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A technique based on the total-angular-momentum representation the smooth exterior complex-scaling pro-
cedure, and the three-dimensional finite-element method, is applied to calculatiSn®,cénd D resonant,
so-called doubly excited, states of the helium atom. The resonances are calculated with an accuracy better than
10" % a.u. The applicability of an extrapolation procedure to complex energies is analyzed.

DOI: 10.1103/PhysRevA.67.062508 PACS nunter31.15—p, 21.45:+v, 02.70—c, 32.80.Dz

[. INTRODUCTION problems where the interaction potentials are known and our
results agree with experiment and accurate previous studies
The fully three-dimensional Schdinger problem finds [11-18.

applications in many different areas of physics and chemis- The normal helium atom represents such a benchmark
try. For example, in the theoretical description of some halssystem. In the present contribution we thus present results
nuclei and their fragmentation in nuclear physics it is oftenffom nonzero angular momentum studies of doubly excited
assumed that the system can be approximated with hea\f)’/ andD _Ievels of the normal hellum_. Improved resu_lts for
core nuclei that are tightly bound and a pair of loosely bounc?U" Previously published doubly excitesilevels of helium
neutrons or protongL]. Optical transitions in exotic atomic /] @ré presented as a comparison of the extrapolation
systems, such as the antiprotonic helium, have recently bedif€me and the numerical basis used here.
studied to high accurady?]. Since the interparticle interac-
tions in many atomic systems are to high accuracy of pure IIl. THEORETICAL APPROACH
Coulombic nature, they thus offer themselves as test benches The wave function of any three-body system with the to-

for accurate computational models. tal angular momenturh, projectionm, and spatial parityr

We have for the past few years tried to develop and applyan be represented by using eigenfunctions of the angular-
a numerical method that allows the determination of energiemomentum operator with respect to a body-fixed d%ig].
and fragmentatiorifor example, autoionization or predisso- This amounts to an expansion in terms of Wigiefunc-
ciation) widths for an arbitrary three-dimensional system de-tions [20]:
scribable within the Schdbnger framework. Starting with
the antiprotonic helium system, we showed that our three-

L
dimensional finite-element methd8,4] could be extended Lr oy L
= — +
to describe high nonzero angular-momentum stife§], Ym(R) ES ,/2+2550[Dm5(a”8’7) 7
yielding a relative accuracy of 4 ppm in comparison with L .
transition wavelengths obtained by recent experiments. Since X(=1)°Dpp —s(a,B,7)]¢s"(R). (1)

these antiprotonic helium levels in practice could be de- )

scribed as bound with nonradiative fragmentation lifetimesiere «, 8, and y are Euler angles, an® is a three-

of a few microseconds, we had to turn to doubly excited@mensmnal coordinate in the quy-flxed frame, which is

states of zero angular momentum in the normal helium atonldependent ofr, B, y. Indexs varies ass=0,1, ... | for

[7] when trying to add the complex-scaling mettad (CS)  the positive parityr=+1 and ass=1, ... L for negative

to our toolbox. Comparison with other similar studies thenParity 7=—1. In the following we shall omit the parity for

showed that our results were of comparable relative accuradie sake of simplicity.

1075, Assuming an infinitely heavy nucleus, the body-fixed
The aim of our work is to be able to predict and/or ana-frame is conveniently specified By={ry,r,,c}. Herer; is

lyze the analytic scattering theory structure behind reactivéhe distance between théh electron and the nucleus,

scattering phenomena, such as the4H® or F+HD reac-  =cos(;,l,). After substituting expansio(l) into the Schre

tions, recently studied by Kendrickt al. [9] and Skodje dinger equation and using orthogonality relationsBdiunc-

et al. [10], respectively. However, we cannot do this safelytions[20], one can derive the following system of equations

before we make sure that our theoretical machinery works ofb]:
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1 42 L(L+1)—2s® 1 &2 1 1 pensated for by using the smooth exterior scaling method
R sz— —r2—+ " (Q—rzfﬁ' r—z+ 2 described by Helffef24]. We thus define the transformation
272 2 1o rone of r; as follows[24]:
J , 0 8 .
a5 1= |¥s i (r) =ri+Ag(r), 5)

where A =exp(#)—1, and 6 is a dilation angle. Function
A (L,s) g(r) describes the complex path. We specify functign)

J c
+iVlt 8 —o—| V1-¢% = —(1+5)—
02 ( ac ¢ )«/1—c2> as

. A_(L,s) d
Xl/jls‘+1+lxll+5sl r—z( 1—02% g(r)=

2

0, r<Ry

(r—Ro){1—exgd —o(r—Ry)*l}, r>Ry. ©
c The choice of the external radiu®, and the curvature
—(1—s) _2> g 1=(E=V(rq,r,,c))ys. (2)  parameters is discussed in detail in Ref7]. The angular
vl-c variablec is obviously not changed by the transformation.
In analogy with the uniform complex scalirig], we de-
Herex.(L,s)=\L(L+1)—s(s*1), wglzo, and we use fine operator U,, which scales the wave function
the units with the electron mass,=1. A similar set of ¥(r1.r2,c), as
equations, obtained without the assumption of an infinitely
heavy nucleus, is of the same complex#y21] but for com- _
parison with other computational studigll—18 we do not Ugb(r1rz,c)=p(r)p(rz) W(h(re), (ra).c). - (7)
use here the eq.uatlons with finite masses. The p.oter.mal eMyere functionp(r;) = [T+ Ag'(r;)]. As it was suggested in
ergy V(ry,r,c) is the sum of the Coulomb potentials: Ref. [25], it is convenient to deal with functiord,
=W (¢p(rqy),o(r,),c) without factor p(ri)p(r,). The ex-
pression for the dilated HamiltoniaH ,=U,HU,* acting
V(Fy,rp,C)=— E_ E+i 3) on functionV 4 can be found in Ref.7].
n ri rp rgp

I1l. NUMERICAL REALIZATION
where the interelectron distanceri&,=ri—2rr,c+r3.

The componentﬂé must satisfy the boundary conditions Numerically we have treated the present problem using

the finite element method. One can find its description else-

so that where[3,4,26, and details of our realization in Réf7]. The
resonant energies=E—iI'/2 are obtained as eigenvalues of
. pdr L a functional(¥ ,|H,| ¥ ,). These energies are evaluated by
Ps(ry,r2,6)=(1—c)¥Ys(ry,r,,c), (4 solving a generalized eigenvalue problem:
~L _ . . - ~
whereyg(rq,r,,c) is a bounded function of its arguments. Ap=7%, ®)

Equation(2) is obviously nonsymmetric with respect to

exchange ;<. In fact, with the chosen body-fixed frame where
electron exchange symmetry cannot be implemented without
loss of the block-three-diagonal structure of E®) [22].

While one can choose the body-fixed coordinatgs (Hoim k= (fimHolfi)  and  (S)im,jk=(fim|fjic)-

+r2,r1—rp) where the exchange symmetry manifests ex—he pasis functiond,, are expressed as products of one-
plicitly, we here use coordinatelg 1,r,} as they are more dimensional functions. Such a representation of the basis
convenient in our numerical realization. functions simplifies an evaluation of the matrix elements in
To calculate resonant states of the system in the Cgq. (8) and reduces the three-dimensional integrals of the
method, we should replace the three-dimensional vecﬁors kinetic energy to a product of one-dimensional ones. The
to the properly analytically continued complex ones. In fact,one-dimensional basis functions were chosen to be associ-
only the magnitudes; of the vectors have to be scalf2B]. ated Legendre polynomialB(c) for the angular variable.
For molecular systems, where the potential-energy surface iBhen the boundary condition@) are correctly taken into
often known only as a set of closely spaced coordinate deaccount. For the radial variables we have chosen a product of
pendent numerical values that cannot be uniformly complex.egendre polynomials and an exponential function.
dilated, we need to use the exterior complex-scaling method The generalized eigenvalue problé& was solved by the
of Simon[23] (ECS. We have experienced that the original implicitly restarted arnoldi methof27]. For solving the set
sharp ECS introduces numerical instabilities that are comef linear equations appearing, we used the blbtk factor-
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TABLE |. Energies and widthga.u) of the S states in helium.

Present Extrapolated References
E r E r E r

st (1) —0.777869 0.004535 —0.777869 0.004543 —0.7778676 0.0045413
st (2) —0.621912 0.000213  —0.621915 0.000213 —0.6219273 0.0002156
(1) —0.589897 1.37410°° —0.589896 1.36810 ° —0.5898947 1.36210 3%

s (20 —0.548083 7.5%10°° —0.548084 7.5%10°° —0.5480855  7.4810°°%
8 (1) —0.602578 6.810°° —0.602578 7.610°° —0.6025775 6.6510°°°
83°(2) —0.559746 24107 —0.559747 2.&10 7 —0.5597466 281072

s (1) —0.353541 3.01%10°° —0.353541 3.01210°°% —0.3535385 3.01810 3%
st (2) —0.317459 6.65810°° —0.317458 6.66410 ° —0.3174578 6.66810 32
1 (3 —0.257364 2.x10°° —0.257364 2.x10°° —0.2573716  2.1x10°°

aUniform complex scaling in perimetric coordinates, Réf2].

ization method. It is well knowf8] that positions and widths whereE,, E;, andE, are the energy eigenvalues obtained
of resonances are independent of the rotation aégldow-  for p=5, 6, and 7. In the framework of the FEM, the
ever, this is true only in exact calculations. When a numericahsymptotic behavior for an approximate eigenvaii® can,
approximation is used, resonances becahdependent. In  for rather small element volumds and large polynomial
this case, their positiong and widthsI' are defined by degree®, be written as

means of the complex variational princig28]:

E(P = E®Xal Ch?P, (11
dE

deg

dr

=0 and a0

=0. 9
0, © where C is some constarf26]. One can then easily check
that formula(10) gives the exact asymptotic energie,;
=E®Xac |n this sense, using formulél0) is much better
grounded for the FEM than for global basis function set
methods[30]. While one should use formuld0) for finite
(and not very bigvalues ofp, it is shown[5] that already for
IV. RESULTS AND DISCUSSION moderate values gf, the asymptotic behavidill) is accu-
rately satisfied.

n o_ur c§lculat|ons we have chosen maximum raqln 59 a.u. Using formula(10) in the frame work of the CS method
for n;=n,=2 resonances and 70 a.u. for others. Five finite-

element boxes were chosen for bathandr, coordinates poses some additional problems, First, the asymptetits
and one box for the coordinate. The box zboundaries are cannot be rigorously established for complex eigenvalues.
124 4.0 6.6.and 16.0 a.u. The ﬁumber of basis functigns Second, an additional complication arises from the depen-

i . dence of energies on the rotation angle. As the rotated
was chosen to be 7 for th? rad|all coordinates and 10 for thﬁamiltonians are different for the different angles, we cannot
angular one. For the exterior scaling parameters, we use he

X (e formula(10) for the optimal energy values obtained from
tmhzt?argfeﬁé%foo? Atlhz.u-o?gr?; 0n2§ a? 'neri:pcdgg' Et]: d condition (9). Instead, we should apply E¢LO) separately
X : potential | ®) w u for each angle, and then find the optinhial the sense of Eq.
numerically using the 40-points Gauss-quadrature rule. Thi

. . . X . )] value of the extrapolated energies.
mesh yields sparse matrices of dimension 4530 with a total o R R~
bandwidth of 2750 for each component. This discussion is illustrated in Fig. 1, where we present

(0]
These parameters coincide mainly with the parameterthe results for the’P°(1) resonance. As expected, one can

used in Ref[7] for the calculation of th&wave resonances. gasny see that increasing of accuracy leads to the stabiliza-

The only differences are increased maximum radius and mt_|on of the energy. The use of the extrapolation formula gives

creased number of integration points. These changes increags. <~ - o better result, stabilizing energy in a wider angle
integ points. 9 aﬁsﬁge. Based on this result and results presented in Tables
accuracy and explain @ery smal) discrepancy between the

results presented in Table | and in pape I-111, we can draw the following conclusion about the pos-
To check convergence, we also calc.ulate d extrapolate ible use of the extrapolation formul&0) in the frame work
enerav values using the férmdjﬁQ] f the CS Method. Because of the lack of the variational
gy 9 principle, it can hardly be used to improve the accuracy of
the results. However, the extrapolation formula can serve as
E —EVE.—E a useful tool to control the accuracy obtained. Moreover, Eq.
(E1—Eo)(E2—Ey) (10) (10) can facilitate an estimation of energies and optimal
2E;—Eo—E; angles when the convergence is not yet reached.

el'

The two optimal angle®, and ¢; converge to one angle
as the accuracy of the calculation increases.

Eext=E1+
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FIG. 1. The realupper lineg and imaginarylower lineg parts
of the 3P°(1) resonance as a function of the rotation angldhe
long-dashed lines correspond Eq, the short-dashed lines corre- Smooth exterior complex scaling, full-angular-momentum,
spond toE,, and the solid lines correspond to the extrapolatedthree-dimensional finite-element method is capable of yield-

energy valueg,,;.
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Our results for energy positions and widths are presented
in Tables I—III. One can see that the difference between our
values and other precise calculatidid—1§ does not ex-
ceed 10° a.u., and is typically about few units of 10 a.u.
Taking into account a rather modest size of the matrix, we
can say that the combination of the total-angular-momentum
representation, the finite-element method, and the smooth ex-
terior complex scaling gives a reliable and accurate tool for a
study of resonances in systems with nonzero angular mo-
mentum. One should also notice that the suggested method
gives a comparable absolute accuracy for both real and
imaginary parts or resonances in the sense that one here di-
rectly computes a complex eigenvalze=E—il'/2. This
means that for very narrow resonances, e.§55(2),
1po(3), 3D&(1), theaccuracy achieved in our calculations
is of the same magnitude as the width. Hence, the widths of
these resonances should only be estimated from above. We
would like to note, however, that this comparability may not
be a general case for every system. Indeed, we have per-
formed computational studies of nonzero angular-momentum
energies and predissociation widths based on the well-known
model potential for the Ne-ICl van der Waals complex
[21,31,32. We have found that for that specific molecular
system, the convergence of the widths is considerably faster
than the convergence of the positions.

Concluding this paper, we would like to state that our

ing eigenenergies and corresponding widths for low angular

TABLE Il. Energies and widthga.u) of the P states in helium.

Present Extrapolated References

E r E r E r
3pe —0.710499 —0.710500 —0.7105002
3po —0.760492 0.000298 —0.760491 0.000298  —0.7604924 0.000298%
1po —0.693128 0.001373 —0.693126 0.001370  —0.6931349 0.0013732
lpe —0.580246 —0.580246 —0.58025"
3pe —0.567813 —0.567813 —-0.56781¢
po(1) -0.597074  4.X10°° —0.597073  4.4x10 © —0.5970738 3.8510 6°¢
P92 —0.564084 3.0410°*  —0.564082 3.0x10°* —0.5640852  3.01210 4°¢
1po(3)  —0.547091 4x10°8 —0.547091 3x10°8 —0.5470927 1.0810°8°¢
Sp° (1) —0.584672 8.3810°° —0.584672 8.6810°° —0.5846723  8.228107°°
3p° (2)  —0.579031 2.x10°° —0.579031 2.x10°° —0.5790310 1.8910°6°P
Sp° (3) —0.548844 6x10°8 —0.548844 8<10°8 —0.5488444 1.2%1078°P
Spe (1) —0.336089 4.4%10°° —0.336089 4.49810°° —0.3360879  4.48910 °°
Spe(2)  —0.291157 7.410°° —0.291157 7.410°° —0.2911582 7.4810°°¢
1po (1) —0.335628 7.02%10°% —0.335628 7.02%10°%  —0.3356259  7.02810 3f
1po(2) —0.282826 1.46310°% —0.282826 1.46310°% —0.2828290 1.46810°3f
3p° (1)  —0.350379 2.98810°° —0.350374 2.99%¥10°%  —0.3503777 2.98%10 3"
3po(2)  —0.309380 1.11810°% —0.309381 1.11810°® —0.3093800 1.1181073P
8Referencd 13].

bHyIIeraas wave functions with uniform complex scaling, Hé#].
“Uniform complex scaling in perimetric coordinates, Réf5].

dUniform complex scaling, Ref11].
®Hylleraas wave functions with uniform complex scaling, Ré6].
fHylleraas wave functions with uniform complex scaling, Réf7].

062508-4



SMOOTH EXTERIOR COMPLEX-SCALING, FULE. ..

PHYSICAL REVIEW A 67, 062508 (2003

TABLE Ill. Energies and widthg$a.u] of the D states in helium.

Present Extrapolated References

E r E r E r
D¢ (3) —0.701935 0.002359 —0.701935 0.002359  —0.7019457 0.002362
D¢ (1) -0.569219 55%10¢ —0.569220  5.5%10°4 —0.569221 5.5%10 42
D¢ (2 —0.556429 2.x10°°5 —0.556429 2.610°° —0.5564303  2.0x10°°°
Spe (1) —0.583784 2<10°8 —0.583784 2<10°8 —0.5837843  2.8810 82
’pe(2) —0.560686 9<10°6 —0.560686 74106 —0.560687 7.%10 62
Ipe —0.563800 —0.563800 —-0.56380°
3po —0.559328 —0.559328 —-0.55932
D (1) —0.343174 5.15%10% —0.343175 5.15%10°  —0.343173 5.15%10 %%
D¢ (2) —0.315533 4.29810° % —0.315533 4.29%10 ° —0.31553 4.30%10 32
D¢ (3) —0.290083 1.26310° % —0.290083 1.26810 %  —0.290092  1.26%x10 %%
’pe —-0.325331 7.2%10% —0.325329  7.2%10 4 —0.325331 7.25%10 42
pe —0.328233  3.2x10* -0.328232 3.2210°* —0.32823 3.2K10°4P
8pe —0.315575 2.08%10°° —0.315575 2.08810 3 —0.31558 2.0%10°3°

#Hylleraas wave functions with uniform complex scaling, Ré8].
bUniform complex scaling, Refl11].

momenta. As is seen from our previous antiprotonic heliunmsystems in order to identify boundaries of its applicability
studies, it is very likely that this may be extended to higherand to reveal properties of the systems associated with the
angular momenta. Therefore, the goal to have a precise conronzero angular momentum.
putational tool to compute eigenenergies and widths for
three-dimensional rotating systems, which can be repre-
sented by a single potential-energy surface, is in some sense
reached. However, higher numerical accuracy can, in prin-
ciple, be achieved by using the so-called adappitiescheme S.L. acknowledges support by the National Science Foun-
where the size of elemehtand the maximum degree of the dation through a grant for the Institute for Theoretical
basis polynomiap in the same element are chosen such thaiAtomic and Molecular Physics at Harvard University and
the residue of a given eigensolution of the Sclimger prob-  Smithsonian Astrophysical Observatory. S.L. also acknowl-
lem in this element is smaller than a preset vdIB@. edges support from the Royal Swedish Academy of Sciences
The present method and its possible extensions remain tand the Wenner Gren Foundations. A grant from the Swedish
be tested on other atomic, molecular, and simple nuclear halResearch Counciformer NFR) is also acknowledged.
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