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Driving non-Gaussian to Gaussian states with linear optics
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We introduce a protocol that maps finite-dimensional pure input states onto approximately Gaussian states in
an iterative procedure. This protocol can be used to distill highly entangled bipartite Gaussian states from a
supply of weakly entangled pure Gaussian states. The entire procedure requires only the use of passive optical
elements and photon detectors, which solely distinguish between the presence and absence of photons.
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I. INTRODUCTION

Gaussian entangled states may be prepared quite si
in optical systems: one only has to mix a pure squeezed s
with a vacuum state at a beam splitter, both of which
special instances of Gaussian states in systems with can
cal coordinates@1,2#. The beam splitter acts as a Gauss
unitary operation that modifies the quantum state, but d
not alter the Gaussian character of the state. This state
be used as the resource for protocols in quantum informa
processing. In fact, teleportation@3#, dense coding@4#, and
cryptographic schemes@5# on the basis of such two-mod
squeezed states have been either studied theoretically o
ready experimentally realized. For the theory of quant
information processing in systems with canonical degre
Gaussian states play a role closely analogous to that of
tangled states of qubits, for which most of the theory
quantum information processing has been developed.

However, there are significant limits to what accura
highly entangled two-mode squeezed states may be prep
and distributed over large distances. First, the degree
single-mode squeezing which can be achieved limits the
gree of two-mode squeezing of the resulting state. Sec
decoherence is unavoidable in the transmission of st
through fibres, and the original highly entangled state w
deteriorate into a very weakly entangled mixed Gauss
state@6#. For finite-dimensional systems, it has been one
the key observations that from weakly entangled states
can obtain highly entangled states by means of local qu
tum operations supported by classical communication@7# at
the price of starting from a large number of weakly entang
systems but ending with a smaller number of more stron
entangled systems. The term entanglement distillation
been coined for such procedures. Importantly, such meth
function also as the basis for security proofs of quant
cryptographic schemes@9#.

It was generally expected that an analogous proced
should exists for the distillation of Gaussian states by me
of local Gaussian operations and classical communica
only. Surprisingly however, it was recently proven that this

*Electronic address: d.browne@ic.ac.uk
1050-2947/2003/67~6!/062320~9!/$20.00 67 0623
ply
te

e
ni-
n
es
ay
n

al-

s,
n-
f

red
of
e-
d,
es
ll
n
f

ne
n-

d
ly
as
ds

re
s
n

not the case@10,11#. For example, no matter how the loc
Gaussian quantum operations are chosen, one cannot m
large number of weakly entangled two-mode squeezed st
onto a single highly entangled Gaussian state. Gaus
quantum operations@10–12# correspond in optical systems t
the application of optical elements, such as beam splitt
phase shifts, andx (2) squeezers, together with homodyn
detection. All these operations are, to some degree of a
racy, experimentally accessible. With non-Gaussian quan
operations, in turn, one can distill finite-dimensional sta
out of a supply of Gaussian states@13#, but the resulting
states are not Gaussian, and the experimental implement
of the known protocols constitutes a significant challenge

One may be tempted to think that this observation rend
all attempts to increase the degree of entanglement in Ga
ian states impossible. In this paper, however, we discuss
possibility of obtaining a Gaussian state with arbitrarily hi
fidelity from a supply of non-Gaussian states employing o
Gaussian operations, namely linear optical elements and
jections onto the vacuum. We describe a protocol that p
pares approximate Gaussian states from a supply of n
Gaussian states. The non-Gaussian states that we use c
in particular, be obtained from the weak two-mode squee
vacua by the application of a beam splitter and a pho
detector. Together with this step, the proposed procedure
fers a complete distillation procedure of Gaussian state
~almost exact! Gaussian states, but via non-Gaussian te
tory. It is important to note that the protocol introduced b
low is by no means restricted to a bipartite setting. The
partite case is the most important one practically, as it allo
in effect for distillation of Gaussian states with non-Gauss
operations. But this method can, in particular, also be use
a monopartite setting to approximately obtain a Gauss
state from a supply of unknown non-Gaussian states.

The paper is organized as follows. First, we will descri
the protocol that generates Gaussian states from a supp
non-Gaussian states. This protocol requires only passive
tical elements and photon detectors which can distingu
between the absence or presence of photons, but do no
termine their exact number. We then proceed by discuss
the effect of the protocol in more detail. We will discuss t
special case of pure states in Schmidt form as well as gen
pure states. The fixed points of the iteration map will
identified as pure Gaussian states, and a proof of con
gence will be given. Finally, we will discuss the feasib
©2003 The American Physical Society20-1
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preparation of finite-dimensional states from a supply of p
Gaussian states.

II. THE PROTOCOL

The protocol is very simple indeed. We start with a sup
of identically prepared bipartite non-Gaussian states.
overall protocol then amounts to an iteration of the followi
basic steps.

~1! The states will be mixed pairwise locally at 50:5
beam splitters~see Fig. 1!.

~2! On one of the outputs of each beam splitter, a pho
detector distinguishes between the absence and presen
photons. It should be noted that we do not require pho
counters that can discriminate between different pho
numbers.

~3! In case of absence of photons at both detectors fo
particular pair, one keeps the remaining modes as an in
for the next iteration, otherwise the state is discarded.

This is one iteration of the protocol which we will con
tinue until we finally end up with a small number of stat
that closely resemble Gaussian states. This is clearly a pr
bilistic protocol. However, the success probability, as we w
see later, can be quite high. It should also be noted that
operations in a successful run are indeed Gaussian op
tions, namely the use of linear optical elements and vacu
projections. Each of these steps can be realized with pres
day technology.

III. EXAMPLES OF THE PROTOCOL

A. Pure states in Schmidt form

In order to demonstrate the general mechanism, we s
by discussing a particularly simple case, namely pure st
in Schmidt form. We do not require any prior knowledge
the actual un-normalized state vectors, except that they
be expressed in the following form:

uc (0)&5 (
n50

`

an,n
(0)un,n&, ~1!

where $an,n
(0)%n50

` with an,n
(0)>0 are proportional to the rea

Schmidt coefficients of the state vector, and$un&:nPN% de-
notes the Fock basis. We only assumea0,0

(0).0 and it is then
convenient to consider un-normalized states for which we
a0,0

(0)51. The un-normalized states arising in later stepi
51,2, . . . are characterized by coefficients$an,n

( i ) %n50
` .

FIG. 1. A single step of the protocol. Two pairs of entangl
two-mode states are mixed locally at 50:50 beam splitters, and
absence or presence of photons is detected in one of the output
on both sides.
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These coefficients then become identical to the Schmidt
efficients only after appropriate normalization. Starting fro
two identical copies of state vectors which have been
tained in thei th step of the protocol, i.e.

uc ( i )&uc ( i )&, ~2!

one obtains after application of the 50:50 beam splitters
state vector (Û12^ Û12)uc ( i )&uc ( i )&. Here, the beam splitte
is described by~see, e.g., Ref.@15#!

Û125Tn̂1e2R* â2
†â1eRâ2â1

†
T2n̂2, ~3!

whereÛ12 acts on the amplitude operators of the field mod
as

Û12S â1

â2
D Û12

† 5S T R

2R* T* D S â1

â2
D , ~4!

where we setT5R51/A2. The resulting un-normalized
state vector, conditional on vacuum outcomes in both de
tors, is given by

uc ( i 11)&ª^0,0u~Û12^ Û12!uc&uc&

5 (
n50

` F22n(
r 50

n S n

r Da r ,r
( i )an2r ,n2r

( i ) G un,n&

5 (
n50

`

an,n
( i 11)un,n&, ~5!

where

an,n
( i 11)

ª22n(
r 50

n S n

r Da r ,r
( i )an2r ,n2r

( i ) ~6!

for n50,1, . . . . Theprobability of vacuum outcomes bein
detected in both modes is^c ( i 11)uc ( i 11)&/u^c ( i )uc ( i )&u2. The
protocol is a Gaussian quantum operation, in the sense th
is a completely positive map that maps all Gaussian st
onto Gaussian states. The interesting feature is that by
peated application it also maps non-Gaussian states
trarily close to Gaussian states, as will be demonstrated
low.

In effect, in each iteration one maps one sequence of
efficients a ( i )5$an,n

( i ) %n50
` onto another sequencea ( i 11)

5$an,n
( i 11)%n50

` , defining the mapF via

a ( i 11)5..F~a ( i )!. ~7!

In the following, we use the notationF (1)5F and F ( i 11)

5F+F ( i ) for i 50,1, . . . . Themain observation is that pro
videda1,1

(0),a0,0
(0) , the sequence of coefficients$a ( i )% i 51

` con-
verges to a distribution corresponding to a Gaussian stat
this special case a two-mode squeezed vacuum.

In other words, although the initial state was not Gau
ian, but say, a state corresponding to a finite-dimensio
state vector of the form

he
rms
0-2



at
o
co
e
u

t

i-

ca

d
e

-

tio
ta

x

uss-

rive

in

o

ct of

to
tate.

ery
er of

en-
ess
ys
c-

col
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uc (0)&5u0,0&1a1,1
(0)u1,1&, ~8!

wherea1,1
(0)P@0,1), after a number of steps the resulting st

is Gaussian to a high degree of accuracy. We will first sh
that this convergence is a general feature of this proto
and we will then discuss the consequences. We start by d
onstrating that those distributions associated with the p
Gaussian states are fixed points of the mapF.

Proposition 1.The distributionsa5$an,n%n50
` of the form

an,n5ln ~9!

(l>0), corresponding to two-mode squeezed states, are
only fixed points of the mapF.

Proof. This can be immediately derived from the defin
tion of F. Let us assume that

a5F~a! ~10!

holds. It can be verified by substitution thatan,n5ln is a
solution of this equation. The uniqueness of this solution
be verified by observing that Eq.~10! also implies a0,0

5a0,0
2 , that is,a0,051. Thena1,1 is a free parameter an

once set~i.e., as a1,15l) the remaining coefficients ar
uniquely determined.

These coefficients, forlP@0,1), in turn correspond ex
actly to two-mode pure Gaussian states. Ifl lies outside this
range, the state is not normalizable. The next proposi
states that those distributions associated with Gaussian s
are not only fixed points of the mapF, but provideda0,0

(0)

Þ0 each sequence of coefficients converges to such a fi
point.

Proposition 2.Let a (0)5$an,n
(0)%n50

` with a0,0
(0)51 and 0

<a1,1
(0),1. Then

lim
i→`

an,n
( i ) 5an,n

(`) ~11!

for all n50,1, . . . ,wherea (`) is a distribution of the type of
Proposition 1.

Proof. As before, let us seta ( i )
ªF ( i )(a (0)) for i

51,2, . . . . Thefirst step is to see that

a1,1
( i 11)

a0,0
( i 11)

5
a1,1

( i )

a0,0
( i )

5a1,1
(0) ~12!

for all i 50,1, . . . . Let usfirst assume thata1,1
(0).0. Then, as

can be seen from the definition ofF,

a2,2
( i 11)a1,1

( i )5
1

2
~a2,2

( i )1a1,1
(0)a1,1

( i ) !a1,1
( i 11) . ~13!

Hence, asa1,1
( i )5a1,1

(0).0 for all i 50,1, . . . ,

lim
i→`

a2,2
( i )

a1,1
( i )

5a1,1
(0) . ~14!

Now let us assume that alreadyan21,n21
( i ) .0 for all i

50,1, . . . and
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i→`

an,n
( i )

an21,n21
( i )

5a1,1
(0) ~15!

for somen51,2, . . . .Then, from

an11,n11
( i 11)

an,n
( i 11)

5
1

2

(
r 50

n11

a r ,r
( i )an2r 11,n2r 11

( i ) S n11

r D
(
r 50

n

a r ,r
( i )an2r ,n2r

( i ) S n

r D
, ~16!

it follows after a few steps thatan,n
( i ) .0 for all i 50,1, . . . ,

and

lim
i→`

an11,n11
( i 11)

an,n
( i 11)

5 lim
i→`

1

2n11 F2an11,n11
( i )

an,n
( i )

1~2n1122!a1,1
(0)G ,

~17!

which means that

lim
i→`

an11,n11
( i 11)

an,n
( i 11)

5a1,1
(0) . ~18!

Hence, by induction we find that the ratios ofan11,n11
( i ) and

an,n
( i ) converge to the ratio of 0,a1,1

(0),1 anda0,0
(0)51 as i

→`. This means that the coefficients correspond to a Ga
ian state as specified in Proposition 1. In case wherea1,1

(0)

50 an analogous argument can be applied in order to ar
at a0,0

( i )51 for all i 50,1, . . . and

lim
i→`

an,n
( i ) 50 ~19!

for all n51,2, . . . .
This shows formally that the~pointwise! convergence to

an effectively Gaussian state is generic@14#. Putting aside
the restriction thata0,0

(0)51, three cases shall be discussed
more detail.

~1! If a0,0
(0).0 anda1,1

(0),a0,0
(0) , then the states converge t

a Gaussian state.
~2! A special instance is whena0,0

(0).0, buta1,1
(0)50. Then

the states converge to a Gaussian state, but to the produ
two vacua.

~3! If a0,0
(0)<a1,1

(0) , then the sequence does not converge
a sequence of coefficients corresponding to a Gaussian s
In particular, this is always the case when

a0,0
(0)50. ~20!

This follows immediately from Eq.~6! asa0,0
( i )50 for all i.

In practice, one can actually expect a state that is v
close to a Gaussian state already after a very small numb
steps, say, three or four steps. As has already been m
tioned, the whole scheme is probabilistic. That is, the succ
probability of actually obtaining the desired state is alwa
less than 1. In Fig. 2, we show the total probability of su
cess,psuccess

( i ) , and in Fig. 3 the corresponding fidelityF ( i ),
i.e., the overlap with the Gaussian state to which the proto
0-3
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converges, afteri 51,2,3 iteration steps. Here, we start
with coefficientsa0,0

(0)51 anda1,1
(0)5l.

We see that for a large range of values forl, the fidelity
is just below unity and, forl50.5, the probability of succes
is still above 0.5.

B. General pure states

Suppose now we have a supply of pure states with s
vectors of the general form

uc (0)&5 (
m,n50

`

am,n
(0) um,n&, ~21!

where am,n
(0) PC for all n,m. If the procedure described i

Sec. II is carried out, using 50:50 beam splitters with app
priate phases such thatT5R51/A2, then for a large class o
input states, after repeated iterations of the protocol, a s
closely approximating a Gaussian state will be obtained
the identical retained states afteri iterations of the procedure
are labeled

FIG. 2. Success probabilitypsuccess
( i ) after i 51 ~dotted line!, i

52 ~dashed line!, and i 53 ~solid line! iteration steps, where the
initial states were}u0,0&1lu1,1&.

FIG. 3. Fidelity F ( i ) of the approximately Gaussian state aft
i 51 ~dotted line!, i 52 ~dashed line!, and i 53 ~solid line! itera-
tions, where the initial states were}u0,0&1lu1,1&.
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uc ( i )&5(
m,n

am,n
( i ) um,n&, ~22!

we can describe each iteration in terms of the following
currence relation:

am,n
( i ) °am,n

( i 11)522(m1n)/2(
r 50

m

(
s50

n

~21!(m1n)2(r 1s)

3a r ,s
( i )am2r ,n2s

( i ) F S m

r D S n

sD G
1/2

, ~23!

where again

a ( i 11)5F~a ( i )!, ~24!

with a ( i )5$an,m
( i ) %n,m50

` for i 50,1, . . . . Wewill in the fol-
lowing write

an,m
(`)

ª lim
i→`

an,m
( i ) , ~25!

whenever this limit exists. The fixed points ofF, character-
ized byam,n

(`) PC, correspond to states which are unchang
by one or more iterations of the procedure, and sati
F(a (`))5a (`), thus

am,n
(`) 522(m1n)/2(

r 50

m

(
s50

n

~21!(m1n)2(r 1s)

3a r ,s
(`)am2r ,n2s

(`) F S m

r D S n

sD G
1/2

~26!

for all n,m. We immediately see that

a0,0
(`)5~a0,0

(`)!2 ~27!

and thusa0,0
(`)51. ~The other possibilitya0,0

(`)50 leads to the
trivial solution am,n

(`) 50 for all m,n.! We also find that the
coefficientsa1,1

(`) , a2,0
(`) , and a0,2

(`) are the only free param
eters. When these values are specified, all other coeffici
are determined. The general solution of Eq.~26! is

a2m,2n11
(`) 5a2m11,2n

(`) 50, ~28!

a2m,2n
(`) 5A~2m!!A~2n!!

3 (
0<s<m;s<n

F g12
2s

~2s!!

~g1/2!m2s

~m2s!!

~g2/2!n2s

~n2s!! G ,
~29!
0-4
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a2m11,2n11
(`) 5A~2m11!!A~2n11!!

3 (
0<s<m;s<n

F g12
2s11

~2s11!!

~g1/2!m2s

~m2s!!

~g2/2!n2s

~n2s!! G ,
~30!

where the coefficientsg1 ,g2, andg12 are usefully expresse
as elements of the symmetric 232 matrix

G5S g1 g12

g12 g2
D ~31!

and are determined uniquely by the free parame
a2,0

(`) ,a0,2
(`) , and a1,1

(`) . A specific form for this correspon
dence is given in Proposition 4. The coefficientsamn

(`) deter-
mine an un-normalized state vectoruc(G)&. In the Fock state
representation, this state vector is given by

uc~G!&5Q̂~G!u0,0&, ~32!

where the operatorQ̂(G) is expressed in terms ofG and the
vector â†5(â1

† ,â2
†)T as

Q̂~G!5expF1

2
~ â†!TG~ â†!G . ~33!

The state vectorsuc(G)& are not normalized, and the requir
ment that they be normalizable, i.e.^c(G)uc(G)& is finite,
places a restriction onG. The following proposition takes its
most concise form when we use the spectral norm tha
defined as@16#

uuXuu`5Almax, ~34!

wherelmax is the largest eigenvalue ofXX†.
Proposition 3. If and only if uuGuu`,1, then uc(G)&

ªQ̂(G)u0,0& is normalizable and represents a pure Gauss
state.

Proof: The matrixG in Eq. ~31! is a complex symmetric
232 matrix. Following Takagi’s Lemma@16#, there exists a
unitary matrixU such that

UTGU5..D, ~35!

where D is a diagonal matrix the entries of which are t
eigenvalues ofAGG†. With b̂ªUâ, we have

uc~G!&5expF1

2
~ b̂†!TD~ b̂†!G u0,0&. ~36!

Becauseb̂1 and b̂2 commute, this is a tensor product of tw
single-mode Gaussian states. It is now straightforward
show that the single-mode state vectors are normalizab
and only if both diagonal elements ofD are smaller than 1
Then each of the modes is in a single-mode squeezed
@17#. The transformationâ°Uâ represents a beam-splitte
transformation mapping the original modesâ onto the modes
06232
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b̂, i.e., it is a passive transformation. Hence, the result
state vector~32! is also normalizable.

In fact, as can be shown, the state vectorQ̂(G)u0,0& is,
apart from normalization, equal to the state vector of
two-mode squeezed vacuum stateŜ(Z)u0,0&, where

Ŝ~Z!5expF1

2
~ â†!TZ~ â†!2

1

2
~ â!TZ†~ â!G . ~37!

Ŝ(Z) is a generalized two-mode squeezing operator@17#,

Z52S z1 z12

z12 z2
D , ~38!

whereZ5arctan(rG)ei uG with the polar decomposition

G5rGei uG. ~39!

Proposition 4.Suppose we are given a supply of identic
two-mode pure states with state vectorsuc (0)&
5(m,nam,n

(0) um,n&, and let

GªS A2b2,02b1,0
2 b1,12b1,0b0,1

b1,12b1,0b0,1 A2b0,22b0,1
2 D , ~40!

wherebm,nªam,n
(0) /a0,0

(0) . If uuGuu`,1 then

lim
i→`

am,n
( i ) 5am,n ~41!

for all n,m50,1, . . . ,where

am,nª^m,nuQ̂~G!u0,0&. ~42!

Proof. To make the proof simpler, we shall usea0,0
(0)51 as

above. This is merely a change of normalization and does
alter the general validity of the argument. Before proving t
convergence of all coefficientsam,n

( i ) under F to the fixed
point am,n

(`) as i→`, let us first show that a certain subset
coefficients actually reaches its final value after a single
eration ofF.

The coefficientsa2m11,2n
(1) and a2m,2n11

(1) reach zero, their
fixed point, after a single iteration corresponding toi 51, for
all m,n. To see this, note that in the following equation:

am,n
(1) 522(m1n)/2(

r 50

m

(
s50

n

~21!(m1n)2(r 1s)

3a r ,s
(0)am2r ,n2s

(0) F S m

r D S n

sD G
1/2

, ~43!

renaming the summation indices (r ,s)°(m2r ,n2s) yields
an identical sum except for an overall factor of (21)m1n.
Consequently, for odd values ofm1n the whole sum must
0-5
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vanish, and coefficients of the forma2m11,2n
(1) and a2m,2n11

(1)

vanish after a single iteration step. As a consequence of
the coefficientsa1,1

( i ) , a2,0
( i ) , anda0,2

( i ) also do not change afte
one iteration. For example,

a1,1
( i 11)5a1,1

( i )2a0,1
( i )a1,0

( i ) ~44!
a
e
to
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es

te
ai
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-
th

t w
v

06232
is,
for all i 50,1, . . . .Similarly, a2,0

(1) anda0,2
(1) also assume thei

respective fixed points after the first iteration, and thus m
trix G is determined to be as the one in Eq.~40!.

Now let us show that all coefficientsam,n
( i ) do indeed con-

verge to their respective fixed pointsam,n
(`) as i→`. The re-

currence relations in Eq.~23! can be rewritten as
~45!

Let us assume that all coefficientsa r ,s
( i ) , wherer<m, s<n but r 1s,m1n, do converge to the fixed pointsa r ,s

(`) as i→`.
Then

~46!
de

of
tates
d in
tates

in
in
o a
-
dif-

ton

p-
and,
ave
s
e

t-
tate
Now let us use the substitutiondm,n
( i )

ªam,n
( i ) 2am,n

(`) and we
obtain, using Eq.~26!,

lim
i→`

dm,n
( i 11)52$12[(m1n)/2]% lim

i→`

dm,n
( i ) . ~47!

We see thatdm,n
( i ) converges to zero as long as

2[12(m1n)/2],1, ~48!

which is the case wheneverm1n.2. However, since we
have already shown that all coefficientsam,n

( i ) , wherem1n
<2, ~i.e.,a0,0

( i ) , a0,1
( i ) , a1,0

( i ) , a1,1
( i ) , a0,2

( i ) , anda2,0
( i ) ), converge to

a final value after a single iteration, the convergence of
other coefficients follows by induction. Note that whenev
uuGuu`>1, although the coefficients individually converge
their respective fixed points, the state as a whole does
sinceQ̂(G)u0,0& is not a normalizable state vector.

IV. GENERATION OF THE INITIAL STATES FROM
GAUSSIAN STATES

So far we did not specify where the supply of initial stat
should come from. In fact, one could use two~weakly! en-
tangled Gaussian states and feed them into one of the i
tion components as shown in Fig. 1. Then, instead of ret
ing the state in the case of measuring the vacuum, we
retain the state wheneverany nonzero photon number is ob
tained. Again, only the detectors that distinguish between
absence or presence of photons are needed. Let us star
a supply of two-mode squeezed vacuum states, the state
tors of which can be written in Schmidt basis as

ucq&5A12q2(
n50

`

qnun,n&, ~49!
ll
r

ot

ra-
n-
w

e
ith

ec-

with qP@0,1).
In general, it will be easier to generate two-mo

squeezed states with low values ofq in an experiment, and
using the following simple protocol one can use a supply
such states to generate a supply of non-Gaussian s
which, when used as the input of the procedure describe
Sec. II, leads to the generation of two-mode squeezed s
with much higherq.

Let us feed the two copies of the state of the form as
Eq. ~49! with q!1 into the device schematically depicted
Fig. 1, and retain those outcomes that correspond t
‘‘click’’ in both detectors. It does not matter how many pho
tons have been measured, and we do not assume that a
ferent classical signal is associated with different pho
numbers. The projection operator@18# describing this pro-
cess is

P̂5~ 1̂2u0&^0u! ^ ~ 1̂2u0&^0u!. ~50!

Although the vacuum projection as well as the identity o
eration are Gaussian, the difference between them is not
indeed, we find that when the states used in the protocol h
sufficiently small q, then this projection approximate
u1&^1u ^ u1&^1u with high accuracy. Thus, we are not in th
situation as in Refs.@10,11#. Acting with Eq.~50! on the two
copies of the state~49!, after rotating them at the beam spli
ters, gives the non-Gaussian state with un-normalized s
vector

uC~q;TA ,RA ;TB ,RB!&ª P̂@Û12~TA ,RA!

^ Û12~TB ,RB!#ucq&
^ 2, ~51!

where again
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Û12~T,R!5Tn̂1e2R* â2
†â1eRâ2â1

†
T2n̂2 ~52!

andTA ,TB ,RA ,RBPC with

uTAu21uRAu25uTBu21uRBu251. ~53!

For simplicity of notation, let

v~q;TA ,RA ;TB ,RB!ª
trM@ uC~q;TA ,RA ;TB ,RB!&^C~q;TA ,RA ;TB ,RB!u#
tr@ uC~q;TA ,RA ;TB ,RB!&^C~q;TA ,RA ;TB ,RB!u#

~54!
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he
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he
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ol
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e-

ps
fol-
he

ich

s
ma-
ll

p is
sian
be the normalized state after application of the beam split
and the two projections, where trM is the partial trace ove
the measured modes. The most appropriate choices fo
reflectivities and transmittivities clearly depend on the va
of q and on the figure of merit of how one quantifies t
quality of the output state. However, whenqP@0,1) is very
small, the output state can be made arbitrarily close t
maximally entangled state

r15
1

A2
@ u0,0&1e2 ifu1,1&] @^0,0u1eif^1,1u# ~55!

in 232 dimensions, where the phaseeif depends on the
phases ofT and R in the beam splitter chosen. More pr
cisely,

lim
q→0

iv~q;t~q!,r ~q!;0,1!2r1i150, ~56!

where

ut~q!uªU12~118q2!1/2

4q U, ~57!

ur ~q!uª@12ut~q!u2#1/2, ~58!

and i i1 denotes the trace norm@16#. In other words, in the
limit of very small two-mode squeezing the maximally e
tangled state can be obtained to a high degree of accurac
the appropriate choice for the beam splitters on one side d
depend on the value ofq, whereas the beam splitter on th
other side becomes redundant. In a similar manner, one
generate states of the formu0,0&1a1,1

(0)u1,1&. If one does not
care about the phase ofa1,1, then the correct choices for th
above transmittivities and reflectivities are

ut~q!uªUua1,1
(0)u2@ ua1,1

(0)u218q2#1/2

4q
U ~59!

and ur (q)uª@12ut(q)u2#1/2. This analysis shows that with
the help of passive optical elements and photon detec
quantum states of the appropriate kind can in fact be p
pared. There is, however, a trade-off concerning accurac
the protocol and success probability. For any finiteq, the
06232
rs

he
e

a

So
es

an

rs,
e-
of

resulting states are not exactly pure, whereas the probab
of success~such that the nonvacuum outcome is obtained
both detectors! is a monotone decreasing function ofq.

The resulting states of this protocol can then form t
starting point of the generation of Gaussian states via
protocol in Sec. II. In effect, this scheme allows one to ge
erate approximate Gaussian states~in fact, two-mode
squeezed vacua! with q higher than the initial supply, which
is nothing other than a distillation procedure.

An example of the results of such a distillation protoc
where the initial step is followed by three iterations of t
protocol from Sec. II, is illustrated in Fig. 4. The overa
probability is far lower than for three steps of the protoc
from Sec. II alone~cf. Fig. 2!, due to the low success prob
ability of the initial step. This is largely due to the low prob
ability of measuring the presence of photons on the s
where no beam splitter is employed, i.e. Alice’s side. Sin
the effect of this measurement is to prepare a single pho

FIG. 4. This figure illustrates a full distillation procedure. B
ginning with a supply of two-mode squeezed vacua, withq
50.01, the protocol outlined in Sec. IV is then applied, which ma
this state onto a non-Gaussian state of higher entanglement
lowed by three iterations of the protocol described in Sec. II. T
properties of state produced depend on the transmittivityT of the
beam splitter employed in the first step. Here, the factor by wh
the entanglement of the final achieved stateEfinal is greater than the
entanglement of the initial supplyEint ~where the entanglement i
calculated as the Von Neumann entropy of the reduced density
trix of a single mode! is plotted as a solid line, and the overa
success probability of the entire process, when this initial ste
followed by the three iterations of the protocol to generate Gaus
states, is plotted as a dashed line.
0-7
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on Bob’s side, this low probability step could be avoided i
single photon source was available.

In light of the fact that distillation with Gaussian oper
tions alone was shown to be impossible@10,11#, it is then
significant that this scheme does, in fact, realize pure-s
distillation into approximate Gaussian states via suitab
non-Gaussian operations, here photon detection.

This simple protocol is not suitable when the initial su
ply consists of two-mode squeezed states with a highq, and
another method of generating non-Gaussian states of hi
entanglement must be used. A more detailed analysis of
timal preparation protocols that only include passive opti
elements and photon detectors will be investigated e
where. Here, we concentrate on the proof of principle t
Gaussian states can indeed be distilled to approxima
Gaussian states.

V. DISCUSSION AND CONCLUSIONS

We have shown that, using passive optical elements
photon detectors which do not distinguish different pho
numbers, one can distill pure Gaussian states to arbitra
high precision, in spite of the impossibility of distilling
Gaussian states with Gaussian operations@10,11#. It should
be noted that in our discussion we have assumed the ph
detectors to have unit efficiency in order to show that h
one can, in principle, generate Gaussian states from a
Gaussian supply. Needless to say, in any experimental
ization, one would have to deal with detector efficienc
significantly less than 1. Such detectors can, e.g., be mod
by employing perfect detectors, together with an appropr
beam splitter with an empty input port@19#. If the detector
efficiency is still close to 1, one would expect—after a sm
number of iterations of the procedure—the resulting state
be still close to those presented in this idealized proto
The convergence properties will, in general, be differ
.F

do

.
.

06232
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from the ideal situation. Dark counts of the detector, in tu
do not affect the performance of the protocol, except that
success probability is decreased. These matters will be
cussed in more detail elsewhere.

In several practical applications of the procedure, one
actually assume the initial state to be known. This is the ca
for example, if one uses the above protocol in order to pu
a state in a quantum privacy amplification procedure@9#.

In this paper, we have restricted our analysis to p
states. In practical implementations, it would clearly also
useful to be able to distill highly entangled Gaussian sta
from a mixed initial supply. However, the full treatment o
these protocols for general mixed states is lengthy and
be presented elsewhere. To summarize, we have identifi
procedure that asymptotically produces Gaussian states
a supply of non-Gaussian, finite-dimensional states by me
of Gaussian operations. In fact, the limiting Gaussian s
for a pure given input can be found analytically. We ha
seen that even after a very small number of iteration ste
the degree of overlap between the resulting state and
theoretical limit state is close to unity. Moreover, the pro
ability of obtaining this approximate state is of the order
0.1. In that respect, the whole protocol is experimentally f
sible with the present-day technology. This result sho
contribute to the search for strategies to distribu
continuous-variable entanglement over large distances.
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