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Variational calculation of positron-atom scattering using configuration-interaction-type
wave functions
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The Kohn variational method is used with a configuration-interadi@itype wave function to determine
the phase shifts and.; for positron-copper scattering. The method is first tested for positron-hydrogen
scattering and it is found to give phase shifts &g within 1-2% of the best previous calculations. Although
the phase shift for Cu converged more slowly wlith,, (the maximum angular momentum of the electron and
positron orbitals included in the short-range basiswas still possible to get reliable estimates of the phase
shifts by including orbitals witif <18 and the use of an extrapolation technique. Calculatiafypfvas more
problematic since the convergenceZyf; with respect td_,,,, was very slow. Despite the uncertainties, it was
clear that thep-wave phase shift was showing signs of forming a shape resonance at about 0.5 eV incident
energy. This resulted in pwave contribution taZ that was larger than that of treewave fork= O.lagl.
Speculative calculations based upon a model potential suggest fhatase shape resonance centered at
thermal energies, e.g., about 0.025 eV, could result in a thermally aveZagetkceeding 10 000.
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[. INTRODUCTION (Cl)-type basis that has the electron and positron orbitals
centered at the nucleus. The drawback of this approach is the
In one respect, the calculation of positron-atom scatteringlow convergence of the phase shifts with,, the maxi-
is simpler than electron-atom scattering. There is no exmum ¢ value of the orbitals included in the CC expansion,
change interaction between the positron and target electrongnd the restriction that the method can only sensibly be ap-
But in every other respect, the theoretical treatment oflied at energies below the Ps-formation threshold. For the
positron-atom scattering is a more difficult proposition thanPOSitron-hydrogen system itis necessary to explicitly include
electron-atom scattering. The reason for this lies in the atorPitals with€=15 to get the phase shifts that are converged

tractive nature of the positron-electron interaction, whicht the Z_S(ﬁ’ Ie(;’leEjG’g]' The Idifficulties_ Witrr‘] sIO\;]v co_n\ller-
leads to very strong electron-positron correlations. Thesd€NC¢€ are handled by simply accepting that the trial wave

correlations manifest themselves in a close-couplieg) unctipns will have a basis of very large dimension an_d de-
; veloping procedures to perform the necessary calculations as
expansion that converges much more slowthan the o ) )
equivalent electron-atom CC expansioand furthermore, accurately _and e1_°f|C|entIy as p_053|ble. This turned out to be
: ; not too difficult since an existing Cl program developed to
the _formanon Of an electrorj-posnron bounc_i state, _namelystudy positronic atoms in a single-center basis was readily
positronium(P9 is also possible above certain energies. adapted to perform the necessary calculati@}s
~ One way to avoid the slow convergence of the CC expan-  The restriction that the method can only be sensibly ap-
sion is to explicitly mclude. Ps formation chgnnels into the plied at energies below the Ps-formation threshold is not a
CC expansion. The inclusion of Ps states into the channglg,se for great concern since there are very few high preci-
Space Carries ItS own set Of d|ﬂ|CU|t|eS aSSOCiated W|th th%|on calculations of positron_atom Scattering in the low en-
calculation of the matrix elements between states in thergy region, and therefore any information that can be ob-
positron-atom and positroniuimesidual ion groups of tained is extremely useful. Quite simply, apart from
channels. In the case of positron-hydrogen scattering, thesg/drogen and heliuni9—11], it is difficult to name another
difficulties have been solved and quite large calculations caatom for which it could be asserted that the positron scatter-
now be performed routinely1-3]. The generalization of ing length is known with an accuracy af5%. Indeed, some
such techniques to treat scattering from the alkali atoms isf the most reliable estimates of positron atom scattering
not trivial, one area of difficulty with the Ps channels beinglengths are derived a simple model potential analysis of
the treatment of the exchange interaction between the posgroup Il and group 11B elemen{d2,13. These calculations
tronium atom and the residual ion. Existing calculations onare believed to be reliable since the model potentials were
these systems have largely ignored these ispti& tuned to the positron affinities obtained from some large
In this work, the Kohn variational method is used to studyscale bound-state calculatioh3,14]. Put succinctly, the
positron-atom scattering with a configuration-interactionability to calculate the scattering observables for target sys-
tems with ionization potentials greater than 6.8 éke Ps
binding energy will lead to an improved understanding of
*Present address: Department of Physics, Kansas State Universitiie dynamics of positron-atom interactions at thermal ener-
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tions are not subject to the same degree of uncertainty as g%(r)zl_exp(_ﬁ/pf)_ 3
previous calculations on the alkali atof5]. '

Calculations upon two systems are reported in this workThe Cu" core polarizability was chosen as 5&36[22] and
The initial calculation for the positron-hydrogen system wasthe cutoff parametersp, were set asp,=1.988&,, p;
used to validate our computer programs since the phase 2 03,, p,=1.838,, ps=1.83,. For alll>3, p, is set to

shifts and annihilation parameteély for this system had 1.91a,. The two-body polarization potential/,) was
previously been calculated to a high degree of accuracy by a

number of author$2,9,15-19. ay
The other calculation on the positron-copper system was Vpolri,rj)= ﬂ(ri 1) Gp2(ri)gpa(r;), (4)
done for a number of reasons. First, this system supports a rif;
bound state, so it was worthwhile to check whethgy was
abnormally large for the system. Next, copper is a syste
with an ionization potential of 7.7 eV, which is not much
larger than the Ps-ionization potential. So it provides a rather B. The Kohn variational method and trial wave function
exacting test of the basis-set requirements to achieve conver- The Kohn variational method23-25 is a commonly
gence with respect thyay. It should be noted that we had ysed method to solve the Schrodinger equation for low-
previously solved the Kohn-variational equations é0rCu  energy scattering problems. It can be regarded as the con-
scattering at zero enerd$]. In the present work those cal- tinuum variant of the Rayleigh-Ritz variational method so
culations are extended to 0.5 eV incident energy and theften used for bound-state problems. The formalism pre-
p-wave contributions to the cross section afig: are also  sented here closely follows that outlined in the monograph of
determined. Burke and Joachaif26].
The trial wave function, with net orbital angular momen-
Il. DETAILS OF THE CALCULATION tum L, adopted for the present Kohn variational calculations
has the form

here was set to 1.94,.
FHV Pp2

A. The model Hamiltonian

The model Hamiltonian previously used to model the . _ . . .
positron-copper system has been discussed previf8slgo [WLS) =gl P L)+ | PeiLS)+ ; ij| ®jj L S),
only a brief description is given hekeote, the Hamiltonian (5)
for the simpler positron-hydrogen system is well known and
is not detailed hepe The calculations were done in the fixed where the first two terms are the continuum functions that
core approximation and the model Hamiltonian is are equal to the regular and irregular solutions of the free
particle Schrdinger equation at large distances from the ori-

1 1 in. They are written as
H:_EV(Z)_ §V§+Vdir(rl)+vexc(rl)+Vp1(rl) g Y

1 |(I)s;|-s>: E z <€gsmgs€sms|LML>
—Vir(ro) +Vpa(ro) — r_Ol‘*'sz(l'l,ro)- D Mgs:Ms Hgs:#s

X {3 thgss el SMs) das(r1) 0s(ro),  (6)
The direct potential\{y;,) represents the interaction with the (aostis MG

core, which was derived from the Hartree-FatkF) wave

function of the neutral copper ground state computed with |PeLS)= 2 2 (LgaMgslcm|LM )
the program of Mitroy20] using the optimized Slater Type Mgs:Me Kgs:te

Orbital (STO) set of Koga and Thakkdr1]. The core po- 11

tential is attractive for an electron and repulsive for a posi- X(2 pgsz | SMs) dgs(r1) Oc(ro).  (7)
tron. The exchange potentiaV{, between the valence In this expressionpy¢(r,) is the ground-state wave function

electrons and the HF core was computed without approximas . target atom, whilef(ro) and 6,(ro) are the con-

_tlor']l"he one-body polarization potential,) is a semiempir- tinuum functions. They have the radial forms
Specittm of the parent atom, I has the functional form O4(ro) =] (kro) ®
argg2(r) 0c(ro)=[1—exp(— Bro) 1 **ny(kry). 9
Vpl(r):;n Y [¢m)(¢m. @ The[1—exp(—pBry)] factor is used to make the irregular so-

lution 6.(rg) go to zero asgy—0. The factorB was set to
The factoray is the static dipole polarizability of the core 2.0 for the present calculations. The scattering lengths and
andg?(r) is a cutoff function designed to make the polariza-Z.+ were insensitive to the precise value chosengoror
tion potential finite at the origin. The same cutoff function calculations at zero energy, one is only interested inhe
was adopted for both positron and electron and it was de=0 partial wave and in this case the continuum functions
fined to be can be written as
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Os(rg)=rog, 10 da,,

{(ro)=rg (10 g s
Oc(ro)=[1—exp(—Bro)lA, (12) '

whereA is the scattering length. The short-range function hese equations are solved to determipandc; . The error

Sin a, upon solving the set ofn(+ 1) linear equations is of

are second order with respect to variations in the trial wave func-
tion.
D LS)= X X (6mi€;m|LM,) The annihilation parameteZ.¢ is calculated from the
MMy 17 scattering wave function by the identit$8,30,31,

X(3 miz il SMg) di(r1) p(ro),  (12)

Zeff:4Nef d3r0d37’|©s\1,(r0,r1, P ,I‘Ne)|25(r0—l‘1),
where¢;(r,) andg;(ro) areL? functions written as a linear (19)
combination of an Laguerre Type OrbitalsTOs) or as a
linear combination of LTOs and STOs. All the basis func-where W (rq,ry, ... ’rNe) is the total wave function of the

tions so far, except®,;LS) and|®¢;LS), are identical in gy 1om anc®s represents the integration over all electron
functional form to the basis functions used in earlier CI cal-

culations of positronic copper. Therefore, the amount Ofcoordinatgs. Opgrgtc@s IS a spin projection operator fchat
work required to adapt the program to perform scatterin nly permits annihilation to occur for electrons and positrons
calculations was minimal. The major practical change Wa%Or1 a spin sm_glet state. In thg p"’?‘”e'v.va"e Born approxima-
the extension of the radial grid to a maximum radius of ion, the pos!trpn_wave function IS written as a plane wave
625a,. This was needed to correctly handle the Iong—range'ﬂnd t.he anmhllatpn parameter is equal to the number of
dipole coupling between the ground state and the first ato_lr_rrl:c Lelzegtro_ns, 1.8 Zef= Te.t db lati Il th
excited state. More details about the specifics of the basis. € asis was constructed by popuiating afl thé pos-

sets used for the calculations on hydrogen and copper alséble conﬂgurgﬂons that could be form_ed by IeFtlng the elec-
presented later. tron and positron populate all the orbitals subject to the se-

The asymptotic form of the scattering wave functions Canlectlon rules,

be written with a number of different normalizations depend- max €n £)<L 20

ing on the form adopted fotry and a4 [27]. These condi- Lo ta)<Lmax. 0

tions can be written as |€o—€4]<L (21
ap=COST— a;SINT, (13 (—1)fotli=(—1)L, (22)
a1=SinT+ a,COST, (14

In these expression&, is the positron angular momentum
and{, is the electron angular momentum. It is necessary to
choose a basis with a large valuelgf ., in order to obtain
results close to convergence. It is well known that the attrac-
tive interaction between the electron and positron leads to
localization of the atomic electrons in the vicinity of the

which is just the reciprocal of th&-matrix element. This positron[32,33. The formation of something akin to a vir-

choice of 7 is sometimes called the inverse-Kohn methodtual Ps cluster Ieads_ to very slow convergence withrhe
[28] convergence oF .4 with respect toL . IS typically much

glower than the phase shji,31].

The slow convergence of the phase shift and annihilation
rate with increasind.,,,, means that an extrapolation tech-
niqgue must be used to estimate thg,,—° limit. Making
éhe assumption that the successive increments to any physi-
cal observableX, scale as 1/° for sufficiently largeL, one

a=tan 6;,— 1), (15

where §; is the phase shift of the trial wave function and
e[0,7/2]. Whenr=0, «; reduces to tanf;), which is just
the K-matrix element. The choice= 7/2 givesa;= cot(4),

Besides the normalizing condition, there is another are
where there is flexibility in the choice of the continuum func-
tions. This concerns whether the functiofls and 6, are
orthogonalized to the short-rang€ radial basis functions.
Either choice is permissible, but we chose to orthogonaliz
since this simplified the evaluation of the matrix elements.

The generalized Kohn functional,=tan(s,— 7) is given can write
by [29] Lmax * 1
X,.= lim X +A — . 23
@, = oy~ 2V |H-E[¥y). (16) Jm | s 2l @

Applying th(_a Kohn condition .that the.K.ohn functional is_The power series is easy to evaluate, the coefficteris
stationary with respect to the linear variational parameters iNefined as

the trial wave function leads to the linear equations
A:XLmaX(I-max)pv (24)

da,

=0, 17 :
day and the exponer can be derived from

062709-3



M. W. J. BROMLEY AND J. MITROY PHYSICAL REVIEW A67, 062709 (2003

L p L1 In an earlier work 8], the core and the valence annihila-
( max ) —__max (25)  tion parameter were presented separately. In the present work
Lmax—1 XL nax this distinction is not made. We adopt the notation m&f

will be used to denote the contribution to the annihilation
Recently Gribakin and LudloW34] used second-order per- rate from thel partial wave including both core and valence
turbation theory to show that the energy expor@nshould  contributions. We then denotg. to be the contribution
be 4, while the exponent for the annihilation rgtg,should  from the summed. =0 andL =1 partial waves.
be 2. Translating these results to the scattering region, this
suggests thap s should be 4, whilg, should be 2. In prac- C. Real or complex boundary conditions

tice the exponents obtained in calculations are usually One of the problems of the Kohn variational method as
slightly smaller in magnitude than the expected valuespriginally formulated lies in the presence of spurious singu-
[8,13]. The extrapolation ofZ.; for e”-Cu scattering was larities (sometimes called Schwartz singularii¢85] when
somewhat problematic and it was not possible to directlythe K-matrix is plotted as a function of energy. A good deal
extrapolateZ.¢. This point is discussed later. of attention has been devoted to the development of proce-
For evaluating the core and valence electron contributiongures to eliminate or otherwise handle these singularitees
to Zo from Eq. (19), the following identities are used. The fer to the extensive discussions in Rg4,25)). One of the
core annihilation rate is more ingenious ideas is to formulate the scattering problem
with complex(i.e., Smatrix) boundary conditions rather than
Neore real (i.e., K-matrix) boundary condition$36,37]. Since the
Z8e=N, E 2(26,+1 2 p”f r2¢2(r)¢i(r)¢;(r)dr,  complex-Kohn variational method does not seem to possess
these spurious singularities it has been increasingly applied
(260  toa variety of scattering problems in the last dech3@&.
The complex-Kohn method does have two drawbacks. The
wherepf; is the one-body positron density matrix. The den-first is the annoyance of dealing with complex arithmetic and

sity matrix is defined by the second relates to the fact that the resulSagatrix can-
. not be guaranteed to be unitaiy is expected to satisfy the
pli=(¥;LSaja|¥;LS) unitarity condition with increasing accuracy as the trial wave
Ng| functions is increased in size and sophisticgtion
. ) The K-matrix version of the Kohn method was adopted in
= 2 cicy(® alea'Tajlq)J 3iLs3) b

this work as it was found that any problems with singulari-
ties became increasingly unimportant as the size of the basis
_ Z e S S 27 used to represent the scattering func_tion was enlafge_d-

152, I e deTp i g 0 bet has previously commented on this pdi25,39). To il-
lustrate this, the results of some test calculations using a
The indexl, denotes the electron orbital in configuratibn ~ Model potential are presented. These are based on the earlier
The sum over configurations includes all terms from @y. ~ research of Brownstein and McKinl¢40], who investigated

° tive square well with a short-range basis consisting of a
small number of STOs.
Here, a real Woods-Saxon-type potenfil] is chosen as
Ng, the model potential. A square-well potential has a disconti-
valencel) _ 2 nuity, which can lead to unnecessary complications when
Ze N E: as)t qS.e(r)qSJe(r)¢.p(r)¢3p(r)dr Iook)i/ng at the fine details of the conyergenge of the Kohn
solution to the exact answer. The Woods-Saxon potential is

Nci

indicesi,j run over all the positron orbitals. The valence
annihilation rate for the. partial wave is

kmax .
x S (2k+1) given by
k=Kmin V.
_ 0
X (61,1 ;LSICKT 1) CX (ol b b LS. Vo= p((r - Ro)) ’ 39
1+ex
(28) a

where we chos&/,=2, Ry=1, anda=0.05.

Calculations were performed with two sets of short-range
basis functions. The first was a set with four LTOs, which
has exactly the same exponents as tflexp(—Ar) (n
(20+1) =1,2,3,4) STO basis of Brownstein and McKinlgQ].

- (29 Since the LTO and STO basis sets span the same space, they
k(a§+ ai) are effectively equivalent. The second set with 28 LTOs was
able to give phase shifts very close to convergence. Although
At k=0 with asymptotic wave functions written as E¢s0)  the LTOs have a common exponent=£1.0) and are thus
and(11) the normalization constant is unity. mutually orthogonal, the two continuum orbitals were sub-

The normalization factoN, in Egs.(26) and (28) for k
>0 with the asymptotic wave functions defined by E@.
and(9) is
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0.15 three calculations with different can be used to gauge the
uncertainty in the phase shifts for the calculations with the
0.1 i N=4 andN=28 LTO basis sets. The phase shift for a given
S L N and 7 is denoted asdy .. In order to demonstrate the
&' 0.05 " variations amongst different calculations, the phase shifts
= ! from theN=28,r=0 calculation,d,g o are taken as the ref-
s 0 erence set. The deviation in each phase shift is calculated
'g_o 05 relative tod,g k), and shown in Figs. 1 and 2.
o The three calculations witN=4 shown in Fig. 1 clearly
0.1 exhibit the occurrence of the Schwartz singularities as the
incident moment is changed. There are at least two singulari-
-0.15 . : . . ties for each of the three values pin the range ok inves-
0 0.2 0.4 0.6 0.8 1 tigated. The deficiencies in tHe? basis are exhibited most

k (units of ab‘) clearly in the fact that the phase shift plateaus are consis-
o _ N _ tently 5% larger than the,g (k) phase shift. Figure 1 is
FIG. 1. Investigations of Schwartz singularities using for poten-yery reminiscent of the figures previously published by
tial scattering from an attractive Woods-Saxon Potential. The phasgchwartz[35] and Brownstein and McKinlef40].
shifts of threeN=4 calculations with Kohn normalization condi- A completely different picture emerges when e part
tions: 7=0, w/4, andw/2, as a function of incident particle mo- ¢ the pasis is enlarged to include 28 LTO basis functions.
mentumk. The phase shifts are plotted relative to #igo phase e ariations of ther= m/4 and /2 8(k) calculations rela-
shift tive to the normal Kohn formulatior;= 0, are shown in Fig.
) ] o 2. The first thing to note is that the variations in the relative
jected to a Gram-Schmidt orthogonalization to ensure thaditference, ,5.— d,50/ 5250, have been multiplied by a
L Y7' y y 1
they were orthogonal to the LTO set. factor of 10000 in order to make the difference visible. Al-

For the present model potential the variation in the phasgyoygh there are one or two spikes where the relative differ-
shift with incident particle momentawas investigated. First once reaches810 4. there is no feature that could be un-

of all it should be mentioned that tfiematrix elements were 3 mpiguously identified as a Schwartz singularity. It is not
insensitive to the specific value chosen farthe parameter  ossible to completely rule out the possibility that singulari-
in the cutoff function used to make the irregular part of theyjag may be present in tHee[0.0,l.(]agl range. Narrow
long-range solution finite at the origin. The results hardly;, g, 1arities could very well exist in this momentum range.
changed fop €[0.5,4] and the value op=2.0 was adopted 5 ever, it was decided not to actively search for singulari-
for 'aII the calcul:_:ltlons reported in this article. These obserjag a5 long as they did not manifest themselves in an overt
vations are consistent with those made bY L“C?”ié@_for _manner and detract from the accuracy of the calculations.
the complex-Kohn method. The phase shifts will be insensi- s \yorth noting that spurious resonances above the ion-
tive tc2),8 as long as there is some degree of overlap betweep 1ion threshold have long been a feature of close-coupling
theL” orbitals and the continuum orbiték(r). calculations of electron-hydrogen scattering that have used a
In order to exhibit the properties of the variational solu- pseudostate bas[¢3,44. However, it has been found that
tion, the phase shifts from calculations with=0,7/4 and  {he impacts of these spurious resonances are less noticeable
m/2 are shown in Figs. 1 and 2. The differences between th@hen the dimension of the pseudostate basis sets used in CC

calculations of electron-hydrogen scattering are enlarged
1 T T T
. L,
0 fuashlrndtiog ; ™

[45,46. The pseudostate basis used for the CC calculations
was a LTO basis identical in construction to the basis
adopted for the present series of calculations. An interesting
thing amongst all of this is that the spurious features so
prominent in calculations using a small hocpseudostate
basis[43,44] seem to diminish in importance as the dimen-
sion of the Laguerre basis is increased.

2 The reliability of the Kohn and inverse-Kohn variational
methods for this model problem persuaded us to use the
-3 T=m/d —e standard Kohn method with real boundary conditions for our
Py R ) calculations upon H and Cu. The subsequent calculations
-4 ’ ’ * * upon these atoms, which were performedfer0, =/4, and
0 0.2 0.4 0.6 0.8 1

/2, did not show any trace of a Schwartz singularity and,
furthermore, the three Kohn variants gave phase shifts and
Z that generally agreed to within 0.1%.

k (units of a;;)

FIG. 2. The phase shifts of twi= 28 calculations with Kohn
normalization conditionsy= 7/4 and=/2, are plotted as a function
of incident particle momenturk. The phase shifts are plotted rela-
tive to 8,5 9. The exact energy dependence of the phase shifts in the In this section, details of a simple semiempirical model of
vicinity of the spikes was not determined. positron-Cu scattering are described. The purpose behind the

D. Semiempirical model ofe™-Cu scattering
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model potential was to put the results of the Cl-Kohn calcu- TABLE I. The phase shifts ang’ for positron scattering from
lations into perspective, and also to highlight the possibléwdrogen in the H(&,2s,2p) three-state model. The colunknre-
impact thatp-wave shape resonances will have on the sysports momentum i, *. TheL=0 entry for thek=0 phase shift
tem. Since the model potential has been previously describegives the scattering length.

and applied to positron-Cu scattering, only a short descrip=

tion is given here. k g & [47] z§) z{y) [18]
The model potential approximates the Hamiltonian by L=0
_ _1p2 0.0 —0.185 0.6593 -

H="2Vot Vair(fo) + Vpol(ro)- S 01  —00049  —0.0048 0.6200 0.6200

The repulsive direct potentiy;, is computed from the HF 0.2 —0.0424 —0.0421 0.5665 0.5666

wave function of the target atom. The polarization potential 0.3 —0.0934 —0.0929 0.5196 0.5196

has the functional form given by E@2) with ay=40.0a3 0.4 —0.1475 —0.1471 0.4802 0.4801

andp=1.974, [12]. The value ofp was set by tuning tothe ~ 0.5 —0.1994 —0.1986 0.4465 0.4464

e’ Cu binding energy of =0.005 597 hartree obtained inthe 0.6 —0.2466 —0.2465 04171 0.4169

fixed-core stochastic variational meth@eCSVM) [8,12,32. 0.7 —0.2880 —0.2876 0.3908 0.3907
The annihilation of positrons was modelled by the equa- L=1

tion 0.1 0.0047 0.0047 0.0143 0.0143

0.2 0.0134 0.0134 0.0535 0.0535

e [top ool w0 B 22 pem o owe ol

» , 05 0.0185 00184  0.2199 0.2199

wherepc(r) andp,(r) are the electron densities associated g g 0.0102 0.0099 0.2649 0.2650

with the core and valence electrons of the target atom, and g ; 00014 00016 0.3005 0.3005

®(r) is the positron-scattering function. The enhancement

factorsG are introduced to take into consideration the influ-

ence that electron-positron correlations will have upon the .

annihilation rate. The enhancement factor for valence ander for solutions of the Schudinger equation in the

core electrons is treated differently. For core orbit@s,is  H(1s,2s,2p) model.

simply set to 2.5 due to reasons outlined12]. The valence One aspect about the calculation that should be mentioned

enhancement factd®, was computed by the simple identity was the need to include a large basid éffunctions for the

positron partial wave which is coupled to the Hi)2excita-
presvm tion. The interaction between the Hflland H(2p) channels
G,= pmodel ’ (33 decays as tf at larger and to represent the virtual excita-

v tion to the H(2) state requires a rather largé basis. This
whereF,'_fCSV'\" was the annihilation rate of the positron with i; especially true at energies close to threshpld. The calcula-
the valence orbital as given by the FCSVM calculationtion for the s wave had 33 short-range positrdn=0 and
[8,12], andI'™“is the valence annihilation rate predicted 20 ¢=1 LTO. Forp-wave scattering, the number of positron
by the model potential calculation witB,=1. This factor ~LTOS for =0, 1, and 2 were 48, 33, and 48, respectively.

was set to 18.212]. Some much larger calculations were also done to deter-
These semiempirical distorted wave calculations will bemine whether the present single center Kohn-variational cal-
referred to as the DW calculations. culations could give scattering parameters accurate at the 1%

level. These calculations are reported in Tables Il and IIl.
These calculations included about 20 LTOs for small values
of €, either 48 or 50 LTOs for the positron channels that are
dipole coupled to the entrance channel, and 15 electron and
The calculations upon atomic hydrogen were performedL8 positron LTOs for orbitals withf > 3.
mainly to validate the analytical and numerical details of the The swave phase shifts for the explicit calculation with
program used to perform the calculations. They were alsa ,,,,=12 are accurate to about 0.002—0.003 rad. When the
done to give information about the convergence of the phasextrapolation of the phase shift is performed, the agreement
shift andZ ¢ with increasinglL ay- with the variational phase shifts of Drachman and co-
The initial calculation was designed to be equivalent to awvorkers[9,48| could hardly be better. Values @t are gen-
three state H(4,2s,2p) close-coupling calculation. The erally a few percent smaller than tliematrix calculations of
phase shifts an@.; for the ¢=0 and 1 partial waves are Ref.[18] and the variational calculations of R¢€L7]. This is
listed in Table I. The results are in very good agreement wittexpected for two reasons. As mentioned earlier, the attractive
previous calculations in this model spdd®,47. The agree- interaction between the electron and positron leads to the
ment with the values of .+ computed using the momentum formation of a virtual Ps cluster, resulting in very slow con-
spaceT-matrix method are particularly impressive. The re-vergence witi(. To put the slow convergence in perspective,
sults in this table can usefully serve as benchmark values aofie estimate thdlt ., would have to be at least as large as 25

Ill. THE SCATTERING OF POSITRONS
FROM ATOMIC HYDROGEN
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TABLE II. Phase shifts for positron scattering from hydrogen at
various values of moment& (n agl). The columné,, reports the
phase shift from the calculation with,,,,=10, while the phase
shift in the 6., column includes the corrections from the,,,— %
extrapolation. The entry fok=0 reports the scattering length.

k S12 S CC(13,89 [2] Variational[9,15,49
L=0
0.0 —2.067 —2.088 —2.104
0.1 0.1463 0.1480 0.1474 0.1483
0.2 0.1851 0.1875 0.1868 0.1877
0.3 0.1648 0.1672 0.1667 0.1677
0.4 0.1176 0.1198 0.1191 0.1201
0.5 0.0604 0.0623 0.0621 0.0624
0.6 0.0021 0.0036 0.0031 0.0039
0.7 —0.0528 —0.0516 —0.0518 —0.0512
L=1
0.1 0.008835 0.00886 0.00887
0.2 0.0326 0.0328 0.0327 0.0338
0.3 0.0652 0.0658 0.0657 0.0665
0.4 0.0993 0.1004 0.1002 0.1016
0.5 0.1291 0.1307 0.1306 0.1309
0.6 0.1524 0.1546 0.1542 0.1547
0.7 0.1741 0.1776 0.1788 0.1799

to ensure thaZ.4 was within 10% of its converged value at

most energies. Second, the Kohn-variational principle is

PHYSICAL REVIEW A67, 062709 (2003
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FIG. 3. Thes-wave phase shiff, as a function ok (in agl) for
positron scattering from copper. Included are the phase shifts with
the L,a— correction, and the DW phase shifts of Mitroy and
Ivanov([12].

a few percent of earlier calculations. When the extrapolation
correction is made, the agreement with the earlier calcula-
tions is generally better than 1%. Somewhat surprisingly, the
convergence o o« with L., appears to be slower for the
wave than thes wave. Only about 70% of the estimat&g}
comes from the explicit calculation with,,,=12. About
80% of z{%) for the s wave came from the explicit calcula-
tion.

IV. THE SCATTERING OF POSITRONS FROM Cu

variational with respect to the phase shifts and there is no
guarantee that other expectation values of the wave function The L? basis was almost the same as the basis used for

will be fully optimized.

The agreement of the-wave phase shifts with earlier
high accuracy calculationg2,15] is also very good. The
present calculations with,,,,=12 gave phase shifts within

TABLE lll. The annihilation parameteZ'y) as a function ok
(in ag ) for positron scattering from hydrogen.

kK Lpax=12 Lpax—* CC(13,8 [18] Variational[16,17]
L=0
0.0 7.102 8.565 8.868
0.1 5.935 7.143 7.388 7.363
0.2  4.483 5.363 5.539 5.538
0.3 3452 4.093 4.232 4.184
04 2757 3.232 3.332 3.327
0.5 2275 2.633 2.753 2.730
0.6 1.928 2.200 2.302 2.279
0.7 1.666 1.874 1.952 1.950
L=1
0.1 0.1023 0.1398 0.141 0.130
0.2 0.3985 0.5409 0.556 0.540
0.3 0.8340 1.120 1.148 1.124
04 1.317 1.746 1.786 1.763
05 1.769 2.313 2.382 2.339
0.6 2.169 2.808 2.916 2.850
0.7 2.665 3.544 3.904 3.670

previous ClI calculations of positronic copgd&] and so only

the differences in the basis from that earlier calculation are
mentioned here. The major change was the inclusion of ad-
ditional positron LTOs for th& =0, 1, and 2 orbitals. A total

of 25, 50, and 25 LTOs fo€ =0, 1, and 2, respectively were
used for theL=0 partial wave. The value df,,,, was 18
and the number of LTOs was 15 for orbitals wifk=3. A
total of 40, 33, and 40 positron LTOs fdr=0, 1, and 2,
respectively, were used for tipewave calculation. The value

of Lyax Was 15 and the number of LTOs was 15 for the
orbitals with €=3. The smaller value of ., used for the
p-wave calculations was the consequence of the larger di-
mensionality of the linear equation system. The outer limit of
the integration range was 625for both thes andp waves.

The L=0 phase shifts for positron-Cu scattering plotted
in Fig. 3 include a correction due to the,,,— extrapola-
tion. The extrapolation correction was not large, being 0.01—
0.02 rad for most of the energies depicted in Fig. 3. In most
cases the extrapolation correction amounted to less than 5%
in the phase shifts. Also shown in this figure are the DW
phase shifts using the model of Mitroy and Ivarj@2]. The
agreement between the two sets of phase shifts is quite rea-
sonable. Part of the difference between the distorted wave
(DW) and CI-Kohn phase shifts arises from the fact that the
DW phase shifts were tuned usingedCu binding energy
(0.005 597 hartred 8,49] that was slightly different from the
binding energy(0.005 12 hartreeobtained from the current
Cl basis[8].
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FIG. 4. Thep-wave phase shiff; as a function ok (in ay %) for FIG. 5. The annlhllatlon paramettY (k) is plotted as a func-

positron scattering from copper. Included are the phase shifts wittion of k for swave e*-Cu scattering. First, for the explicit,ax
the L,.— 0 correction and the DW phase shifts of Mitroy and =18 series, second, for the,,,=19—% extrapolated series, and
Ivanov[12]. finally, using the DW model of Mitroy and Ivand\u.2].

The L=1 phase shifts are plotted in Fig. 4. Theg,,, factor for core annihilation Another 5% is due to the fact

—o correction resulted in a 2—-12% increase in the phaséhat the DW calculation was tuned to a binding energy
shift with the relative contribution of the extrapolation being slightly different than that given by the present Hamiltonian.
larger at the higher momenta. The present Cl-Kohn phas¥/hen this is taken into account, the agreement between the
shifts are substantially larger than the DW phase shifts oDW and Cl-KohnZ{%(k) is very satisfactory.
Ref. [12]. The rapid increase of the phase shift ko The calculation ofzg)was complicated by a rather slow
=0.2a, * signifies that thee"-Cu system is on the verge of convergence with ... As was the case for hydrogen, the
forming ap-wave shape resonance. This point is discussed igonvergence oZé}f) with L., Was slower than the conver-
more detalil later. gence ofZ{y). For example, ak=0.1a,*, Z{}) was 16.96

The calculation oZ{) is complicated by two competing for the L,,,,= 15 calculation. Application of the extrapola-
trends that affect the convergence patterrLgg, increases tion procedure resulted in a value of 45.9, i.e., about 2.7
[8]. First, as the scattering length decreases with increasingmes larger. The derived expongmi=1.45 of the extrapo-
Lmax, there is a tendency foZ(O) to decrease as a conse- lation is significantly smaller than the expected value of 2.
guence of the normalization condltions that relate the wavé&ome estimate of the uncertainty associated with the ex-
function in the interaction region to the asymptotic wavetrapolation can be determined by arbitrarily settmgto 2.
function. Then there is the tendency for the electron pileup inWhen this is done the extrapolation increazg.é by a factor
the vicinity of the positron to be better represented_agx  of 1.85 to 31.4. The application of the simple power law
increases. This second effect generally leadg8$d increas-  algorithm given by Egs(23)—(25) results in some uncer-
ing with increasingL,ax. Taken in conjunction, these two tainty in theZ D Lwax— contribution, since a value of

effects make a direct extrapolation Ziﬁ,o) to the L ax— Lnmax=151s not Iarge enough to ensure that the higher incre-
limit somewhat problematic. ments tozg}f) can be given precisely by the power law foru-

The tendency fozé?f) to reflect changes in the phase shift mulas. We estimate that it would be necessary to extend the
was incorporated into the extrapolation procedure used to getalculation toL ,,,=20 to ensure that at least 50% of the
t0 theL ma,— < limit. First, 2/ sin(8)/k] was tabulated as a true value ofZ{}) was obtained by explicit calculation. Due
function of L pay. The L yax— e limit of Z{Y/[sin(@)/k] was  to the dimensionality of the linear equatiofdimension-
then determined by assuming the successive increment scf823< 9823) it was not possible to extend the calculation to
as a power law. Finally, the limiting value @ is deter- include orbitals with larger angular momentum.

mined by multiplying by thel . limit of [sin(s)/k]. The extrapolate@(}} shown in Fig. 6 was estimated by
This procedure is effectively the same as that previouslysimply multiplying the extrapolation correctidie., Z{)*)
used to determin&({ at threshold8]. —z{)ma19) by 0.85. The actual decision to multiply by

Figure 5 depicts the present calculation Zff(k) for  0.85 was based on examinations of convergence patterns of
s-wave scattering. About 20—30% of the total contribution tothe annihilation rate for positronic atoms and scattering sys-
Z(O) came from the extrapolation procedure. Also shown ortems[8,50,51. In every system examined the exponppbr
Fig. 5 is the energy dependence Z)ff)f)(k) given by the pr asymptotes to 2 from below with increasihg,,,. There-
semiempirical DW calculatiorf12]. The DW calculation fore, there is a tendency for the extrapolation using Egs.
gives a value at threshold, 96.4, that is, about 25% largef23)—(25 to overestimate the size of the correction. It is
than the Cl-Kohn value of 72.9. Close to 10% of that differ-reasonable to ascribe an uncertainty of about 15% to the
ence is due to a different treatment of core annihilation byextrapolation correction and so Fig. 6 shows a band of values
the distorted wave calculatidthe DW used an enhancement for Z(e}f). The totalZs (Fig. 7) obtained by summing the
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FIG. 6. The annihilation paramet@)(k) is plotted as a func-  FIG. 8. The DW annihilation paramet@£2)(k) is plotted for a

tion of k for p-wavee™-Cu scattering. The lowest curve was com- series ofp values as a function ok for e*-Cu scattering. The
puted using the DW model of Mitroy and Ivan¥2]. The second  calculation withp=1.988, was tuned to give the Cl-Kohp-wave
lowest curve gives the CI-Kohn calculation with,,,=15. The top  phase shift aIk=O.1a51. The p=1.817, potential supports a
curves include the ,,,= 16— correction and allow for a 15% pound state with a binding energy of X20~° hartree. The mo-
uncertainty in the magnitude of the correction. mentum at which thez{})(k) maximum occurs shifts closer to
threshold ap decreases.
and p-wave contributions also includes this band of uncer-
tainty. A more complicated extrapolation procedure couldof the atom and a largez'). The DW model potential,
have been devised, but it was decided to follow the precepteetaining G, and G, unchanged, was revised so that the
of Occam’s razorEntities should not be multiplied unneces- p-wave phase shift @=0.1a,* was equal to the CI-Kohn
sarily, and use the simplest possible method capable of givphase shift. When this was done, the valuafj:f increased
ing a reasonable estimate of the correction. to 52 atk=0.1agl and to 230 atk=0.2351 (see thep
The largest value attained tﬂe%f)(k) in the interval oc-  =1.98&, curve of Fig. 8.
curred atk=0.18,* and it was about 160. Figure 6 shows  with Z{)) being so large, the obvious question is whether
that the CI-Kohn calculation OZ(e%f)(k) gives much larger thelL =2 partial wave will also make a significant contribu-
values than that given by the DW calculation. This result cartion to Z.x(k). An explicit calculation has not been done, but
be explained by reference to Fig. 4 where the Cl-Kohn phasgéhe DW calculation does provide guidance. m:o_zaal,
;hift is seen to be muchllarger than the DW phas_e shift. Thishe DW calculation gave@=0.31. Although thep-wave
indicates that the effective potential for the positron in theparametezfe}f) was sensitive to the details of the model po-

Cl-Kohn calculation is actually more attractive than the d's'tential, ng) hardly changed as the cutoff parameter was al-

torted wave potential. A more attractive potential nature,[ered Therefore, it can be safely concluded g(k) has
leads to an increased positron charge density in the V|C|n|t)6nIy a small cont’ribution from the higher partial waves when

k<0.2a,*. Figure 7 shows the summed contribution from

200 : - theL=0 andL=1 partial waves. The notable feature here is
 S(e) + p(15) e the tendency foiZ.s(k) to increase as the momentum in-
175 . ~J -1
S(>0) + p(>o) N creases fronk=0.0%, *.
150 f DW model -—-—-
125 V. SPECULATIONS ABOUT SHAPE RESONANCES
; 4 e "
Nioo b It has been shown in Fig. 4 that tipewvave phase shift is
e % _____ DR a precursor to a shape resonance. A series of DW calcula-
[C s S ot tions with slightly different potential parameters have been
50 e e T performed in order to exhibit the impact that a shape reso-
""""""""""""""" nance will have orZ (k). The valuep has been decreased
25 ! ' ) in a series of increments, thereby increasing the attraction of
0 0.05 0.1 0.15 0.2

the positron to the atom. Figure 8 shows that the resonance
becomes increasingly pronounced and closer to threshold as
i (
FIG. 7. The annihilation paramet&g«(k) is plotted as a func- the net attraction gets §tronger. The peak valuéeﬁffor the
tion of k for e*-Cu scattering. The lowest curve was computed Sharpest resonance with a resonance energy of about 0.001
using the DW model of Mitroy and Ivandid2]. The second lowest hartree was 110 000.

k (units of ag)

curve gives the Cl-Kohn calculation with,,,,= 15. The top curves The large enhancements Bf(k) in the vicinity of the
include thel ,,,= 16— correction and allow for a 15% uncer- resonance energy provide another mechanism that can result
tainty in the magnitude of the correction. in very large values oZ(k). The large annihilation rates
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seen in traditional positron annihilation experiments havesystemg12,33,59 and so one expects, to be larger than
been the subject of much interest ever since the first experisnity. Even ifG, was decreased 18,=4 (roughly equal to
ments yielding large values &.(k) [52-56. It has been the value adopted for Kfr12]), the size of(Zq)t resulting
postulated that there are two different mechanisms for posifrom a shape resonance could still exceed 1000 by a com-
tron annihilation; these arél) direct annihilation and2)  fortable margin.
resonant annihilation. Direct annihilation describes the anni-
hilation of the positron with the target electrons and the di-
rect annihilation rate was strongly correlated with the size of
the elastic cross sectiof83,56,57. Resonant annihilation  1he curve withp=1.817, in Fig. 8 is for a potential that
was mainly important for large molecules with closelyJUSt suppgrts @-wave bound state with a binding energy of
spaced vibrational levels. In resonant annihilation, the posi9-22< 10~ hartree. The annihilation parameter shows a
tron is trapped in a Feshbach resonance associated with'@Pid increase witfk near_tPreshoId with a peak value of
vibrationally excited state. The resonant annihilation proces8600 achieved at:k0.013101 - When the thermal average is
was deemed to be the mechanism responsible for the largione at 300 K one getSZéf'f)(k)>T=2300.. A potential that
annihilation rates seen for some molecula3,57,58. S%Bports a bound state with a larger binding energy gives
It has been shown that there is a natural upper limit forZef (K), which rises more slowly at threshold while achiev-
Z. for thermal positrons annihilating in a gas by direct an-IN9 @ peak value, which is smzall)ler. As the state becomes
nihilation. Even thougrz(e(f’f)(k) can get arbitrarily large as more weakly bound, the rise &gy (k) from threshold be-
the scattering length increases, the thermally averaged anrfiomes sharper and the peak value be_comes larger.
hilation rate(Z¢s)t has an upper bound because the energy. At thg moment there IS no hard e\{ldence to support_ the
region over whicrz(%’ (k) is large decreases as the Scatteringcontentlon thgt the'p'olarlzatlon potential between a positron
length increaseiélZe 33,57. Values between 200 and 1300 and an atom is sufﬁme_ntly strong o supporm-wav_e bound
ol , state. Although Gribakin and Kinlg0] reported evidence of
have been suggested as the maximum pos&ilg for the

g . N ._ap-wave bound state in their calculationsef-Mg scatter-
Fystemsgthat annihilate by the direct annihilation mechamsnihg this prediction should not be taken seriously since their
33,57,14. ;

W . method of calculation does overestimate the strength of the
The thermally average(Zeq)r has been determined for sitron-atom interactiorf14,51. The p=1.817, curve
each of the curves in Fig. 8 at a hypothetmal positron teMgpawn in Fig. 8 gives a good idea of what can be expected
perature of 300 K. The values obtained were 25, 55, 800, angnen the potential supports a wepkvave bound state, the

19000 for thep=1.988, 1.90, 1.85, and 1.8d§ curves, uncertainty is about whether such a bound state can exist.
respectively. The very large value of 19000 occurs because

the position of the resonance peakat0.044, * is close to
the mean energy of a positron swarm at a temperature of 300
K. This is an order of magnitude larger than the maximum It has been shown that the application of the Kohn varia-
possible (Z.4)t one can get from the direct annihilation tional method to positron-hydrogen scattering with a short-
mechanism due ts-wave scattering. range basis consisting of electron and positron functions cen-
We therefore assert that there exists a third mechanisriered only on the nucleus can result in phase shifts that are
that can lead to large values of the positron annihilation pacomparable in accuracy to those of the best previous calcu-
rameterZ.«(k). The presence of a shape resonance at loviations[2,9,15-19. Convergent close-coupling calculations
energies can easily result ifi;, achieving 100000 at the containing roughly the same physics as the present Cl-Kohn
resonance peak. Even when the impact of thermal averagingplculations have been reported previoysly but these cal-
is taken into consideration, a value ¢E.); exceeding culations did not compute the annihilation parameter. The
10000 is possible provided the resonance energy is posinuch slower convergence of the annihilation parameter leads
tioned close to the mean thermal energy. The two assumge greater uncertainties in the valuesy;, but even here
tions underpinning this prediction are th@h the positron- one can expect the results to have a precision of better than
atom (or moleculé potential is sufficiently attractive to 5%.
support a shape resonance d8gthat short-range electron- The K-matrix form of the Kohn-variational method was
positron correlations act to enhance the coalescence matrissed without the appearance of any noticeable singularities.
element. Both of these assumptions are eminently reasori-he singularity problem was eliminated for all practical pur-
able. The ability of positrons to form bound states with manyposes by choosing to represent the positron wave function
atoms and moleculd82] is certainly supportive of assump- Wwith aL? basis that can be enlarged systematically. Further-
tion (1). The copper atom with a positron binding energy of more, the large size of the? basis meant that the computed
0.005 60 hartree is just on the threshold of forming a shap@hase shifts were not very sensitive to the exponent used to
resonance. One would expect that a system, such as magrgenerate the LTOs for a givefr Thus, the calculations at
sium, with a larger positron binding energy of about 0.016different energies all used the same short-range LTO basis.
hartree[14,51] would therefore be quite likely to exhibit a Comparison of the Cl-Kohn phase shift adgk with the
p-wave shape resonance. DW results indicates that a simple central potential model
Short-range electron-positron correlations are known taan do a reasonable job of reproducing the results of a more
increase the annihilation rate of all known electron-positronsophisticated calculation provided the adjustable parameters

Impact of weakly bound state onz (Y

VI. CONCLUSIONS
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can be tuned correctly. One complication of the DW model isverge of supporting a shape resonance in gheave. The
the need to tune the polarization potential separatelysfor existence of g wave shape resonance could lead to quite
andp-wave scattering. prominent enhancements #Y(k) if the resonance energy
One notable feature of the. calculations is the appar- s close to threshold. Although copper is not an easy atom to
ently slower convergence fgrwave scattering. This can be create for a beam experiment, the present results have impli-
explained by consideration of the nature of the contact Magaiions for atoms such as zn, Cd, and Mg. The group 1B
trix element. The main contributions to the matrix elementaioms, zn and Cd, have positron binding energies roughly
come from the region of space where the electron and poSiomparable in size to Cu, and therefore one can expect them
tron charge distributions overlap. The presence of the addi, nave elastic cross sections, afg(k) roughly similar to
tional centrifugal barrier in the interaction Hamiltonian {hat of Cu. The magnesium system with its much larger pos-

means the electron and positron charge distributions arg,qp, binding energy can be expected to have a shape reso-
pushed further away from the nucleus. Therefore, the formanance with better definition. The present results certainly in-
tion of a virtual Ps cluster will occur further away from the rease the desirability of performing elastic scattering or

nucleus and will result in a more slowly convergent annihi-anpinilation experiments on group Il and 11 B atoms of the
lation matrix element. This of course has disturbing 'mphca'periodic table.

tions for calculations of the higher partial waves. As the im-
portance of the centrifugal barrier increases with increasing
L, one can expect the calculationbﬂ’;f) to converge increas-
ingly slowly with L, 4y-

The CI-Kohn calculations indicate that the effective A number of IT support staff, Jean-Claude Nou, Corey
positron-atom potential that can support swave bound Hoffman, Mark Bradbury, Pavel Stulik, and Roy Pidgeon
state will most likely result in an attractive potential well for assisted this work by maintaining the author’s GNU/Linux
p-wave scattering. The present Cl-Kohn calculation is on thevorkstations and by giving access to additional workstations.

ACKNOWLEDGMENTS

[1] J. Mitroy, Aust. J. Phys46, 751 (1993. [22] W.R. Johnson, D. Kolb, and K. Huang, At. Data Nucl. Data
[2] J. Mitroy, Aust. J. Phys48, 646 (1995. Tables28, 333(1983.
[3] A.A. Kernoghan, M.T. McAlinden, and H.R.J. Walters, J. [23] W. Kohn, Phys. Rev71, 902 (1947.
Phys. B28, 1079(1995. [24] J. Callaway, Phys. Re@5, 89 (1978.
[4] M.T. McAlinden, A.A. Kernoghan, and H.R.J. Walters, J. [25] R.K. NesbetVariational Methods in Electron-atom Scattering
Phys. B29, 555(1996. Theory(Plenum, New York, 1980
[5] G.G. Ryzhikh and J. Mitroy, J. Phys. 80, 5545(1997. [26] P.G. Burke and C.J. Joachaifheory of Electron-atom Colli-
[6] K. Higgins, P.G. Burke, and H.R.J. Walters, J. Phys2® sions. Part 1: Potential Scatterin@’lenum, New York, 1996
1345(1990. [27] T. Kato, Phys. Rev80, 475 (1950.
[711. Bray and A.T. Stelbovics, Phys. Rev.48, 4787(1993. [28] S.I. Rubinow, Phys. Re®8, 183 (1955.
[8] M.W.J. Bromley and J. Mitroy, Phys. Rev. 86, 062504 [29] E.A.G. Armour and J.W. Humberston, Phys. R@04, 165
(2002. (1991.
[9] A.K. Bhatia, A. Temkin, R.J. Drachman, and H. Eiserike, [30] P.A. Fraser, Adv. At. Mol. Phys4, 63 (1968.
Phys. Rev. A3, 1328(1971). [31] R.P. McEachran, D.L. Morgan, A.G. Ryman, and A.D.
[10] P. Van Reeth and J.W. Humberston, J. Phys3B 3651 Stauffer, J. Phys. B0, 663 (1977).
(1999. [32] J. Mitroy, M.W.J. Bromley, and G.G. Ryzhikh, J. Phys.3B,
[11] J.W. Humberston, J. Phys. & L305 (1973. R81(2002.
[12] J. Mitroy and I.A. lvanov, Phys. Rev. 85, 042705(2002. [33] V.A. Dzuba, V.V. Flambaum, G.F. Gribakin, and W.A. King, J.
[13] MW.J. Bromley and J. Mitroy, Phys. Rev. A5 062506 Phys. B29, 3151(1996.
(2002. [34] G. Gribakin and J. Ludlow, J. Phys. &5, 339 (2002.
[14] J. Mitroy and G.G. Ryzhikh, J. Phys. 84, 2001(2002. [35] C. Schwartz, Ann. PhygN.Y.) 16, 36 (1961.
[15] A.K. Bhatia, A. Temkin, and H. Eiserike, Phys. RevOA219  [36] W.H. Miller and B.M.D.D. Jansen op de Haar, J. Chem. Phys.
(1974. 86, 6213(1987.
[16] A.K. Bhatia, R.J. Drachman, and A. Temkin, Phys. ReW,A [37] C.W. McCurdy, T.N. Rescigno, and B.I. Schneider, Phys. Rev.
223(1974. A 36, 2061(1987.
[17] A.K. Bhatia, R.J. Drachman, and A. Temkin, Phys. Rel6) [38] T.N. Rescigno, B.H. Lengsfield, and C.W. McCurdy,Nfod-
1719(1977. ern Electronic Structure Theoryedited by D.R. Yarkony
[18] G.G. Ryzhikh and J. Mitroy, J. Phys. 83, 2229(2000. (World Scientific, Singapore, 1995Vol. 2, Chap. 9, pp. 501—
[19] Y.R. Kuang and T.T. Gien, Phys. Rev.55, 256 (1997). 588.
[20] J. Mitroy, Aust. J. Phys52, 973(1999. [39] J. Nuttall, Ann. Phys(N.Y.) 52, 428 (1969.
[21] T. Koga, H. Tatewaki, and A.J. Thakkar, Phys. RevA4510 [40] K.R. Brownstein and W.A. McKinley, Phys. Re®70, 1255
(1993. (1968.

062709-11



M. W. J. BROMLEY AND J. MITROY

[41] R.D. Woods and D.S. Saxon, Phys. R88, 577 (1954).

[42] R.R. Lucchese, Phys. Rev.40, 6879(1989.

[43] P.G. Burke, K.A. Berrington, and C.V. Sukumar, J. Phyd43
289 (1981).

[44] D.H. Oza and J. Callaway, Phys. Rev2&, 2840(1983.

[45] D.H. Oza, Phys. Rev. 80, 1101(1984.

[46] I. Bray and A.T. Stelbovics, Phys. Rev. Le®9, 53 (1992.

[47] G. Liu and T.T. Gien, Phys. Rev. A6, 3918(1992.

[48] S.K. Houston and R.J. Drachman, Phys. Rev.3A1335
(1972).

[49] G. Ryzhikh and J. Mitroy, J. Phys. B1, 4459(1998.

[50] M.W.J. Bromley and J. Mitroy, Phys. Rev. 85, 012505
(2002.

[51] M.W.J. Bromley and J. Mitroy, Phys. Rev. 85, 062505

PHYSICAL REVIEW A67, 062709 (2003

(2002.

[52] D.A.L. Paul and L. Saint-Pierre, Phys. Rev. Leitl, 493
(1963.

[53] V.I. Goldanskii and Y.S. Sayasov, Phys. Let8, 300 (1964).

[54] M. Charlton, Rep. Prog. Phyd8, 737 (1985.

[55] T.J. Murphy and C.M. Surko, Phys. Rev. L7, 2954(1991).

[56] V.A. Dzuba, V.V. Flambaum, W.A. King, B.N. Miller, and O.P.
Sushkov, Phys. Scd6, 248 (1993.

[57] G.F. Gribakin, Phys. Rev. A1, 022720(2000.

[58] S.J. Gilbert, L.D. Barnes, J.P. Sullivan, and C.M. Surko, Phys.
Rev. Lett.88, 043201(2002.

[59] M.J. Puska and R.M. Nieminen, Rev. Mod. Ph&, 841
(1994.

[60] G.F. Gribakin and W.A. King, Can. J. Phy#4, 449(1996.

062709-12



