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Driving non-Gaussian to Gaussian states with linear optics
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We introduce a protocol that maps finite-dimensional pure input states onto approximately Gaussian states in
an iterative procedure. This protocol can be used to distill highly entangled bipartite Gaussian states from a
supply of weakly entangled pure Gaussian states. The entire procedure requires only the use of passive optical
elements and photon detectors, which solely distinguish between the presence and absence of photons.
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I. INTRODUCTION not the cas¢10,11]. For example, no matter how the local
Gaussian quantum operations are chosen, one cannot map a
Gaussian entangled states may be prepared quite simplgrge number of weakly entangled two-mode squeezed states
in optical systems: one only has to mix a pure squeezed stafto 2 single highly entangled Gaussian state. Gaussian
with a vacuum state at a beam splitter, both of which aréluantum operations.0—13 correspond in optical systems to

special instances of Gaussian states in systems with canor“le appllqanon of 8p))t|cal elements, such as_beam splitters,
cal coordinateg1,2]. The beam splitter acts as a Gaussianphase. shifts, angy SqUEEZErs, together with homodyne
e detection. All these operations are, to some degree of accu-

unitary operation that modifies the quantum state, but doeg, ¢, "experimentally accessible. With non-Gaussian quantum
not alter the Gaussian character of the state. This state M@ferations, in turn, one can distill finite-dimensional states
be used as the resource for protocols in quantum informatiogut of a supply of Gaussian statgs3], but the resulting
processing. In fact, teleportatidB], dense coding4], and  states are not Gaussian, and the experimental implementation
cryptographic scheme$] on the basis of such two-mode of the known protocols constitutes a significant challenge.
squeezed states have been either studied theoretically or al- One may be tempted to think that this observation renders
ready experimentally realized. For the theory of quantumdll attempts to increase the degree of entanglement in Gauss-
information processing in systems with canonical degreedan states impossible. In this paper, however, we discuss the
Gaussian states play a role closely analogous to that of e ._OSS.IbI|Ity of obtaining a Gaussian state with arbltrar_lly high
tangled states of qubits, for which most of the theory of!\d€lity from a supply of non-Gaussian states employing only

. . . Gaussian operations, namely linear optical elements and pro-
guantum information processing has been developed.

T - }A'ections onto the vacuum. We describe a protocol that pre-
However, there are significant limits to what accurac pares approximate Gaussian states from a supply of non-

highly entangled two-mode squeezed states may be prepareghssian states. The non-Gaussian states that we use could,
and distributed over large distances. First, the degree gh particular, be obtained from the weak two-mode squeezed
single-mode squeezing which can be achieved limits the deracua by the application of a beam splitter and a photon
gree of two-mode squeezing of the resulting state. Secondietector. Together with this step, the proposed procedure of-
decoherence is unavoidable in the transmission of statégrs a complete distillation procedure of Gaussian states to
through fibres, and the original highly entangled state will(aimost exadt Gaussian states, but via non-Gaussian terri-
deteriorate into a very weakly entangled mixed Gaussianory. It is important to note that the protocol introduced be-
state[6]. For finite-dimensional systems, it has been one ofow is by no means restricted to a bipartite setting. The bi-
the key observations that from weakly entangled states ongartite case is the most important one practically, as it allows
can obtain highly entangled states by means of local quarin effect for distillation of Gaussian states with non-Gaussian
tum operations supported by classical communicaftidrat  operations. But this method can, in particular, also be used in
the price of starting from a large number of weakly entangleda monopartite setting to approximately obtain a Gaussian
systems but ending with a smaller number of more stronglytate from a supply of unknown non-Gaussian states.
entangled systems. The term entanglement distillation has The paper is organized as follows. First, we will describe
been coined for such procedures. Importantly, such methodge protocol that generates Gaussian states from a supply of
function also as the basis for security proofs of quantumon-Gaussian states. This protocol requires only passive op-
cryptographic schemd$)]. tical elements and photon detectors which can distinguish
It was generally expected that an analogous procedurbetween the absence or presence of photons, but do not de-
should exists for the distillation of Gaussian states by meangermine their exact number. We then proceed by discussing
of local Gaussian operations and classical communicatiothe effect of the protocol in more detail. We will discuss the
only. Surprisingly however, it was recently proven that this isspecial case of pure states in Schmidt form as well as general
pure states. The fixed points of the iteration map will be
identified as pure Gaussian states, and a proof of conver-
*Electronic address: d.browne@ic.ac.uk gence will be given. Finally, we will discuss the feasible
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These coefficients then become identical to the Schmidt co-
o o efficients only after appropriate normalization. Starting from
two identical copies of state vectors which have been ob-
tained in theith step of the protocol, i.e.

—-O— O
A B [y ), (2)

FIG. 1. A single step of the protocol. Two pairs of entangled 5 e ohtains after application of the 50:50 beam splitters the

two-mode states are mixed locally at 50:50 beam splitters, and the A A N[ () he b i
absence or presence of photons is detected in one of the output arfie Vector U1,® U [¢")[4"). Here, the beam splitter
on both sides. Is described bysee, e.g., Ref.15])

N n rrala RaaTeoh
preparation of finite-dimensional states from a supply of pure Upp=Te ™ %femehT 1, ©)

Gaussian states. - ) ]
whereU ;, acts on the amplitude operators of the field modes

as
Il. THE PROTOCOL
The protocol is very simple indeed. We start with a supply A + T R\ a
i o : Ul= (4)
of identically prepared bipartite non-Gaussian states. The 12 2, 27| _p* T* a, '

overall protocol then amounts to an iteration of the following

basic steps. _ _ o where we setT=R=1/y/2. The resulting un-normalized

(1) The states will be mixed pairwise locally at 50:50 giate vector, conditional on vacuum outcomes in both detec-
beam splittergsee Fig. 1 tors, is given by

(2) On one of the outputs of each beam splitter, a photon
detector distinguishes between the absence and presence of (+1)\._ % 9
photons. It should be noted that we do not require photon 977 5)=(00(Urz8Und9)[¥)
counters that can discriminate between different photon
numbers.

(3) In case of absence of photons at both detectors for a
particular pair, one keeps the remaining modes as an input o
for the next iteration, otherwise the state is discarded. => ol Yn n), (5)

This is one iteration of the protocol which we will con- n=o0
tinue until we finally end up with a small number of states
that closely resemble Gaussian states. This is clearly a prob&’-here
bilistic protocol. However, the success probability, as we will n
see later, can be quite high. It should also be noted that the (i+1),_o-n (n) (i) (i)

- ° . . ay g =2 E Ay A"y n—y (6)
operations in a successful run are indeed Gaussian opera- ’ r=o0 \r/ " ‘
tions, namely the use of linear optical elements and vacuum
projections. Each of these steps can be realized with preserfer n=0,1, . . .. Theprobability of vacuum outcomes being
day technology. detected in both modes {g"' 1| ¢t D)/ | (M| D) |2, The
protocol is a Gaussian quantum operation, in the sense that it
is a completely positive map that maps all Gaussian states
onto Gaussian states. The interesting feature is that by re-
A. Pure states in Schmidt form peated application it also maps non-Gaussian states arbi-
J,‘arily close to Gaussian states, as will be demonstrated be-

r=0

- “fn\ o
DB A PRI [

IIl. EXAMPLES OF THE PROTOCOL

In order to demonstrate the general mechanism, we sta

by discussing a particularly simple case, namely pure stat In effect. in each iteration one Maps one Seauence of co-
in Schmidt form. We do not require any prior knowledge of _ . ") g (i) 1% P q (1)

the actual un-normalized state vectors, except that they Caﬁf'c'gftj a’={anpln-o Onto another sequence

be expressed in the following form: ={ann "tn=o, defining the mapb via

- T =:P (o). 7
[ P)=2 an.n), (D)
n=o In the following, we use the notatio®®)=® and ®(+1)

O r (0) _ =@l for i=0,1, . ... Themain observation is that pro-
Where_{an’n}nz_o_ with a,,=0 are proportional to \the real vided 04(1(,)1)< a%, the sequence of coeﬁicier{t&(')}f‘;l con-
Schmidt coefficients of the state vector, gd):ne N} de-  yerges to a distribution corresponding to a Gaussian state, in
notes the Fock basis. We only assuaf}%(),>0 and it is then  this special case a two-mode squeezed vacuum.
convenient to consider un-normalized states for which we set |n other words, although the initial state was not Gauss-

afy=1. The un-normalized states arising in later stéps ian, but say, a state corresponding to a finite-dimensional
=1,2,... are characterized by coefficient§al}}r_o.  state vector of the form
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@) =[0,0+a{%|1,), ®) ald,
lim —=—=a{} (15
Wherea(o)e [0,1), after a number of steps the resulting state i—ol®n_1n-1
is Gaussmn to a high degree of accuracy. We will first shovx{c 12 ... Then f
that this convergence is a general feature of this protocofC" SOMeN= - 1nén, from
and we will then discuss the consequences. We start by dem- n+1 n+1
onstrating that those distributions associated with the pure _ 2 (1) ()
. . . (i+1) Ay r®nZrtin-r+1
Gaussian states are fixed points of the rap Uniin+l 1 r=0 16
Proposition 1.The distributionse={a, ,},_, of the form Q) 2 no . (19
n.n S oo
annz)\n (9) =0 rr=-n—r,n—r r

(\=0), corresponding to two-mode squeezed states, are thefollows after a few steps tha’} >0 for all i=0,1,.. .,

only fixed points of the ma. and
Proof. This can be immediately derived from the defini- 1) 0
tion of @. Let us assume that i Aniin+l i 1 | 2aptip+ oN+1_ ) ,(0)
|Im LU+ _i|m2n+1 o0 +( —2)aiq|,
a=P(a 10 -® “nn - n.n
() (10 0
holds. It can be verified by substitution that, ,=\" is a which means that
solution of this equation. The uniqueness of this solution can
be ver|f|ed by observing that Eq10) also implies aqq Qi1
=aj,, that is,ago=1. Thenay, is a free parameter and Iim%z ©. (18

once set(i.e., asa;;=\) the remaining coefficients are i—e Qpn
uniquely determined.

These coefficients, fox [0,1), in turn correspond ex- Hence, by induction we find that t(?e ratios ‘mﬁ:#danrl and
actly to two-mode pure Gaussian states\ lfes outside this a!l), converge to the ratio of @a{’)<1 and (%=1 asi
range, the state is not normalizable. The next proposition—>°° This means that the coefflClents correspond to a Gauss-
states that those distributions associated with Gaussian statieg state as specified in Proposition 1. In case whef¢

are not only fixed points of the magp, but providedag?g =0 an analogous argument can be applied in order to arrive
#0 each sequence of coefficients converges to such a fixeat af)',)o=1 foralli=0,1,... and
point. _—
Proposition 2.Let a(®={a%}7_; with al}=1 and 0 limap;,=0 (19
<a{®)<1. Then o
lim a(.) = (11) forTaAI. n=12,.... o
- : is shows formally that thépointwise convergence to
an effectively Gaussian state is gendrid]. Putting aside
foralln=0,1,...,wherea(® is a distribution of the type of the restriction thaty =1, three cases shall be discussed in
Proposition 1. more detail.
Proof. As before, let us seta:=d®(a®) for | (D) If &3>0 anda{®)<al}, then the states converge to
=1,2,.... Thefirst step is to see that a Gaussian state.

(2) A special instance is whee{"}>0, buta{®)=0. Then
aft a(l')l © the states converge to a Gaussian state, but to the product of
a(i+1) 20 s Nt (12 two vacua.

0.0 0.0 (3) If af=al%, then the sequence does not converge to
foralli=0,1, .... Let udirst assume tha{®)>0. Then, as @ sequence of coefficients corresponding to a Gaussian state.

can be seen from the definition df, In particular, this is always the case when
0)_
(i+1) (i)_1 () 1 0040y o Li+1) agyg—O. (20
@2 “1,1—5(%,2 ajiai))ag; (13 0 .
This follows immediately from Eq(6) as ay,=0 for all i.
In practice, one can actually expect a state that is very

(i) — (0) -
Hence, awi =« ;>0 foralli=0,1,..., close to a Gaussian state already after a very small number of

(i) steps, say, three or four steps. As has already been men-
lim S22 _ a9 (14)  tioned, the whole scheme is probabilistic. That is, the success
Hoca(l")l ’ probability of actually obtaining the desired state is always
less than 1. In Fig. 2, we show the total probability of suc-
Now let us assume that already(),, ;>0 for all i  cess,p{)...cs and in Fig. 3 the corresponding fideli",
=0,1,... and i.e., the overlap with the Gaussian state to which the protocol
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(5)

L Psuccess Iw(”>=2 aﬁiﬂn|m,”>a (22)
m.n

we can describe each iteration in terms of the following re-
currence relation:

m n
ag])yn'_)ag];l): 27(m+n)/zr§_‘fo SZO (—1)Mm+N)=(r+s)

1/2
, <ol (7)Y

FIG. 2. Success probabilitp{)....afteri=1 (dotted ling, i
=2 (dashed ling andi=3 (solid ling) iteration steps, where the
initial states werex|0,0)+\|1,2).

0.

0.2 0.4 0.6 0.8 1

where again

aD=d(a), (24)

converges, aftei=1,2,3 iteration steps. Here, we started

with coeff|C|entSa(°)—1 anda{®)=X\. with aO={a{} 1= _ fori=0,1,.... Wewill in the fol-
We see that for a large range of values Xgrthe fidelity  lowing write

is just below unity and, fok = 0.5, the probability of success

is still above 0.5. al=limal), (25

i—o
B. General pure states

Suppose now we have a supply of pure states with Stat\e/henever thls limit exists. The fixed points ®f, character-

vectors of the general form zed bya e C, correspond to states which are unchanged
by one or more iterations of the procedure, and satisfy
o S o d(a)=a™), thus
W)= 2 afiimn), (21)

m n
a%ﬂ]_ —(m+n)/2 2 2 (_1)(m+n)f(r+s)
where (9} e C for all n,m. If the procedure described in 0T

Sec. Il is carried out, using 50:50 beam splitters with appro- o m) [ n\ ]2
priate phases such that= R=1/\/2, then for a large class of X as,s)agn—)r,n—s“ , ) ( s) (26)
input states, after repeated iterations of the protocol, a state
closely approximating a Gaussian state will be obtained. If
the identical retained states afidterations of the procedure for all n,m. We immediately see that
are labeled
afd=(af3)? (27)
F®
1 and thUSa(oc)_ 1. (The other pOSS|b|I|t3a(°°)—0 leads to the
trivial solution a(?)=0 for all m,n.) We also find that the
0.8 coeflicientsal?) . a{?), and ) are the only free param-
i1 @20
eters. When these values are specn‘led all other coefficients
0.6 are determined. The general solution of E2f) is
0.4
a(2m)2n+1 a(Zm)+12n 0, (28)
0.2
\ abi)on=1(2m)1\(2n)!

0.2 0.4 0.6 0.8 1 _ _
Y55 (y2/2)™ S (2"

Osssm;s<n (25)! (m—s)! (n—s)! ,

FIG. 3. Fidelity F) of the approximately Gaussian state after X

i=1 (dotted ling, i=2 (dashed ling andi=3 (solid line) itera-
tions, where the initial states werg0,0)+\|1,1). (29
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a1 m1=V2m+ 1)1 (2n+1)! b, i.e., it is a passive transformation. Hence, the resulting
VL (5215 (l2)0 state vecto(32) is also normalizable. A .
X 12 ! 2 , In fact, as can be shown, the state ved(T’)|0,0) is,
o=sfms=n [(2s+1)! (m—9s)! (n—s)! apart from normalization, equal to the state vector of the

(30) two-mode squeezed vacuum sté(i)|0,0), where

where the coefficienty, ,y,, andy,, are usefully expressed N 1 ~To At 1.5 .
as elements of the symmetric2 matrix S(Z)=exp5(a) Z(a)—5(a) Z'(a) |. (37)
Y1 Y12 P . . .
[‘:( ) (31  S(2) is a generalized two-mode squeezing operptat,
Y12 Y2
and are determined uniquely by the free parameters Z=—( & 512), (39)
a(zo) ag“g, and a(ll) A specific form for this correspon- {12 &2

dence is given in Proposition 4. The coefﬂuenﬁ‘) deter- : ] -
mine an un-normalized state vectgi(T)). In the Fock state WhereZ=arctan¢y)e'r with the polar decomposition

representation, this state vector is given by .
I=rpefr. (39)
|$(I"))=Q(1[0,0), (32
A Proposition 4.Suppose we are given a supply of identical
where the operata®(I') is expressed in terms df and the  two- mod(()a pure states with state vector§y(®)
vectora'=(a},a})T as =3 el [m,n), and let

\/Eﬂz,o_ Bio B11~ B1,080,1

Q)= exr{ ! @Hmanh|.

(33 = : (40)
Bri—BidBor V2Boz B,

The state vectorlss(I')) are not normalized, and the require- (0) )
ment that they be normalizable, i.&(I)|4(I)) is finite, ~Wherefmn=amy/agg. If |[T][..<1 then
places a restriction oh. The following proposition takes its . _
most concise form when we use the spectral norm that is _I|m aﬁ'fn:am,n (41)
defined ag§16] =

[1X]oe = VA mas (34 for all n,m=0,1, ... ,where

. . -1- ~

where\ ax IS the largest eigenvalue oX'. amni=(m,n|Q(1)[0,0). (42)

Proposition 3 If and only if ||T||..<1, then |(T))

:=Q(IN)|0,0) is normalizable and represents a pure Gaussian Proof. To make the proof simpler, we shall uséoo 1 as

state. above. This is merely a change of normalization and does not

Proof The matrlx_F in Eq. (_:,31) is a complex symmetnc alter the general validity of the argument. Before proving the
2x 2 matrix. Following Takagi's Lemmgl6], there exists a ¢y ergence of all coefficientsy), under® to the fixed
unitary matrixU such that point afnz, asi—, let us first show that a certain subset of
coefficients actually reaches its final value after a single it-
eration of®.

. . . . . o (1) (1) i
where A is a diagonal matrix the entries of which are the  1he coefficientsazn, 1 o, and azn . 1 reach zero, their
eigenvalues of TTT. With b:=Ua, we have fixed point, after alsmgle |terat|pn correspondmg %01,. for

all m,n. To see this, note that in the following equation:

UTTU=:A, (35)

1. ~
|¢<r>>=exp[5<b*>TA<b*>}|o,0>. (36)

m n
agqu)nzz—(ern)/ZrE—:O SZO (— 1)(m+n)f(r+s)
Becauseb; andb, commute, this is a tensor product of two

single-mode Gaussian states. It is now straightforward to % (a0 mi/n

show that the single-mode state vectors are normalizable if Urs®m-rn-si| || g

and only if both diagonal elements af are smaller than 1.

Then each of the modes is in a single-mode squeezed staignaming the summation indices, §)—(m—r,n—s) yields
[17]. The transformatiora—Ua represents a beam-splitter gn identical sum except for an overall factor of {)™".

transformation mapping the original modgsnto the modes Consequently, for odd values ai+n the whole sum must

112
: (43
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vanish, and coefficients of the foraesn, 1 », andaby,,,  foralli=0,1,. .. .Similarly, 8§ anda§} also assume their
vanish after a single iteration step. As a consequence of thisgspective fixed points after the first iteration, and thus ma-
the coefficientsx{}, a3}, anda{), also do not change after trix I' is determined to be as the one in E40).

one iteration. For example, Now let us show that all coefficients,ﬂi]?n do indeed con-
D) verge to their respective fixed poina; ) asi—c=. The re-
Qi "Tai1T @p1dip (44) currence relations in Eq23) can be rewritten as

(45)

m n
= 2+ 53 e, "))
r=0 s=

(r,8)#(0,0) # (m,n)

Let us assume that all coefficieméi,?s, wherer<m, s<n butr+s<m-+n, do converge to the fixed pointsﬁf‘;) asi—oo.
Then

m n
lima;l[',ﬂ;l):2{17[(m+n)/2]}linla£rl['?n+2*(m+n)/2 E E (_ 1)(m+n)(HS)al('i)aEﬂw)l‘,nS[(m) ( n) (46)
o0 i—o0 r=0s5=0 r R
(r,8)#(0,0) # (m,n)
|
Now let us use the substitutio&%?n::a%?n—aﬁﬁ and we with ge[0,1).
obtain, using Eq(26), In general, it will be easier to generate two-mode
squeezed states with low values@fn an experiment, and
lim 5%1):2{17[(m+n)/21}|im 5&2)“- (47) using the following simple protocol one can use a supply of
i i such states to generate a supply of non-Gaussian states
. which, when used as the input of the procedure described in
We see thaﬁﬂfn converges to zero as long as Sec. Il, leads to the generation of two-mode squeezed states
with much highenq.
20— (mm2l<q (48) Let us feed the two copies of the state of the form as in

Eq. (49 with g<1 into the device schematically depicted in
which is the case wheneven+n>2. However, since we Fig. 1, and retain those outcomes that correspond to a
have already shown that all coefficient§),, wherem+n “click” in both detectors. It does not matter how many pho-
<2, (i.e.,al), o), al), af), al, andag%)), convergeto  tons have been measured, and we do not assume that a dif-
a final value after a single iteration, the convergence of alférent classical signal is associated with different photon
other coefficients follows by induction. Note that whenevernumbers. The projection operatfit8] describing this pro-
[|IT||..=1, although the coefficients individually converge to ¢€SS IS
their respective fixed points, the state as a whole does not

sinceQ(T)|0,0) is not a normalizable state vector. P=(1-]0)(0))®(1-]0)(0]). (50)
IV. GENERATION OF THE INITIAL STATES FROM Although the vacuum projection as well as the identity op-
GAUSSIAN STATES eration are Gaussian, the difference between them is not and,

So far we did not specify where the supply of initial statesindeed, we find that when the states used in the protocol have

should come from. In fact, one could use tfweakly) en- sufficiently sma_ll q, then this projection approximates
tangled Gaussian states and feed them into one of the iterkl){1/®|1)(1| with high accuracy. Thus, we are not in the
tion components as shown in Fig. 1. Then, instead of retainSituation as in Ref4.10,11. Acting with Eq.(50) on the two

ing the state in the case of measuring the vacuum, we nofPies of the statd9), after rotating them at the beam split-
retain the state whenevany nonzero photon number is ob- ters, gives the non-Gaussian state with un-normalized state
tained. Again, only the detectors that distinguish between th¥€ctor

absence or presence of photons are needed. Let us start with

a supply of two-mode squeezed vacuum states, the state vec- |y (q;T,,Ra;Tg,Re))=P[U1ATa,Ra)

tors of which can be written in Schmidt basis as

®U1ATg,Re)]| Py, (51)

A m—q?ngo q"n,n), (49

where again

062320-6



DRIVING NON-GAUSSIAN TO GAUSSIAN STATE.. .. PHYSICAL REVIEW A 67, 062320(2003

01o(T,R) = The~R*&d1gR A T2 (52
andT,,Tg,Ra,Rg e C with

| Tal?+[Ral?=|Tg|*+|Rg|*=1. (53
For simplicity of notation, let

tru[|¥(q; Ta,Ra;Te Re) (¥ (0;Ta,Ra;Ts Rs)|]

[V (9;Ta,Ra: Tg,Re) (¥ (Q; Ta,Ra; T, Re)|] 64

o(d;Ta,RA;Tg,Rp) =

be the normalized state after application of the beam splittersesulting states are not exactly pure, whereas the probability
and the two projections, whergytris the partial trace over of succesgsuch that the nonvacuum outcome is obtained in
the measured modes. The most appropriate choices for thgth detectorsis a monotone decreasing function apf
reflectivities and transmittivities clearly depend on the value The resulting states of this protocol can then form the
of g and on the figure of merit of how one quantifies thestarting point of the generation of Gaussian states via the
quality of the output state. However, where[0,1) is very  protocol in Sec. II. In effect, this scheme allows one to gen-
sma!l, the output state can be made arbitrarily close to @rate approximate Gaussian statés fact, two-mode
maximally entangled state squeezed vacliavith g higher than the initial supply, which
is nothing other than a distillation procedure.
L1 s ” An exampllg of the results of such a dist.illatio'n protocol,
P =E[|010>+e 11,DI[{0.+€(1,1] (55  where the initial step is followed by three iterations of the
protocol from Sec. I, is illustrated in Fig. 4. The overall
in 2x2 dimensions, where the phas¥ depends on the probability is far lower than for three steps of the protocol

phases ofT and R in the beam splitter chosen. More pre- from Sec. i along(cf. Fig. 2), due to the low success prob-
ability of the initial step. This is largely due to the low prob-

cisely,
Y ability of measuring the presence of photons on the side
. ) ) oy where no beam splitter is employed, i.e. Alice’s side. Since
(Llino|\w(q,t(q),r(q),0,1) p'l.=0, (56 the effect of this measurement is to prepare a single photon
where
Esgnal/ Fini Ddistill
6
1_(1+8q2)1/2 1750 '. 1.x107
|t(Q)|==T, (57) 1500 8.x107
1250
1000 6.x107
r(@)]=[1—[t(q)[*]" (58) 750 4.x107
and| ||, denotes the trace norfi6]. In other words, in the 228 2.x107
limit of very small two-mode squeezing the maximally en-
tangled state can be obtained to a high degree of accuracy. Sc 0 0 0.02 0.04 0.060.08 0. 10
the appropriate choice for the beam splitters on one side does |T|

depend on the value af, whereas the beam splitter on the
other side becomes redundant. In a similar manner, one can f|G. 4. This figure illustrates a full distillation procedure. Be-
generate states of the forf@,0)+ «{%|1,1). If one does not  ginning with a supply of two-mode squeezed vacua, with
care about the phase af, ;, then the correct choices for the =0.01, the protocol outlined in Sec. IV is then applied, which maps
above transmittivities and reflectivities are this state onto a non-Gaussian state of higher entanglement fol-
lowed by three iterations of the protocol described in Sec. Il. The
|a(0)| —[|a(°)|2+8q2]1’2‘ propertieg of state prodgced dgpend on the transmittiviof the .
lt(q)|:= 11 11 (59) beam splitter employed in the first step. Here, the factor by which
4q ‘ the entanglement of the final achieved stajg, is greater than the
) ] ) entanglement of the initial supplg;,; (where the entanglement is
and |r(q)|:=[1—[t(q)|*]"2 This analysis shows that with cajculated as the Von Neumann entropy of the reduced density ma-
the help of passive optical elements and photon detectorgix of a single modg is plotted as a solid line, and the overall
quantum states of the appropriate kind can in fact be presuccess probability of the entire process, when this initial step is
pared. There is, however, a trade-off concerning accuracy dbllowed by the three iterations of the protocol to generate Gaussian
the protocol and success probability. For any firgtethe  states, is plotted as a dashed line.
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on Bob’s side, this low probability step could be avoided if afrom the ideal situation. Dark counts of the detector, in turn,

single photon source was available. do not affect the performance of the protocol, except that the
In light of the fact that distillation with Gaussian opera- success probability is decreased. These matters will be dis-

tions alone was shown to be impossilpl,11], it is then  cussed in more detail elsewhere.

significant that this scheme does, in fact, realize pure-state In several practical applications of the procedure, one can

distillation into approximate Gaussian states via suitable actually assume the initial state to be known. This is the case,

non-Gaussian operations, here photon detection. for example, if one uses the above protocol in order to purify
This simple protocol is not suitable when the initial sup-a state in a quantum privacy amplification proced@p
ply consists of two-mode squeezed states with a kjgind In this paper, we have restricted our analysis to pure

another method of generating non-Gaussian states of highstates. In practical implementations, it would clearly also be
entanglement must be used. A more detailed analysis of opiseful to be able to distill highly entangled Gaussian states
timal preparation protocols that only include passive opticafrom a mixed initial supply. However, the full treatment of
elements and photon detectors will be investigated elsethese protocols for general mixed states is lengthy and will
where. Here, we concentrate on the proof of principle thabe presented elsewhere. To summarize, we have identified a
Gaussian states can indeed be distilled to approximatelgrocedure that asymptotically produces Gaussian states from

Gaussian states. a supply of non-Gaussian, finite-dimensional states by means
of Gaussian operations. In fact, the limiting Gaussian state
V. DISCUSSION AND CONCLUSIONS for a pure given input can be found analytically. We have

) ) ) seen that even after a very small number of iteration steps,

We have shown that, using passive optical elements anghe degree of overlap between the resulting state and the
photon detectors which do not distinguish different photonhegretical limit state is close to unity. Moreover, the prob-
numbers, one can distill pure Gaussian states to arbltrarllgbi”ty of obtaining this approximate state is of the order of
high precision, in spite of the impossibility of distilling o 1. |n that respect, the whole protocol is experimentally fea-
Gaussian states with Gaussian operatidrs11. It should  gjple with the present-day technology. This result should
be noted that in our discussion we have assumed the photyntribute to the search for strategies to distribute
detectors to have unit efficiency in order to show that howgontinuous-variable entanglement over large distances.
one can, in principle, generate Gaussian states from a non-
Gaussian supply. Needless to say, in any experimental real-
ization, one would have to deal with detector efficiencies ACKNOWLEDGMENTS
significantly less than 1. Such detectors can, e.g., be modeled
by employing perfect detectors, together with an appropriate  We would like to thank I. Walmsley and J. I. Cirac for
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