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Double photoionization of two-electron atoms based on the explicit separation
of dominant ionization mechanisms

Tobias Schneider and Jan-Michael Rost*
Max Planck Institute for the Physics of Complex Systems, No¨thnitzer Straße 38, 01187 Dresden, Germany

~Received 21 February 2003; published 11 June 2003!

Double ionization by a single photon is often discussed in terms of two mechanisms, namely,shakeoffand
knockout, dominant at high and low photon energies, respectively. We have developed a model to formulate the
explicit but separate contribution of both mechanisms at all energies@Phys. Rev. Lett.89, 073002~2002!#. The
separation is based on a quasiclassical formulation of knockout which is free from any shakeoff part since the
latter is purely quantum mechanical. The relevance of each mechanism from threshold up to several keV
photon energy is quantified and discussed in detail for the photoionization from the ground state of two-
electron atoms. Photoionization ratios, integral and singly differential cross sections calculated for helium and
other members of its isoelectronic sequence are compared to benchmark experimental data and recent theoret-
ical results. A connection to Samson’s half-collision model@Phys. Rev. Lett.65, 2861~1990!# is also given.
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I. INTRODUCTION

The escape of two electrons from an atom or ion due
the absorption of a single photon cannot be understood in
framework of independent particles. Since the electr
photon coupling is of single-particle nature, only th
electron-electron correlation renders such a process poss
This explains the interest in double photoionization of t
simplest many-electron atom, namely, helium, or more g
erally the two-electron atom documented through an ex
sive literature on the subject, including theoretical@1–12# as
well as experimental work@13–18#. On the theoretical side
only in recent years, sophisticatedab initio methods have
been developed which allow for an exact treatment of
two outgoing correlated electrons@19–21#. Exactly these
final-state correlations are the most challenging issue
theoretical ab initio investigations. Some of these ca
culations are in excellent agreement with experiment
both, integral and differential, cross sections. Neverthel
the underlying ionization mechanism remains difficult to u
cover within such fully numerical approaches. Hence, s
able approximate calculations@22,23# that reveal the dy-
namical mechanisms can supplement the accurate nume
results to complete the theoretical picture of dou
photoionization.

After the initial absorption of the photon by the prima
electron, the subsequent redistribution of the energy am
the two electrons is often discussed in terms of two sepa
mechanisms@18,22–26#, knockout~KO! and shakeoff~SO!.
The first mechanism~sometimes called ‘‘two-step-one’’@27#!
describes the correlated dynamics of the two electrons
they leave the atom where the primary electron~the photo-
electron! is knocking out the secondary electron in
(e,2e)-like process. It is the final-state correlation that go
erns the knockout mechanism. On the other hand, the sh
off mechanism@6–9,28# accounts for the fact that absorptio
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of the photon may lead to a sudden removal of the pho
electron without any direct interaction with the seconda
electron. This causes a change in the atomic field so tha
secondary electron relaxes with a certain nonvanishing p
ability to an unbound state of the remaining He1 ion, i.e., the
secondary electron is shaken off. Here, the initial-state c
relations are important, i.e., the correlations present in
system before the photon has been absorbed.

The clearest and most symmetric distinction of the
mechanisms is provided in a perturbative approach wh
not only the coupling to the photon is treated perturbativ
~as usual! but also the electron-electron interaction. If doub
photoionization is represented by Feynman diagra
@23,25,29# KO differs from SO by the chronological order o
photoabsorption and electron-electron interaction. While
SO the electron correlation takes place before the photo
sorption, it is the exact opposite for KO. Unfortunately, th
clear formulation and distinction of the processes canno
used for an accurate calculation since taking into account
electron-electron interaction only perturbatively is not a s
isfactory approximation.

Based on the qualitative picture described above one m
also distinguish KO and SO by the different interaction tim
or the different energy regimes where they dominate. SO
characterized by a sudden removal of the photoelectron
therefore by a short, even vanishing time of interaction
tween the ionized electrons. This situation is typical for t
high-energy regime with photons of short wavelength.
the other hand, KO dominates for low photon energies n
threshold when the electrons have little energy in the c
tinuum and therefore plenty of time for interaction.

However, apart from the prevalence of shakeoff at h
photon energies these criteria do not provide means to s
rate the mechanisms. Moreover, being only defined rig
ously in the limit of infinite photon energy it is not obvious
and certainly no unique solution exists, how to extrapol
shakeoff to finite photon energies@24,30,31#.

Yet, there exists another classification that can help
separate KO and SO and this is their respective quan
character. SO is a pure quantum phenomenon, namely
©2003 The American Physical Society04-1
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T. SCHNEIDER AND J.-M. ROST PHYSICAL REVIEW A67, 062704 ~2003!
overlap of two wave functions which belong to differe
Hamiltonians ~sudden approximation!, and no classica
equivalent exists. Hence, if one is able to formulate K
semiclassically based on classical input only, it will not co
tain any SO contribution. Viewed from a different, mo
semiclassical perspective: A semiclassical formulation
photoionization lacks the purely quantum-mechanical
contribution that needs to be added as a correction fo
meaningful description.

In the following, we will describe in detail how we hav
realized the theoretical concept described above for
double photoionization of two-electron atoms or ions fro
the ~symmetric! ground state. Our guiding principle has be
a formulation with the least possible numerical effort havi
in mind to extend our approach to three-electron atoms in
future. For knockout, this implies a quasiclassical desc
tion. This is an additional simplification compared to a fu
semiclassical calculation since the two electrons are pro
gated classically with their full interaction but the initia
phase-space distribution is formulated in terms of the qu
tum wave function.

We formulate SO and KO in terms of the probability
find two simultaneously free electrons after absorption of
photon. In this context, it is convenient to express
double-ionization cross section as

sX
115sabsPX

11 , ~1!

whereX stands for either shakeoff or knockout andsabs de-
notes the total photoabsorption cross section. We will ca
late the double escape probabilitiesPX

11 from the ground
state. Forsabs, we can either use the experimental data
Samsonet al. @32# or the analytical result from Ref.@33#.

The paper is organized as follows. In Sec. II, we pres
our classical-trajectory Monte Carlo~CTMC! phase-space
method for knockout. CTMC is a tool which has been fr
quently used for particle impact induced fragmentation@34–
37# and also for ionization in strong fields@38–40# with
implementations typically differing in the way the phas
space distributionr(G) is constructed. In Sec. III, we inter
pret our KO results in terms of Samson’s half-collisio
model. Our approach to shakeoff is described in Sec. IV. I
based on Åberg’s formula@6#. In Sec. V, we present ou
results for integral cross sections for helium and its isoe
tronic sequence, and in Sec. VI, we discuss the results fo
singly differential cross sections in comparison with rec
experimental data. We will also address the lack of inter
ence terms. Finally, the paper ends with a summary in S
VII.

II. KNOCKOUT IONIZATION

After the photon has transferred all its energy to the p
mary electron the subsequent evolution of the two electr
resembles an electron-impact induced collision, a fact
will be discussed in detail in Sec. III. We formulate th
evolution quasiclassically by expressing the doub
ionization probability of Eq.~1! as @41#
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PKO
115 lim

t→`
E dGP 11exp@~ t2tabs!Lcl#r~G!, ~2!

whereLcl denotes the classical Liouvillian corresponding
the classical three-body Coulomb HamiltonianH and tabs is
the time of absorption that triggers the classical propagat
The projectorP 11 indicates that the integration has to b
performed only over those parts of the phase spaceGP 11

that lead to double escape, i.e., where the asymptotic e
gies of the two electrons are positive. The integral in Eq.~2!
is evaluated with a standard Monte Carlo technique that
tails following classical trajectories in phase space. The p
ton energyv determines the excess energyE in phase space
for which the dynamics of the two electrons takes place

E5v2I 11, ~3!

whereI 11 is the two-electron binding energy.
As mentioned before charged particle impact proces

have been described successfully with CTMC phase-sp
methods. While all the methods share the classical propa
tion in time they typically differ in the way the initial state i
modeled, e.g., purely classically as a phase-space distribu
on a torus or quantum mechanically, e.g., by a Wigner d
tribution. Our initial distributionr(G) is the two-electron
density immediately after photon absorption at timetabs,

r~G!5Nd~r1!r2~r2 ,p2!, ~4!

whereN is a normalization constant. Withd(r1), we assume
the absorption to happen directly at the nucleus@24#. This
PEAK ~primary electron at the nucleus! approximation be-
comes exact in the limit of high photon energy@42#.

Regularized coordinates@43# are used to avoid problem
which arise from starting at the nucleus (r150). The PEAK
approximation significantly reduces the initial phase-sp
volume to be sampled. Furthermore, it allows one to ma
the energy condition Eq.~3! for the starting configurations
such that the two electrons can be treated separately sinc
photoelectron at the nucleus can have any energy neces
to add up to the excess energyE together with the energy
of the secondary electron contained in its phase-sp
distribution

r2~r2 ,p2!5Wc~r2 ,p2!d~«2
in2«B!. ~5!

In Eq. ~5!, Wc(r2 ,p2) is the Wigner distribution function of
the two-electron wave function with electron 1 at th
nucleus,

c~r2!5
C0~r150,r2!

@^C0~r150,r2!uC0~r150,r2!&#1/2
. ~6!

Since we consider absorption from the ground sta
C0(r1 ,r2) is the helium ground-state wave function. He
and in the following, the brackets indicate integration w
respect to the secondary electron. We call Eq.~5! a restricted
Wigner distribution since the initial energy of the seconda
electron,«2

in has been fixed to the shell«B . Taking advantage
4-2
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of the fact that for the KO mechanism the initial-state cor
lations are not so important, we represent the helium gro
state by the independent particle wave functionC0(r1 ,r2)
5(Zeff

3 /p)exp@2Zeff(r11r2)# with effective chargeZeff5Z
25/16@23#. From this follows simply«2

in5p2
2/22Zeff /r 2 and

for future reference, we also note that the binding energy
the secondary electron is given by«B52Zeff

2 /2.
The formulation of the knockout probability may seem

involve a lot of approximations whose effect is not easy
control. In this situation, the relation of the KO probability
electron-impact ionization offers a testing ground suitable
assess the performance of Eq.~2! with the input of Eqs.
~4!–~6!.

III. RELATION TO SAMSON’S
HALF-COLLISION MODEL

Samson@10# and later in a more elaborate way by inclu
ing shakeoff Pattard and Burgdo¨rfer @24# have related double
photoionization of a two-electron atomA,

A1g→A1112e2, ~7!

to electron-impact ionization of the corresponding positiv
charged ion,

A11e2→A1112e2. ~8!

Looking at the right-hand side of Eqs.~7! and ~8! the two
processes lead, in the chemists’ language, to the same ‘‘p
ucts.’’ In particular, as Samson pointed out, the emission
the secondary electron in the photoionization process sh
resemble the electron-impact ionization by the prima
~photo! electron. As a consequence, it has been propo
@10,24,26# that the electron-impact ionization cross secti
se should be proportional to the double-photoionizati
probability P11,

P11~E!5Cse~E!, ~9!

where the constantC has the unit of an inverse cross sectio
The excess energyE is measured from the~single-! ioniza-
tion threshold ofA1 on the right-hand side~rhs! and from
the double-ionization threshold of the two-electron atomA
on the left-hand side. The connection of the two proces
condensed in Eq.~9!, is sometimes referred to as the ha
collision picture of double photoionization. The term ‘‘ha
collision’’ draws its justification from the observation that
photoionization the first half of the collision, i.e., the incom
ing motion of the impacting electron, is missing~see Fig. 1!.
Obviously, the half-collision model is identical to the knoc
out picture from the preceding section. On the other ha
this implies a rather limited validity of Eq.~9!, if the full
photoionization probability~KO and SO! is used. Clearly,
SO is not present in electron-impact ionization of the cor
sponding ion@24,26#. On the other hand, SO even dominat
double photoionization for high excess energies. Hence,
half-collision model in the form of Eq.~9! must fail for in-
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creasing excess energy. Pattard and Burgdo¨rfer @24# rem-
edied this failure by explicitly introducing a shakeoff term o
the rhs of Eq.~9!.

We do not need this correction term since the knock
probability Eq.~2! is not ‘‘polluted’’ by any shakeoff contri-
bution. According to the half-collision concept, we wou
expect that a modified Eq.~9!, whereP11 is replaced by
PKO

11 , should hold for the whole energy range, from thres
old to some 1000 eV. Figure 2~a! shows PKO

11 for helium
compared to the experimental cross section of the elect

FIG. 1. Schematic representation of the half-collision pictu
The upper part shows electron-impact ionization~full collision!.
The lower part depicts the knockout mechanism~half collision!.
The flash symbolizes the photon that is absorbed by one of
electrons.

FIG. 2. PKO
11 for the helium atom~solid line! compared to the

cross section for electron-impact ionization of He1 @44# ~circles! ~a!
according to Eq.~9! and ~b! according to Eq.~10!. The constantC
in Eqs.~9! and ~10! is given byC54.6731015 cm22.
4-3
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T. SCHNEIDER AND J.-M. ROST PHYSICAL REVIEW A67, 062704 ~2003!
impact ionization of He1 by Peartet al. @44#. The two curves
have a similar shape but they seem to be shifted with res
to each other in energy indicating that the replacemen
P11 by PKO

11 in Eq. ~9! is not the only modification that is
necessary to link our knockout results to electron-impact i
ization. So far we have not taken into account the differ
energy scales which are inherent in the two processes
which are set by the respective bound electron. On the
hand, for impact ionization the target electron in the He1 ion
is bound byEB52Z2/2, while the photoionization KO pro
cess from Sec. II involves an electron with half the groun
state energyEB852Zeff

2 /252(Z25/16)2, i.e., the nuclear
charge is screened for each electron in the ground state
two-electron atom. These considerations lead us to the
lowing modified version of Eq.~9!:

PKO
11~2E/Zeff

2 !5Cse~2E/Z2!, ~10!

whereE again denotes the appropriate excess energy. Fi
2~b! shows the rescaled KO probabilityPKO

11(2E/Zeff
2 ) for

the helium atom compared to the rescaled experimental
pact ionization datase(2E/Z2) for the He1 ion. As one can
clearly see Eq.~10! is valid over the whole energy range fo
which the experimental impact ionization data is availa
~up to E510 keV excess energy!. In the case of helium, the
constantC is given byC54.6731015 cm22.

For the other members of the helium isoelectronic
quence Eq.~10! holds as well~not shown here!. For increas-
ing nuclear chargeZ, the two different energy scales,EB and
EB8 , come closer withEB /EB8→1 asZ→` since in this limit
there is no screening of the nuclear charge through o
electrons.

We may summarize that the half-collision model offe
support for the formulation of the knockout probability
Eq. ~2! and vice versa, the KO probability for double phot
ionization is in excellent agreement with the impact ioniz
tion of the corresponding ion, justifying the idea of the ha
collision model.

IV. SHAKEOFF IONIZATION

In contrast to the knockout mechanism, shakeoff can
be understood in a classical framework. However, it does
elude a simple quantum-mechanical treatment as KO d
The initial-state correlations that characterize the SO mec
nism are much easier to handle than the final-state corr
tions in the case of KO. What remains difficult, however,
the extrapolation of shakeoff to finite photon energies. S
eral other schemes have been proposed in the literature,
Refs.@24,30,31#.

As a generalization of the well-known formula for th
shake mechanism valid at very high energies@6,7#, Åberg
gave an expression for the probability to find the shake e
tron ~i.e., the secondary electron! in a hydrogenic eigenstat
of the bare nucleusfa at any excess energy@6#,

Pa
n 5

u^faucn&u2

^cnucn&
, ~11!
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with

cn~r2!5E d3r 1n* ~r1!C0~r1 ,r2!, ~12!

wheren(r1) is the wave function of the primary~photo!elec-
tron after it has left the atom. If it was in ans state before the
absorption, it is in ap state afterwards. The seconda
~shake! electron does not change its angular momentum
Eq. ~12!, C0(r1 ,r2) again denotes the two-electron groun
state wave function. Note thatfa might either be a bound
state (a5n) or a continuum state (a5«). ~Note also that in
the case of an energy-normalized continuum state,P«

n has the
unit of probability per energy.!

In the high-energy limit, the ejected primary electron m
be described by a plane wave,

n~r1!5~2p!23/2exp~2 ik1•r1!. ~13!

In that case,cn(r2) is just the Fourier transform of the
ground-state wave function with respect tor1 @cf. Eq. ~12!#.
Due to the large momentumk1@0 of the primary electron,
Eq. ~12! and subsequently Eq.~11! can be further simplified.
One easily finds

Pa5
u^fauC0~r150,r2!&u2

^C0~r150,r2!uC0~r150,r2!&
, ~14!

where we have used the following two properties@6#:

k1
4cn~r2!'22~2/p!1/2

]C0

]r 1
ur 150 ~15!

~valid for largek1) and

]C0

]r 1
U

r 150

522C0~r150,r2!. ~16!

The latter property is known as one of Kato’s cusp con
tions@45#. Equation~14! is the well-known asymptotic shak
probability @6,7#. Formally, the wave functioncn has been
replaced byC0(r150,r2) in Eq. ~14!. If we assume this re-
placement to be valid for all excess energies, i.e., if we p
form the PEAK approximation as in the case of KO, t
double-photoionization probability from shakeoff at any
nite excess energyE is given by

PSO
11~E!5E

0

`

d«8E
0

`

d«P«d~E2«82«!, ~17!

where«8 denotes the kinetic energy of the primary electr
after having left the atom and« the energy of the shake
electron, as before («8,«.0). Note that thed function in
Eq. ~17! ensures the conservation of the total energy. Us
Eq. ~14!, we are left with

PSO
11~E!5E

0

E

d«P« , ~18!
4-4
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which for high energies gives the standard asymptotic sha
off probability @7–9#

PSO
11~E→`!5E

0

`

d«P«512(
n

Pn . ~19!

To simplify the calculation of shakeoff further, we repla
C0(r150,r2) in Eq. ~14! by a normalized hydrogenic wav
function c1s

ZS(r2) where the initial-state correlations of th
two electrons are absorbed into an effective shake chargeZS,

P̃a5u^fauf1s
ZS&u2. ~20!

To our knowledge, an effective charge in connection with
was first introduced by Suric´, Pisk, and Pratt@46# only re-
cently. We choose the effective chargeZS in such a way that

E
0

`

d« P̃«5
R`

11R`
, ~21!

whereR` is the exact asymptotic double-to-single ratioR`

5@P11/(12P11)#E→` which is determined by SO only
For the members of the helium isoelectronic sequence,R`

can be found in the literature@8,9#. We find ZS to be 2
20.51 in the case of the helium atom (R`50.016 45 for the
ionization from the helium ground state!. For helium, we
have found little difference for the shakeoff probability as
function of excess energy between this simple ansatz,
using Eq.~20!, and a fully correlated Hylleraas wave fun
tion @47# for C0 , i.e., using Eq.~14!. The difference mainly
originates from the slightly different asymptotic ratio that
obtained with the Hylleraas function we took forC0 in con-
trast to theR`50.016 45 used in Eq.~21!.

In Table I, we have listed the effective shake chargeZS for
helium and some other members of its isoelectronic
quence. With increasingZ ~whereZ is the charge of the bar
nucleus! the shake charge appears to converge towardsZS
'Z20.52. We note thatZS is quite different from the ‘‘stan-
dard’’ Zeff5Z25/16 we used in our calculation of the KO
process before. As it is well known, usingZeff instead ofZS
on the right-hand side of Eq.~21! leads to a value for the

TABLE I. Effective shake chargesZS and effective shake
screeningdS5Z2ZS for some members of the helium isoelectron
sequence~see text!. The asymptotic double-to-single ratios a
taken from Forreyet al. @8#.

Z R` ZS dS

2 0.01645 1.494 0.506
3 0.00856 2.483 0.517
4 0.00508 3.480 0.520
5 0.00334 4.479 0.521
6 0.00236 5.478 0.522
7 0.00175 6.477 0.523
8 0.00135 7.477 0.523
9 0.00107 8.477 0.523

10 0.00087 9.477 0.523
06270
e-

.,

-

asymptotic ratio that is too much low. In the case of heliu
for instance, one finds a value of 0.0072~compared to the
correct value ofR`50.016 45). This discrepancy is to b
expected sinceZeff represents the screened nuclear cha
that both ground-state electrons see ‘‘on average’’ in a co
pletely symmetric fashion. For the shakeoff process, t
symmetry is broken since one electron~called the primary
electron! absorbs the photon whereas the second one ac
a spectator only. One might even think that an extreme va
of Z21 for the effective shake charge would be more a
equate for a description of SO since the primary elect
located at the nucleus when absorbing the photon sho
screen the nucleus for the secondary electron in the m
efficient way. However, it turns out that usingZ21 in Eq.
~21! overestimates the asymptotic ratio noticeably. The eff
tive chargeZS lies betweenZ21 andZeff5Z25/16.

We would like to emphasize that the use of effecti
shake charges would not be necessary in the present co
of two-electron systems. We could~have! calculated the
shake probability with the full ground-state wave functio
However, for three-electron systems the effort increases
ready considerably and in connection with the PEAK a
proximation ~i.e., evaluation of the initial-state wave func
tion at the nucleus for the photoelectron! the use of effective
shake charges for the remaining orbital is a natu
approximation.

V. INTEGRAL CROSS SECTIONS

Combining the KO and SO contributions, calculated
described in the last sections, we are led to the dou
photoionization probability@22#

P115PKO
111PSO

11 . ~22!

From a classical~nonquantum-mechanical! point of view the
knockout process is the only mechanism that leads to do
ionization after the absorption of a single photon. In Eq.~22!,
PSO

11 may therefore be viewed as a quantum correction to
quasiclassically calculated double photoionization given
KO. In our description of KO, quantum features enter on
indirectly through the use of the phase-space distribut
functionr(G) which describes the initial~nonclassical! state
of the atom before the classical ionization process ta
place. According to Eq.~1!, the integral double-ionization
cross section is given by

s115sabs~PKO
111PSO

11![sKO
111sSO

11 . ~23!

The single-ionization cross section can be written ass1

5sabs2s11, whereas the double-to-single ratio can be e
pressed without referring tosabs,

R5s11/s15P11/~12P11!, ~24!

with P11 given in Eq.~22!.

A. Helium

In Fig. 3, we compare the cross section for the dou
photoionization of the ground-state helium atom to the
4-5
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perimental data of Samsonet al. @15#. For the whole energy
range shown in Fig. 3, we find an excellent agreement.
already mentioned in the Introduction, the experimental d
of Samsonet al. @32# is used forsabswhich is believed to be
very precise. Instead we could have used the analytic exp
sion for sabs from Ref. @33#, leading to a similar resul
for s11.

Figure 4 shows the double-to-single ratio for helium co
pared to the benchmark experimental data of Samsonet al.
@15#, and additionally, to other theoretical data@5,4,20#, cal-
culated by means of large-scale computer codes. Again
note very good agreement. In the inset of Fig. 4, we show
double-to-single ratio for a larger energy range. In addit
to the complete ratio, Eq.~4!, we also present the ratio
calculated by considering only one of the two mechanis
KO or SO,

RX5PX
11/~12PX

11!, ~25!

whereX again stands for either knockout or shakeoff@22#.

B. Helium isoelectronic sequence

We can apply our model not only to the helium atom b
also to the members of its isoelectronic sequence. Only
charge of the nucleusZ has to be changed appropriately.

FIG. 3. Double-photoionization cross section. Open rectang
our theoretical results. Full line: experimental data of Sam
et al. @15#.

FIG. 4. Helium photoionization double-to-single ratio. Circle
experimental data of Samsonet al. @15#. Full line: our result.
Dashed line: CCC data of Kheifets and Bray@20#. Dotted line:
R-matrix data of van der Hart and Feng@4#. Dot-dashed line:
R-matrix data of Meyeret al. @5#. Inset, circles and full line as
before; dashed line, our approach, knockout mechanism only;
dashed line, shakeoff mechanism only~see text!.
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As was pointed out by Kornberg and Miraglia@48# the
double-photoionization cross sectionssZ

11 of the isoelec-
tronic sequence should~approximately! obey the following
scaling relation:

sZ
11~E!5 f 1~E/Z2!/Z4, ~26!

where E denotes the excess energy andf 1 is an ~almost!
universal function ofE/Z2. For the double-to-single ratio a
similar relation holds,

RZ~E!5 f 2~E/Z2!/Z2. ~27!

To demonstrate the quality of our model with respect to
isoelectronic sequence, we show the scaled double-to-si
ratiosZ2RZ for Li1, Be11, C41, and O61 compared to the
R-matrix calculations of van der Hart and Feng@4# and
Meyer et al. @5# in Fig. 5. For the lithium ion, we have als
plotted the data of Kheifets and Bray~KB! @20# obtained
with the convergent close coupling~CCC! method. A close
inspection reveals that theR-matrix data appears to be sy
tematically lower for all the ratios shown whereas the K
data, available for Li1 only, differs from our results by 5%
at most.

VI. DIFFERENTIAL QUANTITIES AND THE LACK
OF INTERFERENCE TERMS

A. Singly differential cross sections

So far we have only considered integral quantities. F
this purpose, it has been sufficient to formulate project
onto the double-ionization space without referring to t
atomic dipole, which couples the atom to the electric field
the photon. The photon coupling to the atom has been ta
care of by using the total photoabsorption cross section
Eqs. ~1! and ~23!. This remains true for singly differentia
cross sections~SDCS! with respect to the individual energ
of the electrons,ds11/d«, where« is the energy of one of
the electrons. As a generalization of Eq.~23!, we may write
the SDCS as

s:
n

t-

FIG. 5. Photoionization double-to-single ratio for~a! Li1, ~b!
Be11, ~c! C41, and~d! O61. Full line: present results. Dashed line
van der Hart and Feng@4#. Dot-dashed line: Meyeret al. @5#. Dotted
line (Li1 only!: Kheifets and Bray@20#.
4-6
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ds11

d«
5sabsS dPKO

11

d«
1

dPSO
11

d« D . ~28!

In Sec. II, we described the calculation of the classi
double escape probabilityPKO

11 . To get the differential prob-
ability dPKO

11/d«, we only have to additionally record th
asymptotic energy« of one of the emitted electrons. For th
purpose, we divide the interval for« which corresponds to
double escape (0<«<E) into N bins of equal size~we take
N521) and work out the differential probability by findin
the trajectories that fall into the bins. For the SO mechan
the probability per unit energyP« @see Eqs.~14! and ~18!#,
already givesdPSO

11/d«.
Since the electrons are indistinguishable, the differen

probabilitiesdPX
11/d« must be symmetric about the equa

energy sharing point («5E2«5E/2). In our treatment of
both KO and SO, the two electrons are distinguishable~we
talk of the primary and the secondary electron!. Hence, the
differential probabilities have to be symmetrized accord
to

dPX
11

d«
U

sym

5
1

2 S dPX
11~«,E!

d«
1

dPX
11~E2«,E!

d« D . ~29!

In Fig. 6, we show the SDCS for a broad range of exc
energiesE. As can be clearly seen the SDCS is ‘‘U shaped’’
for all energies presented here in very good agreement
the calculations by Colganet al. @19# ~shown in Ref.@22#!
and Kheifets and Bray@18# published only recently~see Fig.
6! and in poorer agreement with the older calculations@2#.
Furthermore, our data agrees very well with the measu
ments of Wehlitzet al. ~shown in Ref.@22#! and also with the

FIG. 6. Singly differential cross sections for various excess
ergies normalized to 1 for«50. Full lines: our results. Dashed line
calculations of Kheifets and Bray@18# at E5450 eV. Full circles:
experimental data of Do¨rner and co-workers atE5100 eV andE
5450 eV @18,49#.
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recent data of Do¨rner and co-workers@18,49# ~shown in Fig.
6!. The experimental SDCS at 450 eV seems to be sligh
steeper than ours. This is consistent with the slightly lar
double-to-single photoionization ratio of Fig. 4 compared
experiment in this photon energy range. The discrepanc
likely due to neglected interference terms since exactly
this energy range SO and KO contributions are compara
~see inset of Fig. 4!.

B. The role of interferences

For the way we have approached double-photoioniza
in terms of the quasiclassical knockout probability and
shakeoff as an additive quantum correction, interference d
not play a role. However, coming from the most fundamen
quantum-mechanical formulation, interference must be th
if one separates a dynamical process into two contributi
with identical final states. The corresponding amplitud
must be added coherently and upon taking the modu
square for probabilities interferences occur.

Since our results are in good agreement with experim
although we have ignored interferences, they must play o
a minor role. Support for this hypothesis comes from angu
resolved experiments@50# as well as corresponding calcula
tions @19,21,23,50,51#. SO and KO appear to be almost ‘‘o
thogonal’’ with respect to their angular characteristics, i.
the SO amplitude is large for detection of electrons at ang
where the KO amplitude is small and vice versa. More f
mally expressed, letAKO(v,«,V1 ,V2) be the scattering am
plitude to find, after absorption of a photon with frequen
v, one electron with energy« at an angleV1 and the other
at an angleV2 , and letASO(v,«,V1 ,V2) be the correspond
ing amplitude for shakeoff. Then, the fully differential cro
section is given by

ds

d«dV1dV2
5uAKO1ASOu2. ~30!

Forming singly differential cross sections from Eq.~30! by
integration over the angles leads to

ds

d«
5

ds11

d«
1s8~«!, ~31!

whereds11/d« is given by Eq.~28!. Since both amplitudes
peak in very different regions of (V1 ,V2) the interference
term

s8~«!5E AKO* ASOdV1dV21cc ~32!

should be very small. This would explain the small effect
interferences in more integral cross sections, and would
validate from a different perspective the separation into
two processes, shakeoff and knockout. A closer look into
angular resolved formulation of knockout and shakeoff w
be necessary to confirm this hypothesis.

-

4-7
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VII. CONCLUSIONS

We have formulated a theoretical approach to doub
photoionization of two-electron atoms in terms of two sep
rate contributions, knockout and shakeoff. We could sepa
KO from SO since the former, modeled quasiclassica
does not contain SO parts. We could show that the KO pr
ability is the part of the double-photoionization proce
which compares favorably with the electron-impact ioniz
tion cross section of the respective ion. This finding streng
ens the half-collision model where, in general, a close re
tion between double-photoionization and electron-imp
ionization of the ion had been proposed.

Viewed as a quasiclassical theory, shakeoff is a pertu
tion becoming dominant for large photon energies. It mus
added to the quasiclassical double-photoionization cross
tion. Viewed from a quantum perspective, SO and K
should be added coherently on an amplitude level and in
ferences occur. The fact that they must be small~otherwise
there would not be such a good agreement of our results
experiment and full numerical calculations! suggest that SO
and KO indeed contribute for very different final-state va
ables dominantly. This renders the two processes almost
tinguishable and justifies the separation of doub
photoionization into these two mechanisms. This picture
interpretation of interferences can only be validated with
gular resolved calculations that are planned for the futur
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APPENDIX: CALCULATION OF THE WIGNER
FUNCTION

We have implemented a simple and efficient method
calculating the Wigner function of the orbitalc(r2) @Eq. ~6!#
for the secondary electron. It was used by Dahl and Spr
borg @52# before and is based on the decomposition ofc(r 2)
in terms of Gaussians,

xa~r 2!5~2aZeff
2 /p!3/4exp~2Zeff

2 ar 2
2!. ~A1!

The Wigner function of a wave functionf(r) is defined by
@53#

Wf~r,p!5
1

p3E d3h@f* ~r22h!f~r21h!exp~2ip•h!#.

~A2!

In some special cases the integral in Eq.~A2! can be calcu-
lated analytically. One such example is the Wigner trans
mation of any sum of Gaussians,j(r )5( icixa i

(r ). One eas-
ily finds
06270
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Wj~r,p!5
1

p3 (
i 51

M

ci
2exp~22Zeff

2 a i r
2!exp@2p2/~2Zeff

2 a i !#

1
2

p3 (
i . j

M

cicj S g i j

a i1a j
D 3/4

exp~2Zeff
2 g i j r

2!

3exp@2p2/~Zeff
2 a i1Zeff

2 a j !#cos~2t i j p•r!,

~A3!

whereM denotes the number of Gaussians, and theci ’s and
a i ’s are some constant coefficients and exponents. Theg i ’s
andt i j ’s are given by

g i j 5
4a ia j

a i1a j
~A4!

and

t i j 5
a i2a j

a i1a j
, ~A5!

respectively. This nice property opens up an efficient way
calculating the Wigner functionWc of c(r 2). From
molecular-orbital calculations, Gaussian expansions of or
als like c(r 2) are well known. We find anM510 Gaussian
representation forc(r 2) @54# to be sufficiently accurate fo
our purposes,

c~r 2!5(
i 51

10

cixa i
~r 2!. ~A6!

The Wigner function ofc(r 2) is then given according to Eq
~A3! with the appropriate coefficients and exponents listed
Table II.

TABLE II. Gaussian expansion coefficients and exponents u
in the calculation of the Wigner function in Eq.~A3!.

i a i ci

1 0.062157 0.107330
2 0.138046 0.339658
3 0.304802 0.352349
4 0.710716 0.213239
5 1.794924 0.090342
6 4.915078 0.030540
7 15.018344 0.008863
8 54.698039 0.002094
9 254.017712 0.000372

10 1776.775559 0.000044
4-8
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