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Levinson theorem for the Dirac equation inD+1 dimensions
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In terms of the generalized Sturm-Liouville theorem, the Levinson theorem for the Dirac equation with a
spherically symmetric potential iD +1 dimensions is uniformly established as a relation between the total
number of bound states and the sum of the phase shifts of the scattering skates Bt with a given angular
momentum. The critical case, where the Dirac equation has a half bound state, is analyzed in detail. A half
bound state is a zero-momentum solution if its wave function is finite but does not decay fast enough at infinity
to be square integrable.
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I. INTRODUCTION II. RADIAL EQUATIONS

The Levinson theorerfil] is an important theorem in the The Dirac equation ifb + 1 dimensions can be expressed

guantum-scattering theory, which sets up the relation bez-is[24]

tween the number of bound states and the phase shift at zero D

momentum. It has been generaliZ&d-9] and has been ap- i E (3, +i1eA)W(x,t) =MW (x,t), (1)
plied to different fields in modern physi¢0—21]. With the =0 . "

interest of higher-dimensional field theory, the Levinson

theorem for the Schrdinger equation in arbitrar dimen- ~ WhereM is the mass of the particle, anB {-1) matricesy,,
sions was studied, recentlj22]. However, the Levinson satisfy the anticommutative relations:

theorem for the Dirac equation D+ 1 dimensions has not

been uniformly studied. The problem is how to derive the Yy YTy =29R, @
radial equation of the Dirac equation i+ 1 dimensions.

In our recent papef23], we generalized the Dirac equa-
tion with a spherically symmetric potential to arbitraby
+1 dimensions, found the eigenfunctions of the total angular
momentum, and derived the radial equations. It is worth no-
ticing that the totalor orbital, spinoy angular momentum in
D-dimensional space is described by an irreducible represef=or simplicity, the natural unitsi=c=1 are employed
tation of the SOD) group, which is denoted by the highest throughout this paper. Discuss the special case where only
weight, instead of only one parameteror |, s) in three- the zero component oA, is nonvanishing and spherically
dimensional space. In this paper, we will uniformly study theSymmetric:

Levinson theorem for the Dirac equation ih+1 dimen-

sions by the Sturm-Liouville theorem. In Sec. I, we will eAp=V(r), As=0, when a#0. 4)
sketch the derivation of the radial equations for the Dirac o ]

equation with a spherically symmetric potential B+1  The HamiltonianH(x) of the system is expressed as
space time, both for eveld and oddD. Then, we will study .

the generalized Sturm-Liouville theorem in Sec. Ill. The 1oV (X, 1) =H(X)W(X,1),

number of bound states will be calculated in Sec. IV. In Sec.

with the metric tensom*” satisfying

Opv when u=0

i @)

MY — =
K v v When  u#0.

V, the Levinson theorem is established by proving the num- _ ED: 0 a 0
ber of bound states to be equal to the sum of the phase shifts H(X)_a=1 YV Pat V() +y'M,
of the scattering states &=+ M with the given angular (5)
momentum. The critical cases are also analyzed there. Some P
discussions are given in Sec. VI. Pa=—idy=—i—), 1=<a<D.
ax?
*Electronic address: guxy@mail.ihep.ac.cn The orbital angular-momentum operatdrg,, the spinor
"Electronic address: mazg@sun.ihep.ac.cn operatorsS,,, and the total angular-momentum operators
*Electronic address: dongsh2@yahoo.com Jap are defined as follows
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Lab= —Lpa=iXadp—1Xpda,  Sap=—Spa=17va7/2,

Jab: Lab+Sabi 1$a<b$D,

(6)

D D D
P= > 13, L= > L3, &= > S.
a<b=2 a<b=2

a<b=2

It is easy to show by the standard methad] thatJ,, andx
are commutant with the Hamiltoniaf(x),

k=" 2 i72Y’Lap+(D—1)/2

a<b

=99{J2-1L2-S2+(D—1)/2}. (7)

Since the potentiaM(r) is spherically symmetric, the
symmetry group of the system is S). Following Erdelyi
[25] and Louck[26,27], we introduce the hyperspherical co-
ordinates in the redD-dimensional space

xt=r cosh;sinb,--sinfp_4,
x2=r sin@;sin @, --sinfp_1,

3<b=<D-1, (8

xP=r cosé,_;Sinby--sinfp_ 1,

xP=r cosbp_1,
D

> (x®)2=r2,
a=1

The unit vector along is usually denoted bx=x/r. The
volume element of the configuration space is

D-1

D
a[[l dx@=rP-1drdQ, dQ= E[[l (sin6,)2 1de,,
0sr<oo,

As is well known, the Lie algebras of the SQ{2- 1)
group and the SO(®) group areBy andDy, respectively.
Their Chevalley bases with the subscrjpt 1<su<N-1,
are the same:

H.(D)=Jeu-1)em ~deu+1@u+2)

E.(D)=0eu@u+1)" 1 @u-1)@u+1) " 1 @u)2u+2)

—Jou-1)u+2)/2, (10a

Fu(D)=Ueweu+ntides-newr T eweut2)
—J2u-1)2u+2))2.

But the bases with the subscriltare different:
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HN(I)=2d2n-1)(2n) »

En(I)=Jny@en+ 1)~ 1 @n-1) 2N+ 1) (10b)

Fn(I)=Jnyen+ T id@en-1)@en+ 1)

for SO(2N+1), and
Hn(3)=Jan-3)n-2) T dan—1)(2n) »

En(I)=Jan-2)n-1)~ 1 d2n—3)(2n—1) T 1 (2n—2) (2n)
+J2n-3)2n))/2, (109

Fn(I)=Jn-2)en-1) T 1 an-3)2n- 1)~ 1 (2n—2)(2n)
+Jan-3)(2n)) 2,

for SO(2N). The operatod,, can be replaced with ., or

S,p depending on the wave functions one is discussing.
H,(J) span the Cartan subalgebra, and their eigenvatygs
for an eigenstatém) in a given irreducible representation are
the components of the weight vector=(m, ... ,my):

H,(D)|m)y=m,m), 1<u<N. (12)

E, are called the raising operators aRg are the lowering
ones. For an irreducible representation, there is a highest
weight M, which is a simple weight and can be used to
describe the irreducible representation
HaM)=MyM), Ey[M)=0. (12)
Usually, the irreducible representation is also called the high-
est weight representation and is directly denotedvhyThe
eigenvalue ofl? (or L2, S?) is the Casimir invarian€,(M)
in the representatioll to which the totalor orbital, spinoy

wave function belongs. The Casimir invaria@(M) can be
calculated by the formulfe.g., see Eq(1.13)) in Ref.[28]]

N
Co(M)=M-(M+2p)= El M,d, (A1), ,(M,+2),
mov=

(13

where p is the half sum of the positive roots in the Lie
algebra, A~ 1 is the inverse of the Cartan matrix, adg are
the half square lengths of the simple roots.

The orbital wave function iD-dimensional space is usu-
ally expressed by the spherical harmoNig) (x) [25,26,23,
which belongs to the weight of the highest weight repre-
sentation ()=(l,0, ...,0). For thenighest weight statem
=(I), we have

Y ) =Np,r '(x*+ix?)",
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NI{ (21+2N—1)! Y=03X1, ¥*=(i0)XB,, 1=a=2N+1, (17)

1/2
N—] when D=2N+1
IT(I+N-1)! .
= Il ) Thus, the spinor operat&®,;,, and thex operator become the

o [(|+N—1)!]m when D—2N block matrices
27N ,

(14 Sab=1XSap,  Sap=—1BaBu/2, (18)

whereNp | is the normalization factor. The partner§)(x)
can be calculated _fro_nYE:g_(f() by the lowering operators k=03XK, Kk=—12 BaBoLapt(D—1)/2. (19
F.(L). The Casimir invariant for the spherical harmonic a<b
Y (x) is calculated from Eq(13): -
) . The relation betwee,,, andS,;, is similar to that between
L2YD(x)=C,[(NYV(x), Cl()]=I(1+D-2). the spinor operators for the Dirac spinors and for the Pauli
(15 spinors. In the level of the Pauli spinors, we define the fun-
ine D ) ) L damental spinoi(m) belonging to the fundamental spinor
Now, we define 2-dimensional matriceg, satisfying representations) =(0, . . .,0,1) with the Casimir invariant
_ _ C,[(s)]=(2N?+N)/4. There are two ways to construct the
+ =261, ,b=1.2,...(2N+1). (16 2 : )
Babot BoBa=20al, @ { ). 19 eigenfunctions of the total angular momentum belonging to
We choose the representation such fBg,;=oc3X1,n-1,  the representationjf=(l,0,...,0,1). They have different
where o, is the Pauli matrix, andl, denotes the eigenvalues ok. Since the system is spherically symmetric,
n-dimensional unit matrix. we only need to calculate the highest weight state for the
ForD=2N+1, N>1, we have representatiofy) in terms of the Clebsch-Gordan coefficients

|
b1, (1))=Y BN (5)1=Np 1 ' (X +ix?) ' x[(9)],

Col (1) ]=Cal(N]=Cal(s) ]+ N=1+N=[K]|, (20

¢_|K‘,m(i>=§ YO DO XL(G) —mI((1+1),m,(s),()—m[(j).(}))

=Np,ir i) DEN T ()] + N1+ ix2N) [0, . . ,0,1, D]+ (x2N 2 4ix3N 72

X x[(0,...,0,1,31)]+-- -+ (xC+ixHx[(1,1,0, ...,0,) ]+ (x*+ix?)x[(1,0, ...,0,.1) ]},

Cal()1=Col (1+1)]=Col(s)]+N=—I=N=—[K]. (21
|
In the level of the Dirac spinors, the wave functidn ;) (x) dG(r)
of the total angular momentum belonging to the highest —ar T 7 G =[E=-V()=M]F(r),
weight state of the irreducible representatipncan be ex-
pressed as dF(r)

K
ar +TF(|'):[E—V(I’)+M]G(I'). (23

\I}K’(J‘)(X,t) =r 7Ne7iEt

F(r) ¢y ()(X) )

. A As is well known, Eq.(23) also holds wherD =3.
iGNy .)(%) a(23

ForD=2N, N>2, we have
0_ a_
KUy ()=KWPy (0, K==(+N). (22 Y =Bon+1, V' =Ban+1Ba, 1=as2N. (24

) ) As is well known, the spinor representation of SQI)2
Its partners can be calculated from it by the lowering operagroup is reducible and can be reduced to two inequivalent

torsF,(J). fundamental spinor representations-§)=(0,0,...,0,1)
Substituting¥j)(x) into the Dirac equatiori5), we ob-  and (—s)=(0,0, . . .,0,1,0) with the same Casimir invariant
tain the radial equatiof23] C,[(£s)]=(2N%2—N)/4. 40 is a diagonal matrix where half
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of the diagonal elements are equalttd and the remaining For the total angular momentum, there are two kinds of rep-
are equal to—1. Because the spinor operat8g, and the resentations j;)=(l,0,...,0,1) and {,)=(l,0,...,0,1,0)
operatorx are commutant withy°, each of these becomes a with the same Casimir invariant:
direct sum of two matrices,oreferring to the rows with the
eigenvaluest1 and—1 of ", respectively. In the level of C N7 F N1 _ 2_
the Pauli spinors, the fundamental spingrs(m) belong to Cal (j)]=Col(j2)]=1(1+2N=1)+(2N"=N)/4. 06
the fundamental spinor representationss] and (—s), re-
spectively, and satisfy ) )
There are two sets of wave functions belonging to the repre-
Yx+(m)y=+y.(m). (25  sentation {1). The highest weight states are

D11, () = YH X [(+9)]=Np r ' (X +ix?) x, [(+9)],
¢>7|K\,<jl)<i>=§ YE VG0 x-[( ) —mI(1+1),m,(=9),(j)—m|(j1),(j2)

=Np 1 " 1x+ix?) N L+ ix2N) y [(— )]+ (N2 +ix2N"2) ¢ [(0, .. .,0,1,1,0)]
+(xN"54ix2N"% ¥ [(0,...,0,1,1,0,1)]
oA O3+ iIXN Y [(1,1,0,...,0,1) ]+ (xE+ix2) x_[(1,0, .. .,0,D)]}, 27)
For the representatiorj {)=(l,0, .. .,0,1,0), we have
-1k, )= 2 Yo PO0x[(2) = mK (1 +2),m,(+9),(j2) = ml(2),(i2)
=Np,r i) (N L= ix )y [(+9) T+ (N 24 ix2N 2 0, [(0, .. .,0,1,0,D ]+ (x2N S ixN )

X x+[(0,...,01,11,0]+ - +(x3+ixHx.[(1,1,0, ...,0,1,0]+ (x*+ix?) x.[(1,0, ...,0,1,0]},
D11, 1,0 =YBOO X -[(=9)]=Np,r ' (x*+ix?)'x _[(=9)], (28)

where Their partners can be calculated from them by the lowering
i _ _ operatorg- ,(J).
- - +s)]+N—-1/2=1+N—-1/2=
Col(j1)]=Col(D]=Cyl(+8)]+N=1/2=1+N—-1/2=|K|, Substitu'fingqu(jw)(x) into the Dirac equatior(s), we
Col(j2)]=Col (1 +1)]=C[(+s)]+N—-1/2 obtain the radial equations, which are in the same forms as

= I-N+1/2=—|K|. (29) Eq. (25 in theD=2N+1 cas€23]:
) ) ) ) dG(r) K
In the level of the Dirac spinors, the eigenfunctions —ar TG(r):[E—V(r)—M]F(r),
W (j,)(X) of the total angular momentum belonging to the
highest weight state of the irreducible representatipy) ( dF(r)

K
can be expressed as TR ?F(r)=[E—V(r)+M]G(r). (31)
\P\Klv(Jl)(X't):r_N+mE_iEt{F(r)¢\K|,(j1)(;<)

When D=4, the S@4) group is homomorphism to SU(2)

+iG(r)¢_‘K|'(jl)(>A<)}, X SU(2), and therepresentation$; and j, belong to two
_ . different SU2) groups, respectively. Whed =2, the S@2)
\I'_‘KL(J-Z)(x,t):r*N“’Ze*'Et{F(r)¢_|K|,(J-2)(x) group is an Abelian group anl=*j=+1/2, +3/2, etc.

. However, Eq.(33) still holds for these cases.
HIG(r) Py, (,)(¥)},

KWy ( )(X)=K\PK (i )(X) IIl. THE GENERALIZED STURM-LIOUVILLE THEOREM
_ The spherically symmetric potentid(r) has to satisfy
_ I+N-1/2 when w=1 (30) the boundary condition at the origin for the nice behavior of
—1=N+1/2 when w=2. the wave function
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flr|V(r)|dr<m. (32
0

PHYSICAL REVIEW A7, 062715 (2003

d
a(FlG—GlF)=—(El—E)(F1F+G1G). (39

For simplicity, we first discuss the case where the potentiaFrom the boundary condition that both solutions vanish at

V(r) is a cutoff one at a sufficiently large radiug
V(r)=0, whenr=ry. (33
The general case where the potentiét) has a tail at infin-
ity will be discussed in Sec. VI.
Introduce a parametex for the potentiaM(r):

V(r,\)=AV(r), V(r,D)=V(r). (34

As \ increases from 0 to 1, the potent(r,\) changes
from zero to the given potentidl(r). If A changes its sign,
the potentialV(r,\) changes sign, too.

Although the spherical spinor functions and eigenvalues

K are different for theD =2N+1 case and thB=2N case,
the forms of the radial equations are uniform:

dGge(r,\) K

T+ TGKE(r!)\):[E_V(r,A)_M]FKE(ra)\)’
dFge(r,\) K

_ T+ TFKE(V1)\)=[E—V(I’,7\)+M]GKE(Y,)\),

K=x1/2+1,+3/2,.... (35
It is easy to see that the solutions with a negatvean be
obtained from those with a positivK by interchanging
Fke(r,\)—G_¢_g(r,—\), so that in the following we only
discuss the solutions with a positi¥e The main results for
the case with a negativ€ will be indicated in the text.

the origin, we integrate Eq39) in the region Gsr=<r, and
obtain

"o
(FlG_GlF)|I’:I’O*: _(El_ E) J’() (F1F+GlG)dl’

Taking the limit askE; tends toE, we have

FlG_GlF

lim E,_E

E,—E

r=rg—
2 J
={Gke(ro,N)} EAK(EJ\)
r
=—J O{FﬁE(r,)\)+GﬁE(r,)\)}dr<0. (40
0
Thus, whenE|=M we have

A(EN) =AM ,)\)—cik2+ -
when

E>M and E~M,

AEN)=A(—M ,)\)+c§k2+ -

The physically admissible solutions are finite, continuouswhen

vanishing at the origin, and square integrable:

Fre(r,N)=Ggg(r,\)=0, whenr=0, (36)

f;dr{|FKE(r,)\)|2+|GKE(|',)\)|2}<°°- (37

E<-M and E~—M, (41)

wherec? andc3 are non-negative numbers, and the momen-
tum k is defined as follows:

k=(E2—M?)*2, (42)

The solutions fodE|>|\(| describe the scattering stgtes and Similarly, from the boundary condition that the radial
those for|E[<M describe the bound states. We will SolVe fnctionsF g(r,\) and Gxe(r,\) for |E|<M tend to zero

Eqg. (37) in two regions, Gsr<rg andry<r <o, and then
match the two solutions at, by the match condition:

Fre(r,\)
Gke(r,\)

:FKE(VJ\)
Gke(r,N)

r=rgo—

Ak(EN)= (39

r=ro+

Whenr ; is the zero point of5g(r,\), the match condition
can be replaced by its inver&&g(r,\)/Fge(r,\) instead.

The merit of using this match condition is that we need not

consider the normalization factor in the solutions.

The key point for the proof of the Levinson theorem is
that the ratioFxg(r,\)/Ggg(r,\) is monotonic with respect

to the energyE. For simplicity, we briefly denot&¢g(rq,\)

at infinity, we obtain, by integrating Eq39) in the region
ro=sr<wm,

d [ Fxe(r,\)
{GKE(ro,h)}z&?(m)

r=r
O+

=fw{FﬁE(r,xHGﬁE(r,x)}dr>o. (43)
o

Thus, as the energy E increases, the ratio
Fke(r,N)/Gge(r,\) atry  decreases monotonically, but the

ratio Fye(r,\)/Gge(r,\) at ro, when |E|<M increases

andGgg(rq,N) by F andG, respectively, and those with the monotonically. This is called the generalized Sturm-Liouville

energyE; by F; andG,. From Eq.(35) we have

theorem[29].
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IV. THE NUMBER OF BOUND STATES M+E\ Y23, (K4 o)
AK(E,0)=—i| =— o
M—E/ Jk+wlikiro)
Now, we solve Eq.35) for the energy|E|<M. In the
region O<r<rg, whenA=0, we have 2M(2K+1) h EM
-~ ~—» when E~
_ kiro
Fre(r,00=e K120 (M + E) 7k, r/2}Y20yo(ikqr), _2K+1 when E~—M
2Mr, ’
(46)

Ge(r,0)=e (K320 (M —E) mrkyr 12123, 4 1alik1T ),
In the regionr ,<<r <<, due to the cutoff potential we have
(44) V(r)=0 and

whereJ,(x) is the Bessel function and Fre(r, \) =S 2m20(M + E) ki r /21 Y2H(D ) ik yr),

Gie(r,\) =€ KA (M — E) arky 1 121 2H I (i),
ki=(M?—E?)Y2 (45) 47

whereH{(x) is the Hankel function of the first kind. The
ratio atr=ry+ does not depend on and is given as fol-

The ratio atr=ry— whenA=0 is lows:
|
([ 2Mr,
when E~M and K=1
2K—-1
—2Mrgin(kirg)~o when E~M and K=1/2
Fke(r.\) .

(1) . _< kiro
HK+1/2(|ker) ZM(ZK_:L)N

M+E|\Y2HE 1 ikar o)
) K- 1/21K1r . (48)

M-—-E

Gge(r,\) when E~-M, and K=1

I':I’0+

- kirom(klro) _

when E~—-M, and K=1/2.
L 2M

It is evident from Eqs(46) and (48) that as the energfg  the ratios at two sides aof, disappears so that a bound state
increases from-M to M, there is no overlap between two disappears. Therefore, each tilig(M,\) decreases across
variant ranges of the ratio at two sidesrgfwhenA=0 (N0 the value Mro/(2K—1) as\ increases, a new overlap be-
potentia), except fork=1/2 where there is a half bound tyeen the variant ranges of the ratios at two sides pof
state aE=M. The half bound state will be discussed in the ynears such that a scattering state of a positive energy be-
following section. comes a bound state, and each titkyg —M,\) decreases

As \ increases from 0 to 1, the potentM(r,\) changes across zero, an overlap between the variant ranges of the
from zero to the given potentid(r) andAx(E,\) changes, ' P 9

too. If Ac(M,\) decreases across the valudlg,/(2K ratio at two sides _ofo disappears suc_h that a bound state
—1) as\ increases, an overlap between the variant ranges diecomes a scattering state of a negative energy. Conversely,
the ratios at two sides of, appears. Since the ratiy (E,\)  €ach timeA¢(M,\) increases across the valud2q/(2K
of two radial functions at,— decreases monotonically as —1), an overlap between the variant ranges disappears such
the energ\E increases, and the ratioaf+ increases mono- that a bound state becomes a scattering state of a positive
tonically, the overlap means that there must be one and onlgnergy, and each tim&,(—M,\) increases across zero, a
one energy where the matching conditi88) is satisfied, new overlap between the variant ranges appears such that a
namely, a bound state appears. scattering state of a negative energy becomes a bound state.
As \ increasesAy(M,\) may decrease te-, jumps to  Now, the numbeny of bound states with the parameteiis
%, and then decreases again across the vaMe 2(2K  equal to the sunfor subtractionof four times as\ increases
—1), so that another bound state appears. Note that when from 0 to 1: the times thaf(M,\) decreases across the
is a zero point of the wave functioGyg(r,\), Ac(E,\)  value 2Mry/(2K—1), minus the times thafc(M,\) in-
goes to infinity. It is not a singularity. creases across the valudi2,/(2K—1), minus the times
On the other hand, as increases, ifAc(—M,\) de- that Ac(—M,\) decreases across zero, plus the times that
creases across zero, an overlap between the variant rangesfaf(—M,\) increases across zero.
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WhenK=1/2, the value ®ry/(2K—1) becomes infin- whereN,,(x) denotes the Neumann function, the momentum
ity. We may check the times that«(M,\) ! increasegor  k is given in Eq.(16), andB(E) is defined as
decreasesacross zero to replace the times thgt(M,\)

decreasesor increasesacross infinity. E+ M\ 2
when E>M
V. THE RELATIVISTIC LEVINSON THEOREM — E-M
B(E) IE|— M| 22 (50
We turn to discuss the phase shifts of the scattering states. - E[+M when E<-M.

Solving Eq.(35) in the regionr,<r <« for the energy|E|
>M, we have

" The asymptotic form of solutiofd9) atr —o is

k
fKE(r,A)zB(E)(WTr) (C0S8¢(EN) Iy 1o KT)
fe(r,N)~B(E)cog kr—Km/2+ 8 (E,\)],

—sin S (E,N)Ng 12K},
1/2 gKE(r,)\)NSir[kr_KW/2+ 5K(E,)\)] (51)
QKE(V:)\):<T) {cosd(E,N) Ik +1/a(Kr)

Substituting Eq(49) into the match conditior§38), we ob-
—sinSk(E,N)Nk . 12(kr)}, (49  tain the formula for the phase shifi(E,\):

k12 krg) Ac(E,N)—B(E) Ik 1/a(Kro)/ Ik 4 1/2(Krg)
Nk +1/2(Kro) Ac(E,N) —B(E)Ng_1/2(Kro)/ N1 1/2(Krg)

_ Ji—12Krg) {AK(EN)} 1=B(E) ™ Nk 1ol kro)/Ix—1Krg)
N~ 1/2(Kro) {A(E,N)} 2 =B(E) "Ny 172(kro)/Nic— o Kro)

tandg(E,N)=

(52

The phase shif6c(E,\) is determined up to a multiple of due to the period of the tangent function. We use the convention
that the phase shifts for the free particl&4 () =0) are vanishing:

ok(E,0)=0. (53
Under this convention, the phase shifis(E) are determined completely asincreases from zero to one:
ok(E)=6k(E,1). (54)

The phase shift$c(=M,\) are the limits of the phase shif(E,\) asE tends to= M. At the sufficiently smalk, k
<1/ry, whenE>M, we have

m(kro/2)2K -1 Ac(M N (Kro/2)2—Mro(K +1/2)
t"3“‘5K(E"‘)~_(K+1/2)!(K—1/2)!A y oo 2MIo [ (kro)? : (553
MM =eik = o7 | I Gk =12k =3)
whenK>3/2,
kro\? Ax(M,\)(kro/2)2—2Mr
tan&K(E,)\)~—g(—o) <(M,A) (kro/2) ot )2 , (55b)
AK(M,)\)—kaZ—MrO(l— 20 In(kro))
whenK=3/2,
Ax(M,\)(Krg/2)2—3Mr o/2
tan s (E,\ )~ (kro) K(M,A)(kro/2) 0 (559

{A(M )} —c2k2—2Mro(1—(krg)?)
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whenK=1,

T {Ac(M )} T+ cTk2—K2r o /(4M)

Sk(E,N)~ ’
tandx (E,N) 21In(kro) A (M,N)} 1+ c2k?+{2MrIn(krg)} ~*

(550

whenK=1/2. WhenE<—M we have for a sufficient smak,

m(kro/2)2K 1 Ac(—M N+ (2K+1)/(2Mr )

@ndk(E M)~ = 1y (k= 1721 Y, K, (563
AK(_M,)\)+C2|( +m
whenK=1,
kro\? Ax(—M,\)+ L(Mr
tan&K(E,)\)~—Tr(—o) < . )+ HMTo) , (56b)
2 | Ac(—M \)+c3k?=K3rgIn(kro)/(2M)

whenK = 1/2. The asymptotic form&1) have been used in driving Eq&5) and (56). In addition to the leading terms, we
include the next leading terms in some of E@&) and(56), which are useful only for the critical case where the leading terms
are canceled with each other.

First, from Eqs.(55) and (56) we see that, except for some critical cases,Sidiic,\) tends to zero a& goes to+M,
namely,dx(£M,\) are always equal to the multiple af. In other words, if the phase shifi(E,\) for a sufficiently small
k is expressed as a positive or negative acute anglemptysts limit 5x(M,\) [or 8x(—M,\)] is equal ton. It means that
Sk(M,\) [or 8k(—M,\)] changes discontinuously whefx(E,\) changes through the value{ 1/2)7.

Second, from Eq(52) we have

IS¢(E\) E+M)\¥ 2{cosdk(E,N)}?
A i (R <0, E>M,
IAK(EN) | E=M/J arkrofNics 12 Kro) Ac(E,N) = B(E)Ng — 1/ ko) }?
38 (E,\ E|—M\2 2{cosdy(E,\)}?
KEM | _[IE] {cosdk(E,N)} =0, E<_M. 57
IAK(EN) | [E[+M K o{ Nk 1 112(Kr ) A (E,N) —B(E)Ng _ 1/o(kr)}
T
Equation(57) shows that, as the ratibk(E,\) decreases, Then, we consider the scattering states of a negative en-

the phase shif6 (E,\) for E>M increases monotonically, ergy with a sufficiently smalk. As A¢(E,\) decreases, if
but 6x(E,\) for E<—M decreases monotonically. In terms tanéc(E,\) changes sign from negative to positive, the
of the monotonic properties, we are able to determine th@hase shifs,(—M,\) jumps by— 7. However, in this case,
jump of the phase shiftg (= M,\). if tan 5 (E,\) changes sign from positive to negative, the
We first consider the scattering states of a positive energphase shift 5x(—M,\) keeps invariant. Conversely, as
with a sufficiently small momentunk. As Ac(E,\) de- A (E,\) increases, if tadc(E,\) changes sign from posi-
creases, if tady(E,\) changes sign from positive to nega- tjye to negative, the phase shific(—M,\) jumps by .
tive, the phase shifé, (M,\) jumps bysr. Note that in this  Therefore, as\ increases from 0 to 1, each time the
case, if tansx (E,\) changes sign from negative to positive, o, (—M,\) decreases from a small and positive number to a
the phase shiftsx(M,\) keeps invariant. Conversely, as npegative one, the denominator in E§6) changes sign from
Ak(E,\) increases, if tafi (E,\) changes sign from nega- positive to negative and the rest factor keeps negative, so that
tive to positive, the phase shif(M,\) jumps by —7.  the phase shifsx(—M,\) jumps by — 7. In the preceding
Therefore, as\ increases from zero to one, each time thegection we have shown that each time tAR(—M,\)
Ak(M,\) decreases from near and larger than the valugiecreases across zero, a bound state becomes a scattering
2Mr,/(2K—1) to smaller than that value, the denominatorstate of a negative energy. Conversely, each time
in Eq. (57) changes sign from positive to negative and thethe A (—M,\) increases across zero, the phase shift
rest factor keeps positive, so that the phase sfiftM.\)  5,(—M,\) jumps byw, and a scattering state of a negative
jumps by 7. We have shown in the preceding section thatenergy becomes a bound state. Therefore, we obtain the

each timeAx(M,\) decreases across the valuBl2 /(2K Levinson theorem for the Dirac equationindimensions for
—1), a scattering state of a positive energy becomes a boungbncritical cases:

state. Conversely, each tindg(M,\) increases across that
value, the phase shifix(M,\) jumps by— 7, and a bound
state becomes a scattering state of a positive energy. Sk(M) + S (—M)=ng. (58
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It is obvious that the Levinson theoref&8) holds for both ForK=1, tand(E,1) tends to infinity agAc(M,\)} 2

positive and negativ& in the noncritical cases. increases and finally reache®2,, namely, the phase shift
For the case oK=1/2 and E~M, where the value 6x(M,\) jumps by #/2. Simultaneously, only a new half

2Mro/(2K—1) is infinity. Since{Ax(E,\)} ! increases as bound state oE=M for K=1 appears, so that the Levinson

Ak(E,\) decreases, we can study the variance oftheorem(58) has to be modified for the critical case when a

{A(E,\)} 1 in this case instead. For the energyM half bound state occurs &=M andK=1:

where the momentumk is sufficiently small, when

{Ac(M,\)} 1 increases from negative to positive_ asn- S(M) + 8¢ (—M)=(ng+1/2) .

creases, both the numerator and denominator in (B§)

change signs, but not simultaneously. The numerator changes

L . For K=1/2, the next leading term with lk(p) in the de-
sign first, and then, the denominator changes. The front facﬁominator of Eq.(55) dominates, so that the denominator
tor in Eqg. (55) is negative so that taix(E,\) first changes 9: '

B . _l . _

from negative to positive when the numerator changes signkeeF)s negat|vc§does not change signas{A«(M.\)}" " in .
i . creases and finally reaches zero, namely, the phase shift

and then changes from positive to negative when the de:

nominator changes sign. It is in the second step that tth(M’)‘) does not jump, no matter whether the rest part in
phase shifts,(M.)) jumps by . Similarly, each time g. (550 keeps positive or has changed to negative. Simul-

[AM\)} L decreases across zero as increases taneously, only a new half bound state BEM for K
s ?M )’\) jumps by — ' =1/2 appears, so that the Levinson theorg@) holds for
K ' .

For =0 andK=1/2, the numerator in Eq55) is equal the crltlcal case W'ﬂK: 172, -
; . , This conclusion holds for the critical case where
to zero, and the phase shifk(M.0) is defined to be zero. Ak(M,\) increasesand finally reaches, but not across, the
For this case there is a half bound stateEatM [see Eq. KA y ' .

1 value 2Miro/(2K—1). Therefore, for the critical case when
.(59)]' If {A(M. )} |ncrease$AK(M_,>\) dec_reasdsa;)\ a half bound state occurs B=M andK=3/2, the Levinson
increases from zero, the front factor in E§5) is negative,

the numerator becomes positive first, and then, the denom'fheorem has to be modified as follows:

nator changes sign from negative to positive, such that the
phase shiftéx(M,\) jumps by 7 and simultaneously the (M) + 6(—M)=(ng +K—-1/2)7. (60)
half bound state becomes a bound state \EithM .

Now, we turn to study the critical cases. First, we study Second, we study the critical case + —M, where the
the critical case foE=M, where the raticA((M,1) is equal ratio Ac(—M,1) is equal to zero. It is easy to obtain the
to the value Mr,/(2K—1). It is easy to obtain the follow- following solution of E=—M in the regionr <r <o, sat-
ing solution ofE=M in the regionr,<r < , satisfying the isfying the radial equation&5) and the match conditiof88)
radial equation$35) and the match conditio(88) atr : atrg:

fum(r,)=2Mr %1 g u(r,)=(2K—1)r K. (59 fm(r,N) =0, gem(r,A)=r"K. (61)

It is a bound state wheld>3/2, but called a half bound state It is a bound state whekK=1, but a half bound state when
when K=<3/2. A half bound state is not a bound state, be-K=1/2.
cause its wave function is finite but not square integrable. For definiteness, we again assume that in the critical case,

For definiteness, we assume that in the critical casa, as as\ increases from a number near and less than 1 and finally
increases from a number near and less than one and finallgaches 1A«(—M,\) decreasesnd finally reaches zero, so
reaches onéjx(M,\) decreaseand finally reaches, but not that whena =1 the energy of a bound state decreaseg to
across, the valueMr,/(2K—1). In this case, wher =1, =—M for K=1, but a bound state becomes a half bound
a new bound state &= M appears foK>3/2, but does not state forK=1/2. We should check whether or not the phase
appear forK=3/2. We should check whether or not the shift 5x(—M,1) decreases by as\ increases and reaches
phase shiftéx(M,1) increases by an additional as\ in-  one.
creases and reaches one. For the energfe<—M where the momenturk is suffi-

It is evident from the next leading terms in the denomi-ciently small, one can see from the next leading terms in the
nator of Eq. (55 that the denominator foK=3/2 has denominator of Eq.(56) that the denominator does not
changed sign from positive to negative Ag(M,\) de- change sign a®\c(—M,\) decreases and finally reaches
creases and finally reaches the valuMrg/(2K—1), zero, namely, the phase shif(—M,\) does not jump by
namely, the phase shifix(M,\) jumps by an additionatr  an additional— 7 at A =1. Simultaneously, the energy of a
at A\=1. Simultaneously, a new bound stateE® M ap- bound state decreases fFo=—M for K=1, but a bound
pears forK>3/2, but only a half bound state appears Kor state becomes a half bound state #r1/2, so that the
=3/2, so that the Levinson theore(®8) holds for the criti- Levinson theorem(58) holds for the critical case withK
cal case wittK>3/2, but it has to be modified for the critical =1, but it has to be modified when a half bound state occurs
case when a half bound state occur&atM andK=3/2: atE=—-M andK=1/2:

k(M) + 6(—M)=(ng+1). k(M) +6(—M)=(ng+1)m. (62
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Combining Eqs(58), (60), and(62) and their correspond- for |E|<M. As far as the Levinson theorem is concerned, we
ing forms for the negativek, we obtain the relativistic are only interested in the solutions with the sufficiently small

Levinson theorem i dimensions. k and k. If n=3, in comparison with the first term on the
right-hand side of Eq(65) or Eg. (66), the potential term
VI. DISCUSSIONS with a factor ofk" 1 (or k"™ 1) is too small to affect the

) _phase shift at the sufficiently sm&lland the variant range of
Now, we discuss the general case where the potentighe ratio fie(r,\)/gie(r \) at fo, . Therefore, the proof

V(r) has a tail atr=rq. Letry be so large that only the . . . ; . . .
leading term inv(r) is concemed: given in t_he previous sections is effective for those potentials
with a tail, so that the Levinson theore®8) holds.
V(r)~br=" r=r,, (63) When n=2 andb+#0, we will only keep the leading
terms for the small parametki(or «) in solving Eq.(65) [or
whereb is a nonvanishing constant amds a positive con- Eq. (66)]. First, we calculate the solutions with the energy
stant, not necessary to be an integer. Substituting it into EGE~M. Let

(35 and changing the variableto é&: a=(K2—K+2Mb+1/4Y2£K —1/2. (67)
_ kr=rVE"=M~, when |E|>M (64) If «?<0, there is an infinite number of bound states. We will
kr=r\M2—EZ2  when |E|<M, not discuss this case as well as the case with0 here.
_ _ o _ Whena?>0, we takea>0 for convenience. Some formulas
we obtain the radial equations in the regigysr <co: given in the previous sections will be changed.
q K E ESV b WhenE<M, we have
— b I O S _ di(a+1)ml2 1204(1)/ 5
qz kel + FOke(®) (|E| VeErm o )fKE(a, fee(r\)=e 2M (rwr 12)VPH P wr ),
. d
d K E [E+M b . gKE(r,)\)=e'(“+1)7/2;<(m<r/2)1’2‘——H(l)(ixr)
_ = = — — k- d(kr) ¢
K—1/2
€9 + THS)(iKr)]. (69)
for |[E/>M, and
d K M—-E b | Hence, the ratio at=ry+ for E=M is
d_ggKE(§)+ EQKE(f): Y, M+E_EK fre(d),
fke(r,\) _ 2Mrg EoM 69
d K M+E b Oke(r. M| _, , K+a—12" — (69
- d_ngE(g)"_EfKE(g): M—E_EK gke($), -
(66) WhenE>M, we have
|
fKE(r,)\):2M(Wkr/Z)llz{COSﬂa(E,)\)Ja(kr)_Sinﬂa(E,)\)Na(kr)},
N) =K(mkr/2)12 EA 45 kn+ 2
gKE(rv )_ (77 r ) Cosna( ’ ) d(kl’) a( r) kr a( r)
ing,(E,\ 4 Nakn+ A K 70
—sinp,(E,\) T dkn) a(Kr)+ — —Ng(kr) |1, (70
Whenkr tends to infinity, the asymptotic form of the solution is
fxe(r,\)~2M cog kr— am/2— w4+ 5, (E,N)],
Oke(r,N\)~ksinkr—aw/2— w4+ 5, (E,N)].
In comparison with solutiort51), we obtain the phase shific(E,\) for E>M:
Sk(EN)=14(E\N) +(K—a—1/2)w/2, E>M. (71)
From the match conditio38), for the sufficiently smalk we obtain
—(Krgl2)?¢ [K—a—1/2\ Ac(M,\) —2Mro/(K— a—1/2
tans, (E.\)~ m(Kro/2) @ K( ) ol( a )' (72)
T(a+1)(a)\K+a—1/2) Ac(M,\) = 2Mro/(K+ a—1/2)
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Therefore, ashk increases from 0 to 1, each time the WhenE<—M we have
Ak(M,\) decreases from near and larger than the value d
2Mry/(K+ a—1/2) to smaller than that value, the denomi- __ 112

nator in Eq.(72) changes sign from positive to negative and fke(r:h) k(mkr/2)™= cosng(E.)) d(kr)JB(kr)
the rest factor keeps positive, so thgt(M,\) jumps byr.

Simultaneously, from E'q(69) a new overlap between the T K+l/2JB(kr)) —sin nﬁ(EJ\)( d N g(kr)
variant ranges of the ratio at two sidesrgfappears such that kr d(kr)
a scattering state of a positive energy becomes a bound state. K+1/2
Conversely, each time th&gx(M,\) increases across that + NB(kr)H1
value, ,(M,\) jumps by— 7, and a bound state becomes a kr
scattering state of a positive energy. 2
Second, we calculate the solutions with the endfgy Ike(r,N) =2M(mkr/2) " cosng(E,N)Jg(kr)
—M. Let —siny(E,NN(kn)}, (76)
B=(K?+K—2Mb+1/4)*2£ K+ 1/2. (73
Similarly, we only discuss the cases wig?>0, and take Whe_n kr tends to infinity, the asymptotic form for the solu-
B>0. tion is

WhenE=—M we have Fee(r ) ~KSinkr — Bm/2— mld+ ny(E )],

_ d
fre(r,\)=— e'<3+1>”’2,<(m<r/2)1’2[ ———HP(i«r)

d(«r) gke(r,\)~2M cogkr— Bm/2— w/4+ ng(E,N)].
K+1/2 . . . . .
+ H(Bl)(iKr)]’ In comparison with solutiori51), we obtain the phase shift
Kt S« (E,\) for E<—M:

r\)=eBFEDT2oM (ir2)Y2H D (ikr). (74
gke(r,N) (mrr/2) " H g (ixr). (74) Ok(E.N)=1ng(E.N)+(K—B+1/2)mw/2, E<—M.

Hence, the ratio at=ro,+ for E=—M is (77
fe(r,\) K—B+1/2
Ie(TN) =~ —ur. * E=M (75  From the match conditio38), for the sufficiently smalk,
KEVH r=rg+ 0 we obtain
|
—m(krgl2)?# Ag(—M,\)+ (K+ B+ 1/2)/(2Mr
tan g, ()~ m(Kro/2) k( )+H(K+8 )/ (2Mrg) 79

L(B+1)I'(B) Ax(—M,N)+(K—=B+1/2)/(2Mrp)°

Therefore, as\ increases from 0 to 1, each time the <1, n,(M,1) or n5(—M,1) in the critical case will not be a
Ax(—M,\) decreases from near and larger than the valuemultiple of 7, respectively, so that Eq79) is violated for
—(K—=pB+1/2)/(2Mr,) to smaller than that value, the de- those critical cases.

nominator in Eq(78) changes sign from positive to negative  Furthermore, for potentidb3) with a tail at infinity, when
and the rest factor keeps negative, so thgt—M,\) jumps  n>2, even if it contains a logarithm factor, for any arbi-
by —7r. Simultaneously, from Eq.75), an overlap between trarily small positivee, one can always find a sufficiently
the variant ranges of the ratio at two sidesrgfdisappears large r, such that|V(r)|<e/r? in the regionry<r<w.
such that a bound state becomes a scattering state of a neddrus, from Eqs(67) and (73) we have for the sufficiently
tive energy. Conversely, each time thg(—M,\) increases smalle,

across that valueyg(—M,\) jumps by, and a scattering

state of a negative energy becomes a bound state. a=(K?2—K=2Me+ 1/14)Y>~K—-1/2,
In summary, we obtain the modified relativistic Levinson
theorem for noncritical cases when the potential has a tail B=(K?>+KF2Me+1/4°~K +1/2.

(63) with n=2 at infinity:
Hence, Eq.(79) coincides with Eq.(58). In this case, the
Sc(M)+ 8 (—M)=nem+ (2K —a— B)ml2.  (79) Levinson theorent58) holds for the noncritical case.
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