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Distorted-wave calculation of cross sections for inner-shell ionization by electron
and positron impact

Silvina Segui, Michael Dingfelder, and Francesc Salvat*
Facultat de Fı´sica (ECM), Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

~Received 7 March 2003; published 24 June 2003!

The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections
for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within
the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting
potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees
orthogonality of all the orbitals involved and simplifies the calculation of exchangeT-matrix elements. The
interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb
interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for
projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algo-
rithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code
with the distorting potential set to zero with equivalent results generated by a more robust code that uses the
conventional plane-wave Born approximation. Sample calculation results are presented for ionization ofK- and
L-shells of various elements and compared with the available experimental data.
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I. INTRODUCTION

Knowledge of accurate cross sections for ionization
inner atomic electron shells by electron impact is requi
for a quantitative analysis with various spectroscopic te
niques such as Auger-electron spectroscopy, electron p
microanalysis~EPMA!, and electron energy-loss spectro
copy. These cross sections are also needed for the descri
of the energy spectra of x-rays from sources used in x
fluorescence analysis and for medical or industrial diagno
Currently, there is a practical demand for accurate elect
~positron! interaction data for Monte Carlo simulation of ra
diation transport in matter, which is of application in mu
tiple fields, including the aforesaid analytical and cont
techniques as well as detector response studies, radi
therapy, and dosimetry.

Unfortunately, a systematic method for calculating ele
tron impact ionization cross sections for atoms from fi
principles has not yet been generally agreed upon. Calc
tions within the plane-wave first-order Born approximati
~PWBA! provide reliable energy-loss differential ionizatio
cross sections and integrated~total! cross sections for high
energy electrons. The accuracy of the PWBA deteriora
progressively when the kinetic energy of the projectile d
creases towards the ionization threshold, because of th
creasing distorting effect of the atomic field on the incide
and emerging waves and, in the case of projectile electr
because of exchange effects. As an alternative to more a
rate first-principles calculations, semiempirical modificatio
of the PWBA have been proposed to account for these eff
@1,2#. Furthermore, empirical and semiempirical analytic
cross-section formulas have been proposed for practical
@3–5#. Most of these formulas only yield the total ionizatio
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cross section and are based on existing experimental d
which are limited both in number and in accuracy~see be-
low!.

Recent experimental and theoretical studies of the tri
differential cross section forK-shell ionization by impact of
relativistic electrons@6# have shown that the PWBA is
clearly insufficient to describe these interactions. To ge
quantitative agreement with the experiments, calculati
must be performed within the distorted-wave first-order Bo
approximation~DWBA!, in which the initial and final pro-
jectile wave functions include the distortion caused by
atomic field, also allowing the description of exchange
fects in a consistent way. DWBA calculations for the exci
tion of multiply charged ions have been described by vario
authors@7,8#, and applied to generate systematic numeri
tables and analytical approximations for the total ionizat
cross section of ions. To the best of our knowledge, sim
systematic calculations for the ionization of neutral atoms
not exist. It is also worth mentioning that the studies
Keller and co-workers@6# demonstrate the reliability of the
DWBA for ‘‘hard’’ interactions of fast projectiles, involving
large energy transfers for which the two free electrons a
the collision have relatively high energies. It is then of fu
damental interest to investigate the reliability of the DWB
in the complementary regime of ‘‘soft’’ collisions and pro
jectiles with low, near threshold energies.

The lack of systematic DWBA calculations for inner-she
ionization of neutral atoms is mostly due to the extrem
slow convergence of the partial-wave expansions for en
getic particles. Note that the calculations involve distorte
wave functions of fast free electrons~the initial energy of the
projectile is larger than the ionization energy of the act
shell!, which oscillate rapidly over ample space volumes.
related difficulty is that single-particle wave functions mu
be calculated to high accuracy to ensure that accumul
errors from the multiple integrals and sums will not com
pletely hide the final numerical value. Nevertheless, w
©2003 The American Physical Society10-1
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currently available computational power and numerical te
niques, DWBA calculations of neutral atom inner-shell io
ization by charged particle impact are feasible, at least
limited energy and energy-loss ranges.

In the present paper, we describe a relatively sim
physical model and a robust calculation algorithm that
have developed to compute the DWBA energy-loss differ
tial cross sections~DCSs! for ionization of inner shells of
neutral atoms and ions by the impact of electrons and p
trons. We are mostly interested in the energy range from
ionization threshold up to, say, 100 keV for which the effe
tive interaction between the projectile and the active tar
electron shell reduces to the instantaneous Coulomb inte
tion. An objective of our research is to generate a system
database of inner-shell ionization cross sections of atom
be used in practical Monte Carlo simulations of radiati
transport and, specifically, for EPMA and x-ray generat
studies. In practice, the calculation of DWBA ionizatio
cross sections described here is feasible only for projec
kinetic energies in a limited range, namely, from the ioniz
tion threshold up to about ten times this value. For hig
kinetic energies, we must content ourselves with a m
pragmatic procedure that consists of introducing empir
~Coulomb and exchange! corrections to the PWBA. Ideally
these corrections should have a negligible effect on the D
at high energies and reproduce the DWBA results near
ionization threshold. Work along these lines is in progre
and will be presented elsewhere@9#.

A comment on the experimental information available
validate theoretical calculations is in order. Measured to
cross sections forK-shell ionization published prior to 199
were compiled by Longet al. @10#. Since then, additiona
measurements forK shells have been reported@11–16#. An
inspection of the currently available experimental data
veals that these are still scarce for many elements and, w
these are available, one usually finds significant discrep
cies between data from different authors. These discrep
cies are often much larger than the stated experimental
certainties, reflecting the fact that measurements
ionization cross sections face considerable experimental
ficulties. The situation forL and outer shells is even les
satisfactory. In the analysis of our theoretical results,
shall heavily rely on total cross sections measured by Llo
et al. @15# and Campos et al.@16#, mostly because these a
affected by relative uncertainties much smaller than d
from other sources. These authors give the ‘‘shape’’ of
cross section versus energy curve with a relative accurac
;3%; most of the uncertainty in the total cross sectio
comes from the global energy-independent factor that tra
forms their relative data~x-ray intensities! into absolute
cross-section values.

The paper is organized as follows. The theoretical fram
work is sketched in Sec. II. In Sec. III, we describe the p
tentials adopted in the calculations. The numerical meth
employed to solve the radial Dirac equations and to sum
partial-wave series are described in Sec. IV, which also c
tains an analysis of the accuracy and stability of the wh
calculation. In Sec. V, total ionization cross sections obtain
from the proposed DWBA method are compared with
06271
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available experimental data for electron and positron ion
ing collisions with various elements and different shells, a
some concluding remarks are given.

II. THEORY

We shall briefly formulate a semirelativistic version of th
DWBA for inelastic collisions of electrons and positron
i.e., particles with spin1

2 , massme, and chargeZ0e (Z05
71) with an atom or ion of the elementZ (5 atomic num-
ber! havingN electrons in its ground state. Although we a
mainly concerned with collisions of electrons and positro
the formal theory is applicable to particles with other mas
and charges. We will assume that the mass of the target a
is infinite, which is a good approximation when the project
is an electron or positron, and compute the cross section
the laboratory reference frame, where the target is at r
Figure 1 displays the kinematics of the collision. Before t
interaction, the projectile moves with velocityvi , linear mo-
mentumpi5\k i , and kinetic energye i . The corresponding
values after the collision arevf , pf5\k f and e f , respec-
tively. The ionized electron is ejected with energyeb and
momentumpb5\kb .

In the Coulomb gauge, the effective interactionHint(0,1)
between a charged Dirac particle ‘‘0’’ and an electron ‘‘1
can be expressed as@17#

Hint~0,1!52
Z0e2

ur12r0u
1

Z0e2

2p2 E dq
a0•a12~a0•q̂!~a1•q̂!

q22~W/\c!2

3exp@ iq•~r12r0!#, ~1!

wherea0 anda1 denote Dirac matrices of the projectile an
the electron, respectively, andW is the energy exchanged i
the interaction. The first term is the instantaneous Coulo
interaction. The second one accounts for the exchang
virtual photons in the lowest non-vanishing perturbation
der. This term is usually referred to as the transverse in
action. As the contribution of eacha is of the order ofv/c,
wherev is the velocity of the particle, the effect of the tran
verse interaction is appreciable only when the two intera
ing particles have relativistic speeds. Here, we disregard
part of the interaction and assume that the collisions are
propriately described by the~longitudinal! Coulomb term
alone. This sets an upper limit to the energy interval wh
our DWBA is applicable. For projectiles with higher ene
gies, the complete effective interaction~1! can be considered
within the PWBA, which provides a reliable description
inelastic collisions in the high-energy limit.

FIG. 1. Kinematics of the interaction.
0-2
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In our formulation of the DWBA, the Hamiltonian of th
system~projectile1target! is expressed as@18#

H~0,1, . . . ,N!5HT~1, . . . ,N!1HP~0!1H8~0,1, . . . ,N!,
~2!

whereHT(1, . . . ,N) andHP(0) are the ‘‘unperturbed’’ Dirac
Hamiltonians of the target and the projectile, respective
H8 is a perturbation Hamiltonian which includes the intera
tion of the projectile with the nucleus and the atomic ele
trons,

H8~0,1, . . . ,N!5Z0ewnuc~r 0!1(
I 51

N

Hint~0,I !2VP~r 0!.

~3!

Here,VP(r 0) is the distorting central potential ‘‘seen’’ by th
projectile, which should be chosen in such a way thatH8 can
be treated as a first-order perturbation. Evidently, within t
model, the eigenstates of the unperturbed Hamiltonian of
total system can be factorized in the for
c(0)Cn(1, . . . ,N). To facilitate numerical computations
the states of the target atom are described by using
independent-electron approximation, i.e., atomic electr
e
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ed
on
e
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io
.
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a
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are considered to move independently in a common cen
field VT(r ), which is assumed to describe both the initial a
the final atomic states. Hence, these states can be repres
as single Slater determinants,Cn5det@ca#, made up ofN
orbitals ca that are solutions of the Dirac equation for th
potentialVT(r ) and are, therefore, mutually orthogonal. Th
also ensures the orthogonality of the atomic statesCn . The
projectile wave functionsc i(r0) satisfy the Dirac equation
for the distorting fieldVP(r 0).

In this approximation, the only allowed transitions of th
target atom are single-electron excitations, i.e., the inte
tion causes excitations of the target atom from the ini
stateCa ~usually the ground state! to a final stateCb , which
differs from Ca by a single orbital. This is equivalent to th
so-called one-active-electron approximation, which cons
of considering only the excitations of a single electron fro
a bound orbitalca to an unoccupied~bound or free! orbital
cb , whereas the other atomic electrons behave as mere s
tators and their orbitals remain frozen in the course of
interaction. Thus, theT-matrix element that describes th
transitions from an initial statec iCa to a final statec fCb is
expressed as
Tf i5^c f~0!Cb~1, . . . ,N!uH8~0,1, . . . ,N!uc i~0!Ca~1, . . . ,N!&

5^c f~0!cb~1!uHint~0,1!uc i~0!ca~1!&, ~4!
ted

of
where ‘‘1’’ identifies the active target electron. Formally, th
theory can be liberated from the one-active-electron appr
mation by summing the interactions of the projectile with t
remainingN21 atomic electrons and using generic atom
wave functions. In the case of ionization of inner clos
shells, the use of more elaborate atomic wave functi
would have a negligible impact on the calculated cross s
tions. In practice, the one-active-electron approximat
yields a reasonably accurate description of the excitat
~ionization! of inner~tightly bound! shells of atoms and ions

We use bound orbitals of the form@19#

cnkm~r !5
1

r S Pnk~r !Vkm~ r̂ !

iQnk~r !V2km~ r̂ !
D , ~5!

where Vkm are spherical spinors. Heren is the principal
quantum number andk is the relativistic angular momentum
quantum number, which is related to the orbital and to
angular momentum quantum numbers,, and j 5,6 1

2 ,
through

k5~,2 j !~2 j 11!.

The orbitals~5! are solutions of the one-electron Dirac equ
tion
i-

s
c-
n
n/

l

-

@ca•p1~b21!mec
21VT~r !#cnkm~r !5enkcnkm~r !.

~6!

The radial functionsPnk(r ) andQnk(r ) satisfy the following
coupled differential equations:

dPnk

dr
52

k

r
Pnk1

enk2V12mec
2

c\
Qnk ,

dQnk

dr
52

enk2V

c\
Pnk1

k

r
Qnk , ~7!

with the boundary conditionsPnk(0)50 andQnk(0)50.
Free states for the projectile, as well as for the ejec

electron, are described by distorted plane waves@20# for the
corresponding central potential@VP(r ) or VT(r )],

ckm
(6)~r !5

1

k
A e12mec

2

p~e1mec
2!
(
k,m

i,exp~6 idek!

3$@Vkm~ k̂!#†xm%cekm~r !, ~8!

wheree andk are the kinetic energy and the wave number
the particle, respectively,xm are Pauli spinors~i.e., eigenvec-
tors of the Pauli spin matrixSz),
0-3
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x11/25S 1

0D , x21/25S 0

1D , ~9!

andcekm(r ) are spherical waves of the type

cekm~r !5
1

r S Pek~r !Vkm~ r̂ !

iQek~r !V2km~ r̂ !
D .

The functionsPek(r ) and Qek(r ) satisfy Eqs.~7! with the
appropriate potential.ckm

(6) behaves asymptotically as a plan
wave plus a spherical incoming (2) or outgoing (1) distor-
tion. The phase shiftsdek are determined by the large-r be-
havior of the radial functionPek(r ). With the radial func-
tions normalized in such a way thatPek(r ) oscillates
asymptotically with unit amplitude, the distorted waves a
normalized on the wave-number scale, i.e.,

E @ck8m8
(6)

#†ckm
(6)dr5d~k82k!dm8m , ~10!

wheredm8m is the Kronecker delta (51 if m5m8 and 50
otherwise!.

The DCS, differential in the energy lossW, for the exci-
tation of the active electron from the orbitalca to a free
orbital cb with positive energyeb is given by@21#

ds ion

dW
5

~2p!4

\v i
kbkf

e f1mec
2

c2\2

eb1mec
2

c2\2 E E uTf i u2dk̂bdk̂ f .

~11!

In most practical cases, the target atoms are rando
oriented, the incident beam is unpolarized and final magn
and spin states are not distinguished. Under these circ
stances, the DCS for ionization of a subshell (na ,ka) occu-
pied byqa equivalent electrons is obtained by averaging o
the initial degenerate magnetic and spin states and summ
over final degenerate states. In addition, owing to the
thogonality of the angular functions involved, the integ
over k̂b can be readily evaluated. After this process, the D
can be expressed as

ds ion

dW
5qa

~2p!4

\v i
kbkf

e f1mec
2

c2\2

eb1mec
2

c2\2

1

2@ j a#

3 (
ma ,mSi

(
mSf

(
kb ,mb

E uTf b,ia
(sw) u2dk̂ f , ~12!

where@ j a#5(2 j a11) and

Tf b,ia
(sw) [^ck fmSf

(2) ~0!cebkbmb
~1!uHint~0,1!u

3ckimSi

(1) ~0!cnakama
~1!& ~13!

is the ‘‘spherical’’ T-matrix element, which involves a
central-field orbitalcebkbmb

(1) of type ~5! instead of a dis-
torted wave for the ejected electron.
06271
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Using the well-known expansion of the Coulomb pote
tial in terms of spherical Racah tensors@22#,

1

ur02r1u
5 (

L50

` r ,
L

r .
L11

C(L)~ r̂0!•C(L)~ r̂1!, ~14!

with r ,5min(r0,r1) andr .5max(r0,r1), and elementary an
gular momentum algebra, it is possible to reduce the ma
elements to a relatively simple form. The final expression
the DCS is

ds ion

dW
5

2Z0
2e4

\v i

~e f12mec
2!~eb12mec

2!

c4\4ki
2kfkb

e i12mec
2

e i1mec
2

3(
kb

(
k i

(
k f

(
L

1

@L#
~Xe fk f ,ebkb ,L

e ik i ,naka !2, ~15!

where

Xe fk f ,ebkb ,L
e ik i ,naka 5v~L,, f ,, i !v~L,,b ,,a!A@ j a , j b , j i , j f #

3Re fk f ,ebkb ,L
e ik i ,naka S L j i j f

0
1

2
2

1

2
D

3S L j a j b

0
1

2
2

1

2
D . ~16!

Here, the symbols(:::) denote 3j vector coupling coeffi-
cients; we have used the abbreviation@x,y, . . . #5(2x11)
3(2y11) . . . andv(,1 ,,2 ,,3)51 if ,11,21,3 is even
and50 otherwise. The quantitiesRe fk f ,ebkb ,L

e ik i ,naka are Slater in-

tegrals,

Re fk f ,ebkb ,L
e ik i ,naka 5E E dr0dr1

r ,
L

r .
L11 @Pe ik i

~r 0!Pe fk f
~r 0!

1Qe ik i
~r 0!Qe fk f

~r 0!#@Pnaka
~r 1!Pebkb

~r 1!

1Qnaka
~r 1!Qebkb

~r 1!#. ~17!

The total ionization cross section is

s ion5E
ueau

Wmax ds ion

dW
dW, ~18!

where the integral extends over the allowed energy-tran
interval, from the ionization thresholdueau up to Wmax5ei .

The theory presented up to this point is appropriate
describe positron ionizing collisions~and of any other spin12
projectiles that are distinguishable from the electron!. Posi-
trons differ from electrons in two important features. Fir
since the electric charges have opposite signs, the disto
field VP is repulsive for positrons and attractive for electron
Of course, this difference is not accounted for in the PWB
which is equivalent to the present theory withVP set equal to
0-4
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zero. Second, a projectile electron is indistinguishable fr
the active target electron and, therefore, it can undergo
change scattering. The description of exchange scatterin
simple when the initial and final orbitals of the targetand the
projectile are mutually orthogonal. The problem is mu
more difficult to handle when the orthogonality is not gua
anteed~see, e.g., Ref.@23#!, as happens in PWBA calcula
tions.

Electron collisions

To account for the exchange effects in the simplest p
sible way, we assume that the projectile ‘‘sees’’ the sa
field as the active electron, i.e.,VP[VT . The projectile
spherical waves are then orthogonal to the orbitals of
target active electron. The effect of exchange is described
antisymmetrizing the initial and final states in the transiti
matrix elements; that is, the transition matrix elements~4!
are replaced by

Tf i
el5^A@c f~0!cb~1!#uHint~0,1!uA@c i~0!ca~1!#&,

~19!

where the operatorA is the two-particle antisymmetrizer. A
the interaction is symmetrical, and the four orbitals are m
tually orthogonal, theT-matrix element for electrons reduce
to the following two terms:

Tf i
(el)[^ck fmSf

(2) ~0!cebkbmb
~1!uHint~0,1!u

3ckimSi

(1) ~0!cnakama
~1!&

2^ck fmSf

(2) ~1!cebkbmb
~0!uHint~0,1!u

3ckimSi

(1) ~0!cnakama
~1!&, ~20!

which describe direct and rearrangement transitions, res
tively. The expression for the exchange term is derived,
lowing the same scheme as for the direct term. The resul
DCS is

ds ion
el

dW
5

2e4

\v i

~e f12mec
2!~eb12mec

2!

c4\4ki
2kfkb

e i12mec
2

e i1mec
2

3(
k i

(
k f

(
kb

F(
L

1

@L#
~Xe fk f ,ebkb ,L

e ik i ,naka !2

1(
L8

1

@L8#
~X

ebkb ,e fk f ,L8

e ik i ,naka !2

22(
L

(
L8

~21!L1L811H j a j b L

j i j f L8
J

3Xe fk f ,ebkb ,L
e ik i ,naka X

ebkb ,e fk f ,L8

e ik i ,naka G , ~21!

where X
ebkb ,e fk f ,L8

e ik i ,naka is the X coefficient, Eq.~16!, corre-

sponding to the exchangeT-matrix element
06271
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X
ebkb ,e fk f ,L8

e ik i ,naka 5v~L8,,b ,, i !v~L8,, f ,,a!A@ j a , j f , j i , j b#

3R
ebkb ,e fk f ,L8

e ik i ,naka S L8 j i j b

0
1

2
2

1

2
D

3S L8 j a j f

0
1

2
2

1

2
D , ~22!

which is obtained from Eq.~16! by means of the replacemen
f↔b. Note that, owing to the indistinguishability of th
electrons in the final channel, the maximum allowed ene
transfer is

Wmax5~e i1ueau!/2. ~23!

III. INTERACTION POTENTIALS

Our formulation is based explicitly on the assumption th
the active electron and the projectile move under the in
ence of local potentialsVT(r ) andVP(r ) (5VT if the projec-
tile is an electron!. To simplify the description of the presen
DWBA calculations, we shall set the target electron poten
VT equal to the self-consistent, spherically averaged, Dir
Fock-Slater~DFS! field, V(DFS)(r ), which is completely de-
termined by the densityr(r ) of the atomic electrons. The
DFS potential is given by

V(DFS)~r !52ewnuc~r !2ewel~r !1Vex
(Slater)~r !,

where wnuc(r )5Ze/r is the electrostatic potential of th
nucleus,

wel~r !5 2
e

r E0

r

r~r 8!4pr 82dr82eE
r

`

r~r 8!4pr 8dr8

~24!

is the electrostatic potential of the atomic electron cloud, a

Vex
(Slater)~r !52e2~3/p!1/3@r~r !#1/3 ~25!

is Slater’s local approximation to the exchange interacti
To reproduce the correct large-r behavior of the potential,
2(Z2N11)e2/r , we adopt Latter’sad hoc prescription
@24,25# and define

V(DFS)~r !

[H 2ewnuc~r !2ewel~r !1Vex
(Slater)~r ! if r ,r Latter,

2~Z2N11!e2/r if r .r Latter,

~26!

where the cutoff radiusr Latter is the outer root of the equatio
0-5
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2ewnuc~r !2ewel~r !1Vex
(Slater)~r !52~Z2N11!e2/r .

~27!

The atomic electron orbitalscnkm(r ) satisfy the one-
electron Dirac equation~6! with the DFS potential. We as
sume that the one-electron eigenvalueenk is approximately
equal to the ionization energy of the shell (n,k). In reality,
experimental shell ionization energies@26# differ slightly
from the corresponding one-electron DFS eigenvalues,
this introduces a certain error in the calculated cross secti
Fortunately, a large fraction of this error can be elimina
by simply rescaling the energy axis. Note, however, that s
a correction has not been applied to the calculation res
presented below.

As indicated above, for the electron scattering, we c
sider VT(r )5VP(r )5V(DFS)(r ) so that the orbitals of the
projectile and the active target electron are mutually ortho
nal. This choice amounts to assuming that the projectile
target electrons interact with the inactive~spectator! atomic
electrons in the same way, which is a plausible assumpt
Note however, that this disregards the dependence of
exchange interaction on the electron velocity. For the po
tron scattering, it seems natural to takeVP(r ) equal to the
electrostatic interaction energy with the atomic charge dis
bution,

Vst~r !5ewnuc~r !1ewel~r !. ~28!

Unfortunately, this potential reaches its asymptotic fo
(50) at distances that are much larger thanr Latter, and this
makes the numerical computation of the ionization cross s
tion much more difficult and lengthier than for electrons~see
below!. To circumvent this difficulty, we takeVP(r )5
2V(DFS)(r ), i.e., the distorting field is assumed to be t
same as for an electron, but with the opposite sign. This fi
includes exchange contributions, which may seem inapp
priate for a positron. Nonetheless, at large radial distan
the potential2V(DFS)(r ) does represent the interaction of th
positron with the nucleus and the spectator atomic electr
Note that a part of the local exchange potential serves
eliminate the self-interaction of the atomic electrons~i.e., the
interaction energy with their own charge distributions!; a
similar term must be subtracted from the electrostatic po
tial ~28! to give the effective interaction of the positron wi
the inactive atomic charges.

The characteristics of the numerical algorithms employ
in calculating inelastic cross sections are largely independ
of the details of the adopted interaction potentials. In pr
ciple, we can expect to obtain more reliable results by us
a more sophisticated atomic-structure model. In pract
however, the response of inner shells is determined by
innermost part of the atomic electron distribution, which
well described even by the simple DFS model.

IV. NUMERICAL ASPECTS

The theory presented in Sec. II has been implemented
FORTRAN 77computer program namedDWION, which calcu-
lates ionization cross sections of closed inner shells of at
and positive ions by the impact of electrons and positrons
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this section, we comment on the essential features of
computer code; a detailed description of the numerical al
rithm will be published elsewhere.

The radial wave functions of the bound and free orbit
involved are calculated using the subroutine packageRADIAL

developed by Salvatet al. @27#, which implements a piece
wise power-series solution method. The procedure cons
of replacing the potential functionrV(r ) by the interpolating
natural cubic spline, and then evaluating the solution of
radial Dirac equations in each grid interval by summing
exact series expansion up to the required accuracy. The m
advantage of the power-series method in front of more c
ventional solution methods~e.g., Runge-Kutta and predicto
corrector methods! is that truncation errors are effectivel
eliminated. The numerical solution is extended from the o
gin up to a certain radial distancer m, where the potential
function rV(r ) has reached its asymptotic~constant! value.
For r .r m, the radial functions can be expressed as a lin
combination of the regular and irregular Dirac Coulom
functions, i.e., the exact solutions of the radial Dirac Equ
tions ~7! for a Coulomb field.RADIAL delivers nominally
exact Dirac Coulomb functions, which are evaluated fro
their analytical expressions in terms of nonrelativistic Co
lomb functions. Therefore, the numerical outward integrat
can be discontinued at a radiusr m ~usually equal tor Latter),
where the value of the potentialV(r ) is still appreciable.
This not only saves computer time but also yields supe
accuracy.

Vector coupling coefficients are evaluated directly fro
their analytical formulas, as given, e.g., by Rose@20#. The
straight implementation of these formulas in aFORTRAN 77

code gives very inaccurate results for coefficients with m
erately large quantum numbers. These coefficients are t
cally much less than unity, and are calculated as the sum
finite series whose terms alternate in sign and, therefore,
result is directly affected by roundoff errors. These m
mask the sought-for coefficient value completely, even wh
using double precision arithmetic. We have written a subr
tine library that computes vector coupling coefficien
~Clebsch-Gordan, 3j and 6j coefficients! using a radix-1000
representation of real numbers with 32 radix-1000 dig
which is equivalent to using a decimal representation with
digits. In the course of the calculation, roundoff errors a
controlled very strictly to ensure that the final coefficie
value, delivered as a double precision constant, is ex
~within double precision accuracy,;15 decimal digits!. This
has been verified by checking that the calculated coefficie
satisfy various orthogonality relations.

Due to the large number of contributions from the four
fivefold summations, it is important to take advantage of
selection rules imposed by the angular factors, which con
erably reduce the number of terms to be effectively cal
lated. The sums are performed in the order indicated in
~15! or Eq. ~21!. For given values ofk i andk f , the allowed
values forkb , L, andL8 are determined by triangle inequal
ties and parity considerations, and the summations are
ried out over the complete range of indices for which w
have nonzero contributions. The summation overk f is evalu-
ated for increasing values oft f5uk f u, until the combined
0-6
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contributions of the terms withk f5t f andk f52t f amount
to less than a small fraction of the accuracy required for
whole calculation~0.005 times the tolerance!. Finally, the
summation overk i is calculated for increasing values oft i
5uk i u by adding the combined contributions of the term
with k i5t i and k i52t i . This summation is discontinued
and the calculation ended, when the relative contribut
from the last added pair of terms is less than 0.05 times
tolerance. The maximum considered value oft i and t f is
200, which has been proven to be large enough for calcu
ing DCSs for projectiles with kinetic energies up to 9–
times the ionization energy.

As partial-wave series are slowly convergent, the calcu
tion of the DCSs involves the evaluation of a large num
of Slater integrals of the form~17!. Moreover, because of th
highly oscillatory character of the integrand and the lo
range of the Coulomb interaction, the evaluation of the
integrals is difficult and takes a very large fraction of t
computation time. To optimize this evaluation, we use
method similar to the one described by Hartree@28# for
bound states. We write the radial integral~17! as

I L[Re fk f ,ebkb ,L
e ik i ,naka 5E

0

`

drg~r !H E
0

r sL

r L11
f ~s!ds

1E
r

` r L

sL11
f ~s!dsJ , ~29!

with

f ~s!5Pnaka
~s!Pebkb

~s!1Qnaka
~s!Qebkb

~s! ~30!

and

g~r !5Pe ik i
~r !Pe fk f

~r !1Qe ik i
~r !Qe fk f

~r !. ~31!

Note that f (s) involves the radial functions of the initia
bound orbital. Therefore,f (s) vanishes fors greater than the
‘‘active shell radius’’ r a, defined as the distance at whic
these radial functions effectively vanish. Following Hartr
@28#, the functionY(r ), defined as

Y~r !5H E
0

r S s

r D
L

f ~s!ds1E
r

`S r

sD
L11

f ~s!dsJ , ~32!

is determined by solving two differential equations, which
much faster than performing an integralfor each r in the
grid.

The integral

I L5E
0

`

g~r !
1

r
Y~r !dr ~33!

is evaluated in two steps. First, the integrand is tabulate
the points of a nonuniform grid that spans the interval~0,r a)
and that, by means of a simple change of variable, tra
forms into a uniform grid. The integral over the inner inte
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val ~0,r a) is then calculated by using the six-point Lagran
quadrature rule. For large enough radii, the radial functio
are expressed as linear combinations of regular and irreg
Dirac Coulomb functions. Using the known asymptotic e
pansions of the latter@27#, we can write

Pek~r !5A1~r !cosfek1A2~r !sinfek ,

Qek~r !5A3~r !cosfek1A4~r !sinfek , ~34!

with

fek5kr2h ln r 1Fdek1argG~l i1 ih!

2h ln~2k!2~l21!
p

2 G , ~35!

where h is the Sommerfeld parameter and the functio
Aj (r ) are defined as power series ofr 21, with coefficients
that are obtained analytically. It is assumed that th
asymptotic expansions converge forr .r a; otherwise, we
simply increase the value ofr a to fulfill this condition. Thus,
the integral over the outer interval (r a,`) is reduced to the
form

I L
out[E

r a

`

g~r !
1

r
Y~r !dr5 (

n50

` E
r a

`

$As,n sin~bs,nr 2cs,nln r

1ds,n!1Ac,n cos~bc,nr 2cc,n ln r 1dc,n!%
1

r n1L11
dr,

~36!

whereAs,n , bs,n , . . . are constants defined by analytical e
pressions and recurrence relations. The integrals in this
pression are the real and imaginary parts of the following

E
r a

`

exp@ i~br2c ln r 1d!#
1

r n1L11
dr

5eid~2 ib!n1L1 icG~2n2L2 ic,2 ibr0!, ~37!

whereG(a,z) is the incomplete gamma function with com
plex arguments@29#,

G~a,z![zaE
1

`

e2zuua21du. ~38!

In our computer code,G(a,z) is evaluated from its contin-
ued fraction representation@29#,

G~a,z!5e2zzaS 1

z1

12a

11

1

z1

22a

11

2

z1

32a

11
••• D ,

~39!

which yields nominally exact~FORTRAN double precision!
values. With all this, the outer integralI L

out can be evaluated
0-7
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as a sum of integrals given by closed analytical expressi
In practice, a convergence is usually attained after add
aboutn550 terms.

Our computer code automatically determines the m
mum value of the cutoff radiusr a for which the asymptotic
expansions of free Coulomb wave functions converge.
have checked the consistency of the whole calculation
just comparing the results obtained with different values
the cutoff radiusr a. The stability of the algorithm is such
that, in typical cases, a variation ofr a by a factor of the order
of 2–5 induces changes in the sixth decimal digit of t
calculated DCSs. Therefore, the numerical relative erro
the DCSs is expected to be of the order of 0.01% or less.
calculation method works provided only that enough co
puter time and memory storage are available.

It is worth mentioning that the numerical algorithm us
to calculate the radial wave functions of free states is
applicable when the kinetic energy of the particle is t
small. The reason is that, to normalize the state, numer
radial functions have to be matched atr m to a linear combi-
nation of regular and irregular Dirac Coulomb functions.
regular Coulomb functions increase without limit when t
radius r decreases below the classical turning point. Wh
the kinetic energy is small and the orbital angular moment
, increases, the turning point moves away from the ori
and the numerical integration procedure must be applied
wider and widerr intervals. Eventually, it becomes too ine
ficient and we need to avoid calculations involving low k
netic energies. This occurs for energy lossesW near the ion-
ization energy~the ejected electron is slow! and, in the case
of positrons, forW;e i ~the positron slows down to rest!. To
avoid computing these extreme cases, our code uses an
tive algorithm to determine theW values for which the DCS
needs to be calculated. In the initial stage, the DCS is ca
lated for a coarse uniform grid with approximately ten poin
that span the interval fromW5ueau to Wmax excluding the
end points. This grid is used to set a natural cubic spline
interpolates ln(dsion /dW) as a function ofW. The DCS is
then evaluated at the midpoint of the subinterval where
spline has its largest curvature~including the first and las
subintervals, where the spline is used to extrapolate
DCS! and a new interpolating spline is determined. The p
cess continues until the integral of the DCS~i.e., of the in-
terpolating spline! reaches its saturation value~to within the
required tolerance!. With this adaptive method, we need on
to calculate the DCSs forW values that are sufficiently fa
from the end points of the allowed interval to avoid t
aforesaid numerical difficulty.

Accuracy and stability of the calculations

It is clear that the numerical calculation of the DWB
ionization DCS, as given by Eqs.~15! and ~21!, is not only
very time consuming but also prone to be affected by ac
mulated numerical errors. To give an idea of the difficulty
these calculations, we would like to mention that to ge
convergence of the series~15!, we need to sum up as man
as 50 000 terms~or even more!. Hence, it is essential to
devise a rigorous method to test the absolute accuracy o
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whole calculation performed by the programDWION. Unfor-
tunately, there is no simple way to test DWBA calculatio
in which the projectile sees a nonvanishing fieldVP(r ). The
only possible alternative is to run the code withVP(r )[0
and disregarding the exchangeT matrix in the case of elec
trons. In this case, the code should give results identica
those obtained from the PWBA, although it performs stric
the same operations as for a DWBA calculation.

The point is that PWBA calculations are much easier a
robust because the integrals involving the projectile pla
waves are calculated analytically. We have written a sec
computer program namedPWION that calculates ionization
DCSs using the PWBA, with exactly the same physic
model as in the present DWBA calculations. To validate t
code, calculations were performed for hydrogenic ions, w
the speed of lightc multiplied by 106. The results were
found to agree to within six significant digits with the no
relativistic PWBA DCS~which was calculated from the ana
lytical generalized oscillator strength@30# by a single
quadrature!. The comparison of DCSs calculated withPWION

andDWION with VP50 and no exchange corrections for ele
trons then provides a stringent and unambiguous test of
numerical accuracy and stability of theDWION code.

Figure 2 displays DCSs for ionization of the argonK shell
by the impact of electrons with various kinetic energies c
culated according to the PWBA by the codesPWION and
DWION, the latter withVP50 and considering that the pro
jectile is distinguishable from the target electron~i.e., with
exchange corrections switched off!. The DWION data
~crosses! were automatically generated by the code using
adaptive procedure described above; these are unev
spaced inW. The corresponding continuous DCS is obtain
from this discrete set of values by natural cubic spline int
polation~extrapolation! of ln(dsion /dW) as a function ofW.
The differences between DCSs and total cross sections
sulting from the two calculations are less than the tolera
adopted in theDWION calculation (1023). The insets in Fig.
2 show the relative difference between the DCSs calcula
by the two codes, which is, in general, less than 0.1
Slightly larger differences are seen in the low-energy-lo
region, where the spline is used to extrapolate to the ion
tion threshold. Similar comparisons of PWBA results fro
the DWION and PWION codes have been made for multip
cases with different atomic numbers, active electron she
and projectile kinetic energies. The calculated DCSs and
tal cross sections always differed by less than the tolera
adopted inDWION.

We have also compared PWBA total cross sections ca
lated with both codes as functions of the kinetic energy
the projectile; the results are illustrated in Fig. 3 for the ca
of the K shell of argon. Differences in total cross sectio
are, in general, below 0.1%, except in the near-thresh
range where the difference rises to;0.3%. As mentioned
above,DWION ~and, to a lesser extent, alsoPWION! has diffi-
culties to calculate cross sections for projectiles with kine
energies near the ionization threshold. The crosses in Fi
are data calculated by theDWION code. These extend down t
energies very close to the threshold and, therefore, this l
tation is not critical for practical purposes. The excelle
0-8



-
-

d-

DISTORTED-WAVE CALCULATION OF CROSS . . . PHYSICAL REVIEW A 67, 062710 ~2003!
FIG. 2. The PWBA DCSs for
ionization of theK shell of argon,
ueau53177.6 eV, by electrons
with kinetic energye i55, 10, 15,
and 20 keV. The solid curves rep
resent results from the conven
tional PWBA calculated by our
programPWION. Crosses are DCS
values generated by the distorte
wave programDWION with the op-
tion VP50 and no exchange.
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agreement between PWBA results from the two codes d
onstrates the accuracy of the numerical algorithm imp
mented inDWION and, at the same time, confirms that o
estimation and control of numerical errors are appropriat

V. RESULTS AND DISCUSSION

The programDWION has been used to perform calcul
tions of total cross sections for ionization of theK and L
shells of neutral atoms by electron and positron impact.
assess the reliability of these calculations, we compare
our numerical results with experimental ionization cross s
tions. As mentioned in the introduction, experimental d
are usually affected by considerable uncertainties, which
evident from the large differences between data from diff

FIG. 3. PWBA total cross section forK-shell ionization of argon
by the impact of electrons as a function of the kinetic energye i of
the projectile. Crosses are results from theDWION code with VP

50 and no exchange correction; the solid curve represents re
from the conventional PWBA calculated with ourPWION code. The
relative difference is shown in the inset.
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ent laboratories. Therefore, it is convenient to limit the co
parison of calculation with experiment to those cases
which at least two independent measurements are availa

Figure 4 displays cross sections for ionization of theK
shell of argon (Z518) by the electron impact. The calcu
lated DWBA cross sections for electrons are seen to ag
well with results from measurements reported in Refs.@31–
34#, the relative differences are of the order of 10%.

In Figs. 5–9, we compare DWBA calculated cross s
tions for ionization of theK shell of the elements chromium
(Z524), manganese (Z525), iron (Z526), nickel (Z
528), and copper (Z529) with experimental data. For thes
transition metals, we rely mostly on ionization cross sectio
measured recently by our group@15,16,35#. These data were
obtained by measuring x rays emitted from very thin targ
in an electron microprobe. The x-ray intensities~i.e., relative
cross sections! were affected by uncertainties of about 2%

FIG. 4. Total cross sections for ionization of theK shell of
argon, ueau53177.64 eV, by electrons~solid curve! and positrons
~dashed curve!. Symbols represent experimental data@31–34# for
the electron impact.

lts
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The conversion into absolute ionization cross-section va
introduced additional systematic uncertainties. The estima
error reported for the experimental cross sections w
;10–11%. The differences between our calculations
the experimental data of Llovetet al. @15,35# are, in general,
less than this error estimate, except for copper where
average difference was;15%. In all cases, however, th
shape of the calculated cross section versus energy cur
consistent with experiment. To illustrate this fact, in Fig.
we have included the result of multiplying the calculat
s ion(E) curve by a constant factor of 1.15~dot-dashed
curve!. The agreement with the measured data is seen t
excellent. Therefore, the observed differences between
perimental absolute values and DWBA calculations are v
likely attributable to the systematic uncertainties introduc
in the conversion of measured x-ray intensities into abso
cross-section values. This seems also to be true for exp
mental data from other authors, which appear to differ fr
the DWBA results by a roughly constant factor.

Calculated ionization cross sections for theK shell of sil-
ver by electron impact are shown in Fig. 10, together w
the experimental data from three different publications. N

FIG. 5. Total cross sections for ionization of theK shell of
chromium,ueau55963.05 eV, by electrons~solid curve! and posi-
trons ~dashed curve!. Symbols represent experimental da
@12,13,15# for the electron impact.

FIG. 6. Total cross sections for ionization of theK shell of
manganese,ueau56510.94 eV, by electrons~solid curve! and posi-
trons ~dashed curve!. Symbols represent experimental da
@35,38,39# for the electron impact.
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that the shape of the theoretical curve is consistent with
data of Daviset al. @36#, although the calculation is;25%
lower than the experiment. The data of Schneideret al. @11#
practically coincide with the theoretical curve, while the da
from Hansen and Flammersfeld@37# do not follow the ex-
pected trend.

Cross sections for ionization of theL3 shell of gold are
shown in Fig. 11. Our calculation is seen to agree clos
with data of Schneideret al. @11# in the near-threshold re
gion. For higher incident energies the theory follows the e
perimental data of Daviset al. @36#, while data of Schneider
et al. decrease faster with increasing kinetic energy.

We would also like to mention that theDWION code was
recently used by Camposet al. @16# to calculateLa x-ray
production cross sectionssLa by electron impact on tungste
(Z574), platinum (Z578), and gold (Z579). The theoret-
ical evaluation ofsLa involves the ionization cross section
of the threeL subshells, which were calculated by theDWION

code, and Koster-Kronig transition probabilities and x-r
emission rates@see Eq.~2! in Ref. @16##. These authors also
performed experimental measurements ofsLa on an electron
microprobe. Their data were found to be in excelle

FIG. 7. Total cross sections for ionization of theK shell of iron,
ueau57083.48 eV, by electrons~solid curve! and positrons~dashed
curve!. Symbols represent experimental data@13,35# for the elec-
tron impact.

FIG. 8. Total cross sections for ionization of theK shell of
nickel, ueau58303.01 eV, by electrons~solid curve! and positrons
~dashed curve!. Symbols represent experimental da
@12,13,15,40,41# for the electron impact.
0-10
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DISTORTED-WAVE CALCULATION OF CROSS . . . PHYSICAL REVIEW A 67, 062710 ~2003!
agreement with the theoretical DWBA calculations; the d
ferences were always less than the estimated uncertain
the measured data, which was of the order of 11%.

As indicated above, the present DWBA calculations p
vide a consistent description of the differences between e
tron and positron collisions. These differences originate fr
the opposite charges of the projectiles~electrons are acceler
ated and positrons are slowed down by the atomic field! and
also from exchange interactions~which occur only for elec-
trons!. These two characteristics are not accounted for by
PWBA, which predicts the same ionization cross sections
electrons and positrons.

In Figs. 4–11, we have also included calculated ionizat
cross sections for positron impact~dashed curves!. Experi-
mental absolute cross sections for positrons are very sca
Schneideret al. @11# have reported absolute measureme
for the K shell of silver and theL3 subshell of gold. Hansen

FIG. 9. Total cross sections for ionization of theK shell of
copper,ueau 5 8950.26 eV, by electrons~solid curve! and positrons
~dashed curve!. Symbols represent experimental da
@13,15,36,38,42,43# for the electron impact. The dot-dashed curve
the result of multipliyng the DWBA cross section by a consta
factor.

FIG. 10. Total cross sections for ionization of theK shell of
silver, ueau525489.79 eV, by electrons~solid curve! and positrons
~dashed curve!. Solid and open symbols represent experimental d
for electrons and positrons, respectively; squares, Schneideret al.
@11#; triangles, Hansen and Flammersfeld@37#; diamonds, Davis
et al. @36#.
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and Flammersfeld@37# also published positron ionizatio
cross sections for theK shell of silver, in a higher-energy
range~100–400 keV!. These experimental data are display
in Figs. 10 and 11. We see that the theoretical cross sec
for ionization of the silverK shell by positron impact is in
excellent agreement with the experimental data of Schne
et al.

Ito et al. @44# have reported the ratios2/s1, i.e., the
electron cross section relative to positron cross section,
function of the overvoltageU5e i /ueau. This ratio is rela-
tively independent of the atomic number, it approxima
unity for large overvoltages, at which the PWBA should
nearly correct. For projectiles with kinetic energye i near the
threshold, the ratio increases with decreasinge i . It is inter-
esting to note the marked differences between the cr
section curves for electrons and positrons at small overv
ages, which arise from the different distortions caused by
atomic field on projectiles with opposite charges. For la
overvoltages, the effect of exchange dominates and the
itron cross section becomes larger than the electron c
section~see Fig. 4!.

In our calculations, the contribution of the transverse
teraction to the ionization cross sections~see, e.g., Ref,@17#!
has been disregarded. The effect of this interaction increa
with the kinetic energy of the projectile and with the atom
number of the target atom. Calculations for ionization of t
K shell of gold~a quite unfavorable case! by electrons using
the PWBA@9# with the complete interaction~but disregard-
ing exchange effects! indicate that inclusion of the transvers
interaction increases the total ionization cross section
about 3% near the ionization threshold, which is at 80.7 k
For projectiles with kinetic energye i equal to 100 keV, the
transverse contribution is;4% and increases to;9% at
e i5200 keV. Therefore, when the energy of the projectile
smaller than;100 keV, inclusion of the transverse intera
tion in DWBA calculations would be needed only for theK
shell of heavy elements. In conclusion, the present formu
tion and calculation scheme provides a consistent descrip
of the ionization of inner shells of neutral atoms by impact

t

ta

FIG. 11. Total cross sections for ionization of theL3 shell of
gold, ueau511921.89 eV, by electrons~solid curve! and positrons
~dashed curve!. Solid and open symbols represent experimental d
for electrons and positrons, respectively: triangles, Schneideret al.
@11#; diamonds, Daviset al. @36#.
0-11
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electrons and positrons with kinetic energies up to about
keV.
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