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A technique based on the total-angular-momentum representation the smooth exterior complex-scaling pro-
cedure, and the three-dimensional finite-element method, is applied to calculations ofS, P, andD resonant,
so-called doubly excited, states of the helium atom. The resonances are calculated with an accuracy better than
1025 a.u. The applicability of an extrapolation procedure to complex energies is analyzed.
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I. INTRODUCTION

The fully three-dimensional Schro¨dinger problem finds
applications in many different areas of physics and chem
try. For example, in the theoretical description of some h
nuclei and their fragmentation in nuclear physics it is oft
assumed that the system can be approximated with he
core nuclei that are tightly bound and a pair of loosely bou
neutrons or protons@1#. Optical transitions in exotic atomic
systems, such as the antiprotonic helium, have recently b
studied to high accuracy@2#. Since the interparticle interac
tions in many atomic systems are to high accuracy of p
Coulombic nature, they thus offer themselves as test ben
for accurate computational models.

We have for the past few years tried to develop and ap
a numerical method that allows the determination of energ
and fragmentation~for example, autoionization or predisso
ciation! widths for an arbitrary three-dimensional system d
scribable within the Schro¨dinger framework. Starting with
the antiprotonic helium system, we showed that our thr
dimensional finite-element method@3,4# could be extended
to describe high nonzero angular-momentum states@5,6#,
yielding a relative accuracy of 4 ppm in comparison w
transition wavelengths obtained by recent experiments. S
these antiprotonic helium levels in practice could be
scribed as bound with nonradiative fragmentation lifetim
of a few microseconds, we had to turn to doubly excit
states of zero angular momentum in the normal helium a
@7# when trying to add the complex-scaling method@8# ~CS!
to our toolbox. Comparison with other similar studies th
showed that our results were of comparable relative accu
1025.

The aim of our work is to be able to predict and/or an
lyze the analytic scattering theory structure behind reac
scattering phenomena, such as the HD1H or F1HD reac-
tions, recently studied by Kendricket al. @9# and Skodje
et al. @10#, respectively. However, we cannot do this safe
before we make sure that our theoretical machinery works
1050-2947/2003/67~6!/062508~6!/$20.00 67 0625
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problems where the interaction potentials are known and
results agree with experiment and accurate previous stu
@11–18#.

The normal helium atom represents such a benchm
system. In the present contribution we thus present res
from nonzero angular momentum studies of doubly exci
P and D levels of the normal helium. Improved results fo
our previously published doubly excitedS levels of helium
@7# are presented as a comparison of the extrapola
scheme and the numerical basis used here.

II. THEORETICAL APPROACH

The wave function of any three-body system with the
tal angular momentumL, projectionm, and spatial parityt
can be represented by using eigenfunctions of the angu
momentum operator with respect to a body-fixed axis@19#.
This amounts to an expansion in terms of WignerD func-
tions @20#:

Cm
Lt~R!5(

s

L
1

A212ds0

@Dms
L ~a,b,g!1t

3~21!sDm 2s
L ~a,b,g!#cs

Lt~R!. ~1!

Here a, b, and g are Euler angles, andR is a three-
dimensional coordinate in the body-fixed frame, which
independent ofa, b, g. Indexs varies ass50,1, . . . ,L for
the positive parityt511 and ass51, . . . ,L for negative
parity t521. In the following we shall omit the parity for
the sake of simplicity.

Assuming an infinitely heavy nucleus, the body-fixe
frame is conveniently specified byR5$r 1 ,r 2 ,c%. Herer i is
the distance between thei th electron and the nucleus,c
5cos(rW1,rW2). After substituting expansion~1! into the Schro¨-
dinger equation and using orthogonality relations forD func-
tions @20#, one can derive the following system of equatio
@5#:
©2003 The American Physical Society08-1
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2F 1

r 2

]2

]r 2
2 r 22

L~L11!22s2

r 2
2 1

1

r 1

]2

]r 1
2 r 11S 1

r 1
2 1

1

r 2
2D

3S ]

]c
~12c2!

]

]c
2

s2

12c2D Gcs
L

1 iA11ds0

l1~L,s!

r 2
2 S A12c2

]

]c
2~11s!

c

A12c2D
3cs11

L 1 iA11ds1

l2~L,s!

r 2
2 S A12c2

]

]c

2~12s!
c

A12c2D cs21
L 5~E2V~r 1 ,r 2 ,c!!cs

L . ~2!

Here l6(L,s)5AL(L11)2s(s61), c21
L [0, and we use

the units with the electron massme51. A similar set of
equations, obtained without the assumption of an infinit
heavy nucleus, is of the same complexity@5,21# but for com-
parison with other computational studies@11–18# we do not
use here the equations with finite masses. The potentia
ergy V(r 1 ,r 2 ,c) is the sum of the Coulomb potentials:

V~r 1 ,r 2 ,c!52
2

r 1
2

2

r 2
1

1

r 12
, ~3!

where the interelectron distance isr 12
2 5r 1

222r 1r 2c1r 2
2 .

The componentscs
L must satisfy the boundary condition

so that

cs
L~r 1 ,r 2 ,c!5~12c2!s/2c̃s

L~r 1 ,r 2 ,c!, ~4!

wherec̃s
L(r 1 ,r 2 ,c) is a bounded function of its arguments

Equation~2! is obviously nonsymmetric with respect t
exchangerW1↔rW2. In fact, with the chosen body-fixed fram
electron exchange symmetry cannot be implemented with
loss of the block-three-diagonal structure of Eq.~2! @22#.
While one can choose the body-fixed coordinates$rW1

1rW2 ,rW12rW2% where the exchange symmetry manifests
plicitly, we here use coordinates$rW1 ,rW2% as they are more
convenient in our numerical realization.

To calculate resonant states of the system in the
method, we should replace the three-dimensional vectorrW i
to the properly analytically continued complex ones. In fa
only the magnitudesr i of the vectors have to be scaled@23#.
For molecular systems, where the potential-energy surfac
often known only as a set of closely spaced coordinate
pendent numerical values that cannot be uniformly comp
dilated, we need to use the exterior complex-scaling met
of Simon@23# ~ECS!. We have experienced that the origin
sharp ECS introduces numerical instabilities that are co
06250
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pensated for by using the smooth exterior scaling met
described by Helffer@24#. We thus define the transformatio
of r i as follows@24#:

r i→f~r i !5r i1lg~r i !, ~5!

where l5exp(iu)21, and u is a dilation angle. Function
g(r ) describes the complex path. We specify functiong(r )
as

g~r !5H 0, r<R0

~r 2R0!$12exp@2s~r 2R0!2#%, r .R0.
~6!

The choice of the external radiusR0 and the curvature
parameters is discussed in detail in Ref.@7#. The angular
variablec is obviously not changed by the transformation

In analogy with the uniform complex scaling@8#, we de-
fine operator Uu , which scales the wave functio
C(r 1 ,r 2 ,c), as

UuC~r 1 ,r 2 ,c!5p~r 1!p~r 2!C„f~r 1!,f~r 2!,c…. ~7!

Here functionp(r i)5Au11lg8(r i)u. As it was suggested in
Ref. @25#, it is convenient to deal with functionCu
[C(f(r 1),f(r 2),c) without factor p(r 1)p(r 2). The ex-
pression for the dilated HamiltonianHu5UuHUu

21 acting
on functionCu can be found in Ref.@7#.

III. NUMERICAL REALIZATION

Numerically we have treated the present problem us
the finite element method. One can find its description e
where@3,4,26#, and details of our realization in Ref.@7#. The
resonant energiesz5E2 iG/2 are obtained as eigenvalues
a functional^CuuHuuCu&. These energies are evaluated
solving a generalized eigenvalue problem:

H̃uv5zS̃v, ~8!

where

~H̃u! im, jk5^ f imuHuu f jk& and ~S̃! im, jk5^ f imu f jk&.

The basis functionsf im are expressed as products of on
dimensional functions. Such a representation of the b
functions simplifies an evaluation of the matrix elements
Eq. ~8! and reduces the three-dimensional integrals of
kinetic energy to a product of one-dimensional ones. T
one-dimensional basis functions were chosen to be ass
ated Legendre polynomialsPi

s(c) for the angular variable.
Then the boundary conditions~4! are correctly taken into
account. For the radial variables we have chosen a produ
Legendre polynomials and an exponential function.

The generalized eigenvalue problem~8! was solved by the
implicitly restarted arnoldi method@27#. For solving the set
of linear equations appearing, we used the blockLU factor-
8-2
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TABLE I. Energies and widths~a.u.! of the S states in helium.

Present Extrapolated References
E G E G E G

1Se ~1! 20.777869 0.004535 20.777869 0.004543 20.7778676 0.0045413a

1Se ~2! 20.621912 0.000213 20.621915 0.000213 20.6219273 0.0002156a

1Se ~1! 20.589897 1.37431023 20.589896 1.36031023 20.5898947 1.36231023 a

1Se ~2! 20.548083 7.531025 20.548084 7.531025 20.5480855 7.4831025 a

3Se ~1! 20.602578 6.831026 20.602578 7.031026 20.6025775 6.6531026 a

3Se ~2! 20.559746 2.431027 20.559747 2.831027 20.5597466 2.631027 a

1Se ~1! 20.353541 3.01531023 20.353541 3.01231023 20.3535385 3.01031023 a

1Se ~2! 20.317459 6.65831023 20.317458 6.66431023 20.3174578 6.66031023 a

1Se ~3! 20.257364 2.131025 20.257364 2.131025 20.2573716 2.1131025 a

aUniform complex scaling in perimetric coordinates, Ref.@12#.
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ization method. It is well known@8# that positions and widths
of resonances are independent of the rotation angleu. How-
ever, this is true only in exact calculations. When a numer
approximation is used, resonances becomeu dependent. In
this case, their positionsE and widthsG are defined by
means of the complex variational principle@28#:

dE

du U
ur

50 and
dG

duU
u i

50. ~9!

The two optimal anglesu r andu i converge to one angle
as the accuracy of the calculation increases.

IV. RESULTS AND DISCUSSION

In our calculations we have chosen maximum radii 50 a
for n15n252 resonances and 70 a.u. for others. Five fin
element boxes were chosen for bothr 1 and r 2 coordinates
and one box for thec coordinate. The box boundaries a
1.24, 4.0, 6.6, and 16.0 a.u. The number of basis functionp,
was chosen to be 7 for the radial coordinates and 10 for
angular one. For the exterior scaling parameters, we use
the same valuesR054 a.u. ands50.25 as in paper@7#. The
matrix elements of the potential in Eq.~8! were calculated
numerically using the 40-points Gauss-quadrature rule. T
mesh yields sparse matrices of dimension 4530 with a t
bandwidth of 2750 for each component.

These parameters coincide mainly with the parame
used in Ref.@7# for the calculation of theS-wave resonances
The only differences are increased maximum radius and
creased number of integration points. These changes incr
accuracy and explain a~very small! discrepancy between th
results presented in Table I and in paper@7#.

To check convergence, we also calculated extrapola
energy values using the formula@29#

Eext5E11
~E12E0!~E22E1!

2E12E02E2
, ~10!
06250
l

.
-

e
re

is
al

rs

n-
ase

d

whereE0 , E1, andE2 are the energy eigenvalues obtain
for p55, 6, and 7. In the framework of the FEM, th
asymptotic behavior for an approximate eigenvalueE(p) can,
for rather small element volumesh and large polynomial
degreesp, be written as

E(p)5Eexact1Ch2p, ~11!

whereC is some constant@26#. One can then easily chec
that formula ~10! gives the exact asymptotic energy:Eext
5Eexact. In this sense, using formula~10! is much better
grounded for the FEM than for global basis function s
methods@30#. While one should use formula~10! for finite
~and not very big! values ofp, it is shown@5# that already for
moderate values ofp, the asymptotic behavior~11! is accu-
rately satisfied.

Using formula~10! in the frame work of the CS metho
poses some additional problems. First, the asymptotics~11!
cannot be rigorously established for complex eigenvalu
Second, an additional complication arises from the dep
dence of energies on the rotation angle. As the rota
Hamiltonians are different for the different angles, we can
use formula~10! for the optimal energy values obtained fro
condition ~9!. Instead, we should apply Eq.~10! separately
for each angle, and then find the optimal@in the sense of Eq.
~9!# value of the extrapolated energies.

This discussion is illustrated in Fig. 1, where we pres
the results for the3Po(1) resonance. As expected, one c
easily see that increasing of accuracy leads to the stabi
tion of the energy. The use of the extrapolation formula giv
an even better result, stabilizing energy in a wider an
range. Based on this result and results presented in Ta
I–III, we can draw the following conclusion about the po
sible use of the extrapolation formula~10! in the frame work
of the CS Method. Because of the lack of the variation
principle, it can hardly be used to improve the accuracy
the results. However, the extrapolation formula can serve
a useful tool to control the accuracy obtained. Moreover,
~10! can facilitate an estimation of energies and optim
angles when the convergence is not yet reached.
8-3
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FIG. 1. The real~upper lines! and imaginary~lower lines! parts
of the 3Po(1) resonance as a function of the rotation angleu. The
long-dashed lines correspond toE1, the short-dashed lines corre
spond toE2, and the solid lines correspond to the extrapola
energy valuesEext .
06250
Our results for energy positions and widths are presen
in Tables I—III. One can see that the difference between
values and other precise calculations@11–18# does not ex-
ceed 1025 a.u., and is typically about few units of 1026 a.u.
Taking into account a rather modest size of the matrix,
can say that the combination of the total-angular-momen
representation, the finite-element method, and the smooth
terior complex scaling gives a reliable and accurate tool fo
study of resonances in systems with nonzero angular
mentum. One should also notice that the suggested me
gives a comparable absolute accuracy for both real
imaginary parts or resonances in the sense that one her
rectly computes a complex eigenvaluez5E2 iG/2. This
means that for very narrow resonances, e.g.,3Se(2),
1Po(3), 3De(1), theaccuracy achieved in our calculation
is of the same magnitude as the width. Hence, the width
these resonances should only be estimated from above
would like to note, however, that this comparability may n
be a general case for every system. Indeed, we have
formed computational studies of nonzero angular-momen
energies and predissociation widths based on the well-kn
model potential for the Ne-ICl van der Waals compl
@21,31,32#. We have found that for that specific molecul
system, the convergence of the widths is considerably fa
than the convergence of the positions.

Concluding this paper, we would like to state that o
smooth exterior complex scaling, full-angular-momentu
three-dimensional finite-element method is capable of yie
ing eigenenergies and corresponding widths for low angu

d

TABLE II. Energies and widths~a.u.! of the P states in helium.

Present Extrapolated References
E G E G E G

3Pe 20.710499 20.710500 20.7105002a
3Po 20.760492 0.000298 20.760491 0.000298 20.7604924 0.0002989b
1Po 20.693128 0.001373 20.693126 0.001370 20.6931349 0.0013732c
1Pe 20.580246 20.580246 20.58025d

3Pe 20.567813 20.567813 20.56781d

1Po ~1! 20.597074 4.131026 20.597073 4.031026 20.5970738 3.8531026 c

1Po ~2! 20.564084 3.0431024 20.564082 3.0731024 20.5640852 3.01231024 c

1Po ~3! 20.547091 4.31028 20.547091 3.31028 20.5470927 1.0531028 c

3Po ~1! 20.584672 8.3831025 20.584672 8.6831025 20.5846723 8.22531025 b

3Po ~2! 20.579031 2.131026 20.579031 2.131026 20.5790310 1.8931026 b

3Po ~3! 20.548844 6.31028 20.548844 8.31028 20.5488444 1.2731028 b

3Pe ~1! 20.336089 4.4931023 20.336089 4.49031023 20.3360879 4.48931023 e

3Pe ~2! 20.291157 7.431025 20.291157 7.431025 20.2911582 7.4031025 e

1Po ~1! 20.335628 7.02731023 20.335628 7.02731023 20.3356259 7.02331023 f

1Po ~2! 20.282826 1.46331023 20.282826 1.46331023 20.2828290 1.46231023 f

3Po ~1! 20.350379 2.98931023 20.350374 2.99131023 20.3503777 2.98731023 b

3Po ~2! 20.309380 1.11831023 20.309381 1.11931023 20.3093800 1.11831023 b

aReference@13#.
bHylleraas wave functions with uniform complex scaling, Ref.@14#.
cUniform complex scaling in perimetric coordinates, Ref.@15#.
dUniform complex scaling, Ref.@11#.
eHylleraas wave functions with uniform complex scaling, Ref.@16#.
fHylleraas wave functions with uniform complex scaling, Ref.@17#.
8-4
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TABLE III. Energies and widths@a.u.# of the D states in helium.

Present Extrapolated References
E G E G E G

1De ~3! 20.701935 0.002359 20.701935 0.002359 20.7019457 0.0023622a

1De ~1! 20.569219 5.5531024 20.569220 5.5431024 20.569221 5.5531024 a

1De ~2! 20.556429 2.131025 20.556429 2.031025 20.5564303 2.0131025 a

3De ~1! 20.583784 2.31028 20.583784 2.31028 20.5837843 2.8631028 a

3De ~2! 20.560686 9.31026 20.560686 7.431026 20.560687 7.531026 a

1Do 20.563800 20.563800 20.56380b

3Do 20.559328 20.559328 20.55933b

1De ~1! 20.343174 5.15731023 20.343175 5.15731023 20.343173 5.15531023 a

1De ~2! 20.315533 4.29331023 20.315533 4.29131023 20.31553 4.30531023 a

1De ~3! 20.290083 1.26331023 20.290083 1.26331023 20.290092 1.26131023 a

3De 20.325331 7.2531024 20.325329 7.2531024 20.325331 7.2531024 a

1Do 20.328233 3.2131024 20.328232 3.2231024 20.32823 3.2131024 b

3Do 20.315575 2.08731023 20.315575 2.08831023 20.31558 2.0931023 b

aHylleraas wave functions with uniform complex scaling, Ref.@18#.
bUniform complex scaling, Ref.@11#.
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momenta. As is seen from our previous antiprotonic heli
studies, it is very likely that this may be extended to high
angular momenta. Therefore, the goal to have a precise c
putational tool to compute eigenenergies and widths
three-dimensional rotating systems, which can be rep
sented by a single potential-energy surface, is in some s
reached. However, higher numerical accuracy can, in p
ciple, be achieved by using the so-called adaptiveph scheme
where the size of elementh and the maximum degree of th
basis polynomialp in the same element are chosen such t
the residue of a given eigensolution of the Schro¨dinger prob-
lem in this element is smaller than a preset value@33#.

The present method and its possible extensions rema
be tested on other atomic, molecular, and simple nuclear
u

l

J

F
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systems in order to identify boundaries of its applicabil
and to reveal properties of the systems associated with
nonzero angular momentum.
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