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The relativistic distorted-wave Born approximation is used to calculate differential and total cross sections
for inner shell ionization of neutral atoms by electron and positron impact. The target atom is described within
the independent-electron approximation using the self-consistent Dirac-Fock-Slater potential. The distorting
potential for the projectile is also set equal to the Dirac-Fock-Slater potential. For electrons, this guarantees
orthogonality of all the orbitals involved and simplifies the calculation of exchdhg®trix elements. The
interaction between the projectile and the target electrons is assumed to reduce to the instantaneous Coulomb
interaction. The adopted numerical algorithm allows the calculation of differential and total cross sections for
projectiles with kinetic energies ranging from the ionization threshold up to about ten times this value. Algo-
rithm accuracy and stability are demonstrated by comparing differential cross sections calculated by our code
with the distorting potential set to zero with equivalent results generated by a more robust code that uses the
conventional plane-wave Born approximation. Sample calculation results are presented for ioniz&tianaf
L-shells of various elements and compared with the available experimental data.
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[. INTRODUCTION cross section and are based on existing experimental data,
which are limited both in number and in accurasge be-
Knowledge of accurate cross sections for ionization oflow).

inner atomic electron shells by electron impact is required Recent experimental and theoretical studies of the triply
for a quantitative analysis with various spectroscopic techdifferential cross section fdk-shell ionization by impact of
niques such as Auger-electron spectroscopy, electron protiglativistic electrons[6] have shown that the PWBA is
microanalysis(EPMA), and electron energy-loss spectros-clearly insufficient to describe these interactions. To get a
copy. These cross sections are also needed for the descriptifHantitative agreement with the experiments, calculations
of the energy spectra of x-rays from sources used in x ra>t,“nust b(_a pe_rformed W|th|_n the @storted-w_ave flrst?order Born
fluorescence analysis and for medical or industrial diagnosi@pp.rox'mat'on(DWBA)’. in which the. |n|t|a}l and final pro-
Currently, there is a practical demand for accurate electroHFCt'Ie wave functions include the distortion caused by the

(positron interaction data for Monte Carlo simulation of ra- atom|p field, a!so allowing the descr|pt|qn of exchange.ef-
o : o L fects in a consistent way. DWBA calculations for the excita-
diation transport in matter, which is of application in mul-

. , . : . : tion of multiply charged ions have been described by various
tiple f|elds, including the aforesaid analytical f%”d COnFro_Iauthors[7,8], and applied to generate systematic numerical
techniques as well as detector response studies, radiatigfyes and analytical approximations for the total ionization
therapy, and dosimetry.

i . cross section of ions. To the best of our knowledge, similar
Unfortunately, a systematic method for calculating elec-gystematic calculations for the ionization of neutral atoms do
tron impact ionization cross sections for atoms from firstnot exist. It is also worth mentioning that the studies of
principles has not yet been generally agreed upon. Calculaeller and co-worker$6] demonstrate the reliability of the
tions within the plane-wave first-order Born approximation pwBA for “hard” interactions of fast projectiles, involving
(PWBA) provide reliable energy-loss differential ionization |arge energy transfers for which the two free electrons after
cross sections and integratédtal) cross sections for high- the collision have relatively high energies. It is then of fun-
energy electrons. The accuracy of the PWBA deterioratedamental interest to investigate the reliability of the DWBA
progressively when the kinetic energy of the projectile de4in the complementary regime of “soft” collisions and pro-
creases towards the ionization threshold, because of the ifectiles with low, near threshold energies.
creasing distorting effect of the atomic field on the incident The lack of systematic DWBA calculations for inner-shell
and emerging waves and, in the case of projectile electrongpnization of neutral atoms is mostly due to the extremely
because of exchange effects. As an alternative to more accslow convergence of the partial-wave expansions for ener-
rate first-principles calculations, semiempirical modificationsgetic particles. Note that the calculations involve distorted-
of the PWBA have been proposed to account for these effectwsave functions of fast free electrofthe initial energy of the
[1,2]. Furthermore, empirical and semiempirical analyticalprojectile is larger than the ionization energy of the active
cross-section formulas have been proposed for practical ushell), which oscillate rapidly over ample space volumes. A
[3-5]. Most of these formulas only yield the total ionization related difficulty is that single-particle wave functions must
be calculated to high accuracy to ensure that accumulated
errors from the multiple integrals and sums will not com-
* Author to whom correspondence should be addressed. pletely hide the final numerical value. Nevertheless, with
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currently available computational power and numerical tech-

niques, DWBA calculations of neutral atom inner-shell ion-

ization by charged particle impact are feasible, at least for k;
limited energy and energy-loss ranges.

In the present paper, we describe a relatively simple
physical model and a robust calculation algorithm that we
have developed to compute the DWBA energy-loss differen-
tial cross section§DCS9 for ionization of inner shells of
neutral atoms and ions by the impact of electrons and posi- . ) ) o
trons. We are mostly interested in the energy range from th_gvallab_le_ exper_lmentgl data for electron qnd positron ioniz-
ionization threshold up to, say, 100 keV for which the effec-INg collisions v_wth various eleme.nts and different shells, and
tive interaction between the projectile and the active targef®Me concluding remarks are given.
electron shell reduces to the instantaneous Coulomb interac-
tion. An objective of our research is to generate a systematic Il. THEORY
database of inner-shell ionization cross sections of atoms to
be used in practical Monte Carlo simulations of radiation We shall briefly formulate a semirelativistic version of the
transport and, specifically, for EPMA and x-ray generationDWBA for inelastic collisions of electrons and positrons,
studies. In practice, the calculation of DWBA ionization i.€., particles with spirg, massm,, and chargeZye (Zo=
cross sections described here is feasible only for projectile-1) with an atom or ion of the elemedt(= atomic num-
kinetic energies in a limited range, namely, from the ioniza-ben havingN electrons in its ground state. Although we are
tion threshold up to about ten times this value. For higheimainly concerned with collisions of electrons and positrons,
kinetic energies, we must content ourselves with a moréhe formal theory is applicable to particles with other masses
pragmatic procedure that consists of introducing empiricaRnd charges. We will assume that the mass of the target atom
(Coulomb and exchangeorrections to the PWBA. Ideally, is infinite, which is a good approximation when the projectile
these corrections should have a negligible effect on the DCS§ an electron or positron, and compute the cross sections in
at high energies and reproduce the DWBA results near ththe laboratory reference frame, where the target is at rest.
ionization threshold. Work along these lines is in progresgrigure 1 displays the kinematics of the collision. Before the
and will be presented elsewhdi@]. interaction, the projectile moves with velocity, linear mo-

A comment on the experimental information available tomentump;=7k;, and kinetic energy; . The corresponding
validate theoretical calculations is in order. Measured totavalues after the collision are;, p;=7%k; and ¢;, respec-
cross sections foK-shell ionization published prior to 1990 tively. The ionized electron is ejected with energy and
were compiled by Longet al. [10]. Since then, additional momentump,=7kj .
measurements fak shells have been report¢til—16. An In the Coulomb gauge, the effective interactitfy,(0,1)
inspection of the currently available experimental data rebetween a charged Dirac particle “0” and an electron “1”
veals that these are still scarce for many elements and, wharan be expressed §%7]
these are available, one usually finds significant discrepan-

FIG. 1. Kinematics of the interaction.

cies between data from different authors. These discrepan- 762 7 2 g oy — (ag- ) (@)
cies are often much larger than the stated experimental un<. (0,1)=— —> 4+ =2 f o™ 70 1
certainties, reflecting the fact that measurements of Iri—rol = 272 q’— (W/hc)?
ionization cross sections face considerable experimental dif- .

ficulties. The situation fol. and outer shells is even less xexpliq- (ri=ro)l, @

satisfactory. In the analysis of our theoretical results, we
shall heavily rely on total cross sections measured by Llovetvherea, and a; denote Dirac matrices of the projectile and
et al. [15] and Campos et aJ16], mostly because these are the electron, respectively, aMl is the energy exchanged in
affected by relative uncertainties much smaller than dataghe interaction. The first term is the instantaneous Coulomb
from other sources. These authors give the “shape” of thenteraction. The second one accounts for the exchange of
Cross section versus energy curve with a relative accuracy afirtual photons in the lowest non-vanishing perturbation or-
~3%; most of the uncertainty in the total cross sectionsder. This term is usually referred to as the transverse inter-
comes from the global energy-independent factor that transaction. As the contribution of eac is of the order ofv/c,
forms their relative date(x-ray intensitiey into absolute wherev is the velocity of the patrticle, the effect of the trans-
cross-section values. verse interaction is appreciable only when the two interact-
The paper is organized as follows. The theoretical frameing particles have relativistic speeds. Here, we disregard this
work is sketched in Sec. Il. In Sec. lll, we describe the po-part of the interaction and assume that the collisions are ap-
tentials adopted in the calculations. The numerical methodpropriately described by thdongitudina) Coulomb term
employed to solve the radial Dirac equations and to sum thalone. This sets an upper limit to the energy interval where
partial-wave series are described in Sec. 1V, which also coneur DWBA is applicable. For projectiles with higher ener-
tains an analysis of the accuracy and stability of the wholeies, the complete effective interacti@l) can be considered
calculation. In Sec. V, total ionization cross sections obtainedvithin the PWBA, which provides a reliable description of
from the proposed DWBA method are compared with theinelastic collisions in the high-energy limit.
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In our formulation of the DWBA, the Hamiltonian of the are considered to move independently in a common central
system(projectilet+targe} is expressed gd. 8| field V1(r), which is assumed to describe both the initial and
, the final atomic states. Hence, these states can be represented

HOL ... N)=Hr(1, ... N)+Hp(0) +H'(0.1, ... N)’z as single Slater determinant®,,=def ¢,], made up ofN

@) orbitals ¢, that are solutions of the Dirac equation for the
whereH+(1, . .. N) andHp(0) are the “unperturbed” Dirac  potentialV.(r) and are, therefore, mutually orthogonal. This
Hamiltonians of the target and the projectile, respectivelyalso ensures the orthogonality of the atomic statgs The
‘H' is a perturbation Hamiltonian which includes the interac-projectile wave functionsy;(r,) satisfy the Dirac equation
tion of the projectile with the nucleus and the atomic elec-for the distorting fieldVp(rg).

trons, In this approximation, the only allowed transitions of the
N target atom are single-electron excitations, i.e., the interac-
tion causes excitations of the target atom from the initial
"(0,1,...N)=Zpe ro)+ int(0,1) —=Vp(rg). . :
i N)=Zoeenudro) Zl Hin(01) = VelFo) stateW, (usually the ground stakéo a final statel,, which

(3)  differs from¥, by a single orbital. This is equivalent to the

Here.V is the di . | il " by th so-called one-active-electron approximation, which consists
ere,Vi(ro) is the distorting central potential “seen” by the of considering only the excitations of a single electron from

projectile, which should be chosen in such a way fatan a bound orbitalf, to an unoccupiedbound or fre¢ orbital

be treated as a first-order perturbation. Evidently, within this whereas the other atomic electrons behave as mere spec-
model, the eigenstates of the unperturbed Hamiltonian of thg®’ . . . : b
ators and their orbitals remain frozen in the course of the

total system can be factorized in the form, . ) .
W(0)W (1 N). To facilitate numerical computations interaction. Thus, theél-matrix element that describes the
a(1, ... N).

the states of the target atom are described by USing'(,jltrniansitions from an initial stat¢;V , to a final statey;¥,, is
independent-electron approximation, i.e., atomic electron§XPressed as

|
Tri=(Pr(0)Wu(1, ... N)[H' (0,1, ... N)[¢i(0)W4(1, ... N))
=(1(0) (1) Hin(0,D)[ 43(0) (1)), (4)

where “1" identifies the active target electron. Formally, the  [ca-p+(B—1)MC?+ V(I ¥nan(T) = €nctnem(r)-
theory can be liberated from the one-active-electron approxi- (6)
mation by summing the interactions of the projectile with the

remainingN—1 atomic electrons and using generic atomicThe radial function®,,,.(r) andQ,,(r) satisfy the following
wave functions. In the case of ionization of inner closedcoupled differential equations:

shells, the use of more elaborate atomic wave functions

would have a negligible impact on the calculated cross sec- dP,, K €ne— V+2mgc?

tions. In practice, the one-active-electron approximation ar —Phet T ohn | Mo

yields a reasonably accurate description of the excitation/
(ionization of inner (tightly bound shells of atoms and ions.

. dQ €n—V K
We use bound orbitals of the forpi9] N “hx =
i Pt Qs @

(5) with the boundary conditionB,,,(0)=0 andQ,,(0)=0.
Free states for the projectile, as well as for the ejected
electron, are described by distorted plane wd\2€8 for the
where Q,, are spherical spinors. Here is the principal ~corresponding central potentigV's(r) or V+(r)],
guantum number and is the relativistic angular momentum

1( PN em(F) )

R VTG

quantum number, which is related to the orbital and total () 1 €+2myc? iy _
angular momentum quantum numbers, and j={=* %, Uk (r):E ﬁE i‘fexp(+id.,)
through (€e+ ML) xm

XL (KT X} (1), ®)

k=(€—])(2j+1).
wheree andk are the kinetic energy and the wave number of

The orbitals(5) are solutions of the one-electron Dirac equa-the particle, respectively,, are Pauli spinoré.e., eigenvec-
tion tors of the Pauli spin matris,),

062710-3



SEGUI, DINGFELDER, AND SALVAT

) el

and ¢_,.m(r) are spherical waves of the type

X+12—

" 1( P (1) Q (1) )
m(r)=-— R
Ve FLiQe(1)Q_ m(F)
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Using the well-known expansion of the Coulomb poten-

9 tial in terms of spherical Racah tens$&2],

1 ook
oot~ rch(”(ro) cOry, (14

with r _=min(ry,r;y) andr . =max(,,r), and elementary an-
gular momentum algebra, it is possible to reduce the matrix
elements to a relatively simple form. The final expression for

The functionsP,,(r) and Q.,(r) satisfy Egs.(7) with the  the DCS is
appropriate potentlau: *) pehaves asymptotically as a plane
wave plus a spherical mcomlng—o or outgoing () distor- doion _ZZSe4 (€5+2mgC?)(€p+2mC?) €+2mc?

tion. The phase shiftg,, are determined by the largebe- dW 7w, 42k k
havior of the radial functiorP,(r). With the radial func- IR

€;j + meCZ

tions normalized in such a way thd®, (r) oscillates 6t M
asymptotically with unit amplitude, the distorted waves are x> 2> E [L]( e'fK'f’,rliKi,,_)z, (15

normalized on the wave-number scale, i.e.,

f [y ) 1T dr=8(k' =K) 8,1,

Kp Kj Kt

where

10 S S
o X =Ll 6)u(L s €V db i 1]

where s, is the Kronecker delta£1 if u=u’ and =0 L oji s
otherwise. €Ki Naka 1 1
The DCS, differential in the energy lo§8, for the exci- ki kLl 0 Z
tation of the active electron from the orbitdl, to a free 2 2
orbital ¢, with positive energyey, is given by[21] L ia b
_ 4 2 2 X 1 1. (16)
da,on: (2m) Kok €+ ML e+ ML f J T PRy, 0 5 5

dw  fw; c2h? c?h?

In most practical cases, the target atoms are randoml
oriented, the incident beam is unpolarized and final magnetic
and spin states are not distinguished. Under these circu

(11)

Here, the symbolg:::) denote 3 vector coupling coeffi-
cients; we have used the abbreviatiogy, . ..]=(2x+1)
Y(2y+1) ... andv(€y,€5,05)=1 if €1+ €,+ 5 is even

pand =0 otherW|se The quantitie’”i "= are Slater in-

€5k, €Ky, L

stances, the DCS for ionization of a subshel} («,) occu-  tegrals,
pied byq, equivalent electrons is obtained by averaging over

the initial degenerate magnetic and spin states and summing .

L

Ki Naka  __ <
over final degenerate states. In addition, owing to the or- Rsfkf,ebkb,L_f fdrodrl [71LPer(T0)Pex(Fo)
r>
thogonality of the angular functions involved, the integral
overk, can be readily evaluated. After this process, the DCS Qe k(N0) Qe (F) J[Pr ik (F1)Pe i, (T1)

can be expressed as

doion (2m)* €+ meC2 €,+ mecz 1

dw ~Ja Ty, O T g T e [

x 2 2 X | TRk,

Mg .Mg Mgt Kp .My
where[j,]=(2j,+1) and
T= (e e (0) ey ymy (1) Hind 0,D)]

X e () e.m (1))

12

(13

+ Qe (1) Qe (1) 1n
The total ionization cross section is
. J’Wmax dO’iondW (]_8
7o Jie dw )
where the integral extends over the allowed energy-transfer
interval, from the ionization threshol@,| up to W,=€; .
The theory presented up to this point is appropriate to
describe positron ionizing collisior(and of any other spig
projectiles that are distinguishable from the electrd?osi-

trons differ from electrons in two important features. First,
since the electric charges have opposite signs, the distorting

is the “spherical” T-matrix element, which involves a field Vs repulsive for positrons and attractive for electrons.
central-field orbitalyr. . m (1) of type(5) instead of a dis-  Of course, this difference is not accounted for in the PWBA,

torted wave for the ejected electron.

which is equivalent to the present theory with set equal to
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zero. Second, a projectile electron is indistinguishable from  yi«i Naxa —o(L" €y, €)o(L" € )T aritrdivdol
the active target electron and, therefore, it can undergo ex- ~ &b €f<r L’ e e

change scattering. The description of exchange scattering is L’ j

simple when the initial and final orbitals of the targeidthe 1K s ' b
projectile are mutually orthogonal. The problem is much eorp il | O } _}
more difficult to handle when the orthogonality is not guar- 2 2

anteed(see, e.g., Refl23]), as happens in PWBA calcula-

tions. L'

a jf

—

o L 1
2 2

X , (22

Electron collisions

To account for the exchange effects in the simplest pos-
sible way, we assume that the projectile “sees” the samevhich is obtained from Eq16) by means of the replacement
field as the active electron, i.e\p=V;. The projectile f<b. Note that, owing to the indistinguishability of the
spherical waves are then orthogonal to the orbitals of thelectrons in the final channel, the maximum allowed energy
target active electron. The effect of exchange is described biyansfer is
antisymmetrizing the initial and final states in the transition

matrix elements; that is, the transition matrix eleme(ds W= (€ + | €a])/2. (23
are replaced by
= (AL 1(0) ¢hp(1) ]| Hing(0,1)| AL i(0) ¢pa(1)1), lIl. INTERACTION POTENTIALS
(19

Our formulation is based explicitly on the assumption that
where the operatar is the two-particle antisymmetrizer. As the active electron and the projectile move under the influ-
the interaction is symmetrical, and the four orbitals are mu€nce of local potential§+(r) andV(r) (=V if the projec-
tually orthogonal, th&@-matrix element for electrons reduces tile is an electron To simplify the description of the present

to the following two terms: DWBA calculations, we shall set the target electron potential
V+ equal to the self-consistent, spherically averaged, Dirac-
TE= (U g (0 Py, (D) Hin 0.1 Fock-Slater(DFS) field, V'°"S(r), which is completely de-
termined by the density(r) of the atomic electrons. The
X P ()t m (1)) DFS potential is given by
~ (W (D Wy ymy (0) [ Hin( 0,1)| VOFS) (1) = — e 1) — epu(r) + VESREY 1),
X Yo (0¥ e (1)), (20

where ¢, {r)=Z¢€lr is the electrostatic potential of the

. . . . ucleus,
which describe direct and rearrangement transitions, respeE'—

tively. The expression for the exchange term is derived, fol-

:gévisn?sthe same scheme as for the direct term. The resulting oeF)= — _f p(r")4mr'2dr’ _ef p(r")aar'dr’
(24)
dcrﬁ,'n 2e* (€;+2mgC?)(ep+2mgC?) € +2myc?
dw ﬁvl 4h4k,2kfkb €+ mC2 is the electrostatic potential of the atomic electron cloud, and
VG ) =~ €2(31m) M p(r) 1 (25

x2 22X

K Kif Kp

2 E|"i’na’<a )2
[L] Efo,Ebe,L
is Slater’s local approximation to the exchange interaction.

K Maka 2 To reproduce the correct largebehavior of the potential,
E —( L) —(Z—N+1)e?/r, we adopt Latter'sad hoc prescription

[L7] = [24,25 and define
’ ja J b L
-2 _1)L+L +1[_ ) ,]
; ? ( i L V(OFS)(r)
XEiki Naka  y€iki Naka 21) _ —e@nudl) —epe(r)+ V((ailater)(r) if r<riater
€K1 €pKp L ey e L —(Z-N+1)e¥r if 1> atters
€Ki ,NgK . .. (26)

where XE'bK'b' :f:f L s the X coefficient, Eq.(16), corre-
sponding to the exchandematrix element where the cutoff radius e, iS the outer root of the equation
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—e<pnuc(r)—e<pe|(r)+V£§""‘ter)(r)=—(Z—N+1)e2/r. this section, we comment on the_essential featurfas of the
computer code; a detailed description of the numerical algo-
(27 ; . .
) ) ) rithm will be published elsewhere.

The atomic electron orbital$/,m(r) satisfy the one- The radial wave functions of the bound and free orbitals
electron Dirac equatior6) with the DFS potential. We as- jnyolved are calculated using the subroutine packagsaL
sume that the one-electron eigenvakyg is approximately  geveloped by Salvagt al. [27], which implements a piece-
equal to the ionization energy of the shefl, ). In reality,  \jise power-series solution method. The procedure consists
experimental shell ionization energi¢86] differ slightly  f replacing the potential functionv(r) by the interpolating
from the corresponding one-electron DFS eigenvalues, andatyral cubic spline, and then evaluating the solution of the
this introduces a certain error in the calculated cross sectiongadial Dirac equations in each grid interval by summing its
Fortunately, a large fraction of this error can be eliminatedsyact series expansion up to the required accuracy. The main
by simply rescaling the energy axis. Note, however, that suchgyantage of the power-series method in front of more con-
a correction has not been applied to the calculation resultgentional solution method®.g., Runge-Kutta and predictor-
presented below. ) corrector methodsis that truncation errors are effectively

As indicated above, for the electron scattering, we CoNng|iminated. The numerical solution is extended from the ori-
sider V(r)=Vg(r)=V(®™(r) so that the orbitals of the gin yp to a certain radial distanae,, where the potential
projectile and the active target electron are mutually orthogos,ction rV(r) has reached its asymptoticonstant value.
nal. This choice amounts to assuming that the projectile ang, r>r,., the radial functions can be expressed as a linear
target electrons interact with the inactiv@pectator atomic  compination of the regular and irregular Dirac Coulomb
electrons in the same way, which is a plausible assumptionynctions, i.e., the exact solutions of the radial Dirac Equa-
Note however, that this disregards the dependence of thg,,g (7) for a Coulomb field.RADIAL delivers nominally
exchange interaction on the electron velocity. For the posigyact Dirac Coulomb functions, which are evaluated from
tron scattering, it seems natural to takg(r) equal to the ey analytical expressions in terms of nonrelativistic Cou-
electrostatic interaction energy with the atomic charge distriyomp functions. Therefore, the numerical outward integration
bution, can be discontinued at a radigg (usually equal ta | 4ue),

_ where the value of the potentid(r) is still appreciable.
V1) =€enudr) +epe(r). (28) This not only saves comF;;uter tim(e)but also yields superior

Unfortunately, this potential reaches its asymptotic formaccuracy. _ o _
(=0) at distances that are much larger thag,,, and this \_/ector cpupllng coeff|C|ents_ are evaluated directly from
makes the numerical computation of the ionization cross sedheir analytical formulas, as given, e.g., by R426]. The
tion much more difficult and lengthier than for electrqege ~ Straight implementation of these formulas irF@RTRAN 77
below). To circumvent this difficulty, we takevg(r)=  code gives very inaccurate results for coefficients with mod-
—VOFS)r), j.e., the distorting field is assumed to be the €rately large quantum r_lumbers. These coefficients are typi-
same as for an electron, but with the opposite sign. This fiel§ally much less than unity, and are calculated as the sum of a
includes exchange contributions, which may seem inapprof-l”'te series whose terms alternate in sign and, therefore, the
priate for a positron. Nonetheless, at large radial distancesesult is directly affected by roundoff errors. These may
the potential- V(°FS)(r) does represent the interaction of the Mask the sought-for coefficient value completely, even when
positron with the nucleus and the spectator atomic electrond!Sing double precision arithmetic. We have written a subrou-
Note that a part of the local exchange potential serves t§n€ library that computes vector coupling coefficients
eliminate the self-interaction of the atomic electréis., the ~ (Clebsch-Gordan, 3and § coefficients using a radix-1000
interaction energy with their own charge distributipna ~ 'epresentation of real numbers with 32 radix-1000 digits,
similar term must be subtracted from the electrostatic potenwhich is equivalent to using a decimal representation with 96
tial (28) to give the effective interaction of the positron with digits. In the course of the calculation, roundoff errors are
the inactive atomic charges. controlled very strictly to ensure that the final coefficient
The characteristics of the numerical algorithms employec/@lue, delivered as a double precision constant, is exact
in calculating inelastic cross sections are largely independertWithin double precision accuracy, 15 decimal digits This:
of the details of the adopted interaction potentials. In prin-has been verified by checking that the calculated coefficients
ciple, we can expect to obtain more reliable results by usingatisfy various orthogonality relations.
a more sophisticated atomic-structure model. In practice, Due to the large number of contributions from the four or
however, the response of inner shells is determined by thlvefold summations, it is important to take advantage of the

innermost part of the atomic electron distribution, which isSelection rules imposed by the angular factors, which consid-
well described even by the simple DFS model. erably reduce the number of terms to be effectively calcu-

lated. The sums are performed in the order indicated in Eq.

(15) or Eq.(21). For given values of; andk;, the allowed

values fork,, L, andL’ are determined by triangle inequali-
The theory presented in Sec. Il has been implemented in tes and parity considerations, and the summations are car-

FORTRAN 77 computer program namemlwIioN, which calcu-  ried out over the complete range of indices for which we

lates ionization cross sections of closed inner shells of atomisave nonzero contributions. The summation ovgis evalu-

and positive ions by the impact of electrons and positrons. Irated for increasing values af;=|«;|, until the combined

IV. NUMERICAL ASPECTS
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contributions of the terms witk¢=7; andx;=— 7 amount  val (Or,) is then calculated by using the six-point Lagrange
to less than a small fraction of the accuracy required for theyuadrature rule. For large enough radii, the radial functions
whole calculation(0.005 times the tolerangeFinally, the  are expressed as linear combinations of regular and irregular
summation ovel; is calculated for increasing values af  Dirac Coulomb functions. Using the known asymptotic ex-
=|k;| by adding the combined contributions of the termspansions of the lattei27], we can write

with ;= 7; and ;= — 7;. This summation is discontinued,

and the calculation ended, when the relative contribution P (r)=A(r)cose,,.+ As(r)sing,,,
from the last added pair of terms is less than 0.05 times the
tolerance. The maximum considered valuerpfand ¢ is Q.. (r)=As(r)cos¢,,+ A, r)sing,,, (34

200, which has been proven to be large enough for calculat-
ing DCSs for projectiles with kinetic energies up to 9—10with
times the ionization energy.

As partial-wave series are slowly convergent, the calcula-
tion of the DCSs involves the evaluation of a large number bex=Kr—mplnr+
of Slater integrals of the forrl7). Moreover, because of the
highly oscillatory character of the integrand and the long
range of the Coulomb interaction, the evaluation of these
integrals is difficult and takes a very large fraction of the
computation time. To optimize this evaluation, we use awhere 7 is the Sommerfeld parameter and the functions
method similar to the one described by Hart{@8] for  4(r) are defined as power series of!, with coefficients

Occtard’ (N +in)

(35

T
— 77|n(2k)—()\—l)§ ,

bound states. We write the radial integ(al) as that are obtained analytically. It is assumed that these
asymptotic expansions converge forr,; otherwise, we
REIKT Nakta simply increase the value of, to fulfill this condition. Thus,
=R g L drg (r) L+1f(s)ds the integral over the outer intervat {,) is reduced to the
form
o rlL ]
+j f(s)dsy, (29 oo 1 o
rosttt IE“‘EJ g(r) - Y(r)dr= > J {Agnsin(bg,r —cgpnr
ra n=0 Jry,
with 1
(51 =Py ()P (S + Qo (91 Qupey(S)  (30) ¥ don) ¥ Aon 0OKBel = Con N+ den) oo dr
and (36)
B whereAgq,,, bgp, . .. are constants defined by analytical ex-
9(N) =P (NPe(NF Qe (NQeu (). BD  pressions and recurrence relations. The integrals in this ex-

_ . . ~ pression are the real and imaginary parts of the following:
Note thatf(s) involves the radial functions of the initial

bound orbital. Thereford,(s) vanishes fors greater than the

1
“active shell radius”r,, defined as the distance at which J exdi(br—clinr+d)] n+L+ldr
these radial functions effectively vanish. Following Hartree Ma
[28], the functionY(r), defined as =dd(—ib)"*LHer (—n—L—ic,—ibry), (37)
ris\t w/p\L+1 ) ) ) )
Y(r)= f (_ f(s)dSJrf _) f(s)dst, (32 wherel'(«,z) is the incomplete gamma function with com-
o\l r\S plex argument$29],
is determined by solving two differential equations, which is N
much faster than performing an integifal each rin the I'(e,2)=2 1 e du. (38)
grid.
The integral In our computer coddl(«,z) is evaluated from its contin-

ued fraction representatid29],

o 1
IL:JO g(r)FY(r)dr (33 11-al2-a 2 3-a

[(az)=e" Z(z+ 1+ z+ 1+ z+ 1+ )

is evaluated in two steps. First, the integrand is tabulated at (39
the points of a nonuniform grid that spans the inter(\ged )

and that, by means of a simple change of variable, transwhich yields nominally exactFORTRAN double precision
forms into a uniform grid. The integral over the inner inter- values. With all this, the outer integril" can be evaluated
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as a sum of integrals given by closed analytical expressionsvhole calculation performed by the prograwioN. Unfor-
In practice, a convergence is usually attained after addingunately, there is no simple way to test DWBA calculations
aboutn=50 terms. in which the projectile sees a nonvanishing figle(r). The

Our computer code automatically determines the mini-only possible alternative is to run the code wia(r)=0
mum value of the cutoff radius, for which the asymptotic and disregarding the exchangematrix in the case of elec-
expansions of free Coulomb wave functions converge. Werons. In this case, the code should give results identical to
have checked the consistency of the whole calculation byhose obtained from the PWBA, although it performs strictly
just comparing the results obtained with different values ofhe same operations as for a DWBA calculation.
the cutoff radiusr,. The stability of the algorithm is such  The point is that PWBA calculations are much easier and
that, in typical cases, a variation ofby a factor of the order robust because the integrals involving the projectile plane
of 2-5 induces changes in the sixth decimal digit of thewaves are calculated analytically. We have written a second
calculated DCSs. Therefore, the numerical relative error O&omputer program namee\WwIoN that calculates ionization
the DCSs is eXpeCted to be of the order of 0.01% or less. Th@CSS using the PWBA, with exacﬂy the same physica|
calculation method works provided only that enough com-model as in the present DWBA calculations. To validate this
puter time and memory storage are available. code, calculations were performed for hydrogenic ions, with

It is worth mentioning that the numerical algorithm usedthe speed of lightt multiplied by 16. The results were
to calculate the radial wave functions of free states is notound to agree to within six significant digits with the non-
applicable when the kinetic energy of the particle is toorejativistic PWBA DCS(which was calculated from the ana-
small. The reason is that, to normalize the State, numericai/ticgﬂ genera“zed oscillator StrengttBO] by a Sing|e
radial functions have to be matchedrgfto a linear combi-  quadraturg The comparison of DCSs calculated witivion
nation of regular and irregular Dirac Coulomb functions. Ir- gndowion with Vp=0 and no exchange corrections for elec-
regular Coulomb funCtionS increase W|th0ut I|m|t When thetrons then provides a Stringent and unambiguous test of the
radiusr decreases below the classical turning pOint. Wherhumerica| accuracy and Stabmty of timsvioN code.
the kinetic energy is small and the orbital angular momentum Figure 2 displays DCSs for ionization of the argérshell
¢ increases, the turning point moves away from the originpy the impact of electrons with various kinetic energies cal-
and the numerical integration procedure must be applied fogylated according to the PWBA by the codesion and
wider and widerr intervals. Eventually, it becomes too inef- pwion, the latter withVp=0 and considering that the pro-
ficient and we need to avoid calculations inVOlVing low ki- ject”e is distinguishab|e from the target e|ectr(jm., with
netic energies. This occurs for energy losgésear the ion- exchange corrections switched )off The pwion data
ization energy(the ejected electron is slovand, in the case (crosseswere automatically generated by the code using the
of positrons, folW~ ¢; (the positron slows down to rgsffo  adaptive procedure described above; these are unevenly
avoid computing these extreme cases, our code uses an adapaced inW. The corresponding continuous DCS is obtained
tive algorithm to determine the/ values for which the DCS  from this discrete set of values by natural cubic spline inter-
needs to be calculated. In the initial stage, the DCS is Calc%olation(extrapolatiom of In(do,,/dW) as a function ofV.
lated for a coarse uniform grid with approximately ten pointsThe differences between DCSs and total cross sections re-
that span the interval frofiV=|e,| to Wy, excluding the  sulting from the two calculations are less than the tolerance
end points. This grid is used to set a natural cubic spline thagdopted in thewion calculation (103). The insets in Fig.
interpolates Indo;o,/dW) as a function ofW. The DCS is 2 show the relative difference between the DCSs calculated
then evaluated at the midpoint of the subinterval where thgy the two codes, which is, in general, less than 0.1%.
spline has its largest curvatutencluding the first and last gjightly larger differences are seen in the low-energy-loss
subintervals, where the spline is used to extrapolate theegion, where the spline is used to extrapolate to the ioniza-
DCS) and a new interpolating spline is determined. The protjon threshold. Similar comparisons of PWBA results from
cess continues until the integral of the DO., of the in-  the pwion and PwioN codes have been made for multiple
terpolating splingreaches its saturation val@® within the  cases with different atomic numbers, active electron shells,
required tolerange With this adaptive method, we need only and projectile kinetic energies. The calculated DCSs and to-
to calculate the DCSs faw values that are sufficiently far tal cross sections always differed by less than the tolerance
from the end points of the allowed interval to avoid the adopted inowion.
aforesaid numerical difficulty. We have also compared PWBA total cross sections calcu-
lated with both codes as functions of the kinetic energy of
the projectile; the results are illustrated in Fig. 3 for the case
of the K shell of argon. Differences in total cross sections

It is clear that the numerical calculation of the DWBA are, in general, below 0.1%, except in the near-threshold
ionization DCS, as given by Eq§l5) and (21), is not only  range where the difference rises 100.3%. As mentioned
very time consuming but also prone to be affected by accuabove,bwioN (and, to a lesser extent, alswioN) has diffi-
mulated numerical errors. To give an idea of the difficulty of culties to calculate cross sections for projectiles with kinetic
these calculations, we would like to mention that to get aenergies near the ionization threshold. The crosses in Fig. 3
convergence of the seri€$5), we need to sum up as many are data calculated by tlevioN code. These extend down to
as 50000 termgor even morg Hence, it is essential to energies very close to the threshold and, therefore, this limi-
devise a rigorous method to test the absolute accuracy of thation is not critical for practical purposes. The excellent

Accuracy and stability of the calculations
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agreement between PWBA results from the two codes denent laboratories. Therefore, it is convenient to limit the com-

onstrates the accuracy of the numerical algorithm impleparison of calculation with experiment to those cases for

mented inDWION and, at the same time, confirms that our which at least two independent measurements are available.

estimation and control of numerical errors are appropriate.  Figure 4 displays cross sections for ionization of te
shell of argon Z=18) by the electron impact. The calcu-

V. RESULTS AND DISCUSSION lated DWBA cross sections for electrons are seen to agree
well with results from measurements reported in RE34.—
The programbwion has been used to perform calcula- 34], the relative differences are of the order of 10%.

tions of total cross sections for ionization of thkeand L In Figs. 5-9, we compare DWBA calculated cross sec-

shells of neutral atoms by electron and positron impact. Tqions for ionization of thek shell of the elements chromium

assess the reliability of these calculations, we compare helg —24), manganese Z=25), iron Z=26), nickel €

our numerical results with experimental ionization cross sec— 28), and copperZ=29) with experimental data. For these

tions. As mentioned in the introduction, experimental datgyansition metals, we rely mostly on ionization cross sections

are usually affected by considerable uncertainties, which arg,easured recently by our grolip5,16,35. These data were

evident from the large differences between data from differyptained by measuring x rays emitted from very thin targets
in an electron microprobe. The x-ray intensities., relative

N e o o o o o o o e e e e e e o LA B e e e e . -
' ' ' ' ' cross sectionswere affected by uncertainties of about 2%.
4000_'"'|""|""|""|""
3000
g Ar(Z=18).1s,, | 3000~
< 2000} 1x10° . L
6 oF £
5[ < 2000
000 -1x10° g L 4
1000~ r - 2 L ]
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i !/
3x10° 1 [ / o Tawara et al. [31] ]
, 0 , 5 10 , 15 20 I25 30 1000_ // + Hippler et al. [32] T
T T S T - / o Quarles and Semaan [33]
g (keV) / A Platten et al. [34] ]
0...//I....I....I....I....
. . . 0 5 10 15 20 25
FIG. 3. PWBA total cross section fét-shell ionization of argon g, (keV)
by the impact of electrons as a function of the kinetic enesggf
the projectile. Crosses are results from theioN code with Vp FIG. 4. Total cross sections for ionization of tike shell of

=0 and no exchange correction; the solid curve represents resultsgon, |e,]=3177.64 eV, by electronésolid curve and positrons
from the conventional PWBA calculated with oewion code. The  (dashed curve Symbols represent experimental dé8d—34 for
relative difference is shown in the inset. the electron impact.
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o Heetal [13] T
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FIG. 7. Total cross sections for ionization of teshell of iron,
|e.]=7083.48 eV, by electronsolid curve and positrongdashed

trons (dashed curve Symbols represent experimental data cyrve. Symbols represent experimental déi8,35 for the elec-
tron impact.

[12,13,15 for the electron impact.

The conversion into absolute ionization cross-section valuethat the shape of the theoretical curve is consistent with the
introduced additional systematic uncertainties. The estimatedata of Daviset al. [36], although the calculation is-25%
error reported for the experimental cross sections waower than the experiment. The data of Schneigleal. [11]
~10-11%. The differences between our calculations angbractically coincide with the theoretical curve, while the data

the experimental data of Llovet al.[15,35 are, in general,

less than this error estimate, except for copper where thpected trend.

average difference was 15%. In all cases, however, the

from Hansen and Flammersfe]87] do not follow the ex-

Cross sections for ionization of tHe; shell of gold are

shape of the calculated cross section versus energy curveshown in Fig. 11. Our calculation is seen to agree closely
consistent with experiment. To illustrate this fact, in Fig. 9,with data of Schneideet al. [11] in the near-threshold re-
we have included the result of multiplying the calculatedgion. For higher incident energies the theory follows the ex-
oion(E) curve by a constant factor of 1.1&lot-dashed perimental data of Davist al.[36], while data of Schneider
curve. The agreement with the measured data is seen to ket al. decrease faster with increasing kinetic energy.
excellent. Therefore, the observed differences between ex- We would also like to mention that thewioON code was
perimental absolute values and DWBA calculations are veryecently used by Campost al. [16] to calculateL , x-ray
likely attributable to the systematic uncertainties introducedoroduction cross sections , by electron impact on tungsten
in the conversion of measured x-ray intensities into absolut¢Z=74), platinum g=78), and gold Z=79). The theoret-
cross-section values. This seems also to be true for expetlieal evaluation ofo , involves the ionization cross sections
mental data from other authors, which appear to differ fromof the threel subshells, which were calculated by theioN

the DWBA results by a roughly constant factor.

Calculated ionization cross sections for theshell of sil-

code, and Koster-Kronig transition probabilities and x-ray

emission rate$see Eq.(2) in Ref.[16]]. These authors also

ver by electron impact are shown in Fig. 10, together withperformed experimental measurementspf on an electron
the experimental data from three different publications. Notemicroprobe. Their data were found to be in excellent

1000 — T T T T T T T
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g\Gm—
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6 400f ,
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’ o Luoeral. [39]
200 7 « Shima [38]
/ e Llovet et al. [35]
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FIG. 6. Total cross sections for ionization of the shell of
manganesd€,|=6510.94 eV, by electronsolid curve and posi-
represent experimental

trons (dashed curve Symbols
[35,38,39 for the electron impact.
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[13,15,36,38,42,4Jor the electron impact. The dot-dashed curve is for electrons and positrons, respectively: triangles, Schneitar.
the result of multipliyng the DWBA cross section by a constant[11]: diamonds, Davigt al. [36].

factor.

agreement with the theoretical DWBA calculations; the dif-

and Flammersfeld37] also published positron ionization
cross sections for th& shell of silver, in a higher-energy

ferences were always less than the estimated uncertainty Pefmge(100— 400 keV. These experimental data are displayed
the measured data, which was of the order of 11%.

As indicated above, the present DWBA calculations pror jonization of the silverk shell by positron impact is in

vide a consistent description of the differences between elegsy cejlent agreement with the experimental data of Schneider
tron and positron collisions. These differences originate from; o

the opposite charges of the projectiletectrons are acceler-
ated and positrons are slowed down by the atomic Yfietdl
also from exchange interactiohich occur only for elec-
trons. These two characteristics are not accounted for by th

in Figs. 10 and 11. We see that the theoretical cross section

Ito et al. [44] have reported the ratio /o*, i.e., the
electron cross section relative to positron cross section, as a
function of the overvoltage) =¢;/|e,|. This ratio is rela-
'ﬁvely independent of the atomic number, it approximates

PWBA, which predicts the same ionization cross sections fo[mity for large overvoltages, at which the PWBA should be
electrons and positrons. ’

cross sections for positron impag@tashed curves Experi-
mental absolute cross sections for positrons are very scar
Schneideret al. [11] have reported absolute measurement
for the K shell of silver and thé 5 subshell of gold. Hansen

80

201

Ag(Z=47),1s,

A Hansen and Flammersfeld [37]] ]|
o Davis et al. [36]
m Schoeider er al. [11]

FIG. 10. Total cross sections for ionization of tKeshell of
silver, |e,| =25489.79 eV, by electronsolid curve and positrons

PR NS S T S ST S T
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g, (keV)

C

nearly correct. For projectiles with kinetic energynear the

Nhreshold, the ratio increases with decreasinglt is inter-

esting to note the marked differences between the cross-
ection curves for electrons and positrons at small overvolt-

Sages, which arise from the different distortions caused by the

atomic field on projectiles with opposite charges. For large
overvoltages, the effect of exchange dominates and the pos-
itron cross section becomes larger than the electron cross
section(see Fig. 4.

In our calculations, the contribution of the transverse in-
teraction to the ionization cross sectidsse, e.g., Ref17])
has been disregarded. The effect of this interaction increases
with the kinetic energy of the projectile and with the atomic
number of the target atom. Calculations for ionization of the
K shell of gold(a quite unfavorable casey electrons using
the PWBA[9] with the complete interactiofbut disregard-
ing exchange effectsndicate that inclusion of the transverse
interaction increases the total ionization cross section by
about 3% near the ionization threshold, which is at 80.7 keV.
For projectiles with kinetic energy; equal to 100 keV, the
transverse contribution is-4% and increases t6-9% at
€;=200 keV. Therefore, when the energy of the projectile is
smaller than~100 keV, inclusion of the transverse interac-

(dashed curve Solid and open symbols represent experimental datdion in DWBA calculations would be needed only for tKe

for electrons and positrons, respectively; squares, Schnetdsr
[11]; triangles, Hansen and Flammersfd@i7]; diamonds, Davis

et al.[36].

shell of heavy elements. In conclusion, the present formula-
tion and calculation scheme provides a consistent description
of the ionization of inner shells of neutral atoms by impact of
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