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Pulse-induced focusing of Rydberg wave packets
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We demonstrate that strong transient phase-space localization can be achieved by the application of a single
impulsive ‘‘kick’’ in the form of a short~600 ps! unidirectional electric-field pulse to a strongly polarized,
quasi-one-dimensional Rydberg atom. The underlying classical dynamics is analyzed and it is shown that
phase-space localization results from a focusing effect analogous to rainbow scattering. Moreover, it is shown
that the essential features of the classical analysis remain valid in a quantum-mechanical treatment of the
system in terms of its phase-space Husimi distribution. The degree of phase-space localization is characterized
by the coarse-grained Renyi entropy. Transient phase-space localization is demonstrated experimentally using
extreme redshiftedm50 potassium Stark states in then5351 manifold and a short probe pulse. The experi-
mental data are in good agreement with theoretical predictions. The localized state provides an excellent
starting point for further control and manipulation of the electron wave packet.
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I. INTRODUCTION

There is much current interest in the control and mani
lation of atomic wave functions to generate tailored wa
packets@1–3#. Such coherent control promises new oppor
nities for controlling chemical reactions and has poten
applications in, for example, data storage@4#. One important
step in this direction is to develop techniques to create e
tron wave packets that are localized in phase space. In
sence, the more tightly an initial state is localized in pha
space, the easier it is to produce some desired final s
@3,5#. Efforts in this area date back to the early work
Schrödinger @6# where a quantum state was sought wh
resembled a quasiclassical electron moving in a Kepler o
Initial ‘‘gedanken’’ experiments were aimed at constructi
nondispersive minimum-uncertainty wave packets simila
‘‘coherent’’ oscillator eigenstates. The latter follow Newton
laws of motion, while their widths in position and mome
tum remain at the minimum consistent with the Heisenb
uncertainty principle. Attempts to generate such electro
states in atoms failed because, in atoms, the energy level
not equispaced, leading to dephasing, i.e., any phase-s
localization of a Rydberg wave packet is transient~without
external influence!. Nonetheless, even though phase-sp
localization is transient, such states can be ‘‘trapped’’
extended periods using a train of short unidirectio
electric-field pulses, termed half-cycle pulses~HCPs!, and
later ‘‘released’’ simply by turning off the pulses@1#. Similar
ideas using microwaves have been proposed and have l
a generalization of the concept of ‘‘nondispersive’’ wa
packets@5,7#. In both cases, trapping results because
combination of the Coulomb interaction and the external
riodic driving field gives rise to sizable stable islands in
1050-2947/2003/67~6!/063401~10!/$20.00 67 0634
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otherwise chaotic phase space from which the electron c
not escape.

In this work, we are concerned with the prerequisite
trapping i.e., the creation of a localized state in phase sp
prior to trapping. We demonstrate that strong transient pha
space localization can be obtained experimentally by the
plication of a single HCP to a strongly polarized quasi-on
dimensional Rydberg atom. This approach is based on
earlier theoretical analysis of entropy dynamics in class
nonlinear systems@1,8# in a classical Rydberg atom tha
turned out to be an extension of a scheme introduced pr
ously @3#. We present a detailed analysis of the classical
namics associated with phase-space localization for b
one-dimensional~1D! and three-dimensional~3D! systems
and show that localization is a consequence of phase-s
focusing in classical Coulomb systems that is analogou
rainbow scattering. In addition, it is shown that the essen
features of this classical analysis remain valid in quant
dynamics through 1D quantum calculations based on
time evolution of the Husimi distribution@9# of the nonsta-
tionary wave packet. Experimental evidence of transi
phase-space localization is presented, which confirms
theoretical predictions.

II. PHASE-SPACE LOCALIZATION IN 1D

Consider initially a 1D hydrogen atom with Hamiltonia

Hat5
p2

2
2

1

q
with q.0, ~2.1!

where q and p denote the position and momentum of th
electron, respectively~atomic units are used throughout th
work!. Assume that the system is initially in an eigensta
©2003 The American Physical Society01-1
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ufn& of Hat with eigenenergyEn521/(2n2) and that an
impulsive momentum transfer or kick of magnitudeDp is
applied to the electron att50 directed toward the origin
The time evolution of the system is described by the Sch¨-
dinger equation for the HamiltonianH5Hat2qDpd(t)
whose solution yields

uC~ t !&5exp~2 iH att !exp~ iqDp!ufn&. ~2.2!

The boost operator exp(iqDp) simply shifts the initial state in
momentum space byDp and, subsequently, the tim
evolution is governed by the free-evolution opera
exp(2iHatt). In terms of the eigenstatesufa& of Hat ~i.e.,
Hatufa&5Eaufa&,a51,2, . . . ), theelectron wave function
evolves in time according to

uC~ t !&5(
a

e2 iEat^fauexp~ iqDp!ufn&ufa&, ~2.3!

which represents a ‘‘fully coherent’’ wave packet, i.e., a pu
state at each instant of time@expressed in terms of the den
sity operatorr̂, Trr̂2(t)5Trr̂(t)]. Figure 1 shows the final-
state energy distribution following the application of a ki
that delivers a scaled impulseDp05nDp520.05 to a 1D
‘‘atom’’ initially in the n550 state. ForE,0, the quantum
spectral density is given by

r (Q)~E5Ea!5a3u^fauC~ t !&u25a3u^fauexp~ iqDp!ufn&u2.
~2.4!

Alternatively, the problem can be described classically
ing the same Hamiltonians and representing the state o
electron by a probability density in phase space,r (C)(q,p,t),
that initially ‘‘mimics’’ the quantum state and whose dynam
ics is governed by the classical Liouville equation. A statio
ary 1D Rydberg atom in a givenn level can be represente
by a microcanonical phase-space distributionrn

(C)(q,p)

FIG. 1. Final-state energy distribution following the applicati
of a kick with scaled strengthDp05nDp520.05 to a 1D hydro-
gen atom initially in then550 state. The vertical line atE05n2E
520.5 corresponds to the energy distribution before the kick.
sults from both classical~dashed line! and quantum~solid circles
connected with solid line! calculations are included.
06340
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5kd„Hat(q,p)2En…, where k is a normalization constant
Immediately after the kick, att501, this distribution be-
comes r (C)(q,p,01)5kd„Hat(q,p2Dp)2En… and corre-
sponds to a continuous spectral density

r (C)~E!5E dqdpr (C)~q,p,01!d„E2Hat~q,p!…

5
~2En!3

2puDpu F1

2 S En2~Dp!2/22E

Dp D 2

2EG22

.

~2.5!

As is evident from Fig. 1, the predicted classical and qu
tum spectral densities are very similar. Note that because
system evolves freely after the kick, the energy distribut
does not change in time.

The mean value of any observableO adopts the form

^O&5(
a,b

e2 i (Ea2Eb)t^fauC~0!&^C~0!ufb&^fbuOufa&

~2.6!

and oscillates in time with frequenciesva,b5Ea2Eb . In
particular, as shown in Figs. 2~a! and 2~b!, the widths of the

-

FIG. 2. Time development of various observables following t
application of a kick with scaled strengthDp05nDp520.05 to a
1D hydrogen atom initially in then550 state:~a! scaled width of
the position distribution,sq0

; ~b! scaled width of the momentum
distribution,sp0

; ~c! scaled effective area occupied by the pha
space distribution,sq0

sp0
; ~d! the coarse-grained Renyi entrop

calculated using a grainingdp050.1 anddq050.1. The results are
shown as a function of the scaled timet05t/Tn .
1-2
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momentum and position distributions,sq
25^q2&2^q&2 and

sp
25^p2&2^p&2, become oscillatory functions of time. Th

frequency of oscillation is related to the position of the pe
in the spectral density, which is located nearEpeak
5En1(Dp)2/2. Because the scaled impulseDp0 is small,
the spectral density peaks atEpeak.En and has a narrow
width in both energy andn. In consequence, the frequenc
spectrum associated with Eq.~2.6! resembles that of a quan
tum harmonic oscillator@10#, i.e.,

va,b.vn~a2b!, ~2.7!

with vn5n23 being theclassicalorbital frequency. This ex-
plains why the period of oscillations ofsq and sp in Figs.
2~a! and 2~b! is approximately equal to the orbital perio
Tn52pn3 ~in scaled units,t05t/Tn , the period is close to
unity!. At early times, the classical and quantum results m
ror each other, i.e., the quantum beats of the system pos
a one-to-one correspondence to classical beats, a co
quence of the fact that the spectrum for highn locally ap-
proximates that of the harmonic oscillator@Eq. ~2.7!#. How-
ever, the high-n levels are not precisely equispaced. Th
‘‘anharmonic’’ correction to the frequency spectrum of t
wave packet leads to a damping of the quantum beats.
quantum revivals at timesTR.(n/3)Tn @10# with intermedi-
ate fractional revivals at, e.g.,TR/2 appear@10,11#. No such
revivals are predicted by classical theory due to the cont
ous classical frequency spectrum.

As is evident from Fig. 2, bothsq and sp minimize si-
multaneously pointing to transient phase-space localiza
of the wave packet. The local minima predicted by quant
and classical theories coincide, but the positions of the glo
minima ~i.e., the smallest overall values these quantit
achieve! are slightly different. Localization is perhaps vis
alized more clearly in Fig. 3, which provides snapshots
the classical and quantum probability densities in ph
space at different times. To generate the quantum ph
space distributions, we use the Husimi distribution@9#

r (Q)~q,p,t !5u^g~q,p,s!uC~ t !&u2, ~2.8!

whereug(q,p,s)& is a minimum uncertainty Gaussian wav
packet centered at a coordinateq and momentump, and the
squeezing parameters is the width of the wave packet in
coordinate space~we sets5n3/2). Figure 3 shows ‘‘coarse
grained’’ histograms, which are constructed by dividi
phase space into equally spaced rectangular cells of
dqdp centered at phase-space points (qi ,pj ) i , j 51,2, . . . .
The values of the densities displayed in the figure corresp
to the average value of the probability density within ea
cell @12#,

r i , j~ t !5
1

dqdpEqi2dq/2

qi1dq/2

dqE
pj 2dp/2

pj 1dp/2

dpr~p,q,t !, ~2.9!

where we user to represent either the classical or the qua
tum density (r (Q) or r (C)). Since classical dynamics is sca
ing invariant, the results are displayed in scaled unitsp0
[np, q0[q/n2. The times for the snapshots of the densit
06340
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in Fig. 3 have been chosen using Figs. 2~a! and 2~b! as a
guideline. The first snapshot corresponds to the initial el
tronic state prior to the application of the kick. The classic
distribution is somewhat tighter than its quantum counterp
because the former is initially represented by a microcano
cal distribution, i.e., a line in phase space, while the latte
represented by a Husimi distribution involving a smooth d
tribution of binding energies. The second snapshot is for
scaled timet051.45, which corresponds to a local maximu
in sq andsp implying, as is observed, that the phase-spa
density is spread over a broad range of coordinates in ph
space. The third snapshot corresponds tot053 at which time
the quantum calculations predict thatsq andsp will assume
their global minimum values. The probability density is co
centrated in a small region of phase space implying str
transient localization of the system. The width in phase sp
is reduced to within a factor;n/10 of the minimum uncer-
tainty. At late times, the classical-quantum corresponde
breaks down. This is illustrated in the fourth snapshot
t0521.5, which corresponds to a quantum revival~of phase-
space localization! and a local minimum in the quantum va
ues ofsq andsp . At this time, the classical distribution ha
relaxed to an equilibrium phase-space distribution and
localization is evident.

The quantum time evolution of the system is calcula
using an expansion of the electronic wave function in a ba
set of ;300 Sturmian functions@13#, which represents a

FIG. 3. Quantum~left! and classical~right! coarse-grained
phase-space distributions of a 1D hydrogen atom initially in then
550 state (t050) and at selected scaled times (t05t/Tn51.45, 3,
21.5) following the application of a kick with scaled strengthDp0

520.05. The histograms were obtained using a grainingdp0

50.1 anddq050.1.
1-3
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fraction of both the bound and continuum energy levels.
small kick strengths, as considered here, the continuum d
not play an important role and the phase-space distributio
calculated using only the bound spectrum. Similarly, we
cus on the classical dynamics of the phase-space density
tained in a box23,p0,3 and 0,q0,3 ~continuum elec-
trons leave this box quickly!. All quantities depicted in Fig. 2
are calculated within this box. The classical Liouville equ
tion determining the dynamics ofr (C) is solved using a clas
sical trajectory Monte Carlo~CTMC! method: a finite
sample ofNtra j phase-space points distributed according
the initial density is taken and the time evolution of ea
point is calculated by solving Hamilton’s equations of m
tion. For the 1D hydrogen atom, each point follows a Kep
orbit with maximum eccentricity. The coarse-grained pha
space density can be numerically calculated as

r i , j
(C)5 lim

Ntra j→`

1

dqdp

Ni , j

Ntra j
, ~2.10!

whereNi , j is the fraction of the trajectories lying in the ce
centered at (qi ,pi).

Phase-space localization can be easily visualized wi
the present 1D model. However, searching for trans
phase-space localization in higher dimensions is more d
cult. It is therefore desirable to identify a simple function
of the phase-space density that provides a reliable measu
the localization of the system. Such a functional could fac
tate the search for improved localization that might
achieved, for example, by using a sequence of tailored e
tromagnetic pulses. The most natural choice for such a fu
tional in 1D is the productsqsp ~i.e., the effective phase
space area occupied by the wave packet!. This product is
depicted in Fig. 2~c! and it obviously provides a satisfactor
description of phase-space localization. An interesting al
native is to use entropy as a measure of~de!localization, i.e.,
of ~dis!order, in phase space. This establishes a connectio
the statistical mechanics of nonequilibrium systems. In p
ticular, recent work on the dynamics of the coarse-grain
entropy of classical ensembles analytically predicts@8# oscil-
lations of the entropy in such systems. The coarse-gra
entropy also directly measures the degree to which all
elements of an ensemble behave in a similar fashion, i.e.
degree to which the distribution is localized. Therefore,
coarse-grained entropy can be thought of as measuring
‘‘statistical coherence’’ of the ensemble, whence phase-sp
localization corresponds to an increase in this statistical
herence.@The term statistical is used here to distinguish t
coherence from phase coherence, as exemplified by
~2.3!#. The statistical coherence can be analyzed by con
ering the time development of the coarse-grained Renyi
tropy @8#

Sc~ t !52 lnFdqdp (
i , j 51

`

r i , j
2 ~ t !G . ~2.11!

It must be emphasized that the coarse-graining of the den
is a crucial step in measuring the changes in statistical
herence. In particular, after the kick, because we are con
06340
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(C)52 ln$*dqdp@r(C)(q,p,t)#2% is a constant of the motion
@14#. It is the division of phase space into finite cells th
makes the coarse-grained entropy time dependent. Com
ing the average density within each cell@Eq. ~2.9!# washes
out the microscopic information contained in the fine-grain
density. For the quantum system, much of the microsco
information is already lost in the calculation of the Husim
distribution, which corresponds to taking a coarse graining
the actual quantum state in phase space, i.e., the Wi
function @9#, with a bin size equal to\. Quantum coarse
graining is therefore mostly due to this Husimi coarse gra
ing rather than Eq.~2.9!. Indeed, the statistical coherence
the ‘‘complexity’’ of a quantum system could be obtaine
directly from the Husimi distribution without any additiona
coarse graining@15,16#. The classical and quantum coars
grained entropies are displayed in Fig. 2~d! and their minima
provide a reasonable measure of phase-space localizatio

One drawback of using entropy as a measure of pha
space localization is seen at early times in Fig. 2~d!. Unlike
the occupied mean phase-space areasqsp , Sc does not sat-
isfy the correspondence principle: in the limit of short time
classical and quantum Renyi entropies disagree. This
crepancy is due to the different characteristics of the ini
probability densities. While the classical initial microcanon
cal distribution is ad function ~i.e., a line in the 2D phase
space!, the quantum Husimi distribution is smoother an
consequently, its entropy is higher than the classical one.
‘‘sharpness’’ of the classical distribution is maintained f
some time but, finally, it broadens with a consequent incre
of the entropy. The differences evident at late times, on
other hand, are to be expected because beyond the char
istic break time, classical-quantum correspondence ceas
hold.

One remarkable feature in Fig. 2~d! is the development of
a pronounced narrow maximum in the classical coar
grained entropy immediately following the global minimu
at a scaled timet0.3. This pronounced local maximum i
universal in the sense that it is observed for any value ofDp0
~not shown! and is found either immediately preceding
following the global minimum. Moreover, a similar feature
predicted by both the classical and the quantum calculatio
albeit shifted in time and less pronounced in the quant
case. The region near the~classical! global minimum is
shown in detail in Fig. 4 for a scaled impulseDp0
520.06. We now show within the framework of classic
dynamics for the 1D system that the global minimum a
neighboring sharp maxima are a consequence of the focu
of the phase-space distribution.

In scattering theory, focal points~caustics! lead to singu-
larities in the classical cross sections that are known as r
bow peaks. In the present context, focal points lead to
hancements in the classical phase-space density. For
present problem, rather than searching for a focal point in
2D phase space, we need only to conduct a 1D search
cause the spectral distribution~Fig. 1! is narrow and the ini-
tial position in the microcanonical ensemble is related one
one to the initial momentum. Specifically, we character
the ‘‘location’’ of the electron within a Kepler orbit at a give
1-4
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time t by an angle variableQ(pi ,t) and search for the fo
cusing timetF by imposing the stationary condition

]Q~pi ,t !

]pi
U

t5tF

50. ~2.12!

At the timetF , points with different initial values ofQ(pi ,0)
are focused in a region in phase space characterized by
same value ofQ(pi ,t), though with slightly different ‘‘ac-
tion’’ ~energy!.

The location of the electron within a Kepler orbit is u
equivocally determined by the angle variable

Q5j2sinj5~22E!3/2~ t1t i !, ~2.13!

where t i is given by the phase-space coordinates, imme
ately after the kick, att501. The angle variableQ has a
one-to-one relation to the time spent in the orbit and is
plicitly related to the phase-space coordinates through
eccentric anomalyj, and the equations

q5
1

22E
~12cosj!, p5A22E

sinj

12cosj
. ~2.14!

whereE5Hat5p2/221/q.
The explicit dependence ofQ on pi entering Eq.~2.12!

arises from botht i andE through the set of equations

E5E~pi !5En1piDp1
~Dp!2

2
, ~2.15!

~22E!3/2t i5j i2sinj i5Q i , ~2.16!

pi1Dp5A22E
sinj i

12cosj i
. ~2.17!

Solving these equations yields

FIG. 4. Time development of the classical coarse-grained
tropy ~solid line! and the effective areasq0

sp0
~dashed line! fol-

lowing the application of a scaled impulseDp0520.06 to a 1D
hydrogen atom initially in then550 state. The panel to the righ
shows the coarse-grained classical phase-space distribution
scaled timet053.48, which corresponds to the narrow local ma
mum in the entropy, indicated by the vertical dotted line on the
panel.
06340
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Q~pi ,t !5@22E~pi !#
3/2t1arccos@A~pi !#2A12A2~pi !

~2.18!

for (pi1Dp)>0 and

Q~pi ,t !5@22E~pi !#
3/2t12p2arccos@A~pi !#

1A12A2~pi ! ~2.19!

for (pi1Dp),0, where A(pi)5@(pi1Dp)212E(pi)#/
@(pi1Dp)222E(pi)#. Figure 5 illustrates the behavior o
the functionQ(pi ,t) for Dp0520.1. At t050, the angle
variable has a monotonic behavior as a function ofpi . The
initial width of the wave packet inpi translates into a sizable
width in Q. At t051.05, the functionQ(pi ,t) develops both
a maximum and a minimum and, therefore, the station
condition 2.13 is satisfied for two values ofpi . Subse-
quently, att052.1, the maximum and the minimum merg
with each other and become an inflection point~i.e., the sec-
ond derivative ofQ also vanishes! for pi.0. At this time,
the width of the wave packet inQ becomes very small. Fi-
nally, for times t0.2.1, the functionQ(pi ,t) once again
becomes a monotonic function ofpi and focusing disappears

One key feature ofQ(pi ,t) is that for t0.2.1, it has a
weak dependence onpi since the first and second derivative
vanish. Therefore, an entire range ofpi values is focused
onto a narrow range ofQ(tF) values. This focusing is the
origin of the global minimum. Tight localization in phas
space occurs when the electron happens to be near the
turning point~the apocenter! for times near the focusing time
in Q. Half a period before or after this localization the wa

n-

t a

t

FIG. 5. Dependence ofQ(pi ,t) on pi for scaled timest050,
1.05, 2.1, and 3.15~see text! following the application of a kick
with scaled strengthDp0520.1 to a hydrogen atom initially in the
n550 state. The vertical lines denote the full width at half ma
mum of the initial momentum distribution. The shaded horizon
area denotes the final width of the wave packet in the variableQ.
1-5
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packet is still focused to a narrow range ofQ values, but
these correspond to a collision with the ‘‘nucleus.’’~More
generally, in 3D, it reaches the pericenter!. The focusing in
Q implies a near simultaneous arrival of the wave packe
the pericenter resulting in a sudden and short-lived broad
ing and splitting of the momentum distribution as the ele
trons reverse direction. This broadening of the moment
~and position! distribution is evident in the phase-space de
sity distribution included in Fig. 4 for a scaled timet0
53.48 and results in the sharp local maximum immediat
following the global minimum. It is worth noting that loca
density enhancements associated with focusing are a
rately mirrored only in the coarse-grained entropySc ,
whereas the mean spread of a wave packet is represente
sqsp .

Since the focusing inQ occurs nearpi.0, it is of par-
ticular interest to analyzeQ(pi ,t) in this region. Expanding
Eqs. ~2.18! and ~2.19! to the second order inpi and Dp
yields

Q~pi ,t !.p1
1

n3 S 123n2piDp

2
3n2

2
~Dp!2D t24n~pi1Dp!. ~2.20!

Imposing now the condition that the angle must be station
at the focusing point@i.e., Eq.~2.13!# yields

tF0
5

tF

2pn3
52

2

3pnDp
.

0.21

uDp0u
. ~2.21!

Note that the quantities in this equation are scaling invaria
Equation~2.21! predicts the optimum focusing timetF to be
inversely proportional to the strength of the kick,uDpu. This
is confirmed in Fig. 6, which shows that the scaled focus
time tF0

, obtained directly from the global minimum of th

classical entropy, is related to the scaled impulse bytF0

.0.21/Dp0. Figure 6 also displays the optimal localizatio
times predicted by quantum calculations. For large impuls
the quantum and classical results are in good agreem
However, in the limit of small kick strength
(uDp0u,0.03), the results diverge. In this regime, the wav
length associated with the kick,l;1/uDpu, becomes larger
than the effective size of the wave packet~i.e., 1/uDpu*n2)
and the system cannot be accurately treated classic
@17,18#.

The focusing timetF can also be understood in terms
the motion of different parts of the initial ensemble~with
small initial pi values! following the application of a kick.
Consider the two points I and II in phase space schematic
drawn in Fig. 7 that, prior to the~negative! kick, belong to
the same Coulomb orbit with energyHat5En . Each point
was laterally displaced by the same amountDp by the kick
and now propagate on different Kepler orbits that corresp
to different energies,Ej5En1(Dp)2/21pjDp, where pj

5pI, pII is the momentum of the electron prior to the kic
Point II corresponds to higher energy than point I and
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eccentric anomaly will be larger, i.e.,Q II(01).Q I(01). Be-
cause point II has higher energy, it moves more slowly in
orbit than point I. Thus, point I can eventually ‘‘catch up
with point II giving rise to focusing. Clearly, such catchin
up can only occur whenDp,0.

III. PHASE-SPACE LOCALIZATION IN 3D

The first step towards obtaining transient phase-space
calization experimentally is the preparation of strongly p
larized quasi-one-dimensional Rydberg states. Such st
can be produced by photoexcitation of selected Stark st
in the presence of a weak dc field@19#. The production of
selected Stark states at highn (n.100) is, however, a chal
lenge because the oscillator strengths associated with

FIG. 6. Dependence of the optimum scaled focusing timet
F0

~see text! on the size of the scaled impulseDp0 applied to a 1D
hydrogen atom initially in then550 state. The figure includes th
results of classical~crosses! and quantum~solid triangles! calcula-
tions and the prediction given by Eq.~2.22! ~solid line!.

FIG. 7. Diagram showing selected orbits in phase space. Prio
applying the kick, points I~open circle! and II ~solid circle! belong
to the same initial microcanonical distribution~solid line!. After the
application of a negative kickDp, both points are shifted to the lef
and lie on different Coulomb orbits~dotted and dashed lines!.
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excitation are small, and because the Stark levels are clo
spaced in energy requiring the use of narrow-linewid
frequency-stabilized lasers and tight control of Doppler sh
and broadening. We have recently shown@20# that high-lying
quasi-one-dimensional potassiumm50 states can be create
by photoexcitation of redshifted Stark states in the prese
of a weak dc field. This yields a superposition of sta
whose average dipole moment is large (z05^z&/n2;1.25),
wherez is the electron position coordinate along thez axis
which is defined to be antiparallel to the dc field.

The apparatus used in this work is described in de
elsewhere@21#. Briefly, ground-state potassium atoms co
tained in a collimated beam are photoexcited using the
put of an extra-cavity-doubled coherent CR 699-21 Rh
dye laser. The laser is polarized parallel to the applied
field leading to the creation of onlym50 states. Experi-
ments are conducted in a pulsed mode. The output of
~cw! laser is formed into a train of pulses of 1ms duration
using an acousto-optic modulator. Excitation occurs in
presence of a small dc field generated by the application
small bias potential to a nearby electrode. The uncertaint
the applied field is governed by stray background fiel
which can be reduced to630 mV cm21. Typically strongly
polarized redshiftedn5351 Stark states are excited in a
field Fdc;300 mV cm21. The number of Rydberg atom
produced by each laser pulse is determined by selective
ionization using a ramped field that rises from 0
800 mV cm21 in 4 ms.

Transient localization is achieved by applying a short u
directional HCP. If the duration of the pulse,Tp , is much
less than the classical period of the electron,Tn , the HCP
simply delivers an impulsive momentum transfer or kick
the electron@17#. The kick, with strengthDp

A
, produces a

nonstationary wave packet as in the 1D problem discusse
the preceding section. The time development of the w
packet is investigated experimentally by applying a sec
probe pulse after a variable time delayt

D
, and analyzing the

behavior of the resulting survival probability as a function
t

D
. With a suitable choice of probe pulse, such experime

can provide direct information on the time development
the position and momentum distributions of the electr
@21,22#. This is facilitated by the fact that there exists a on
to-one correlation between the local value of the phase-sp
coordinates of the electron immediately prior to the appli
tion of the probe pulse and the energy of the electron a
the probe pulse. For example, ifpz(tD

2) and Ei5E(t,t
D
)

are the classical momentum and the binding energy of
electron immediately before the application of a probe i
pulseDp

B
at t

D
, the energy of the electron after the pro

pulse is

E~ t.t
D
!5Ei1

~Dp
B
!2

2
1pz~ t

D

2!Dp
B
. ~3.1!

Therefore, the survival probability, which is given by th
fraction of atoms withE,0, provides a direct measure o
the fraction of electrons with values ofpz(tD

) obeying the
inequality
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pz~ t
D

2!Dp
B
,2Ei2

~Dp
B
!2

2
. ~3.2!

Figure 8 shows the time evolution of the survival probabil
following the application of an initial scaled impulsenDp

A

520.1 when using a probe pulse that delivers a scaled
pulsenDp

B
50.9. The survival probability undergoes stron

periodic oscillations as a function of delay timet
D
. Figure 8

includes the results of CTMC simulations for a 1D atom. T
remarkably good agreement between these results and
experimental data provides evidence that the dynamics of
experimental system is quasi-one-dimensional. This con
sion can be further tested theoretically by performing
CTMC simulations using a collection of strongly polarize
states that mimics those initially excited in the experime
taken to be an incoherent statistical mixture of 36 extre
Stark states belonging to then5351 manifold@20# centered
at the peak of the experimental photoabsorption spectrum
anticipated, the 3D CTMC simulations for such a mixture
states are in very good agreement with the experimental
and the 1D CTMC simulations. Simulations were also p
formed using a model potential to represent the K1 core
rather than the simple 1/r potential. No significant changes i
the model predictions were noted, indicating that over
time scale of the present experiments core effects are n
gible. The small differences between experiment and the
are probably due to uncertainties in the calibration of
pulsed electric field (610%) and the impulse it delivers.

FIG. 8. Survival probability for strongly polarized quasi-on
dimensional potassium atoms in the extreme redmost Stark stat
the n5350 manifold following the application of a negative pum

kick (nDpW
A
520.1ẑ) and a positive probe kick (nDpW

B
50.9ẑ) as a

function of the scaled time delayt
D

/Tn between the pump and
probe. Both pulses are applied along thez axis and have a duration
Tp;600 ps, which is much smaller than the orbital periodTn

56.5 ns forn5350. The experimental results~solid triangles! are
compared with 3D CTMC simulations~solid line! and 1D CTMC
simulations~dashed line!.
1-7
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Strongly polarized states provide an excellent start
point for producing transiently localized states, since the
tial state of the electron is approximately constrained to
two-dimensional (z,pz) plane. The degree of transient loca
ization of the wave packet produced by the application o
‘‘pump’’ HCP Dp

A
can be measured experimentally by su

jecting the atoms to a probe pulseDp
B

and observing the

survival probabilityPsurv(Dp
B
,t

D
) as a function of both the

strength of the probe pulse and the time delay before
application,t

D
. Note thatPsurv(Dp

B
,t

D
) provides an indirect

mapping of the momentum distribution as a function of tim
r(pz ,t

D
), because forDp

B
.0,

Psurv~Dp
B
,t

D
!.E

2`

(2En /Dp
B
)2(Dp

B
/2)

dpzr~pz ,t
D
!, ~3.3!

where we have used Eq.~3.2! and the fact that the spectra
density is narrow~i.e., Ei.En). Therefore, information on
the time evolution of the wave packet, in particular, its loc
ization in momentum space, can be extracted fr
Psurv(Dp

B
,t

D
). Figure 9 illustrates the behavior o

Psurv(Dp
B
,t

D
) for the 1D hydrogen atom subjected to a pum

kick nDp
A
520.1. A practical approach for estimating th

width of the momentum distribution comprises calculatin
at a fixed delay timet

D
, the differenceDp in the size of the

probe impulses required to obtain survival probabilities
20% and 80%, both of which are indicated in Fig. 9. A
demonstrated in Fig. 10,Dp mirrors the behavior of the
width of the momentum distribution and provides a meas
of the localization of the wave packet in momentum spa
the greater the localization, the smaller the range of pr
impulses over which the survival probability changes fro
80% to 20%. The optimum momentum localization time c
be recognized as the one for which the survival probabi
exhibits the steepest change as a function of the streng
the probe pulse, closely resembling a step function. This
sult can be understood with the help of Eq.~3.1! and implic-
itly using the fact that the energy distribution of the electr
prior to the application of the probe pulse is very narro
~i.e., the width of the step function is directly related to t
width of both momentum and energy distributions!.

These considerations indicate that the localization of
wave packet can be investigated experimentally by mea
ing the survival probability as a function of the size of t
probe impulseDp

B
at selected delay timest

D
. This is illus-

trated in Fig. 11, which includes both experimental data a
the results of 1D and 3D CTMC simulations. Figure 11~a!
shows the survival probability measured with the probe pu
applied directly to the parent state. The survival probabi
varies relatively slowly with increasing probe strength poi
ing to a broad range of initial electron momenta, and the d
are in excellent agreement with the theoretical predictio
As expected, the survival probability reaches the va
Psurv50.5 for a scaled impulsenDp

B
.1. This occurs be-

cause the momentum distribution for the parent state is s
metric aroundpz50 and fornDp

B
51 all the electrons with
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pz.0 are ionized, whereas those withpz,0 remain bound
@see Eqs.~3.1! and ~3.3!#.

The results in Figs. 11~b! and 11~c! were obtained follow-
ing the application of a scaled pump impulseDp

A0
5nDp

A

520.085. For the data in Fig. 11~b!, the probe impulse was
applied after a scaled time delayt

D0
5t

D
/Tn51.0, which is

very close to a time at which transient localization is e

FIG. 9. Survival probability for a 1D hydrogen atom initially i
the n550 state following the application of a negative pump ki
with strengthnDp

A
520.05 and a positive probe kick as a functio

of the scaled strength of the probe kick,nDp
B
, and the time delay

t
D

between the pump and the probe. The lower projections~con-
tours! show the values ofnDp

B
for which the survival probability is

equal to 0.2 and 0.8 as a function oft
D
. This is used to obtain the

scaled magnitudeDp0
shown in Fig. 10.

FIG. 10. Comparison of time evolutions of the actual mome
tum width sp ~solid line! and the momentum widthDp ~dashed
line! inferred from the survival probabilities shown in Fig. 9.
1-8
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pected. The behavior of the survival probability resemble
step function, confirming that momentum localization is
deed occurring. Because the electron energy distributio
narrow, the momentum localization also implies localizati
of the position coordinates, i.e., the steplike behavior evid
in Fig. 11~b! is unequivocally a signature of phase-space
calization. In principle, spatial localization can be examin
using a field step as a probe@21#. Assuming that the wave
packet is localized and that a field step with magnitudeF and
rise timet r!Tn is applied, the survival probability change
from unity to zero depending on whether^Ei&1F^z&
,22AF or ^Ei&1F^z&.22AF, respectively, where
22AF represents the top of the potential barrier genera
by the field. In practice, however, experiment and the
showed that the survival probability is not very sensitive
variations in the size of the field step indicating that me
surements using a probe impulse provide a better indica
of localization.

FIG. 11. Survival probabilities obtained using strongly polariz
quasi-one-dimensional potassium atoms in the extreme red
Stark states in then5350 manifold as a function of the scale
strengthnDp

B
of a probe kick.~a! The probe impulse is applied

directly to the initial parent state.~b! The probe kick is applied

following a pump kick withnDpW
A
520.085ẑ and a scaled time

delay t
D

/Tn51. ~c! Same as~b!, but for t
D

/Tn51.45. The experi-
mental results~symbols! are compared with 1D CTMC simulation
~dashed lines! and 3D CTMC simulations using an ultrashort pro
pulse~dotted lines! and a probe pulse with a duration of;0.6 ns
~solid lines!. Experimental data are included for probe pulse du
tions Tp of ;0.6 ns~solid symbols! and;1 ns ~open symbols!.
t-
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The data in Fig. 11~c! were recorded after a scaled dela
time t

D0
5t

D
/Tn51.45 when the phase-space distribution

expected to be localized in two different regions~such as
shown in Fig. 3!, one corresponding to the electron having
sizable positive momentum, the other a sizable negative
mentum. Scaled probe impulsesnDp

B
*0.3 are sufficient to

ionize that part of the distribution which corresponds to po
tive electron momenta, whereas impulsesnDp

B
*2.7 are re-

quired to ionize the component that corresponds to nega
electron momenta. This gives rise to the ‘‘double-step’’ stru
ture evident in the calculations using an ultrashort pro
pulse. This behavior is not as apparent in the experime
data that are for a probe pulse with a duration ofTB
.0.6 ns. This can be attributed to the fact that the elect
momentum changes rapidly as it reverses direction at
nucleus. This leads to dramatic changes in the electron
mentum distribution, which occur on time scales&0.1Tn
~i.e., on time scales.0.65 ns). The measurements are the
fore sensitive to the pulse width and this leads to a broad
ing of the predicted steplike features. The experimental d
are however in agreement with CTMC calculations for a 0
ns wide probe pulse.

IV. CONCLUSIONS

The present work demonstrates that strong trans
phase-space localization can be achieved by the applica
of a single kick to strongly polarized quasi-one-dimensio
Rydberg atoms, providing an ideal starting point for furth
quantum control and manipulation of electronic wave pa
ets. The experimental observations are in good agreem
with the predictions of both classical and quantum theor
Analysis shows that localization can be explained in terms
a focusing effect predicted by classical dynamics. Furth
more, it is demonstrated that the degree of localization~or
statistical coherence! can be characterized both by the pro
uct of the position and momentum widths and by the coar
grained Renyi entropy. Work is now underway to examine
the degree of localization can be further enhanced usin
sequence of tailored electromagnetic pulses.
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