean value of any observalileadopts the form
Alternatively, the problem can be described classically us-

ing the same Hamiltonians and representing the state of the _ —i(E,~Egt
electron by a probability density in phase spa£€)(q,p,t), (0)= QZB € P ¢a V(0))(¥(0)]$5)( 6Ol o)
that initially “mimics” the quantum state and whose dynam- (2.6)
ics is governed by the classical Liouville equation. A station-
ary 1D Rydberg atom in a given level can be represented and oscillates in time with frequencies, ;=E,—Ez. In
by a microcanonical phase-space distributiphc)(q,p) particular, as shown in Figs(&@ and 2b), the widths of the
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momentum and position distributions;=(q? —(q)? and Quantum Classical
o>=(p?)—(p)?, become oscillatory functions of time. The
frequency of oscillation is related to the position of the peak
in the spectral density, which is located ne&ieax
=E,+ (Ap)?/2. Because the scaled impuldg, is small,
the spectral density peaks Bfc,=E, and has a narrow
width in both energy ana. In consequence, the frequency
spectrum associated with E@.6) resembles that of a quan-  =1.45
tum harmonic oscillatof10], i.e.,

wa,B:wn(a_B)l (27)

with w,=n"2 being theclassicalorbital frequency. This ex-

plains why the period of oscillations af, and o, in Figs. =3
2(a) and Zb) is approximately equal to the orbital period
T,=2mn® (in scaled unitst,=t/T,,, the period is close to

unity). At early times, the classical and quantum results mir-

ror each other, i.e., the quantum beats of the system posse:

a one-to-one correspondence to classical beats, a cons
guence of the fact that the spectrum for highocally ap- t9=21.5
proximates that of the harmonic oscillafdq. (2.7)]. How-

ever, the higm levels are not precisely equispaced. This
“anharmonic” correction to the frequency spectrum of the

wave packet leads to a damping of the quantum beats. Ful 5 2
quantum revivals at timeSg=(n/3)T, [10] with intermedi-  Scaled momentum 3 © 3 0 scaled position
ate fractional revivals at, e.glz/2 appeaf10,11. No such

revivals are predicted by classical theory due to the continu-, /G- 3. Quantum(left) and classical(right) coarse-grained
ous classical frequency spectrum. phase-space distributions of a 1D hydrogen atom initially inrthe

As is evident from Fig. 2, botlr, and o, minimize si- =50 Sftaltle (9=0)hand alt.sel.eCte(: Scl‘zlel? t'.";]aﬁ:“l/Tdnzl'%’ 3
multaneously pointing to transient phase-space Iocalizatio%l'5) oflowing the application of a kick with scale strepgtpo

- - =—0.05. The histograms were obtained using a graindm
of the wave packet. The local minima predicted by quantum_ 4 andsgy=0.1.

and classical theories coincide, but the positions of the global

minima (i.e., the smallest overall values these quantitieSn Fig. 3 have been chosen using Figéa)2and 2b) as a
achieve are slightly different. Localization is perhaps visu- guideline. The first snapshot corresponds to the initial elec-
alized more clearly in Fig. 3, which provides snapshots oftronic state prior to the application of the kick. The classical
the classical and quantum probability densities in phas@istribution is somewnhat tighter than its quantum counterpart
space at different times. To generate the quantum phasgecause the former is initially represented by a microcanoni-

to=0

space distributions, we use the Husimi distributjoh cal distribution, i.e., a line in phase space, while the latter is
@ ) represented by a Husimi distribution involving a smooth dis-
p'(a,p,t)=[(g(a,p,a)|[¥(1))[*, (28 tribution of binding energies. The second snapshot is for the

. N ) ) scaled timey= 1.45, which corresponds to a local maximum
where[g(q,p,)) is a minimum uncertainty Gaussian wave j, o4 and o, implying, as is observed, that the phase-space
packet pentered ata c'oordmax.eand momentunp, and thg density is spread over a broad range of coordinates in phase
squeezing parameter Is thes\//wdth_ of the wave packet in gpace’ The third snapshot corresponds, to3 at which time
coqrdm?te spacéwe seto=n*?). Figure 3 shows “coarse- o quantum calculations predict thag and o, will assume
grained” histograms, which are constructed by dividingyejr global minimum values. The probability density is con-
phase space into equally spaced rectangular cells of are@nirated in a small region of phase space implying strong
6q6p centered at phase-space pointgs,0;)i,j=1.2,....  yansient localization of the system. The width in phase space
The values of the densities displayed in the figure correspongd oquced to within a factor-n/10 of the minimum uncer-

to the average value of the probability density within eachiinyy At late times, the classical-quantum correspondence

cell [12], breaks down. This is illustrated in the fourth snapshot for
to=21.5, which corresponds to a quantum reviatlphase-
1 gj+8q/2 pj+dp/2 . . .. R
pi ()= —f f dpp(p.q.t), (2.9  space localizationand a local minimum in the quantum val-
! 696pJ g, sqi2 pj— op/2 ues ofoy ando,. At this time, the classical distribution has
relaxed to an equilibrium phase-space distribution and no
where we use to represent either the classical or the quan-ocalization is evident.
tum density p(? or p(©)). Since classical dynamics is scal-  The quantum time evolution of the system is calculated
ing invariant, the results are displayed in scaled upigs using an expansion of the electronic wave function in a basis
=np, go=q/n% The times for the snapshots of the densitiesset of ~300 Sturmian functiong13], which represents a
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fraction of both the bound and continuum energy levels. Foering an isolated system, the classical fine-grained entropy
small kick strengths, as considered here, the continuum does{® = — In{fdqddp©(q,p,t) % is a constant of the motion
not play an important role and the phase-space distribution is14]. It is the division of phase space into finite cells that
calculated using only the bound spectrum. Similarly, we fo-makes the coarse-grained entropy time dependent. Comput-
cus on the classical dynamics of the phase-space density COifiy the average density within each cilq. (2.9] washes
tained in a box—3<py<3 and 0<qy<3 (continuum elec- oyt the microscopic information contained in the fine-grained
trons leave this box quick)yAll quantities depicted in Fig. 2 density. For the quantum system, much of the microscopic
are Ca|Cu|a'[ed W|th|n thIS bOX. The CIaSSicaI LiOUVi”e equa-information is a|ready lost in the calculation of the Husimi
tion determining the dynamics @f© is solved using a clas- distribution, which corresponds to taking a coarse graining of
sical trajectory Monte Carlo(CTMC) method: a finite  the actual quantum state in phase space, i.e., the Wigner
sample ofNy,; phase-space points distributed according tofunction [9], with a bin size equal tdi. Quantum coarse
the initial density is taken and the time evolution of eaChgraining is therefore mosﬂy due to this Husimi coarse grain-
point is calculated by solving Hamilton’s equations of mo-ing rather than Eq(2.9). Indeed, the statistical coherence or
tion. For the 1D hydrogen atom, each point follows a Keplerthe “Comp|exity" of a guantum system could be obtained
orbit with maximum eccentricity. The coarse-grained phasedirectly from the Husimi distribution without any additional

space density can be numerically calculated as coarse graining15,16. The classical and quantum coarse-
grained entropies are displayed in FigdRand their minima
pi(?)z lim L h (2.10  Pprovide a reasonable measure of phase-space localization.
1 Nyaj—»949P Niraj One drawback of using entropy as a measure of phase-

space localization is seen at early times in Figl) 2Unlike

whereN; ; is the fraction of the trajectories lying in the cell the occupied mean phase-space arga,, S; does not sat-
centered atd;,p;). isfy the correspondence principle: in the limit of short times,

Phase-space localization can be easily visualized withimlassical and quantum Renyi entropies disagree. This dis-
the present 1D model. However, searching for transientrepancy is due to the different characteristics of the initial
phase-space localization in higher dimensions is more diffiprobability densities. While the classical initial microcanoni-
cult. It is therefore desirable to identify a simple functional cal distribution is ad function (i.e., a line in the 2D phase
of the phase-space density that provides a reliable measure ghace, the quantum Husimi distribution is smoother and,
the localization of the system. Such a functional could facili-consequently, its entropy is higher than the classical one. The
tate the search for improved localization that might be“sharpness” of the classical distribution is maintained for
achieved, for example, by using a sequence of tailored elegome time but, finally, it broadens with a consequent increase
tromagnetic pulses. The most natural choice for such a funaf the entropy. The differences evident at late times, on the
tional in 1D is the productqo, (i.e., the effective phase- other hand, are to be expected because beyond the character-
space area occupied by the wave pack€his product is istic break time, classical-quantum correspondence ceases to
depicted in Fig. &) and it obviously provides a satisfactory hold.
description of phase-space localization. An interesting alter- One remarkable feature in Fig(d is the development of
native is to use entropy as a measurédsjlocalization, i.e., a pronounced narrow maximum in the classical coarse-
of (dis)order, in phase space. This establishes a connection trained entropy immediately following the global minimum
the statistical mechanics of nonequilibrium systems. In parat a scaled timey=3. This pronounced local maximum is
ticular, recent work on the dynamics of the coarse-grainediniversal in the sense that it is observed for any valugmf
entropy of classical ensembles analytically predi8isoscil-  (not shown and is found either immediately preceding or
lations of the entropy in such systems. The coarse-grainefbliowing the global minimum. Moreover, a similar feature is
entropy also directly measures the degree to which all thgredicted by both the classical and the quantum calculations,
elements of an ensemble behave in a similar fashion, i.e., thglbeit shifted in time and less pronounced in the quantum
degree to which the distribution is localized. Therefore, thecase. The region near th@lassical global minimum is
coarse-grained entropy can be thought of as measuring thghown in detail in Fig. 4 for a scaled impuls&p,
“statistical coherence” of the ensemble, whence phase-space —0.06. We now show within the framework of classical
localization corresponds to an increase in this statistical codynamics for the 1D system that the global minimum and
herence[The term statistical is used here to distinguish thisneighboring sharp maxima are a consequence of the focusing
coherence from phase coherence, as exemplified by E@f the phase-space distribution.
(2.3)]. The statistical coherence can be analyzed by consid- |n scattering theory, focal poin{gaustics lead to singu-
ering the time development of the coarse-grained Renyi enarities in the classical cross sections that are known as rain-
tropy [8] bow peaks. In the present context, focal points lead to en-
hancements in the classical phase-space density. For the
present problem, rather than searching for a focal point in the
2D phase space, we need only to conduct a 1D search be-
cause the spectral distributi@Rig. 1) is narrow and the ini-
It must be emphasized that the coarse-graining of the densityal position in the microcanonical ensemble is related one to
is a crucial step in measuring the changes in statistical casne to the initial momentum. Specifically, we characterize
herence. In particular, after the kick, because we are considhe “location” of the electron within a Kepler orbit at a given

S.(t)=—1In : (2.11

5q6p”2:1 pZ,(1)
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FIG. 4. Time development of the classical coarse-grained en- 5r 7
tropy (solid line) and the effective arearq o (dashed ling fol- F t,=0 1
lowing the application of a scaled impulggp,=—0.06 to a 1D ok ———
hydrogen atom initially in then=50 state. The panel to the right | Initial range
shows the coarse-grained classical phase-space distribution at a of p; values
scaled timety=3.48, which corresponds to the narrow local maxi- 5 : : : L : : :
mum in the entropy, indicated by the vertical dotted line on the left 2 - 0 1 2
panel. n pi
time t by an angle variabl®(p; ,t) and search for the fo-  FIG. 5. Dependence dd(p; .t) on p; for scaled timed,=0,

1.05, 2.1, and 3.1%see text following the application of a kick

cusing timetg by imposing the stationary condition , g MR
with scaled strengtihp,=—0.1 to a hydrogen atom initially in the

a0 (p;,t) n=>50 state. The vertical lines denote the full width at half maxi-
BT =0. (2.12 mum of the initial momentum distribution. The shaded horizontal
Pi t=tp area denotes the final width of the wave packet in the vari@ble
At the timetg, points with different initial values o® (p;,0) O(p: ) =[—2E(0)13% + arccoSA(p ) 1— V1—A2(0.)
are focused in a region in phase space characterized by the (P U=l (P)] BA(P)I = (2')1
same value o®(p;,t), though with slightly different “ac- (2.18
tion” (energy. for (p;+Ap)=0 and
The location of the electron within a Kepler orbit is un-
equivocally determined by the angle variable O(p;,t)=[—2E(p;) ¥4+ 27— arcco$A(p;)]
0 =¢—sing=(—2E)¥(t+1;), (2.13 +V1-A%p) (2.19

wheret; is given by the phase-space coordinates, immedifor (p;+Ap)<0, where A(p)=[(pi+Ap)2+2E(p)]/
ately after the kick, at=0". The angle variablé® has a [(pi+Ap)2—2E(p;)]. Figure 5 illustrates the behavior of
one-to-one relation to the time spent in the orbit and is imthe function®(p;,t) for Apo=—0.1. At t,=0, the angle
plicitly related to the phase-space coordinates through theariable has a monotonic behavior as a functiorpaf The
eccentric anomaly, and the equations initial width of the wave packet ip; translates into a sizable

_ width in ©. At t,=1.05, the functior® (p; ,t) develops both

sing 1 a maximum and a minimum and, therefore, the stationary
1—cos¢’ 219 condition 2.13 is satisfied for two values @ . Subse-

quently, att;=2.1, the maximum and the minimum merge

1
q= _—ZE(l—cosg), p=+v—2E

whereE=H,=p*2-1/q. with each other and become an inflection pdire., the sec-
The explicit dependence @ on p; entering Eq.(2.12  ond derivative of® also vanishesfor p;=0. At this time,
arises from botft; andE through the set of equations the width of the wave packet i® becomes very small. Fi-
ApY? nally, for timesty>2.1, the function®(p;,t) once again
E=E(p)=E, + piAp+( P , (2.19 becomes a monotonic functloq pf and focusing d|§appears.
2 One key feature oP(p;,t) is that forty=2.1, it has a
weak dependence gn since the first and second derivatives
(—2E)¥%t=¢—sing=0,, (2.1  vanish. Therefore, an entire range pf values is focused
onto a narrow range o (tg) values. This focusing is the
—— sing origin of the global minimum. Tight localization in phase
pi+Ap= \/_ZE 1—cos¢; (2.17) space occurs when the electron happens to be near the outer
turning point(the apocenteifor times near the focusing time
Solving these equations yields in ©®. Half a period before or after this localization the wave
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packet is still focused to a narrow range ©f values, but
these correspond to a collision with the “nucleugMore
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n
(=)

0.21/ |Apg| —— . -

generally, in 3D, it reaches the pericentéfhe focusing in
implies a near simultaneous arrival of the wave packet at
the pericenter resulting in a sudden and short-lived broaden-
ing and splitting of the momentum distribution as the elec-
trons reverse direction. This broadening of the momentum
(and position distribution is evident in the phase-space den-
sity distribution included in Fig. 4 for a scaled tinig
=3.48 and results in the sharp local maximum immediately
following the global minimum. It is worth noting that local
density enhancements associated with focusing are accu-
rately mirrored only in the coarse-grained entrofy,
whereas the mean spread of a wave packet is represented by
O'qO'p .

Since the focusing if® occurs neaip;=0, it is of par-
ticular interest to analyz®(p; ,t) in this region. Expanding
Egs. (2.18 and (2.19 to the second order ip; and Ap
yields

X classical
A quantum

_.
o
I

|

SCALED FOCUSING TIME, tf,

-0.05
SCALED IMPULSE, Ap,

FIG. 6. Dependence of the optimum scaled focusing ttgwe
0

(see text on the size of the scaled impulgep, applied to a 1D
hydrogen atom initially in then=50 state. The figure includes the

1 results of classicalcrossesand quantunisolid triangle$ calcula-
O(p; t)=m+ = 1— 3n2I0iAp tions and the prediction given by E(.22) (solid line).
n
302 eccentric anomaly will be larger, .69 (0")>®'(0"). Be-
- T(Ap)2 t—4n(p;+Ap). (2.20 cause point Il has higher energy, it moves more slowly in its

orbit than point I. Thus, point | can eventually “catch up”
with point Il giving rise to focusing. Clearly, such catching

Imposing now the condition that the angle must be stationar)(lp can only occur whe p<0

at the focusing poinfi.e., Eq.(2.13)] yields

te 2 0.21

te = _ - I1l. PHASE-SPACE LOCALIZATION IN 3D
Fo omn3  3mnAp  |Ap|’

(2.21

The first step towards obtaining transient phase-space lo-
N , o _calization experimentally is the preparation of strongly po-
Note that the quantities in this equation are scaling invariantarized quasi-one-dimensional Rydberg states. Such states
Equation(2.21) predicts the optimum focusing tinte to be 4 pe produced by photoexcitation of selected Stark states
inversely proportional to the strength of the ki¢k,p|. This in the presence of a weak dc figldi9]. The production of
is confirmed in Fig. 6, which shows that the scaled fOCUSi”gselected Stark states at high(n>100) is, however, a chal-
time t , obtained directly from the global minimum of the |enge because the oscillator strengths associated with their
classical entropy, is related to the scaled impulsetpoy

=0.21/Ap,. Figure 6 also displays the optimal localization 4
times predicted by quantum calculations. For large impulses,
the quantum and classical results are in good agreement.
However, in the Ilimit of small kick strengths
(]Apo|<0.03), the results diverge. In this regime, the wave-
length associated with the kick,~1//Ap|, becomes larger
than the effective size of the wave packie¢., 1/Ap|=n?)

and the system cannot be accurately treated classically
[17,18.

The focusing timetg can also be understood in terms of
the motion of different parts of the initial ensembjeith
small initial p; values following the application of a kick. L
Consider the two points | and Il in phase space schematically
drawn in Fig. 7 that, prior to thénegative kick, belong to
the same Coulomb orbit with enerdy,=E,. Each point
was laterally displaced by the same amont by the kick FIG. 7. Diagram showing selected orbits in phase space. Prior to
and now propagate on different Kepler orbits that correspongpplying the kick, points (open circlg and Il (solid circle belong
to different energiesE!=E,+(Ap)?/2+p'Ap, where p! to the same initial microcanonical distributi¢solid line). After the
=p', p" is the momentum of the electron prior to the kick. application of a negative kickp, both points are shifted to the left
Point Il corresponds to higher energy than point | and itsand lie on different Coulomb orbit&otted and dashed linges

orbit |

orbit before

oint |
P the kick

.........

point I

SCALED POSITION, g,
n

-1.0 -05 00 05 1.0
S8CALED MOMENTUM, p,
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excitation are small, and because the Stark levels are closely
spaced in energy requiring the use of narrow-linewidth
frequency-stabilized lasers and tight control of Doppler shifts
and broadening. We have recently shd&f] that high-lying
guasi-one-dimensional potassium=0 states can be created
by photoexcitation of redshifted Stark states in the presence
of a weak dc field. This yields a superposition of states
whose average dipole moment is largg=(z)/n’>~1.25),
wherez is the electron position coordinate along thexis
which is defined to be antiparallel to the dc field.

The apparatus used in this work is described in detail
elsewherd 21]. Briefly, ground-state potassium atoms con-
tained in a collimated beam are photoexcited using the out-
put of an extra-cavity-doubled coherent CR 699-21 Rh6G
dye laser. The laser is polarized parallel to the applied dc
field leading to the creation of onlyn=0 states. Experi-
ments are conducted in a pulsed mode. The output of the
(cw) laser is formed into a train of pulses ofds duration SCALED TIME DELAY, t,/ Ty
using an acousto-optic modulator. Excitation occurs in the ) B ) .
presence of a small dc field generated by the application of a FIG.. 8. Survwal_ probablllty for strongly polarized quasi-one- _
small bias potential to a nearby electrode. The uncertainty "qlmensmnal potgssmm ato_ms in the ex_trer_ne redmost St_ark states in
the applied field is governed by stray background fieldsthen=350 manifold following the application of a negative pump
which can be reduced ta 30 xV cm™ L. Typically strongly ~ Kick (nAp,=—0.12) and a positive probe kickdAp_=0.%) as a
polarized redshiftech=351 Stark states are excited in a dc function of the scaled time delat /T, between the pump and
field Fye~300xVem 1. The number of Rydberg atoms Probe. Both pulses are applied along t#hexis and have a duration
produced by each laser pulse is determined by selective fiell~600 ps, which is much smaller than the orbital peridg
ionization using a ramped field that rises from 0 to =6.5ns forn_=350. The experlme_ntal rgsu!(solld triangles are
800 mVenilin 4 us. c_ompar_ed with 3D C_TMC simulationolid line) and 1D CTMC

simulations(dashed ling

SURVIVAL PROBABILITY

Transient localization is achieved by applying a short uni-
directional HCP. If the duration of the puls&,, is much
less than the classical period of the electrdp, the HCP - (Ap,)?
simply delivers an impulsive momentum transfer or kick to pz(tD)ApB<—Ei— 2 3.2
the electron17]. The kick, with strengtmAp , produces a

nonstationary wave packet as in the 1D problem discussed iRigure 8 shows the time evolution of the survival probability
the preceding section. The time development of the waveoliowing the application of an initial scaled impulse\p,
packet is investigated experimentally by applying a second. —0.1 when using a probe pulse that delivers a scaled im-

probe _pulse after a vgriable time dehaty "’.‘r.]d analyzing .the puIsenApB=O.9. The survival probability undergoes strong
behavior of the resulting survival probability as a function Ofgeriodic oscillations as a function of delay timDe Figure 8

t . With a suitable choice of probe pulse, such experiment . .
D b b P includes the results of CTMC simulations for a 1D atom. The

fﬁ; Scr)z\i/tligi d;:}%“é}”;g:?ﬂ?ﬂ%” ((j)ir;t:irt])ittig?lz %?Vglgpgggttrg:]remarkably good agreement between these results and the
. . ) experimental data provides evidence that the dynamics of the
[21,22. This is facilitated by the fact that there exists a one- P P Y

. experimental system is quasi-one-dimensional. This conclu-
to-one correlation between the local value of the phase-spacg,.\ can be further tested theoretically by performing 3D

coordinates of the electron immediately prior to the applicary;c gimylations using a collection of strongly polarized
tion of the probe pulse and the energy of the electron aftef o5 that mimics those initially excited in the experiment,

the probe pulse. For example, pi(t ) and Ei=E(t<t))  t5ren to be an incoherent statistical mixture of 36 extreme
are the classical momentum and the binding energy of thetark states belonging to the=351 manifold[20] centered
electron immediately before the application of a probe im-at the peak of the experimental photoabsorption spectrum. As
pulseAp_att_, the energy of the electron after the probe anticipated, the 3D CTMC simulations for such a mixture of

pulse is states are in very good agreement with the experimental data
) and the 1D CTMC simulations. Simulations were also per-
(ApB) _ formed using a model potential to represent thé Bore
E(t>tD) =B+ 2 + pZ(tD )ApB. (3.1 rather than the simple 1potential. No significant changes in

the model predictions were noted, indicating that over the
Therefore, the survival probability, which is given by the time scale of the present experiments core effects are negli-
fraction of atoms withE<O0, provides a direct measure of gible. The small differences between experiment and theory
the fraction of electrons with values @f(t ) obeying the are probably due to uncertainties in the calibration of the
inequality pulsed electric field £ 10%) and the impulse it delivers.
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Strongly polarized states provide an excellent starting
point for producing transiently localized states, since the ini-
tial state of the electron is approximately constrained to the -
two-dimensional £,p,) plane. The degree of transient local- &
ization of the wave packet produced by the application of ad
“pump” HCP ApA can be measured experimentally by sub-

jecting the atoms to a probe pulmpB and observing the
survival probability Pg,(A pB,tD) as a function of both the
strength of the probe pulse and the time delay before its
application,tD. Note thatPsuN(ApB,tD) provides an indirect
mapping of the momentum distribution as a function of time,
p(pz,tD), because foApB>0,

0.5

0.0

-0.5

SURVIVAL PROBABILITY, Py (Ap

(~Eq/ap)~(Ap,/2)
Paun APyt | dpo(p.t), (33

—o0

SCALED PROBE
IMPULSE, nAp,
where we have used E(.2) and the fact that the spectral SCALED TIME

density is narrow(i.e., E;=E,). Therefore, information on DELAY, t,/ T, °
the time evolution of the wave packet, in particular, its local-

ization in momentum space, can be extracted from pig 9. survival probability for a 1D hydrogen atom initially in
PaundAp,,t)). Figure 9 illustrates the behavior of {hen=50 state following the application of a negative pump kick
PsurdA pB,tD) for the 1D hydrogen atom subjected to a pumpwith strengtnAp, = —0.05 and a positive probe kick as a function

kick nA pA: —-0.1. A practica| approach for estimating the of the scaled strength of the probe kicid pB’ and the time delay

width of the momentum distribution comprises calculating,'> Petween the pump and the probe. The lower projecticos-
at a fixed delay timeD, the differencer in the size of the tours show the values aﬁApB for which the survival probability is

. . . . s equal to 0.2 and 0.8 as a functiontof This is used to obtain the
probe impulses required to obtain survival probabilities of _ D
20% and 80%, both of which are indicated in Fig. 9. AsScaled magnitud®,, shown in Fig. 10.
demonstrated in Fig. 10D, mirrors the behavior of the o _ .
width of the momentum distribution and provides a measurdz>0 are ionized, whereas those wiph<<O remain bound
of the localization of the wave packet in momentum spacefsee Egs(3.1) and(3.3)].
the greater the localization, the smaller the range of probe The results in Figs. 1b) and 11c) were obtained follow-
impulses over which the survival probability changes froming the application of a scaled pump impuls@, =nAp,
80% to 20%. The optimum momentum localization time can= —(.085. For the data in Fig. (1), the probe impulse was

be recognized as the one for which the survival probabilityaPp”ed after a scaled time delay =t_/T,=1.0, which is
exhibits the steepest change as a function of the strength o . . o P T
the probe pulse, closely resembling a step function. This ree"Y close to a time at which transient localization is ex-
sult can be understood with the help of E8.1) and implic-
itly using the fact that the energy distribution of the electron 1.5 ' ' | ' | '
prior to the application of the probe pulse is very narrow
(i.e., the width of the step function is directly related to the
width of both momentum and energy distributions

These considerations indicate that the localization of the
wave packet can be investigated experimentally by measur-
ing the survival probability as a function of the size of the
probe impulseApB at selected delay timet%. This is illus-
trated in Fig. 11, which includes both experimental data and
the results of 1D and 3D CTMC simulations. Figure@l
shows the survival probability measured with the probe pulse
applied directly to the parent state. The survival probability

SCALED MOMENTUM WIDTH

[

varies relatively slowly with increasing probe strength point- N Dp/2 et L
Il

ing to a broad range of initial electron momenta, and the data 0.0 — 1' ' ; SI —

are in excellent agreement with the theoretical predictions.
As expected, the survival probability reaches the value SCALED TIME DELAY, t5/Tn

Psuv=0.5 for a scaled impulsaAp =1. This occurs be- FIG. 10. Comparison of time evolutions of the actual momen-

cause the momentum distribution for the parent state is symum width o, (solid line) and the momentum widtl, (dashed
metric aroundp,=0 and fornA p,=1 all the electrons with line) inferred from the survival probabilities shown in Fig. 9.
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1.0 T The data in Fig. 1(c) were recorded after a scaled delay

(a) initial timet =t /T,=1.45 when the phase-space distribution is
parent state Do D

expected to be localized in two different regiotmich as
shown in Fig. 3, one corresponding to the electron having a
sizable positive momentum, the other a sizable negative mo-
1.0 i ‘I o mentum. Scaled probe impulsaAszo.3 are sufficient to

ionize that part of the distribution which corresponds to posi-
tive electron momenta, whereas impulss&‘ssz 2.7 are re-

quired to ionize the component that corresponds to negative
== electron momenta. This gives rise to the “double-step” struc-

I B ture evident in the calculations using an ultrashort probe
(©) 1/ Tn=1.45 pulse. This behavior is not as apparent in the experimental
data that are for a probe pulse with a duration Tof
=0.6 ns. This can be attributed to the fact that the electron
momentum changes rapidly as it reverses direction at the
L nucleus. This leads to dramatic changes in the electron mo-
1 2 3 mentum distribution, which occur on time scale).1T,
SCALED PROBE IMPULSE, n Ap, (i.e., on time scales=0.65 ns). The measurements are there-

FIG. 11. Survival probabilities obtained using strongly polarized!core sensitive to the pulse width and this leads to a broaden-

guasi-one-dimensional potassium atoms in the extreme redmostY of the prgd|cted steplike fea’[ures. The experlmental data
Stark states in the=350 manifold as a function of the scaled '€ h_owever in agreement with CTMC calculations for a 0.6
strengthnApB of a probe kick.(@) The probe impulse is applied ns wide probe pulse.
directly to the initial parent statgb) The probe kick is applied
following a pump kick withnAp, = —0.08% and a scaled time _
delayt_/T,=1. (c) Same agb), but fort_/T,=1.45. The experi- The present V\{ork. demonstrates' that strong transent
mental result§symbolg are compared with 1D CTMC simulations Phase-space localization can be achieved by the application
(dashed linesand 3D CTMC simulations using an ultrashort probe Of @ single kick to strongly polarized quasi-one-dimensional
pulse (dotted line$ and a probe pulse with a duration 6f0.6 ns ~ Rydberg atoms, providing an ideal starting point for further
(solid lineg. Experimental data are included for probe pulse dura-quantum control and manipulation of electronic wave pack-
tions T, of ~0.6 ns(solid symbol$ and~1 ns(open symbols ets. The experimental observations are in good agreement
with the predictions of both classical and quantum theories.
pected. The behavior of the survival probability resembles #\nalysis shows that localization can be explained in terms of
step function, confirming that momentum localization is in-@ focusing effect predicted by classical dynamics. Further-
deed occurring. Because the electron energy distribution i§'0re, it is demonstrated that the degree of localizatimn
narrow, the momentum localization also implies localizationStatistical coherengeean be characterized both by the prod-
of the position coordinates, i.e., the steplike behavior evidentCt Of the position and momentum widths and by the coarse-
in Fig. 11(b) is unequivocally a signature of phase-space lo-grained Renyi entropy. Work is now underway to examine if
calization. In principle, spatial localization can be examinedthe degree of localization can be further enhanced using a
using a field step as a protig1]. Assuming that the wave Sequence of tailored electromagnetic pulses.
packet is localized and that a field step with magnitbdend
rise timet,<T, is applied, the survival probability changes
from unity to zero depending on whethdiE;)+F(z) This research was supported by the NSF under Grants
<-2\F or (E)+F(z)>-2\F, respectively, where  Nos. PHY-0096392 and PHY-0099504 and by the Robert A.
—2F represents the top of the potential barrier generatedVelch Foundation. D.G.A. and J.B. acknowledge support by
by the field. In practice, however, experiment and theorythe SFB 016 ADLIS of the FWFAustria). C.O.R. acknowl-
showed that the survival probability is not very sensitive toedges support by the OBES, U.S. Department of Energy to
variations in the size of the field step indicating that mea-ORNL which is managed by the UT-Batelle LLC under Con-
surements using a probe impulse provide a better indicatiotract No. DE-AC05-000R22725. A.K.P. acknowledges par-
of localization. tial support from the Research Corporation.
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