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Levinson theorem for the Dirac equation in D¿1 dimensions
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In terms of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation with a
spherically symmetric potential inD11 dimensions is uniformly established as a relation between the total
number of bound states and the sum of the phase shifts of the scattering states atE56M with a given angular
momentum. The critical case, where the Dirac equation has a half bound state, is analyzed in detail. A half
bound state is a zero-momentum solution if its wave function is finite but does not decay fast enough at infinity
to be square integrable.
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I. INTRODUCTION

The Levinson theorem@1# is an important theorem in th
quantum-scattering theory, which sets up the relation
tween the number of bound states and the phase shift at
momentum. It has been generalized@2–9# and has been ap
plied to different fields in modern physics@10–21#. With the
interest of higher-dimensional field theory, the Levins
theorem for the Schro¨dinger equation in arbitraryD dimen-
sions was studied, recently,@22#. However, the Levinson
theorem for the Dirac equation inD11 dimensions has no
been uniformly studied. The problem is how to derive t
radial equation of the Dirac equation inD11 dimensions.

In our recent paper@23#, we generalized the Dirac equa
tion with a spherically symmetric potential to arbitraryD
11 dimensions, found the eigenfunctions of the total angu
momentum, and derived the radial equations. It is worth
ticing that the total~or orbital, spinor! angular momentum in
D-dimensional space is described by an irreducible repre
tation of the SO(D) group, which is denoted by the highe
weight, instead of only one parameterj ~or l, s) in three-
dimensional space. In this paper, we will uniformly study t
Levinson theorem for the Dirac equation inD11 dimen-
sions by the Sturm-Liouville theorem. In Sec. II, we w
sketch the derivation of the radial equations for the Di
equation with a spherically symmetric potential inD11
space time, both for evenD and oddD. Then, we will study
the generalized Sturm-Liouville theorem in Sec. III. T
number of bound states will be calculated in Sec. IV. In S
V, the Levinson theorem is established by proving the nu
ber of bound states to be equal to the sum of the phase s
of the scattering states atE56M with the given angular
momentum. The critical cases are also analyzed there. S
discussions are given in Sec. VI.
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II. RADIAL EQUATIONS

The Dirac equation inD11 dimensions can be expresse
as @24#

i (
m50

D

gm~]m1 ieAm!C~x,t !5MC~x,t !, ~1!

whereM is the mass of the particle, and (D11) matricesgm
satisfy the anticommutative relations:

gmgn1gngm52hmn1, ~2!

with the metric tensorhmn satisfying

hmn5hmn5H dmn when m50

2dmn when mÞ0.
~3!

For simplicity, the natural units\5c51 are employed
throughout this paper. Discuss the special case where
the zero component ofAm is nonvanishing and sphericall
symmetric:

eA05V~r !, Aa50, when aÞ0. ~4!

The HamiltonianH(x) of the system is expressed as

i ]0C~x,t !5H~x!C~x,t !,

H~x!5 (
a51

D

g0gapa1V~r !1g0M ,

~5!

pa52 i ]a52 i
]

]xa
, 1<a<D.

The orbital angular-momentum operatorsLab , the spinor
operatorsSab , and the total angular-momentum operato
Jab are defined as follows
©2003 The American Physical Society15-1



-

ng.

re

hest
to

gh-

e

-

-

GU, MA, AND DONG PHYSICAL REVIEW A 67, 062715 ~2003!
Lab52Lba5 ixa]b2 ixb]a , Sab52Sba5 igagb/2,

Jab5Lab1Sab , 1<a,b<D, ~6!

J25 (
a,b52

D

Jab
2 , L25 (

a,b52

D

Lab
2 , S25 (

a,b52

D

Sab
2 .

It is easy to show by the standard method@24# thatJab andk
are commutant with the HamiltonianH(x),

k5g0H (
a,b

igagbLab1~D21!/2J
5g0$J22L22S21~D21!/2%. ~7!

Since the potentialV(r ) is spherically symmetric, the
symmetry group of the system is SO(D). Following Erdelyi
@25# and Louck@26,27#, we introduce the hyperspherical co
ordinates in the realD-dimensional space

x15r cosu1sinu2•••sinuD21 ,

x25r sinu1sinu2•••sinuD21 ,

xb5r cosub21sinub•••sinuD21 , 3<b<D21, ~8!

xD5r cosuD21,

(
a51

D

~xa!25r 2.

The unit vector alongx is usually denoted byx̂5x/r . The
volume element of the configuration space is

)
a51

D

dxa5r D21drdV, dV5 )
a51

D21

~sinua!a21dua ,

0<r ,`, 2p<u1<p, 0<ub<p, 2<b<D21.
~9!

As is well known, the Lie algebras of the SO(2N11)
group and the SO(2N) group areBN andDN , respectively.
Their Chevalley bases with the subscriptm, 1<m<N21,
are the same:

Hm~J!5J(2m21)(2m)2J(2m11)(2m12) ,

Em~J!5~J(2m)(2m11)2 iJ (2m21)(2m11)2 iJ (2m)(2m12)

2J(2m21)(2m12)!/2, ~10a!

Fm~J!5~J(2m)(2m11)1 iJ (2m21)(2m11)1 iJ (2m)(2m12)

2J(2m21)(2m12)!/2.

But the bases with the subscriptN are different:
06271
HN~J!52J(2N21)(2N) ,

EN~J!5J(2N)(2N11)2 iJ (2N21)(2N11) , ~10b!

FN~J!5J(2N)(2N11)1 iJ (2N21)(2N11) ,

for SO(2N11), and

HN~J!5J(2N23)(2N22)1J(2N21)(2N) ,

EN~J!5~J(2N22)(2N21)2 iJ (2N23)(2N21)1 iJ (2N22)(2N)

1J(2N23)(2N)!/2, ~10c!

FN~J!5~J(2N22)(2N21)1 iJ (2N23)(2N21)2 iJ (2N22)(2N)

1J(2N23)(2N)!/2,

for SO(2N). The operatorJab can be replaced withLab or
Sab depending on the wave functions one is discussi
Hm(J) span the Cartan subalgebra, and their eigenvaluesmm
for an eigenstateum& in a given irreducible representation a
the components of the weight vectorm5(m1 , . . . ,mN):

Hm~J!um&5mmum&, 1<m<N. ~11!

Em are called the raising operators andFm are the lowering
ones. For an irreducible representation, there is a hig
weight M , which is a simple weight and can be used
describe the irreducible representation

HauM &5MauM &, EbuM &50. ~12!

Usually, the irreducible representation is also called the hi
est weight representation and is directly denoted byM . The
eigenvalue ofJ2 ~or L2, S2) is the Casimir invariantC2(M )
in the representationM to which the total~or orbital, spinor!
wave function belongs. The Casimir invariantC2(M ) can be
calculated by the formula@e.g., see Eq.~1.131! in Ref. @28##

C2~M !5M•~M12r!5 (
m,n51

N

Mmdm~A21!mn~M n12!,

~13!

where r is the half sum of the positive roots in the Li
algebra,A21 is the inverse of the Cartan matrix, anddm are
the half square lengths of the simple roots.

The orbital wave function inD-dimensional space is usu
ally expressed by the spherical harmonicYm

( l )( x̂) @25,26,23#,
which belongs to the weightm of the highest weight repre
sentation (l )[( l ,0, . . . ,0). For thehighest weight state,m
5( l ), we have

Y( l )
( l )~ x̂!5ND,l r

2 l~x11 ix2! l ,
5-2
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ND,l55 22N2 l H ~2l 12N21!!

pNl ! ~ l 1N21!!
J 1/2

when D52N11

H ~ l 1N21!!

2pNl !
J 1/2

when D52N,

~14!

whereND,l is the normalization factor. The partnersYm
( l )( x̂)

can be calculated fromY( l )
( l )( x̂) by the lowering operators

Fm(L). The Casimir invariant for the spherical harmon
Ym

( l )( x̂) is calculated from Eq.~13!:

L2Ym
( l )~ x̂!5C2@~ l !#Ym

( l )~ x̂!, C2@~ l !#5 l ~ l 1D22!.
~15!

Now, we define 2N-dimensional matricesba satisfying

babb1bbba52dab1, a,b51,2, . . . ,~2N11!. ~16!

We choose the representation such thatb2N115s3312N21,
where sa is the Pauli matrix, and1n denotes the
n-dimensional unit matrix.

For D52N11, N.1, we have
es

ra

06271
g05s331, ga5~ is2!3ba , 1<a<2N11, ~17!

Thus, the spinor operatorSab and thek operator become the
block matrices

Sab513S̄ab , S̄ab52 ibabb/2, ~18!

k5s33k̄, k̄52 i (
a,b

babbLab1~D21!/2. ~19!

The relation betweenSab and S̄ab is similar to that between
the spinor operators for the Dirac spinors and for the Pa
spinors. In the level of the Pauli spinors, we define the fu
damental spinorx(m) belonging to the fundamental spino
representation (s)[(0, . . .,0,1) with the Casimir invariant
C2@(s)#5(2N21N)/4. There are two ways to construct th
eigenfunctions of the total angular momentum belonging
the representation (j )[( l ,0, . . .,0,1). They have different
eigenvalues ofk̄. Since the system is spherically symmetr
we only need to calculate the highest weight state for
representation~j! in terms of the Clebsch-Gordan coefficien
f uKu,( j )~ x̂!5Y( l )
( l )~ x̂!x@~s!#5ND,l r

2 l~x11 ix2! lx@~s!#,

C2@~ j !#2C2@~ l !#2C2@~s!#1N5 l 1N5uKu, ~20!

f2uKu,( j )~ x̂!5(
m

Ym
( l 11)~ x̂!x@~ j !2m#^~ l 11!,m,~s!,~ j !2mu~ j !,~ j !&

5ND,l r
2 l 21~x11 ix2! l$x2N11x@~s!#1~x2N211 ix2N!x@~0, . . .,0,1,1̄!#1~x2N231 ix2N22!

3x@~0, . . .,0,1,1̄,1!#1•••1~x31 ix4!x@~1,1̄,0, . . .,0,1!#1~x11 ix2!x@~ 1̄,0, . . .,0,1!#%,

C2@~ j !#2C2@~ l 11!#2C2@~s!#1N52 l 2N52uKu. ~21!
lent

t
f

In the level of the Dirac spinors, the wave functionCK,( j )(x)
of the total angular momentum belonging to the high
weight state of the irreducible representation~j! can be ex-
pressed as

CK,( j )~x,t !5r 2Ne2 iEtS F~r !fK,( j )~ x̂!

iG~r !f2K,( j )~ x̂!
D ,

kCK,( j )~x!5KCK,( j )~x!, K56~ l 1N!. ~22!

Its partners can be calculated from it by the lowering ope
tors Fm(J).

SubstitutingCK( j )(x) into the Dirac equation~5!, we ob-
tain the radial equation@23#
t

-

dG~r !

dr
1

K

r
G~r !5@E2V~r !2M #F~r !,

2
dF~r !

dr
1

K

r
F~r !5@E2V~r !1M #G~r !. ~23!

As is well known, Eq.~23! also holds whenD53.
For D52N, N.2, we have

g05b2N11 , ga5b2N11ba , 1<a<2N. ~24!

As is well known, the spinor representation of SO(2N)
group is reducible and can be reduced to two inequiva
fundamental spinor representations (1s)[(0,0, . . .,0,1)
and (2s)[(0,0, . . .,0,1,0) with the same Casimir invarian
C2@(6s)#5(2N22N)/4. g0 is a diagonal matrix where hal
5-3
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of the diagonal elements are equal to11 and the remaining
are equal to21. Because the spinor operatorSab and the
operatork are commutant withg0, each of these becomes
direct sum of two matrices, referring to the rows with t
eigenvalues11 and21 of g0, respectively. In the level o
the Pauli spinors, the fundamental spinorsx6(m) belong to
the fundamental spinor representations (1s) and (2s), re-
spectively, and satisfy

g0x6~m!56x6~m!. ~25!
ns
he

06271
For the total angular momentum, there are two kinds of r
resentations (j 1)[( l ,0, . . .,0,1) and (j 2)[( l ,0, . . .,0,1,0)
with the same Casimir invariant:

C2@~ j 1!#5C2@~ j 2!#5 l ~ l 12N21!1~2N22N!/4.
~26!

There are two sets of wave functions belonging to the rep
sentation (j 1). The highest weight states are
f uKu,( j 1)~ x̂!5Y( l )
( l )~ x̂!x1@~1s!#5ND,l r

2 l~x11 ix2! lx1@~1s!#,

f2uKu,( j 1)~ x̂!5(
m

Ym
( l 11)~ x̂!x2@~ j 1!2m#^~ l 11!,m,~2s!,~ j 1!2mu~ j 1!,~ j 1!&

5ND,l r
2 l 21~x11 ix2! l$~x2N211 ix2N!x2@~2s!#1~x2N231 ix2N22!x2@~0, . . .,0,1,1̄,0!#

1~x2N251 ix2N24!x2@~0, . . .,0,1,1̄,0,1!#

1•••1~x31 ix4!x2@~1,1̄,0, . . .,0,1!#1~x11 ix2!x2@~ 1̄,0, . . .,0,1!#%, ~27!

For the representation (j 2)[( l ,0, . . .,0,1,0), we have

f2uKu,( j 2)~ x̂!5(
m

Ym
( l 11)~ x̂!x1@~ j 2!2m#^~ l 11!,m,~1s!,~ j 2!2mu~ j 2!,~ j 2!&

5ND,l r
2 l 21~x11 ix2! l$~x2N212 ix2N!x1@~1s!#1~x2N231 ix2N22!x1@~0, . . .,0,1,0,1̄!#1~x2N251 ix2N24!

3x1@~0, . . .,0,1,1̄,1,0!#1•••1~x31 ix4!x1@~1,1̄,0, . . .,0,1,0!#1~x11 ix2!x1@~ 1̄,0, . . .,0,1,0!#%,

f uKu,( j 2)~ x̂!5Y( l )
( l )~ x̂!x2@~2s!#5ND,l r

2 l~x11 ix2! lx2@~2s!#, ~28!
ing

as

)

of
where

C2@~ j 1!#2C2@~ l !#2C2@~1s!#1N21/25 l 1N21/25uKu,

C2@~ j 2!#2C2@~ l 11!#2C2@~1s!#1N21/2

52 l 2N11/252uKu. ~29!

In the level of the Dirac spinors, the eigenfunctio
CK,( j v)(x) of the total angular momentum belonging to t

highest weight state of the irreducible representation (j v)
can be expressed as

C uKu,( j 1)~x,t !5r 2N11/2e2 iEt$F~r !f uKu,( j 1)~ x̂!

1 iG~r !f2uKu,( j 1)~ x̂!%,

C2uKu,( j 2)~x,t !5r 2N11/2e2 iEt$F~r !f2uKu,( j 2)~ x̂!

1 iG~r !f uKu,( j 2)~ x̂!%,

kCK,( j v)~x!5KCK,( j v)~x!,

K5H l 1N21/2 when v51

2 l 2N11/2 when v52.
~30!
Their partners can be calculated from them by the lower
operatorsFm(J).

SubstitutingCK( j v)(x) into the Dirac equation~5!, we
obtain the radial equations, which are in the same forms
Eq. ~25! in the D52N11 case@23#:

dG~r !

dr
1

K

r
G~r !5@E2V~r !2M #F~r !,

2
dF~r !

dr
1

K

r
F~r !5@E2V~r !1M #G~r !. ~31!

When D54, the SO~4! group is homomorphism to SU(2
3SU(2), and therepresentationsj 1 and j 2 belong to two
different SU~2! groups, respectively. WhenD52, the SO~2!
group is an Abelian group andK56 j 561/2, 63/2, etc.
However, Eq.~33! still holds for these cases.

III. THE GENERALIZED STURM-LIOUVILLE THEOREM

The spherically symmetric potentialV(r ) has to satisfy
the boundary condition at the origin for the nice behavior
the wave function
5-4
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E
0

1

r uV~r !udr,`. ~32!

For simplicity, we first discuss the case where the poten
V(r ) is a cutoff one at a sufficiently large radiusr 0:

V~r !50, whenr>r 0 . ~33!

The general case where the potentialV(r ) has a tail at infin-
ity will be discussed in Sec. VI.

Introduce a parameterl for the potentialV(r ):

V~r ,l!5lV~r !, V~r ,1!5V~r !. ~34!

As l increases from 0 to 1, the potentialV(r ,l) changes
from zero to the given potentialV(r ). If l changes its sign
the potentialV(r ,l) changes sign, too.

Although the spherical spinor functions and eigenvalu
K are different for theD52N11 case and theD52N case,
the forms of the radial equations are uniform:

dGKE~r ,l!

dr
1

K

r
GKE~r ,l!5@E2V~r ,l!2M #FKE~r ,l!,

2
dFKE~r ,l!

dr
1

K

r
FKE~r ,l!5@E2V~r ,l!1M #GKE~r ,l!,

K561/2,61,63/2, . . . . ~35!

It is easy to see that the solutions with a negativeK can be
obtained from those with a positiveK by interchanging
FKE(r ,l)↔G2K2E(r ,2l), so that in the following we only
discuss the solutions with a positiveK. The main results for
the case with a negativeK will be indicated in the text.

The physically admissible solutions are finite, continuo
vanishing at the origin, and square integrable:

FKE~r ,l!5GKE~r ,l!50, whenr 50, ~36!

E
0

`

dr$uFKE~r ,l!u21uGKE~r ,l!u2%,`. ~37!

The solutions foruEu.M describe the scattering states a
those foruEu<M describe the bound states. We will solv
Eq. ~37! in two regions, 0<r ,r 0 and r 0,r ,`, and then
match the two solutions atr 0 by the match condition:

AK~E,l![
FKE~r ,l!

GKE~r ,l!
U

r 5r 02

5
FKE~r ,l!

GKE~r ,l!
U

r 5r 01

. ~38!

Whenr 0 is the zero point ofGKE(r ,l), the match condition
can be replaced by its inverseGKE(r ,l)/FKE(r ,l) instead.
The merit of using this match condition is that we need
consider the normalization factor in the solutions.

The key point for the proof of the Levinson theorem
that the ratioFKE(r ,l)/GKE(r ,l) is monotonic with respec
to the energyE. For simplicity, we briefly denoteFKE(r 0 ,l)
andGKE(r 0 ,l) by F andG, respectively, and those with th
energyE1 by F1 andG1. From Eq.~35! we have
06271
al

s

,

t

d

dr
~F1G2G1F !52~E12E!~F1F1G1G!. ~39!

From the boundary condition that both solutions vanish
the origin, we integrate Eq.~39! in the region 0<r<r 0 and
obtain

~F1G2G1F !ur 5r 0252~E12E!E
0

r 0
~F1F1G1G!dr.

Taking the limit asE1 tends toE, we have

lim
E1→E

F1G2G1F

E12E U
r 5r 02

5$GKE~r 0 ,l!%2
]

]E
AK~E,l!

52E
0

r 0
$FKE

2 ~r ,l!1GKE
2 ~r ,l!%dr,0. ~40!

Thus, whenuEu>M we have

AK~E,l!5AK~M ,l!2c1
2k21•••,

when

E.M and E;M ,

AK~E,l!5AK~2M ,l!1c2
2k21•••,

when

E,2M and E;2M , ~41!

wherec1
2 andc2

2 are non-negative numbers, and the mome
tum k is defined as follows:

k5~E22M2!1/2. ~42!

Similarly, from the boundary condition that the radi
functionsFKE(r ,l) andGKE(r ,l) for uEu<M tend to zero
at infinity, we obtain, by integrating Eq.~39! in the region
r 0<r ,`,

$GKE~r 0 ,l!%2
]

]ES FKE~r ,l!

GKE~r ,l! D U
r 5r 01

5E
r 0

`

$FKE
2 ~r ,l!1GKE

2 ~r ,l!%dr.0. ~43!

Thus, as the energy E increases, the ratio
FKE(r ,l)/GKE(r ,l) at r 02

decreases monotonically, but th

ratio FKE(r ,l)/GKE(r ,l) at r 01
when uEu<M increases

monotonically. This is called the generalized Sturm-Liouvi
theorem@29#.
5-5
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IV. THE NUMBER OF BOUND STATES

Now, we solve Eq.~35! for the energyuEu<M . In the
region 0<r ,r 0, whenl50, we have

FKE~r ,0!5e2 i (K21/2)p/2$~M1E!pk1r /2%1/2JK21/2~ ik1r !,

GKE~r ,0!5e2 i (K23/2)p/2$~M2E!pk1r /2%1/2JK11/2~ ik1r !,

~44!

whereJm(x) is the Bessel function and

k15~M22E2!1/2. ~45!

The ratio atr 5r 02 whenl50 is
o

d
he

s

s
-
on

n

e

06271
AK~E,0!52 i S M1E

M2ED 1/2JK21/2~ ik1r 0!

JK11/2~ ik1r 0!

55 2
2M ~2K11!

k1
2r 0

;2` when E;M

2
2K11

2Mr 0
when E;2M .

~46!

In the regionr 0,r ,`, due to the cutoff potential we hav
V(r )50 and

FKE~r ,l!5ei (K11/2)p/2$~M1E!pk1r /2%1/2HK21/2
(1) ~ ik1r !,

GKE~r ,l!5ei (K13/2)p/2$~M2E!pk1r /2%1/2HK11/2
(1) ~ ik1r !,

~47!
whereHm

(1)(x) is the Hankel function of the first kind. The
ratio at r 5r 01 does not depend onl and is given as fol-
lows:
FKE~r ,l!

GKE~r ,l!
U

r 5r 01

52 i S M1E

M2ED 1/2HK21/2
(1) ~ ik1r 0!

HK11/2
(1) ~ ik1r 0!

55
2Mr 0

2K21
when E;M and K>1

22Mr 0ln~k1r 0!;` when E;M and K51/2

k1
2r 0

2M ~2K21!
;0 when E;2M , and K>1

2k1
2r 0ln~k1r 0!

2M
;0 when E;2M , and K51/2.

~48!
te
s
-

be-

the
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It is evident from Eqs.~46! and ~48! that as the energyE
increases from2M to M, there is no overlap between tw
variant ranges of the ratio at two sides ofr 0 whenl50 ~no
potential!, except forK51/2 where there is a half boun
state atE5M . The half bound state will be discussed in t
following section.

As l increases from 0 to 1, the potentialV(r ,l) changes
from zero to the given potentialV(r ) andAK(E,l) changes,
too. If AK(M ,l) decreases across the value 2Mr 0 /(2K
21) asl increases, an overlap between the variant range
the ratios at two sides ofr 0 appears. Since the ratioAK(E,l)
of two radial functions atr 02 decreases monotonically a
the energyE increases, and the ratio atr 01 increases mono
tonically, the overlap means that there must be one and
one energy where the matching condition~38! is satisfied,
namely, a bound state appears.

As l increases,AK(M ,l) may decrease to2`, jumps to
`, and then decreases again across the value 2Mr 0 /(2K
21), so that another bound state appears. Note that wher 0
is a zero point of the wave functionGKE(r ,l), AK(E,l)
goes to infinity. It is not a singularity.

On the other hand, asl increases, ifAK(2M ,l) de-
creases across zero, an overlap between the variant rang
of

ly

s of

the ratios at two sides ofr 0 disappears so that a bound sta
disappears. Therefore, each timeAK(M ,l) decreases acros
the value 2Mr 0 /(2K21) asl increases, a new overlap be
tween the variant ranges of the ratios at two sides ofr 0

appears such that a scattering state of a positive energy
comes a bound state, and each timeAK(2M ,l) decreases
across zero, an overlap between the variant ranges of
ratio at two sides ofr 0 disappears such that a bound sta
becomes a scattering state of a negative energy. Conver
each timeAK(M ,l) increases across the value 2Mr 0 /(2K
21), an overlap between the variant ranges disappears
that a bound state becomes a scattering state of a pos
energy, and each timeAK(2M ,l) increases across zero,
new overlap between the variant ranges appears such t
scattering state of a negative energy becomes a bound s
Now, the numbernK of bound states with the parameterK is
equal to the sum~or subtraction! of four times asl increases
from 0 to 1: the times thatAK(M ,l) decreases across th
value 2Mr 0 /(2K21), minus the times thatAK(M ,l) in-
creases across the value 2Mr 0 /(2K21), minus the times
that AK(2M ,l) decreases across zero, plus the times t
AK(2M ,l) increases across zero.
5-6



te

m

LEVINSON THEOREM FOR THE DIRAC EQUATION IN . . . PHYSICAL REVIEW A67, 062715 ~2003!
WhenK51/2, the value 2Mr 0 /(2K21) becomes infin-
ity. We may check the times thatAK(M ,l)21 increases~or
decreases! across zero to replace the times thatAK(M ,l)
decreases~or increases! across infinity.

V. THE RELATIVISTIC LEVINSON THEOREM

We turn to discuss the phase shifts of the scattering sta
Solving Eq.~35! in the regionr 0,r ,` for the energyuEu
.M , we have

f KE~r ,l!5B~E!S pkr

2 D 1/2

$cosdK~E,l!JK21/2~kr !

2sindK~E,l!NK21/2~kr !%,

gKE~r ,l!5S pkr

2 D 1/2

$cosdK~E,l!JK11/2~kr !

2sindK~E,l!NK11/2~kr !%, ~49!
06271
s.

whereNm(x) denotes the Neumann function, the momentu
k is given in Eq.~16!, andB(E) is defined as

B~E!5H S E1M

E2M D 1/2

when E.M

2S uEu2M

uEu1M D 1/2

when E,2M .

~50!

The asymptotic form of solution~49! at r→` is

f KE~r ,l!;B~E!cos@kr2Kp/21dK~E,l!#,

gKE~r ,l!;sin@kr2Kp/21dK~E,l!#. ~51!

Substituting Eq.~49! into the match condition~38!, we ob-
tain the formula for the phase shiftdK(E,l):
tion
tandK~E,l!5
JK11/2~kr0!

NK11/2~kr0!

AK~E,l!2B~E!JK21/2~kr0!/JK11/2~kr0!

AK~E,l!2B~E!NK21/2~kr0!/NK11/2~kr0!

5
JK21/2~kr0!

NK21/2~kr0!

$AK~E,l!%212B~E!21JK11/2~kr0!/JK21/2~kr0!

$AK~E,l!%212B~E!21NK11/2~kr0!/NK21/2~kr0!
. ~52!

The phase shiftdK(E,l) is determined up to a multiple ofp due to the period of the tangent function. We use the conven
that the phase shifts for the free particles (V(r )50) are vanishing:

dK~E,0!50. ~53!

Under this convention, the phase shiftsdK(E) are determined completely asl increases from zero to one:

dK~E![dK~E,1!. ~54!

The phase shiftsdK(6M ,l) are the limits of the phase shiftsdK(E,l) asE tends to6M . At the sufficiently smallk, k
!1/r 0, whenE.M , we have

tandK~E,l!;2
p~kr0/2!2K21

~K11/2!! ~K21/2!!

AK~M ,l!~kr0/2!22Mr 0~K11/2!

AK~M ,l!2c1
2k22

2Mr 0

2K21 S 11
~kr0!2

~2K21!~2K23! D
, ~55a!

whenK.3/2,

tandK~E,l!;2
p

2 S kr0

2 D 2 AK~M ,l!~kr0/2!222Mr 0

AK~M ,l!2c1
2k22Mr 0S 12

~kr0!2

2
ln~kr0! D , ~55b!

whenK53/2,

tandK~E,l!;~kr0!
AK~M ,l!~kr0/2!223Mr 0/2

$AK~M ,l!%2c1
2k222Mr 0~12~kr0!2!

, ~55c!
5-7
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whenK51,

tandK~E,l!;
p

2 ln~kr0!

$AK~M ,l!%211c1
2k22k2r 0 /~4M !

$AK~M ,l!%211c1
2k21$2Mr 0ln~kr0!%21

, ~55d!

whenK51/2. WhenE,2M we have for a sufficient smallk,

tandK~E,l!;2
p~kr0/2!2K11

~K11/2!! ~K21/2!!

AK~2M ,l!1~2K11!/~2Mr 0!

AK~2M ,l!1c2
2k21

k2r 0

2M ~2K21!

, ~56a!

whenK>1,

tandK~E,l!;2pS kr0

2 D 2 AK~2M ,l!11/~Mr 0!

AK~2M ,l!1c2
2k22k2r 0ln~kr0!/~2M !

, ~56b!

whenK51/2. The asymptotic forms~41! have been used in driving Eqs.~55! and ~56!. In addition to the leading terms, w
include the next leading terms in some of Eqs.~55! and~56!, which are useful only for the critical case where the leading te
are canceled with each other.

First, from Eqs.~55! and ~56! we see that, except for some critical cases, tandK(E,l) tends to zero asE goes to6M ,
namely,dK(6M ,l) are always equal to the multiple ofp. In other words, if the phase shiftdK(E,l) for a sufficiently small
k is expressed as a positive or negative acute angle plusnp, its limit dK(M ,l) @or dK(2M ,l)] is equal tonp. It means that
dK(M ,l) @or dK(2M ,l)] changes discontinuously whendK(E,l) changes through the value (n11/2)p.

Second, from Eq.~52! we have

]dK~E,l!

]AK~E,l!
U

E

52S E1M

E2M D 1/2 2$cosdK~E,l!%2

pkr0$NK11/2~kr0!AK~E,l!2B~E!NK21/2~kr0!%2
<0, E.M ,

]dK~E,l!

]AK~E,l!
U

E

5S uEu2M

uEu1M D 1/2 2$cosdK~E,l!%2

pkr0$NK11/2~kr0!AK~E,l!2B~E!NK21/2~kr0!%2
>0, E,2M . ~57!
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Equation~57! shows that, as the ratioAK(E,l) decreases
the phase shiftdK(E,l) for E.M increases monotonically
but dK(E,l) for E,2M decreases monotonically. In term
of the monotonic properties, we are able to determine
jump of the phase shiftsdK(6M ,l).

We first consider the scattering states of a positive ene
with a sufficiently small momentumk. As AK(E,l) de-
creases, if tandK(E,l) changes sign from positive to neg
tive, the phase shiftdK(M ,l) jumps byp. Note that in this
case, if tandK(E,l) changes sign from negative to positiv
the phase shiftdK(M ,l) keeps invariant. Conversely, a
AK(E,l) increases, if tandK(E,l) changes sign from nega
tive to positive, the phase shiftdK(M ,l) jumps by 2p.
Therefore, asl increases from zero to one, each time t
AK(M ,l) decreases from near and larger than the va
2Mr 0 /(2K21) to smaller than that value, the denomina
in Eq. ~57! changes sign from positive to negative and t
rest factor keeps positive, so that the phase shiftdK(M ,l)
jumps byp. We have shown in the preceding section th
each timeAK(M ,l) decreases across the value 2Mr 0 /(2K
21), a scattering state of a positive energy becomes a bo
state. Conversely, each timeAK(M ,l) increases across tha
value, the phase shiftdK(M ,l) jumps by2p, and a bound
state becomes a scattering state of a positive energy.
06271
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Then, we consider the scattering states of a negative
ergy with a sufficiently smallk. As AK(E,l) decreases, if
tandK(E,l) changes sign from negative to positive, th
phase shiftdK(2M ,l) jumps by2p. However, in this case
if tandK(E,l) changes sign from positive to negative, th
phase shift dK(2M ,l) keeps invariant. Conversely, a
AK(E,l) increases, if tandK(E,l) changes sign from posi
tive to negative, the phase shiftdK(2M ,l) jumps by p.
Therefore, asl increases from 0 to 1, each time th
AK(2M ,l) decreases from a small and positive number t
negative one, the denominator in Eq.~56! changes sign from
positive to negative and the rest factor keeps negative, so
the phase shiftdK(2M ,l) jumps by2p. In the preceding
section we have shown that each time theAK(2M ,l)
decreases across zero, a bound state becomes a scat
state of a negative energy. Conversely, each ti
the AK(2M ,l) increases across zero, the phase s
dK(2M ,l) jumps byp, and a scattering state of a negati
energy becomes a bound state. Therefore, we obtain
Levinson theorem for the Dirac equation inD dimensions for
noncritical cases:

dK~M !1dK~2M !5nKp. ~58!
5-8
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It is obvious that the Levinson theorem~58! holds for both
positive and negativeK in the noncritical cases.

For the case ofK51/2 and E;M , where the value
2Mr 0 /(2K21) is infinity. Since$AK(E,l)%21 increases as
AK(E,l) decreases, we can study the variance
$AK(E,l)%21 in this case instead. For the energyE.M
where the momentumk is sufficiently small, when
$AK(M ,l)%21 increases from negative to positive asl in-
creases, both the numerator and denominator in Eq.~55!
change signs, but not simultaneously. The numerator cha
sign first, and then, the denominator changes. The front
tor in Eq. ~55! is negative so that tandK(E,l) first changes
from negative to positive when the numerator changes s
and then changes from positive to negative when the
nominator changes sign. It is in the second step that
phase shiftdK(M ,l) jumps by p. Similarly, each time
$AK(M ,l)%21 decreases across zero asl increases,
dK(M ,l) jumps by2p.

For l50 andK51/2, the numerator in Eq.~55! is equal
to zero, and the phase shiftdK(M ,0) is defined to be zero
For this case there is a half bound state atE5M @see Eq.
~59!#. If $AK(M ,l)%21 increases@AK(M ,l) decreases# asl
increases from zero, the front factor in Eq.~55! is negative,
the numerator becomes positive first, and then, the deno
nator changes sign from negative to positive, such that
phase shiftdK(M ,l) jumps by p and simultaneously the
half bound state becomes a bound state withE,M .

Now, we turn to study the critical cases. First, we stu
the critical case forE5M , where the ratioAK(M ,1) is equal
to the value 2Mr 0 /(2K21). It is easy to obtain the follow-
ing solution ofE5M in the regionr 0,r ,` , satisfying the
radial equations~35! and the match condition~38! at r 0:

f KM~r ,1!52Mr 2K11, gKM~r ,1!5~2K21!r 2K. ~59!

It is a bound state whenK.3/2, but called a half bound stat
when K<3/2. A half bound state is not a bound state, b
cause its wave function is finite but not square integrable

For definiteness, we assume that in the critical case, al
increases from a number near and less than one and fi
reaches one,AK(M ,l) decreasesand finally reaches, but no
across, the value 2Mr 0 /(2K21). In this case, whenl51,
a new bound state ofE5M appears forK.3/2, but does not
appear forK<3/2. We should check whether or not th
phase shiftdK(M ,1) increases by an additionalp as l in-
creases and reaches one.

It is evident from the next leading terms in the denom
nator of Eq. ~55! that the denominator forK>3/2 has
changed sign from positive to negative asAK(M ,l) de-
creases and finally reaches the value 2Mr 0 /(2K21),
namely, the phase shiftdK(M ,l) jumps by an additionalp
at l51. Simultaneously, a new bound state ofE5M ap-
pears forK.3/2, but only a half bound state appears forK
53/2, so that the Levinson theorem~58! holds for the criti-
cal case withK.3/2, but it has to be modified for the critica
case when a half bound state occurs atE5M andK53/2:

dK~M !1dK~2M !5~nK11!p.
06271
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For K51, tandK(E,1) tends to infinity as$AK(M ,l)%21

increases and finally reaches 2Mr 0, namely, the phase shif
dK(M ,l) jumps by p/2. Simultaneously, only a new ha
bound state ofE5M for K51 appears, so that the Levinso
theorem~58! has to be modified for the critical case when
half bound state occurs atE5M andK51:

dK~M !1dK~2M !5~nK11/2!p.

For K51/2, the next leading term with ln(kr0) in the de-
nominator of Eq.~55! dominates, so that the denominat
keeps negative~does not change sign!! as$AK(M ,l)%21 in-
creases and finally reaches zero, namely, the phase
dK(M ,l) does not jump, no matter whether the rest part
Eq. ~55d! keeps positive or has changed to negative. Sim
taneously, only a new half bound state ofE5M for K
51/2 appears, so that the Levinson theorem~58! holds for
the critical case withK51/2.

This conclusion holds for the critical case whe
AK(M ,l) increasesand finally reaches, but not across, t
value 2Mr 0 /(2K21). Therefore, for the critical case whe
a half bound state occurs atE5M andK<3/2, the Levinson
theorem has to be modified as follows:

dK~M !1dK~2M !5~nK1K21/2!p. ~60!

Second, we study the critical case forE52M , where the
ratio AK(2M ,1) is equal to zero. It is easy to obtain th
following solution of E52M in the regionr 0,r ,`, sat-
isfying the radial equations~35! and the match condition~38!
at r 0:

f KM~r ,l!50, gKM~r ,l!5r 2K. ~61!

It is a bound state whenK>1, but a half bound state whe
K51/2.

For definiteness, we again assume that in the critical c
asl increases from a number near and less than 1 and fin
reaches 1,AK(2M ,l) decreasesand finally reaches zero, s
that whenl51 the energy of a bound state decreases toE
52M for K>1, but a bound state becomes a half bou
state forK51/2. We should check whether or not the pha
shift dK(2M ,1) decreases byp asl increases and reache
one.

For the energyE,2M where the momentumk is suffi-
ciently small, one can see from the next leading terms in
denominator of Eq.~56! that the denominator does no
change sign asAK(2M ,l) decreases and finally reache
zero, namely, the phase shiftdK(2M ,l) does not jump by
an additional2p at l51. Simultaneously, the energy of
bound state decreases toE52M for K>1, but a bound
state becomes a half bound state forK51/2, so that the
Levinson theorem~58! holds for the critical case withK
>1, but it has to be modified when a half bound state occ
at E52M andK51/2:

dK~M !1dK~2M !5~nK11!p. ~62!
5-9
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Combining Eqs.~58!, ~60!, and~62! and their correspond
ing forms for the negativeK, we obtain the relativistic
Levinson theorem inD dimensions.

VI. DISCUSSIONS

Now, we discuss the general case where the poten
V(r ) has a tail atr>r 0. Let r 0 be so large that only the
leading term inV(r ) is concerned:

V~r !;br2n, r>r 0 , ~63!

whereb is a nonvanishing constant andn is a positive con-
stant, not necessary to be an integer. Substituting it into
~35! and changing the variabler to j:

j5H kr5rAE22M2, when uEu.M

kr 5rAM22E2, when uEu<M ,
~64!

we obtain the radial equations in the regionr 0<r ,`:

d

dj
gKE~j!1

K

j
gKE~j!5S E

uEuA
E2M

E1M
2

b

jn
kn21D f KE~j!,

2
d

dj
f KE~j!1

K

j
f KE~j!5S E

uEuA
E1M

E2M
2

b

jn
kn21D gKE~j!,

~65!

for uEu.M , and

d

dj
gKE~j!1

K

j
gKE~j!5S 2AM2E

M1E
2

b

jn
kn21D f KE~j!,

2
d

dj
f KE~j!1

K

j
f KE~j!5SAM1E

M2E
2

b

jn
kn21D gKE~j!,

~66!
ial

q.

for uEu<M . As far as the Levinson theorem is concerned,
are only interested in the solutions with the sufficiently sm
k and k. If n>3, in comparison with the first term on th
right-hand side of Eq.~65! or Eq. ~66!, the potential term
with a factor of kn21 ~or kn21) is too small to affect the
phase shift at the sufficiently smallk and the variant range o
the ratio f jE(r ,l)/gjE(r ,l) at r 01

. Therefore, the proof
given in the previous sections is effective for those potent
with a tail, so that the Levinson theorem~58! holds.

When n52 and bÞ0, we will only keep the leading
terms for the small parameterk ~or k) in solving Eq.~65! @or
Eq. ~66!#. First, we calculate the solutions with the ener
E;M . Let

a5~K22K12Mb11/4!1/2ÞK21/2. ~67!

If a2,0, there is an infinite number of bound states. We w
not discuss this case as well as the case witha50 here.
Whena2.0, we takea.0 for convenience. Some formula
given in the previous sections will be changed.

WhenE<M , we have

f KE~r ,l!5ei (a11)p/22M ~pkr /2!1/2Ha
(1)~ ikr !,

gKE~r ,l!5ei (a11)p/2k~pkr /2!1/2H 2
d

d~kr !
Ha

(1)~ ikr !

1
K21/2

kr
Ha

(1)~ ikr !J . ~68!

Hence, the ratio atr 5r 01 for E5M is

f KE~r ,l!

gKE~r ,l!
U

r 5r 01

5
2Mr 0

K1a21/2
, E5M . ~69!

WhenE.M , we have
f KE~r ,l!52M ~pkr/2!1/2$cosha~E,l!Ja~kr !2sinha~E,l!Na~kr !%,

gKE~r ,l!5k~pkr/2!1/2H cosha~E,l!S 2
d

d~kr !
Ja~kr !1

K21/2

kr
Ja~kr ! D

2sinha~E,l!S 2
d

d~kr !
Na~kr !1

K21/2

kr
Na~kr ! D J , ~70!

Whenkr tends to infinity, the asymptotic form of the solution is

f KE~r ,l!;2M cos@kr2ap/22p/41ha~E,l!#,

gKE~r ,l!;k sin@kr2ap/22p/41ha~E,l!#.

In comparison with solution~51!, we obtain the phase shiftdK(E,l) for E.M :

dK~E,l!5ha~E,l!1~K2a21/2!p/2, E.M . ~71!

From the match condition~38!, for the sufficiently smallk we obtain

tanha~E,l!;
2p~kr0/2!2a

G~a11!G~a! S K2a21/2

K1a21/2DAK~M ,l!22Mr 0 /~K2a21/2!

AK~M ,l!22Mr 0 /~K1a21/2!
. ~72!

062715-10
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Therefore, asl increases from 0 to 1, each time th
AK(M ,l) decreases from near and larger than the va
2Mr 0 /(K1a21/2) to smaller than that value, the denom
nator in Eq.~72! changes sign from positive to negative a
the rest factor keeps positive, so thatha(M ,l) jumps byp.
Simultaneously, from Eq.~69! a new overlap between th
variant ranges of the ratio at two sides ofr 0 appears such tha
a scattering state of a positive energy becomes a bound s
Conversely, each time theAK(M ,l) increases across tha
value,ha(M ,l) jumps by2p, and a bound state becomes
scattering state of a positive energy.

Second, we calculate the solutions with the energyE;
2M . Let

b5~K21K22Mb11/4!1/2ÞK11/2. ~73!

Similarly, we only discuss the cases withb2.0, and take
b.0.

WhenE>2M we have

f KE~r ,l!52ei (b11)p/2k~pkr /2!1/2H d

d~kr !
Hb

(1)~ ikr !

1
K11/2

kr
Hb

(1)~ ikr !J ,

gKE~r ,l!5ei (b11)p/22M ~pkr /2!1/2Hb
(1)~ ikr !. ~74!

Hence, the ratio atr 5r 01 for E52M is

f KE~r ,l!

gKE~r ,l!
U

r 5r 01

52
K2b11/2

2Mr 0
, E52M . ~75!
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WhenE,2M we have

f KE~r ,l!52k~pkr/2!1/2H coshb~E,l!S d

d~kr !
Jb~kr !

1
K11/2

kr
Jb~kr ! D2sinhb~E,l!S d

d~kr !
Nb~kr !

1
K11/2

kr
Nb~kr ! D J ,

gKE~r ,l!52M ~pkr/2!1/2$coshb~E,l!Jb~kr !

2sinhb~E,l!Nb~kr !%, ~76!

Whenkr tends to infinity, the asymptotic form for the solu
tion is

f KE~r ,l!;k sin@kr2bp/22p/41hb~E,l!#,

gKE~r ,l!;2M cos@kr2bp/22p/41hb~E,l!#.

In comparison with solution~51!, we obtain the phase shif
dK(E,l) for E,2M :

dK~E,l!5hb~E,l!1~K2b11/2!p/2, E,2M .
~77!

From the match condition~38!, for the sufficiently smallk,
we obtain
tanha~E,l!;
2p~kr0/2!2b

G~b11!G~b!

AK~2M ,l!1~K1b11/2!/~2Mr 0!

AK~2M ,l!1~K2b11/2!/~2Mr 0!
. ~78!
i-
y

ce
Therefore, asl increases from 0 to 1, each time th
AK(2M ,l) decreases from near and larger than the val
2(K2b11/2)/(2Mr 0) to smaller than that value, the de
nominator in Eq.~78! changes sign from positive to negativ
and the rest factor keeps negative, so thathb(2M ,l) jumps
by 2p. Simultaneously, from Eq.~75!, an overlap between
the variant ranges of the ratio at two sides ofr 0 disappears
such that a bound state becomes a scattering state of a
tive energy. Conversely, each time theAK(2M ,l) increases
across that value,hb(2M ,l) jumps byp, and a scattering
state of a negative energy becomes a bound state.

In summary, we obtain the modified relativistic Levinso
theorem for noncritical cases when the potential has a
~63! with n52 at infinity:

dK~M !1dK~2M !5nKp1~2K2a2b!p/2. ~79!

We will not discuss the critical cases in detail. In fact, t
modified relativistic Levinson theorem~79! holds for the
critical cases ofa.1 andb.1. When 0,a,1 or 0,b
ga-

il

,1, ha(M ,1) or hb(2M ,1) in the critical case will not be a
multiple of p, respectively, so that Eq.~79! is violated for
those critical cases.

Furthermore, for potential~63! with a tail at infinity, when
n.2, even if it contains a logarithm factor, for any arb
trarily small positivee, one can always find a sufficientl
large r 0 such that uV(r )u,e/r 2 in the region r 0,r ,`.
Thus, from Eqs.~67! and ~73! we have for the sufficiently
small e,

a5~K22K62Me11/4!1/2;K21/2,

b5~K21K72Me11/4!1/2;K11/2.

Hence, Eq.~79! coincides with Eq.~58!. In this case, the
Levinson theorem~58! holds for the noncritical case.
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