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Variational calculation of positron-atom scattering using configuration-interaction-type
wave functions

M. W. J. Bromley* and J. Mitroy†

Faculty of SITE, Northern Territory University, Darwin, Northern Territory 0909, Australia
~Received 18 January 2003; revised manuscript received 27 March 2003; published 20 June 2003!

The Kohn variational method is used with a configuration-interaction~CI!-type wave function to determine
the phase shifts andZeff for positron-copper scattering. The method is first tested for positron-hydrogen
scattering and it is found to give phase shifts andZeff within 1–2% of the best previous calculations. Although
the phase shift for Cu converged more slowly withLmax ~the maximum angular momentum of the electron and
positron orbitals included in the short-range basis!, it was still possible to get reliable estimates of the phase
shifts by including orbitals with,<18 and the use of an extrapolation technique. Calculation ofZeff was more
problematic since the convergence ofZeff with respect toLmax was very slow. Despite the uncertainties, it was
clear that thep-wave phase shift was showing signs of forming a shape resonance at about 0.5 eV incident
energy. This resulted in ap-wave contribution toZeff that was larger than that of thes wave fork>0.1a0

21.
Speculative calculations based upon a model potential suggest that ap-wave shape resonance centered at
thermal energies, e.g., about 0.025 eV, could result in a thermally averagedZeff exceeding 10 000.

DOI: 10.1103/PhysRevA.67.062709 PACS number~s!: 34.85.1x, 36.10.2k
in
ex
o
o

an
a

ich
es

el

an
he
n
th
th

e
ca

s
ng
o
o

dy
on

tals
the

n,
ap-
the
de
ed

ave
e-

s as
be
to
dily

ap-
t a
eci-
n-

ob-
m

ter-

ing
of

ere
ge

ys-

f
er-
ma-
ted
la-

rs
ss
I. INTRODUCTION

In one respect, the calculation of positron-atom scatter
is simpler than electron-atom scattering. There is no
change interaction between the positron and target electr
But in every other respect, the theoretical treatment
positron-atom scattering is a more difficult proposition th
electron-atom scattering. The reason for this lies in the
tractive nature of the positron-electron interaction, wh
leads to very strong electron-positron correlations. Th
correlations manifest themselves in a close-coupling~CC!
expansion that converges much more slowly~than the
equivalent electron-atom CC expansion! and furthermore,
the formation of an electron-positron bound state, nam
positronium~Ps! is also possible above certain energies.

One way to avoid the slow convergence of the CC exp
sion is to explicitly include Ps formation channels into t
CC expansion. The inclusion of Ps states into the chan
space carries its own set of difficulties associated with
calculation of the matrix elements between states in
positron-atom and positronium-~residual ion! groups of
channels. In the case of positron-hydrogen scattering, th
difficulties have been solved and quite large calculations
now be performed routinely@1–3#. The generalization of
such techniques to treat scattering from the alkali atom
not trivial, one area of difficulty with the Ps channels bei
the treatment of the exchange interaction between the p
tronium atom and the residual ion. Existing calculations
these systems have largely ignored these issues@4,5#.

In this work, the Kohn variational method is used to stu
positron-atom scattering with a configuration-interacti
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~CI!-type basis that has the electron and positron orbi
centered at the nucleus. The drawback of this approach is
slow convergence of the phase shifts withLmax, the maxi-
mum , value of the orbitals included in the CC expansio
and the restriction that the method can only sensibly be
plied at energies below the Ps-formation threshold. For
positron-hydrogen system it is necessary to explicitly inclu
orbitals with,515 to get the phase shifts that are converg
at the 2–3% level@6,7#. The difficulties with slow conver-
gence are handled by simply accepting that the trial w
functions will have a basis of very large dimension and d
veloping procedures to perform the necessary calculation
accurately and efficiently as possible. This turned out to
not too difficult since an existing CI program developed
study positronic atoms in a single-center basis was rea
adapted to perform the necessary calculations@8#.

The restriction that the method can only be sensibly
plied at energies below the Ps-formation threshold is no
cause for great concern since there are very few high pr
sion calculations of positron-atom scattering in the low e
ergy region, and therefore any information that can be
tained is extremely useful. Quite simply, apart fro
hydrogen and helium@9–11#, it is difficult to name another
atom for which it could be asserted that the positron scat
ing length is known with an accuracy of65%. Indeed, some
of the most reliable estimates of positron atom scatter
lengths are derived a simple model potential analysis
group II and group IIB elements@12,13#. These calculations
are believed to be reliable since the model potentials w
tuned to the positron affinities obtained from some lar
scale bound-state calculations@13,14#. Put succinctly, the
ability to calculate the scattering observables for target s
tems with ionization potentials greater than 6.8 eV~the Ps
binding energy! will lead to an improved understanding o
the dynamics of positron-atom interactions at thermal en
gies. The advantage of the single-center basis is that the
trix elements of the scattering Hamiltonian can be evalua
without any approximations. Therefore, the present calcu

ity,
:
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M. W. J. BROMLEY AND J. MITROY PHYSICAL REVIEW A67, 062709 ~2003!
tions are not subject to the same degree of uncertaint
previous calculations on the alkali atoms@4,5#.

Calculations upon two systems are reported in this wo
The initial calculation for the positron-hydrogen system w
used to validate our computer programs since the ph
shifts and annihilation parameterZeff for this system had
previously been calculated to a high degree of accuracy
number of authors@2,9,15–19#.

The other calculation on the positron-copper system w
done for a number of reasons. First, this system suppor
bound state, so it was worthwhile to check whetherZeff was
abnormally large for the system. Next, copper is a sys
with an ionization potential of 7.7 eV, which is not muc
larger than the Ps-ionization potential. So it provides a rat
exacting test of the basis-set requirements to achieve con
gence with respect toLmax. It should be noted that we ha
previously solved the Kohn-variational equations fore1-Cu
scattering at zero energy@8#. In the present work those ca
culations are extended to 0.5 eV incident energy and
p-wave contributions to the cross section andZeff are also
determined.

II. DETAILS OF THE CALCULATION

A. The model Hamiltonian

The model Hamiltonian previously used to model t
positron-copper system has been discussed previously@8#, so
only a brief description is given here~note, the Hamiltonian
for the simpler positron-hydrogen system is well known a
is not detailed here!. The calculations were done in the fixe
core approximation and the model Hamiltonian is

H52
1

2
¹0

22
1

2
¹1

21Vdir~r1!1Vexc~r1!1Vp1~r1!

2Vdir~r0!1Vp1~r0!2
1

r 01
1Vp2~r1 ,r0!. ~1!

The direct potential (Vdir) represents the interaction with th
core, which was derived from the Hartree-Fock~HF! wave
function of the neutral copper ground state computed w
the program of Mitroy@20# using the optimized Slater Typ
Orbital ~STO! set of Koga and Thakkar@21#. The core po-
tential is attractive for an electron and repulsive for a po
tron. The exchange potential (Vexc) between the valence
electrons and the HF core was computed without approxi
tion.

The one-body polarization potential (Vp1) is a semiempir-
ical polarization potential derived from an analysis of t
spectrum of the parent atom. It has the functional form

Vp1~r !5(
,m

2
adg,

2~r !

2r 4
u,m&^,mu. ~2!

The factorad is the static dipole polarizability of the cor
andg,

2(r ) is a cutoff function designed to make the polariz
tion potential finite at the origin. The same cutoff functio
was adopted for both positron and electron and it was
fined to be
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2~r !512exp~2r 6/r l

6!. ~3!

The Cu1 core polarizability was chosen as 5.36a0
3 @22# and

the cutoff parameters,r l were set asr051.988a0 , r1
52.03a0 , r251.83a0 , r351.83a0. For all l .3, r l is set to
1.91a0. The two-body polarization potential (Vp2) was

Vp2~r i ,r j !5
ad

r i
3r j

3 ~r i•r j !gp2~r i !gp2~r j !, ~4!

whererp2 was set to 1.91a0.

B. The Kohn variational method and trial wave function

The Kohn variational method@23–25# is a commonly
used method to solve the Schrodinger equation for lo
energy scattering problems. It can be regarded as the
tinuum variant of the Rayleigh-Ritz variational method
often used for bound-state problems. The formalism p
sented here closely follows that outlined in the monograph
Burke and Joachain@26#.

The trial wave function, with net orbital angular mome
tum L, adopted for the present Kohn variational calculatio
has the form

uC t ;LS&5a0uFs ;LS&1a1uFc ;LS&1(
i , j

ci j uF i j ;LS&,

~5!

where the first two terms are the continuum functions t
are equal to the regular and irregular solutions of the f
particle Schro¨dinger equation at large distances from the o
gin. They are written as

uFs ;LS&5 (
mgs ,ms

(
mgs ,ms

^,gsmgs,smsuLML&

3^ 1
2 mgs

1
2 msuSMS&fgs~r1!us~r0!, ~6!

uFc ;LS&5 (
mgs ,mc

(
mgs ,mc

^,gsmgs,cmcuLML&

3^ 1
2 mgs

1
2 mcuSMS&fgs~r1!uc~r0!. ~7!

In this expressionfgs(r1) is the ground-state wave functio
of the target atom, whileus(r0) and uc(r0) are the con-
tinuum functions. They have the radial forms

us~r 0!5 j ,~kr0!, ~8!

uc~r 0!5@12exp~2br 0!#2,11n,~kr0!. ~9!

The @12exp(2br0)# factor is used to make the irregular s
lution uc(r 0) go to zero asr 0→0. The factorb was set to
2.0 for the present calculations. The scattering lengths
Zeff were insensitive to the precise value chosen forb. For
calculations at zero energy, one is only interested in th,
50 partial wave and in this case the continuum functio
can be written as
9-2
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us~r 0!5r 0 , ~10!

uc~r 0!5@12exp~2br 0!#A, ~11!

whereA is the scattering length. The short-range functio
are

uF i j ;LS&5 (
mi ,mj

(
m i ,m j

^, imi, jmj uLML&

3^ 1
2 m i

1
2 m j uSMS&f i~r1!f j~r0!, ~12!

wheref i(r1) andf j (r0) areL2 functions written as a linea
combination of an Laguerre Type Orbitals~LTOs! or as a
linear combination of LTOs and STOs. All the basis fun
tions so far, exceptuFs ;LS& and uFc ;LS&, are identical in
functional form to the basis functions used in earlier CI c
culations of positronic copper. Therefore, the amount
work required to adapt the program to perform scatter
calculations was minimal. The major practical change w
the extension of the radial grid to a maximum radius
625a0. This was needed to correctly handle the long-ran
dipole coupling between the ground state and the firstnp
excited state. More details about the specifics of the b
sets used for the calculations on hydrogen and copper
presented later.

The asymptotic form of the scattering wave functions c
be written with a number of different normalizations depen
ing on the form adopted fora0 and a1 @27#. These condi-
tions can be written as

a05cost2a tsint, ~13!

a15sint1a tcost, ~14!

a t5tan~d t2t!, ~15!

whered t is the phase shift of the trial wave function andt
P@0,p/2#. Whent50, a t reduces to tan(d t), which is just
the K-matrix element. The choicet5p/2 givesa t5cot(dt),
which is just the reciprocal of theK-matrix element. This
choice of t is sometimes called the inverse-Kohn meth
@28#.

Besides the normalizing condition, there is another a
where there is flexibility in the choice of the continuum fun
tions. This concerns whether the functionsus and uc are
orthogonalized to the short-rangeL2 radial basis functions
Either choice is permissible, but we chose to orthogona
since this simplified the evaluation of the matrix element

The generalized Kohn functionalav5tan(dv2t) is given
by @29#

av5a t22^C tuH2EuC t&. ~16!

Applying the Kohn condition that the Kohn functional
stationary with respect to the linear variational parameter
the trial wave function leads to the linear equations

]av

]a t
50, ~17!
06270
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50. ~18!

These equations are solved to determinea t andci . The error
in av upon solving the set of (n11) linear equations is of
second order with respect to variations in the trial wave fu
tion.

The annihilation parameterZeff is calculated from the
scattering wave function by the identity@18,30,31#,

Zeff54NeE d3r 0d3tuÔSC~r0 ,r1 , . . . ,rNe
!u2d~r02r1!,

~19!

whereC(r0 ,r1 , . . . ,rNe
) is the total wave function of the

system andd3t represents the integration over all electr
coordinates. OperatorÔS is a spin projection operator tha
only permits annihilation to occur for electrons and positro
in a spin singlet state. In the plane-wave Born approxim
tion, the positron wave function is written as a plane wa
and the annihilation parameter is equal to the number
atomic electrons, i.e.,Zeff5Ne .

The L2 basis was constructed by populating all the po
sible configurations that could be formed by letting the el
tron and positron populate all the orbitals subject to the
lection rules,

max~,0 ,,1!<Lmax, ~20!

u,02,1u<L, ~21!

~21!,01,15~21!L. ~22!

In these expressions,0 is the positron angular momentum
and,1 is the electron angular momentum. It is necessary
choose a basis with a large value ofLmax in order to obtain
results close to convergence. It is well known that the attr
tive interaction between the electron and positron leads
localization of the atomic electrons in the vicinity of th
positron@32,33#. The formation of something akin to a vir
tual Ps cluster leads to very slow convergence with,. The
convergence ofZeff with respect toLmax is typically much
slower than the phase shift@8,31#.

The slow convergence of the phase shift and annihilat
rate with increasingLmax means that an extrapolation tec
nique must be used to estimate theLmax→` limit. Making
the assumption that the successive increments to any ph
cal observable,XL scale as 1/Lp for sufficiently largeL, one
can write

X`5 lim
Lmax→`

S (
L50

Lmax

XL1D (
L5Lmax11

`
1

LpD . ~23!

The power series is easy to evaluate, the coefficientD is
defined as

D5XLmax
~Lmax!

p, ~24!

and the exponentp can be derived from
9-3
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S Lmax

Lmax21D p

5
XLmax21

XLmax

. ~25!

Recently Gribakin and Ludlow@34# used second-order pe
turbation theory to show that the energy exponentpE should
be 4, while the exponent for the annihilation rate,pG should
be 2. Translating these results to the scattering region,
suggests thatpd should be 4, whilepZ should be 2. In prac-
tice the exponents obtained in calculations are usu
slightly smaller in magnitude than the expected valu
@8,13#. The extrapolation ofZeff for e1-Cu scattering was
somewhat problematic and it was not possible to direc
extrapolateZeff . This point is discussed later.

For evaluating the core and valence electron contributi
to Zeff from Eq. ~19!, the following identities are used. Th
core annihilation rate is

Zeff
core5Nk (

c51

Ncore

2~2,c11!(
i , j

Np

r i j
p E r 2fc

2~r !f i~r !f j~r !dr,

~26!

wherer i j
p is the one-body positron density matrix. The de

sity matrix is defined by

r i j
p 5^C;LSuai

†aj uC;LS&

5 (
I ,J51

NCI

cIcJ^F I e ,I p
;LSuai

†aj uFJe ,Jp ;LS ;&

5 (
I ,J51

NCI

cIcJd I e ,Je
d I p ,idJp , j . ~27!

The indexI e denotes the electron orbital in configurationI.
The sum over configurations includes all terms from Eq.~5!
andcI is the coefficient for configurationF I eI p

. The positron

indices i , j run over all the positron orbitals. The valenc
annihilation rate for theL partial wave is

Zeff
valence(L)5Nk (

I ,J51

NCI

cIcJE r 2f I e
~r !fJe

~r !f I p
~r !fJp

~r !dr

3 (
k5kmin

kmax

~2k11!

3^f I e
f I p

;LSiCk~ r̂1!•Ck~ r̂0!ifJe
fJp

;LS&.

~28!

The normalization factorNk in Eqs. ~26! and ~28! for k
.0 with the asymptotic wave functions defined by Eqs.~8!
and ~9! is

Nk5
~2,11!

k~a0
21a1

2!
. ~29!

At k50 with asymptotic wave functions written as Eqs.~10!
and ~11! the normalization constant is unity.
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In an earlier work@8#, the core and the valence annihila
tion parameter were presented separately. In the present
this distinction is not made. We adopt the notation thatZeff

(L)

will be used to denote the contribution to the annihilati
rate from theL partial wave including both core and valenc
contributions. We then denoteZeff to be the contribution
from the summedL50 andL51 partial waves.

C. Real or complex boundary conditions

One of the problems of the Kohn variational method
originally formulated lies in the presence of spurious sing
larities ~sometimes called Schwartz singularities! @35# when
the K-matrix is plotted as a function of energy. A good de
of attention has been devoted to the development of pro
dures to eliminate or otherwise handle these singularities~re-
fer to the extensive discussions in Refs.@24,25#!. One of the
more ingenious ideas is to formulate the scattering prob
with complex~i.e.,S-matrix! boundary conditions rather tha
real ~i.e., K-matrix! boundary conditions@36,37#. Since the
complex-Kohn variational method does not seem to poss
these spurious singularities it has been increasingly app
to a variety of scattering problems in the last decade@38#.
The complex-Kohn method does have two drawbacks. T
first is the annoyance of dealing with complex arithmetic a
the second relates to the fact that the resultingS-matrix can-
not be guaranteed to be unitary~it is expected to satisfy the
unitarity condition with increasing accuracy as the trial wa
functions is increased in size and sophistication!.

TheK-matrix version of the Kohn method was adopted
this work as it was found that any problems with singula
ties became increasingly unimportant as the size of the b
used to represent the scattering function was enlarged~Nes-
bet has previously commented on this point@25,39#!. To il-
lustrate this, the results of some test calculations usin
model potential are presented. These are based on the e
research of Brownstein and McKinley@40#, who investigated
the behavior of the Kohn variational phase shift for an attr
tive square well with a short-range basis consisting o
small number of STOs.

Here, a real Woods-Saxon-type potential@41# is chosen as
the model potential. A square-well potential has a disco
nuity, which can lead to unnecessary complications wh
looking at the fine details of the convergence of the Ko
solution to the exact answer. The Woods-Saxon potentia
given by

V~r !52
V0

11expS ~r 2R0!

a D , ~30!

where we choseV052, R051, anda50.05.
Calculations were performed with two sets of short-ran

basis functions. The first was a set with four LTOs, whi
has exactly the same exponents as ther nexp(2lr) (n
51,2,3,4) STO basis of Brownstein and McKinley@40#.
Since the LTO and STO basis sets span the same space
are effectively equivalent. The second set with 28 LTOs w
able to give phase shifts very close to convergence. Altho
the LTOs have a common exponent (l51.0) and are thus
mutually orthogonal, the two continuum orbitals were su
9-4
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VARIATIONAL CALCULATION OF POSITRON-ATOM . . . PHYSICAL REVIEW A67, 062709 ~2003!
jected to a Gram-Schmidt orthogonalization to ensure
they were orthogonal to the LTO set.

For the present model potential the variation in the ph
shift with incident particle momentak was investigated. Firs
of all it should be mentioned that theK-matrix elements were
insensitive to the specific value chosen forb, the parameter
in the cutoff function used to make the irregular part of t
long-range solution finite at the origin. The results hard
changed forbP@0.5,4# and the value ofb52.0 was adopted
for all the calculations reported in this article. These obs
vations are consistent with those made by Lucchese@42# for
the complex-Kohn method. The phase shifts will be insen
tive to b as long as there is some degree of overlap betw
the L2 orbitals and the continuum orbitaluc(r ).

In order to exhibit the properties of the variational so
tion, the phase shifts from calculations witht50,p/4 and
p/2 are shown in Figs. 1 and 2. The differences between

FIG. 1. Investigations of Schwartz singularities using for pote
tial scattering from an attractive Woods-Saxon Potential. The ph
shifts of threeN54 calculations with Kohn normalization cond
tions: t50, p/4, andp/2, as a function of incident particle mo
mentumk. The phase shifts are plotted relative to thed28,0 phase
shift.

FIG. 2. The phase shifts of twoN528 calculations with Kohn
normalization conditions,t5p/4 andp/2, are plotted as a function
of incident particle momentumk. The phase shifts are plotted rela
tive to d28,0. The exact energy dependence of the phase shifts in
vicinity of the spikes was not determined.
06270
at
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three calculations with differentt can be used to gauge th
uncertainty in the phase shifts for the calculations with
N54 andN528 LTO basis sets. The phase shift for a giv
N and t is denoted asdN,t . In order to demonstrate th
variations amongst different calculations, the phase sh
from theN528,t50 calculation,d28,0 are taken as the ref
erence set. The deviation in each phase shift is calcula
relative tod28,0(k), and shown in Figs. 1 and 2.

The three calculations withN54 shown in Fig. 1 clearly
exhibit the occurrence of the Schwartz singularities as
incident moment is changed. There are at least two singu
ties for each of the three values oft in the range ofk inves-
tigated. The deficiencies in theL2 basis are exhibited mos
clearly in the fact that the phase shift plateaus are con
tently 5% larger than thed28,0(k) phase shift. Figure 1 is
very reminiscent of the figures previously published
Schwartz@35# and Brownstein and McKinley@40#.

A completely different picture emerges when theL2 part
of the basis is enlarged to include 28 LTO basis functio
The variations of thet5p/4 andp/2 d(k) calculations rela-
tive to the normal Kohn formulation,t50, are shown in Fig.
2. The first thing to note is that the variations in the relati
difference, (d28,t2d28,0)/d28,0, have been multiplied by a
factor of 10 000 in order to make the difference visible. A
though there are one or two spikes where the relative dif
ence reaches 331024, there is no feature that could be un
ambiguously identified as a Schwartz singularity. It is n
possible to completely rule out the possibility that singula
ties may be present in thekP@0.0,1.0#a0

21 range. Narrow
singularities could very well exist in this momentum rang
However, it was decided not to actively search for singula
ties as long as they did not manifest themselves in an o
manner and detract from the accuracy of the calculations

It is worth noting that spurious resonances above the i
ization threshold have long been a feature of close-coup
calculations of electron-hydrogen scattering that have use
pseudostate basis@43,44#. However, it has been found tha
the impacts of these spurious resonances are less notic
when the dimension of the pseudostate basis sets used i
calculations of electron-hydrogen scattering are enlar
@45,46#. The pseudostate basis used for the CC calculati
was a LTO basis identical in construction to the ba
adopted for the present series of calculations. An interes
thing amongst all of this is that the spurious features
prominent in calculations using a smallad hocpseudostate
basis@43,44# seem to diminish in importance as the dime
sion of the Laguerre basis is increased.

The reliability of the Kohn and inverse-Kohn variation
methods for this model problem persuaded us to use
standard Kohn method with real boundary conditions for o
calculations upon H and Cu. The subsequent calculati
upon these atoms, which were performed fort50, p/4, and
p/2, did not show any trace of a Schwartz singularity an
furthermore, the three Kohn variants gave phase shifts
Zeff that generally agreed to within 0.1%.

D. Semiempirical model ofe¿-Cu scattering

In this section, details of a simple semiempirical model
positron-Cu scattering are described. The purpose behind
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e
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M. W. J. BROMLEY AND J. MITROY PHYSICAL REVIEW A67, 062709 ~2003!
model potential was to put the results of the CI-Kohn cal
lations into perspective, and also to highlight the possi
impact thatp-wave shape resonances will have on the s
tem. Since the model potential has been previously descr
and applied to positron-Cu scattering, only a short desc
tion is given here.

The model potential approximates the Hamiltonian by

H52 1
2 ¹0

21Vdir~r0!1Vpol~r0!. ~31!

The repulsive direct potentialVdir is computed from the HF
wave function of the target atom. The polarization poten
has the functional form given by Eq.~2! with ad540.0a0

3

andr51.974a0 @12#. The value ofr was set by tuning to the
e1Cu binding energy of«50.005 597 hartree obtained in th
fixed-core stochastic variational method~FCSVM! @8,12,32#.

The annihilation of positrons was modelled by the eq
tion

Zeff5E d3r @Gvrv~r !1Gcrc~r !#uF~r !u2, ~32!

whererc(r ) and rv(r ) are the electron densities associat
with the core and valence electrons of the target atom,
F(r ) is the positron-scattering function. The enhancem
factorsG are introduced to take into consideration the infl
ence that electron-positron correlations will have upon
annihilation rate. The enhancement factor for valence
core electrons is treated differently. For core orbitals,Gc is
simply set to 2.5 due to reasons outlined in@12#. The valence
enhancement factorGv was computed by the simple identit

Gv5
Gv

FCSVM

Gv
model

, ~33!

whereGv
FCSVM was the annihilation rate of the positron wi

the valence orbital as given by the FCSVM calculati
@8,12#, andGv

model is the valence annihilation rate predicte
by the model potential calculation withGv51. This factor
was set to 18.2@12#.

These semiempirical distorted wave calculations will
referred to as the DW calculations.

III. THE SCATTERING OF POSITRONS
FROM ATOMIC HYDROGEN

The calculations upon atomic hydrogen were perform
mainly to validate the analytical and numerical details of
program used to perform the calculations. They were a
done to give information about the convergence of the ph
shift andZeff with increasingLmax.

The initial calculation was designed to be equivalent t
three state H(1s,2s,2p) close-coupling calculation. The
phase shifts andZeff for the ,50 and 1 partial waves ar
listed in Table I. The results are in very good agreement w
previous calculations in this model space@18,47#. The agree-
ment with the values ofZeff computed using the momentum
spaceT-matrix method are particularly impressive. The r
sults in this table can usefully serve as benchmark value
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Zeff for solutions of the Schro¨dinger equation in the
H(1s,2s,2p) model.

One aspect about the calculation that should be mentio
was the need to include a large basis ofL2 functions for the
positron partial wave which is coupled to the H(2p) excita-
tion. The interaction between the H(1s) and H(2p) channels
decays as 1/r 2 at larger and to represent the virtual excita
tion to the H(2p) state requires a rather largeL2 basis. This
is especially true at energies close to threshold. The calc
tion for the s wave had 33 short-range positron,50 and
50 ,51 LTO. Forp-wave scattering, the number of positro
LTOs for ,50, 1, and 2 were 48, 33, and 48, respective

Some much larger calculations were also done to de
mine whether the present single center Kohn-variational
culations could give scattering parameters accurate at the
level. These calculations are reported in Tables II and
These calculations included about 20 LTOs for small valu
of ,, either 48 or 50 LTOs for the positron channels that a
dipole coupled to the entrance channel, and 15 electron
18 positron LTOs for orbitals with,.3.

The s-wave phase shifts for the explicit calculation wi
Lmax512 are accurate to about 0.002–0.003 rad. When
extrapolation of the phase shift is performed, the agreem
with the variational phase shifts of Drachman and c
workers@9,48# could hardly be better. Values ofZeff are gen-
erally a few percent smaller than theT-matrix calculations of
Ref. @18# and the variational calculations of Ref.@17#. This is
expected for two reasons. As mentioned earlier, the attrac
interaction between the electron and positron leads to
formation of a virtual Ps cluster, resulting in very slow co
vergence with,. To put the slow convergence in perspectiv
we estimate thatLmax would have to be at least as large as

TABLE I. The phase shifts andZeff
(L) for positron scattering from

hydrogen in the H(1s,2s,2p) three-state model. The columnk re-
ports momentum ina0

21. The L50 entry for thek50 phase shift
gives the scattering length.

k d d @47# Zeff
(L) Zeff

(L) @18#

L50
0.0 20.185 0.6593 -
0.1 20.0049 20.0048 0.6200 0.6200
0.2 20.0424 20.0421 0.5665 0.5666
0.3 20.0934 20.0929 0.5196 0.5196
0.4 20.1475 20.1471 0.4802 0.4801
0.5 20.1994 20.1986 0.4465 0.4464
0.6 20.2466 20.2465 0.4171 0.4169
0.7 20.2880 20.2876 0.3908 0.3907

L51
0.1 0.0047 0.0047 0.0143 0.0143
0.2 0.0134 0.0134 0.0535 0.0535
0.3 0.0203 0.0203 0.1080 0.1080
0.4 0.0222 0.0221 0.1662 0.1663
0.5 0.0185 0.0184 0.2199 0.2199
0.6 0.0102 0.0099 0.2649 0.2650
0.7 20.0014 20.0016 0.3005 0.3005
9-6
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to ensure thatZeff was within 10% of its converged value a
most energies. Second, the Kohn-variational principle
variational with respect to the phase shifts and there is
guarantee that other expectation values of the wave func
will be fully optimized.

The agreement of thep-wave phase shifts with earlie
high accuracy calculations@2,15# is also very good. The
present calculations withLmax512 gave phase shifts within

TABLE II. Phase shifts for positron scattering from hydrogen
various values of momenta (k in a0

21). The columnd12 reports the
phase shift from the calculation withLmax510, while the phase
shift in thed` column includes the corrections from theLmax→`
extrapolation. The entry fork50 reports the scattering length.

k d12 d` CC~13,8! @2# Variational @9,15,48#

L50
0.0 22.067 22.088 22.104
0.1 0.1463 0.1480 0.1474 0.1483
0.2 0.1851 0.1875 0.1868 0.1877
0.3 0.1648 0.1672 0.1667 0.1677
0.4 0.1176 0.1198 0.1191 0.1201
0.5 0.0604 0.0623 0.0621 0.0624
0.6 0.0021 0.0036 0.0031 0.0039
0.7 20.0528 20.0516 20.0518 20.0512

L51
0.1 0.008835 0.00886 0.00887
0.2 0.0326 0.0328 0.0327 0.0338
0.3 0.0652 0.0658 0.0657 0.0665
0.4 0.0993 0.1004 0.1002 0.1016
0.5 0.1291 0.1307 0.1306 0.1309
0.6 0.1524 0.1546 0.1542 0.1547
0.7 0.1741 0.1776 0.1788 0.1799

TABLE III. The annihilation parameterZeff
(L) as a function ofk

~in a0
21) for positron scattering from hydrogen.

k Lmax512 Lmax→` CC~13,8! @18# Variational @16,17#

L50
0.0 7.102 8.565 8.868
0.1 5.935 7.143 7.388 7.363
0.2 4.483 5.363 5.539 5.538
0.3 3.452 4.093 4.232 4.184
0.4 2.757 3.232 3.332 3.327
0.5 2.275 2.633 2.753 2.730
0.6 1.928 2.200 2.302 2.279
0.7 1.666 1.874 1.952 1.950

L51
0.1 0.1023 0.1398 0.141 0.130
0.2 0.3985 0.5409 0.556 0.540
0.3 0.8340 1.120 1.148 1.124
0.4 1.317 1.746 1.786 1.763
0.5 1.769 2.313 2.382 2.339
0.6 2.169 2.808 2.916 2.850
0.7 2.665 3.544 3.904 3.670
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a few percent of earlier calculations. When the extrapolat
correction is made, the agreement with the earlier calcu
tions is generally better than 1%. Somewhat surprisingly,
convergence ofZeff with Lmax appears to be slower for thep
wave than thes wave. Only about 70% of the estimatedZeff

(1)

comes from the explicit calculation withLmax512. About
80% of Zeff

(0) for the s wave came from the explicit calcula
tion.

IV. THE SCATTERING OF POSITRONS FROM Cu

The L2 basis was almost the same as the basis used
previous CI calculations of positronic copper@8# and so only
the differences in the basis from that earlier calculation
mentioned here. The major change was the inclusion of
ditional positron LTOs for the,50, 1, and 2 orbitals. A total
of 25, 50, and 25 LTOs for,50, 1, and 2, respectively wer
used for theL50 partial wave. The value ofLmax was 18
and the number of LTOs was 15 for orbitals with,>3. A
total of 40, 33, and 40 positron LTOs for,50, 1, and 2,
respectively, were used for thep-wave calculation. The value
of Lmax was 15 and the number of LTOs was 15 for t
orbitals with ,>3. The smaller value ofLmax used for the
p-wave calculations was the consequence of the larger
mensionality of the linear equation system. The outer limit
the integration range was 625a0 for both thes andp waves.

The L50 phase shifts for positron-Cu scattering plott
in Fig. 3 include a correction due to theLmax→` extrapola-
tion. The extrapolation correction was not large, being 0.0
0.02 rad for most of the energies depicted in Fig. 3. In m
cases the extrapolation correction amounted to less than
in the phase shifts. Also shown in this figure are the D
phase shifts using the model of Mitroy and Ivanov@12#. The
agreement between the two sets of phase shifts is quite
sonable. Part of the difference between the distorted w
~DW! and CI-Kohn phase shifts arises from the fact that
DW phase shifts were tuned using ae1Cu binding energy
~0.005 597 hartree! @8,49# that was slightly different from the
binding energy~0.005 12 hartree! obtained from the curren
CI basis@8#.

t

FIG. 3. Thes-wave phase shiftd0 as a function ofk ~in a0
21) for

positron scattering from copper. Included are the phase shifts
the Lmax→` correction, and the DW phase shifts of Mitroy an
Ivanov @12#.
9-7
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M. W. J. BROMLEY AND J. MITROY PHYSICAL REVIEW A67, 062709 ~2003!
The L51 phase shifts are plotted in Fig. 4. TheLmax
→` correction resulted in a 2–12% increase in the ph
shift with the relative contribution of the extrapolation bein
larger at the higher momenta. The present CI-Kohn ph
shifts are substantially larger than the DW phase shifts
Ref. @12#. The rapid increase of the phase shift tok
50.2a0

21 signifies that thee1-Cu system is on the verge o
forming ap-wave shape resonance. This point is discusse
more detail later.

The calculation ofZeff
(0) is complicated by two competing

trends that affect the convergence pattern asLmax increases
@8#. First, as the scattering length decreases with increa
Lmax, there is a tendency forZeff

(0) to decrease as a cons
quence of the normalization conditions that relate the w
function in the interaction region to the asymptotic wa
function. Then there is the tendency for the electron pileup
the vicinity of the positron to be better represented asLmax

increases. This second effect generally leads toZeff
(0) increas-

ing with increasingLmax. Taken in conjunction, these tw
effects make a direct extrapolation ofZeff

(0) to the Lmax→`
limit somewhat problematic.

The tendency forZeff
(0) to reflect changes in the phase sh

was incorporated into the extrapolation procedure used to
to theLmax→` limit. First, Zeff

(0)/@sin(d)/k# was tabulated as a
function of Lmax. TheLmax→` limit of Zeff

(0)/@sin(d)/k# was
then determined by assuming the successive increment
as a power law. Finally, the limiting value ofZeff

(0) is deter-
mined by multiplying by theLmax→` limit of @sin(d)/k#.
This procedure is effectively the same as that previou
used to determineZeff

(0) at threshold@8#.
Figure 5 depicts the present calculation ofZeff

(0)(k) for
s-wave scattering. About 20–30% of the total contribution
Zeff

(0) came from the extrapolation procedure. Also shown
Fig. 5 is the energy dependence ofZeff

(0)(k) given by the
semiempirical DW calculation@12#. The DW calculation
gives a value at threshold, 96.4, that is, about 25% lar
than the CI-Kohn value of 72.9. Close to 10% of that diffe
ence is due to a different treatment of core annihilation
the distorted wave calculation~the DW used an enhanceme

FIG. 4. Thep-wave phase shiftd1 as a function ofk ~in a0
21) for

positron scattering from copper. Included are the phase shifts
the Lmax→` correction and the DW phase shifts of Mitroy an
Ivanov @12#.
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factor for core annihilation!. Another 5% is due to the fac
that the DW calculation was tuned to a binding ener
slightly different than that given by the present Hamiltonia
When this is taken into account, the agreement between
DW and CI-KohnZeff

(0)(k) is very satisfactory.
The calculation ofZeff

(1) was complicated by a rather slow
convergence withLmax. As was the case for hydrogen, th
convergence ofZeff

(1) with Lmax was slower than the conver
gence ofZeff

(0) . For example, atk50.1a0
21 , Zeff

(1) was 16.96
for the Lmax515 calculation. Application of the extrapola
tion procedure resulted in a value of 45.9, i.e., about
times larger. The derived exponentpZ51.45 of the extrapo-
lation is significantly smaller than the expected value of
Some estimate of the uncertainty associated with the
trapolation can be determined by arbitrarily settingpZ to 2.
When this is done the extrapolation increasesZeff

(1) by a factor
of 1.85 to 31.4. The application of the simple power la
algorithm given by Eqs.~23!–~25! results in some uncer
tainty in the Zeff

(1) Lmax→` contribution, since a value o
Lmax515 is not large enough to ensure that the higher inc
ments toZeff

(1) can be given precisely by the power law for
mulas. We estimate that it would be necessary to extend
calculation toLmax520 to ensure that at least 50% of th
true value ofZeff

(1) was obtained by explicit calculation. Du
to the dimensionality of the linear equations~dimension5
982339823) it was not possible to extend the calculation
include orbitals with larger angular momentum.

The extrapolatedZeff
(1) shown in Fig. 6 was estimated b

simply multiplying the extrapolation correction~i.e., Zeff
(1)(`)

2Zeff
(1)(Lmax515)) by 0.85. The actual decision to multiply b

0.85 was based on examinations of convergence pattern
the annihilation rate for positronic atoms and scattering s
tems@8,50,51#. In every system examined the exponentpZ or
pG asymptotes to 2 from below with increasingLmax. There-
fore, there is a tendency for the extrapolation using E
~23!–~25! to overestimate the size of the correction. It
reasonable to ascribe an uncertainty of about 15% to
extrapolation correction and so Fig. 6 shows a band of val
for Zeff

(1) . The totalZeff ~Fig. 7! obtained by summing thes-

th
FIG. 5. The annihilation parameterZeff

(0)(k) is plotted as a func-
tion of k for s-wave e1-Cu scattering. First, for the explicitLmax

518 series, second, for theLmax519→` extrapolated series, an
finally, using the DW model of Mitroy and Ivanov@12#.
9-8
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VARIATIONAL CALCULATION OF POSITRON-ATOM . . . PHYSICAL REVIEW A67, 062709 ~2003!
and p-wave contributions also includes this band of unc
tainty. A more complicated extrapolation procedure co
have been devised, but it was decided to follow the prece
of Occam’s razor,Entities should not be multiplied unnece
sarily, and use the simplest possible method capable of
ing a reasonable estimate of the correction.

The largest value attained byZeff
(1)(k) in the interval oc-

curred atk50.18a0
21 and it was about 160. Figure 6 show

that the CI-Kohn calculation ofZeff
(1)(k) gives much larger

values than that given by the DW calculation. This result c
be explained by reference to Fig. 4 where the CI-Kohn ph
shift is seen to be much larger than the DW phase shift. T
indicates that the effective potential for the positron in t
CI-Kohn calculation is actually more attractive than the d
torted wave potential. A more attractive potential natu
leads to an increased positron charge density in the vici

FIG. 6. The annihilation parameterZeff
(1)(k) is plotted as a func-

tion of k for p-wavee1-Cu scattering. The lowest curve was com
puted using the DW model of Mitroy and Ivanov@12#. The second
lowest curve gives the CI-Kohn calculation withLmax515. The top
curves include theLmax516→` correction and allow for a 15%
uncertainty in the magnitude of the correction.

FIG. 7. The annihilation parameterZeff(k) is plotted as a func-
tion of k for e1-Cu scattering. The lowest curve was comput
using the DW model of Mitroy and Ivanov@12#. The second lowes
curve gives the CI-Kohn calculation withLmax515. The top curves
include theLmax516→` correction and allow for a 15% uncer
tainty in the magnitude of the correction.
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of the atom and a largerZeff
(1) . The DW model potential,

retaining Gv and Gc unchanged, was revised so that t
p-wave phase shift atk50.1a0

21 was equal to the CI-Kohn
phase shift. When this was done, the value ofZeff

(1) increased
to 52 at k50.1a0

21 and to 230 atk50.2a0
21 ~see ther

51.988a0 curve of Fig. 8!.
With Zeff

(1) being so large, the obvious question is wheth
the L52 partial wave will also make a significant contribu
tion to Zeff(k). An explicit calculation has not been done, b
the DW calculation does provide guidance. Atk50.2a0

21,
the DW calculation gaveZeff

(2)50.31. Although thep-wave
parameterZeff

(1) was sensitive to the details of the model p
tential, Zeff

(2) hardly changed as the cutoff parameter was
tered. Therefore, it can be safely concluded thatZeff(k) has
only a small contribution from the higher partial waves wh
k,0.2a0

21. Figure 7 shows the summed contribution fro
theL50 andL51 partial waves. The notable feature here
the tendency forZeff(k) to increase as the momentum in
creases fromk50.05a0

21.

V. SPECULATIONS ABOUT SHAPE RESONANCES

It has been shown in Fig. 4 that thep-wave phase shift is
a precursor to a shape resonance. A series of DW calc
tions with slightly different potential parameters have be
performed in order to exhibit the impact that a shape re
nance will have onZeff(k). The valuer has been decrease
in a series of increments, thereby increasing the attractio
the positron to the atom. Figure 8 shows that the resona
becomes increasingly pronounced and closer to threshol
the net attraction gets stronger. The peak value ofZeff

(1) for the
sharpest resonance with a resonance energy of about 0
hartree was 110 000.

The large enhancements ofZeff
(1)(k) in the vicinity of the

resonance energy provide another mechanism that can r
in very large values ofZeff(k). The large annihilation rates

FIG. 8. The DW annihilation parameterZeff
(1)(k) is plotted for a

series ofr values as a function ofk for e1-Cu scattering. The
calculation withr51.988a0 was tuned to give the CI-Kohnp-wave
phase shift atk50.1a0

21. The r51.817a0 potential supports a
bound state with a binding energy of 9.231025 hartree. The mo-
mentum at which theZeff

(1)(k) maximum occurs shifts closer to
threshold asr decreases.
9-9
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seen in traditional positron annihilation experiments ha
been the subject of much interest ever since the first exp
ments yielding large values ofZeff(k) @52–56#. It has been
postulated that there are two different mechanisms for p
tron annihilation; these are~1! direct annihilation and~2!
resonant annihilation. Direct annihilation describes the an
hilation of the positron with the target electrons and the
rect annihilation rate was strongly correlated with the size
the elastic cross section@33,56,57#. Resonant annihilation
was mainly important for large molecules with close
spaced vibrational levels. In resonant annihilation, the p
tron is trapped in a Feshbach resonance associated w
vibrationally excited state. The resonant annihilation proc
was deemed to be the mechanism responsible for the l
annihilation rates seen for some molecules@33,57,58#.

It has been shown that there is a natural upper limit
Zeff for thermal positrons annihilating in a gas by direct a
nihilation. Even thoughZeff

(0)(k) can get arbitrarily large as
the scattering length increases, the thermally averaged a
hilation rate^Zeff&T has an upper bound because the ene
region over whichZeff

(0)(k) is large decreases as the scatter
length increases@12,33,57#. Values between 200 and 130
have been suggested as the maximum possible^Zeff&T for the
systems that annihilate by the direct annihilation mechan
@33,57,12#.

The thermally averaged̂Zeff
(1)&T has been determined fo

each of the curves in Fig. 8 at a hypothetical positron te
perature of 300 K. The values obtained were 25, 55, 800,
19 000 for ther51.988, 1.90, 1.85, and 1.825a0 curves,
respectively. The very large value of 19 000 occurs beca
the position of the resonance peak atk'0.044a0

21 is close to
the mean energy of a positron swarm at a temperature of
K. This is an order of magnitude larger than the maximu
possible ^Zeff&T one can get from the direct annihilatio
mechanism due tos-wave scattering.

We therefore assert that there exists a third mechan
that can lead to large values of the positron annihilation
rameterZeff(k). The presence of a shape resonance at
energies can easily result inZeff , achieving 100 000 at the
resonance peak. Even when the impact of thermal avera
is taken into consideration, a value of^Zeff&T exceeding
10 000 is possible provided the resonance energy is p
tioned close to the mean thermal energy. The two assu
tions underpinning this prediction are that~1! the positron-
atom ~or molecule! potential is sufficiently attractive to
support a shape resonance and~2! that short-range electron
positron correlations act to enhance the coalescence m
element. Both of these assumptions are eminently rea
able. The ability of positrons to form bound states with ma
atoms and molecules@32# is certainly supportive of assump
tion ~1!. The copper atom with a positron binding energy
0.005 60 hartree is just on the threshold of forming a sh
resonance. One would expect that a system, such as ma
sium, with a larger positron binding energy of about 0.0
hartree@14,51# would therefore be quite likely to exhibit
p-wave shape resonance.

Short-range electron-positron correlations are known
increase the annihilation rate of all known electron-posit
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systems@12,33,59# and so one expectsGv to be larger than
unity. Even ifGv was decreased toGv54 ~roughly equal to
the value adopted for Kr@12#!, the size of̂ Zeff&T resulting
from a shape resonance could still exceed 1000 by a c
fortable margin.

Impact of weakly bound state onZeff
„1…

The curve withr51.817a0 in Fig. 8 is for a potential that
just supports ap-wave bound state with a binding energy
9.2531025 hartree. The annihilation parameter shows
rapid increase withk near threshold with a peak value o
6600 achieved at k50.013a0

21. When the thermal average i
done at 300 K one getŝZeff

(1)(k)&T52300. A potential that
supports a bound state with a larger binding energy gi
Zeff

(1)(k), which rises more slowly at threshold while achie
ing a peak value, which is smaller. As the state becom
more weakly bound, the rise ofZeff

(1)(k) from threshold be-
comes sharper and the peak value becomes larger.

At the moment there is no hard evidence to support
contention that the polarization potential between a posit
and an atom is sufficiently strong to support ap-wave bound
state. Although Gribakin and King@60# reported evidence o
a p-wave bound state in their calculations ofe1-Mg scatter-
ing, this prediction should not be taken seriously since th
method of calculation does overestimate the strength of
positron-atom interaction@14,51#. The r51.817a0 curve
shown in Fig. 8 gives a good idea of what can be expec
when the potential supports a weakp-wave bound state, the
uncertainty is about whether such a bound state can exi

VI. CONCLUSIONS

It has been shown that the application of the Kohn var
tional method to positron-hydrogen scattering with a sho
range basis consisting of electron and positron functions c
tered only on the nucleus can result in phase shifts that
comparable in accuracy to those of the best previous ca
lations @2,9,15–19#. Convergent close-coupling calculation
containing roughly the same physics as the present CI-K
calculations have been reported previously@7#, but these cal-
culations did not compute the annihilation parameter. T
much slower convergence of the annihilation parameter le
to greater uncertainties in the values ofZeff , but even here
one can expect the results to have a precision of better
5%.

The K-matrix form of the Kohn-variational method wa
used without the appearance of any noticeable singulari
The singularity problem was eliminated for all practical pu
poses by choosing to represent the positron wave func
with a L2 basis that can be enlarged systematically. Furth
more, the large size of theL2 basis meant that the compute
phase shifts were not very sensitive to the exponent use
generate the LTOs for a given,. Thus, the calculations a
different energies all used the same short-range LTO bas

Comparison of the CI-Kohn phase shift andZeff with the
DW results indicates that a simple central potential mo
can do a reasonable job of reproducing the results of a m
sophisticated calculation provided the adjustable parame
9-10
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can be tuned correctly. One complication of the DW mode
the need to tune the polarization potential separately fos-
andp-wave scattering.

One notable feature of theZeff calculations is the appar
ently slower convergence forp-wave scattering. This can b
explained by consideration of the nature of the contact m
trix element. The main contributions to the matrix eleme
come from the region of space where the electron and p
tron charge distributions overlap. The presence of the a
tional centrifugal barrier in the interaction Hamiltonia
means the electron and positron charge distributions
pushed further away from the nucleus. Therefore, the for
tion of a virtual Ps cluster will occur further away from th
nucleus and will result in a more slowly convergent anni
lation matrix element. This of course has disturbing implic
tions for calculations of the higher partial waves. As the i
portance of the centrifugal barrier increases with increas
L, one can expect the calculation ofZeff

(L) to converge increas
ingly slowly with Lmax.

The CI-Kohn calculations indicate that the effecti
positron-atom potential that can support ans-wave bound
state will most likely result in an attractive potential well fo
p-wave scattering. The present CI-Kohn calculation is on
J.

J.

e,

06270
s

-
t
i-
i-

re
a-

-
-
-
g

e

verge of supporting a shape resonance in thep-wave. The
existence of ap wave shape resonance could lead to qu
prominent enhancements inZeff

(1)(k) if the resonance energ
is close to threshold. Although copper is not an easy atom
create for a beam experiment, the present results have im
cations for atoms such as Zn, Cd, and Mg. The group
atoms, Zn and Cd, have positron binding energies roug
comparable in size to Cu, and therefore one can expect t
to have elastic cross sections, andZeff(k) roughly similar to
that of Cu. The magnesium system with its much larger p
itron binding energy can be expected to have a shape r
nance with better definition. The present results certainly
crease the desirability of performing elastic scattering
annihilation experiments on group II and II B atoms of t
periodic table.
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