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Method for modeling decoherence on a quantum-information processor
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We develop and implement a method for modeling decoherence processes on anN-dimensional quantum
system that requires only anN2-dimensional quantum environment and random classical fields. This model
offers the advantage that it may be implemented on small quantum-information processors in order to explore
the intermediate regime between semiclassical and fully quantum models. We consider in particularszsz

system-environment couplings which induce coherence~phase! damping, although the model is directly ex-
tendable to other coupling Hamiltonians. Effective, irreversible phase damping of the system is obtained by
applying an additional stochastic Hamiltonian on the environment alone, periodically redressing it and thereby
irreversibliy randomizing the system phase information that has leaked into the environment as a result of the
coupling. This model is exactly solvable in the case of phase damping, and we use this solution to describe the
model’s behavior in some limiting cases. In the limit of small stochastic phase kicks the system’s coherence
decays exponentially at a rate that increases linearly with the kick frequency. In the case of strong kicks we
observe an effective decoupling of the system from the environment. We present a detailed implementation of
the method on a nuclear magnetic resonance quantum-information processor.
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I. INTRODUCTION

As early as the 1930s von Neumann@1# recognized that
quantum correlations are crucial to understanding the qu
tum measurement process. He considered measuremen
process that first required correlating the system with
quantum apparatus through a unitary, information conse
ing, quantum evolution. To complete the measuremen
mechanism was needed by which this pure, correlated s
decayed into a mixture approximately diagonal in the ba
of observation. In recent decades, the process of deco
ence, which explains the dynamical origin of the above
cay, has been extensively studied@2–5#. By employing an
open-systems approach, the effect of the interaction betw
the measurement apparatus and its environment was incl
explicitly, and von Neumann’s method was extended. T
physical origin of the process of decoherence is very sim
the quantum correlations between the apparatus and the
vironment that are established in the course of their inte
tion is responsible for the dynamical selection of a prefer
set of states of the apparatus~the pointer states!. The mecha-
nisms of decoherence are now a subject of great prac
interest. Some of the recent work on decoherence inclu
the determination of emergent properties of pointer sta
@6,7#, efforts to design specific pointer states by engineer
the environment@8#, and identification of the time scales o
the decoherence process@9#.

One of the simplest and most illustrative models of de
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herence was originally suggested and studied by Zurek@5#. It
consists of a two-level system~a spin 1/2 particle! coupled to
n two-level systems through aszsz type interaction. With
this model, in the largen limit, it is possible to show that the
correlations which arise between the system and the envi
ment lead to the damping of the system coherence, enco
in the off-diagonal elements of the density matrix. In th
work we present results, both theoretical and experimen
for a two-level system that is coupled to a few other tw
level systems, which shows that by manipulating the la
one can reproduce the essential features of Zurek’s mod

Interest in this and other decoherence models~for ex-
ample a two-level system coupled to a boson bath@10–12#!
has grown over the last few years due to the developmen
quantum-information processing~QIP!. A major challenge in
QIP is the preservation of quantum coherence in the fac
constant perturbations by an environment. While one co
try to isolate the QIP device, this would make controlling t
system difficult. Therefore, other strategies like quantum
ror correction@13# and noiseless subsystems@14–16# have
been developed. The aim of this work is to develop meth
to emulate decoherence in a physical setting, such as a
device, so that the nature and underlying physics of deco
ence can be better understood and applied in the deve
ment of control strategies.

The paper is organized as follows. In Sec. II we introdu
the essential features of decoherence, reviewing the m
proposed by Zurek in which the system consists of a sin
spin while the environment is composed of an ensemblen
spins. In Sec. III we describe a simple model in which t
environment is limited to only a few spins~qubits! and ana-
lyze a strategy through which these few spins can simula
much larger effective environment. The strategy consists
randomly redressing the phase of the environment qu

-

d-
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during their interaction with the system and averaging o
many realizations of this evolution. We describe an ex
solution of this model in the case of aszsz coupling be-
tween the system and a single environment qubit. In this c
we provide an analytic description of the decoherence~phase
damping and decoupling! effects that arise under specifi
limiting conditions and also derive the associated Kraus
erators for the model. A more detailed numerical analysis
this model is given for the case in which the environme
consists of two qubits. In Sec. IV, we present nuclear m
netic resonance~NMR! QIP simulations for the two-qubi
environment and comparisons of these results with the o
and two-qubit environment predictions and numerical sim
lations. In Sec. V, we summarize our results and discuss
extension of this model to more general decoherence me
nisms.

II. ZUREK’S DECOHERENCE MODEL

In this section we review the basic elements of quant
decoherence by presenting an open-system model du
Zurek @5# which is simple enough to be solved analytical
In spite of its simplicity the model captures many of t
elements of decoherence theories and sheds insight into
loss of coherence, the onset of irreversibility, and in parti
lar, the role played by the size of the environment.

Considern two-level systems and focus on one system
the subsystem of interest. This subsystem interacts with
rest of the system through a bilinear interaction. The ove
dynamics is described by

HSE5 (
k52

n

J1ksz
1sz

k , ~1!

where the system qubit is denoted by the superscript ‘‘
This Hamiltonian is energy conserving and only cau
phase damping. The prescription of the open-systems
proach is to evolve the combined system and environm
represented by the density matrixrSE(t), and then recover
the system density matrix from a partial trace over the en
ronment degrees of freedom:

rS~ t !5TrE$rSE~ t !%5S r00
S ~ t ! r01

S ~ t !

r10
S ~ t ! r11

S ~ t !
D . ~2!

In Eq. ~2! r00
S (t) andr11

S (t) represent the system populatio
terms whiler01

S (t)5r10
S* (t) represents the system coheren

term. If the coherence terms vanish, the pure state is tu
into a mixture in the computational basis (sz basis!, i.e., a
‘‘pointer basis’’ has been selected out byeinselection. An
important observation is that, in the absence of a s
Hamiltonian, the system’s statonary states are selected o
the interaction Hamiltonian. In fact, since@sz ,Htot#50, the
interaction with the environment has two memory sta
u0&S ,u1&S as eigenstates and the populations remain
changed throughout the system’s evolution. The coupling
Eq. ~1! is therefore a purely phase damping mechanism
there is no energy exchange between the system and
ronment.
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The combined system evolves by the unitary propaga

USE~ t !5exp~2 iHSEt !5expS 2 i (
k52

n

J1ksz
1sz

kt D . ~3!

Consider a factorizable initial state of the combined syste

uF~0!&SE5uc~0!&S^ uc~0!&E

5~au0&11bu1&1))
k52

n

~aku0&k1bku1&k). ~4!

The evolution is such that

uF~ t !&SE5au0&1)
k52

n

e2 iJ1ksz
ktuf&k1bu1&1)

k52

n

eiJ1ksz
ktuf&k ,

~5!

whereuf&k5aku0&k1bku1&k . The interaction entangles th
system states with the environment. In the language of Q
the transformationUSE generates a conditional phase ga
between the system and its environment, conditioned on
system’s state. After the interaction the state is

uF~ t !&SE5au0&1)
k52

n

@ake
2 iJ1ktu0&k1bke

iJ1ktu1&k]

1bu1&1)
k52

n

@ake
iJ1ktu0&k1bke

2 iJ1ktu1&k]

~6!

and reflects the fact that the system and environment st
are not factorizable. The off-diagonal element of the syste
reduced density matrix~system coherence! is

r01
S ~ t !51^0uTrE$uF~ t !&SÊ F~ t !uSE%u1&1 , ~7!

so that

r01
S ~ t !5ab* z~ t !, ~8!

where

z~ t !5)
k52

n

@ uaku2e22iJ1kt1ubku2e2iJ1kt#. ~9!

Recall thata andb are the coefficients of the initial pure sta
of the system.

The time dependence ofz(t) contains the crucial informa
tion for understanding the behavior of the system coheren
In particular, the magnitude ofz(t) determines the damping
of the phase information originally contained inr01(0), with
uz(t)u→0 reflecting nonunitary evolution and ‘‘irreversibil
ity.’’

For a finite system,uz(t)u is at worst quasiperiodic and
one can always define a recurrence timetE . The existence of
such a recurrence time reflects the fact that the informa
loss is in principle recoverable. In the continuum limit,n
→`, z(t) is no longer quasiperiodic andtE→`. The phase
6-2
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METHOD FOR MODELING DECOHERENCE ON A . . . PHYSICAL REVIEW A67, 062316 ~2003!
information is then unrecoverably lost, displaced from t
degrees of freedom of the system to the infinitely many
grees of freedom of the environment.

To characterize the degree of decoherence one can
sider the size of the fluctuations ofz(t) around its time-
averaged mean valuêz(t)&50:

^uz~ t !u2&5 lim
T→`

1

TE0

T

dt8uz~ t8!u2

'
1

2n21)k52

n

@11~ uaku22ubku2!2#. ~10!

Thus, typical fluctuations vary as 1/AdimHE, and the effec-
tiveness of the decoherence mechanism in this model is
termined by the dimension of the environment.

To summarize, the key features of this model of decoh
ence are as follows.~1! The system of interest evolve
through a direct entangling interaction with each two-le
system in a very large environment, and at any time
~reduced! density matrix of the system is obtained from
trace over the environment degrees of freedom.~2! Ex-
pressed in the pointer basis of the system, which in this s
plest case is the set of states that commute with the inte
tion Hamiltonian, the reduced density matrix becom
approximately diagonal and the off-diagonal elements
hibit coherence loss.~3! The fluctuations of the decoherenc
produced by this model, measured by the size of the syste
off-diagonal elements, are controlled by the dimension of
environment’s Hilbert space.

III. A HIERARCHICAL DECOHERENCE MODEL

We consider the problem of experimentally simulati
quantum decoherence in a physical setting in which limi
quantum resources are available for modeling the quan
environment. By ‘‘simulating quantum decoherence’’ we a
referring not only to the challenge of implementing an ar
trary open-system trajectory on a QIP device, but also to
study of the decoherence processes that result from spe
system-environment couplings~for example, derived from a
model of some physical system of interest!.

As in Zurek’s model the exclusive direct mechanism
system decoherence in our model is the coupling between
system and a local quantum environment through a fi
bilinear Hamiltonian. However, our model of decoheren
has two features distinct from the model described abo
The first difference is a constraint on the Hilbert space s
derived from practical considerations: we allow the dime
sion of the Hilbert space for the local quantum environm
to be no larger thanN2, whereN is the dimension of the
Hilbert space of the system. In this way the quantum en
ronment is the smallest size that will enable the implem
tation of an arbitary completely positive map on the syst
through a unitary operator on the combined system and
vironment. To remove the information from our finite qua
tum environment we include a stochastic classical field
our model. This strategy is designed to eliminate the qu
tum back action from low dimensional environments. Ba
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cally, the technique consists of redressing@17# the environ-
ment’s quantum state by applying a sequence of rand
classical kicks to the environment qubits, and then averag
over realizations of this stochastic noise. This has the ef
of scrambling the system information after it has been sto
in the quantum environment through the coupling inter
tion. It is worth stressing that the system itself is not su
jected to these classical kicks and the associated stoch
averaging. This model, and the associated method realize
this paper, is depicted schematically in Fig. 1. A generali
tion of this method to provide a time-dependent open-sys

FIG. 1. The schematics on the left describe the models de
oped in this paper. A single spin systemS is coupled to one- and
two-spin quantum environments, designatedEi . During the cou-
pling the system phase information leaks into the environme
Since the spin environment is finite, in order to simulate the effe
of a larger quantum environment~depicted on the right!, a mecha-
nism is needed by which the information stored in the availa
quantum environment can be effectively erased. We accomplish
by redressing the environment degrees of freedom with stocha
phase kicks.

FIG. 2. A schematic of the system coupled to a hierarchy
quantum environments, as resources permit, and the role of
classical stochastic field. Each environment is coupled only loc
~to its neighbors in the hierarchy!. It should be noted that the clas
sical environment interacts only with the quantum environmen
and does not interact directly with the quantum system. In t
paper we consider only the case of one local quantum environm
as portrayed in Fig. 1.
6-3
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TEKLEMARIAM et al. PHYSICAL REVIEW A 67, 062316 ~2003!
evolution is described in the discussion and depicted in F
2.

As we shall show below, this scheme enables simula
of the quantum decoherence that normally arises for m
larger effective environment sizes. In particular, we dem
strate the simulation of phase damping on a NMR QIP c
sisting of three qubits~see Fig. 1!. In the NMR simulation,
the system is represented by one qubit while the other
qubits represent the quantum environment. Before turnin
a discussion of the three-qubit experiment, we first desc
and analyze this simulation method theoretically in the s
plest and solvable case of the phase damping of a si
system qubit from a single environment qubit~also depicted
in Fig. 1!.

A. One-qubit environment: Simple solvable model

Below we introduce the essential features of this decoh
ence model by considering an exact solution available in
case of a one-qubit environment coupled to the system b
szsz interaction. With the system and environment qub
labeled byS and E, respectively, the full Hamiltonian is
given by

H05pS nSsz
S1nEsz

E1
V

2
sz

Ssz
ED . ~11!

Here,nS , nE , andV are frequencies in units of hertz. Th
Hamiltonian includes both the self-evolution of the two q
bits and their interaction. In the absence of any other in
action, the evolution operator for a timet is

U~ t !5expF2 ipS nSsz
S1nEsz

E1
V

2
sz

Ssz
ED t G . ~12!

We will consider the evolution of this system subject to
sequence of kicks that affect only the environment qu
Every kick is generated by a transverse magnetic field
rotates the environment qubit around they axis by an angle
em chosen randomly in the interval (2a,1a). The evolu-
tion operator for themth kick is given by Km5I S

^ Km
E ,

where

Km
E5exp~2 i emsy

E! ~13!

andI is the identity matrix. In our proposed model, the kic
are considered instantaneous; therefore, the evolution f
total timeT5n/G, whereG is the kick rate, can be written

Un~T!5KnUS T

nDKn21US T

nD •••K1US T

nD . ~14!

It is useful to keep in mind that the operatorUn(T) depends
also on the values of the random variablesem (m
51, . . . ,n) corresponding to the kick angles.

Our goal is to obtain a closed expression for the redu
density matrix of the system qubit for an ensemble of re
izations of the random variablesem . The density matrix for
this ensemble is given by
06231
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rS~T!5E
2a

a den

2a
•••E

2a

a de1

2a
TrE@UnrSE~0!Un

†#, ~15!

wherea is the spread of allowed kick angles over which t
em(m51, . . . ,n) are uniformly distributed. We will conside
a factorizable initial state for the two qubits~this is not es-
sential!:

rSE~0!5rS~0! ^ rE~0!. ~16!

It is convenient to express the initial density matrix of t
system in the basis of eigenstates ofsz ,

rS~0!5 (
j ,l 50,1

r j l
S~0!u j &^ l u. ~17!

Then we can simplify the expression forUn(T). To do this,
we evaluate the effect of the first step in the evolution E
~14! as follows:

rSE~1!5K1U~T/n!rSE~0!U~T/n!†K1
†

5 (
j ,l 50,1

@r j l
S~0!u j &^ l u# ^ @K1

EVj
ErE~0!~K1

EVl
E!†#,

~18!

where we have defined the environment operator

Vj
E5 K jUUS T

nD U j L
5expF2 i

p

G
nS~21! j2 i

p

G S V

2
~21! j1nEDsz

EG .
~19!

In the above we have explicitly evaluated the action of
interaction Hamiltonian on the system states, and thej de-
pendence of the single step operatorVj

E reflects the fact that
it operates on the environment state conditionally on the s
tem state. The important point is that the evolution operat
for the additionaln21 iterations will factor as above, pro
ducing a final expression with~conditional! operators that ac
exclusively on the environment qubit. Hence, we can imm
diately obtain the following simple form for the final densi
matrix of the system qubit:

rS~T!5 (
j ,l 50,1

r j l ~0! f j l ~n,T!u j &^ l u, ~20!

where the functionf j l (n,T), which we call thedecoherence
factor, carries all the information about the effect of the e
vironment qubit on the system qubit, including also t
trivial phases from the system’s self-evolution. It is given
the formula

f j l ~n,T!5E
2a

a den

2a
•••E

2a

a de1

2a
TrE@~Aj

E!nrE~0!~Al
E!n

†#,

~21!
6-4
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METHOD FOR MODELING DECOHERENCE ON A . . . PHYSICAL REVIEW A67, 062316 ~2003!
where the operator (Aj
E)nn is defined as

~Aj
E!n5^ j uUn~T!u j &5Kn

EVj
EKn21

E Vj
E
•••K1Vj

E . ~22!

It is clear from Eq.~21! that for j 5 l the final trace over the
environment system is equal to 1 and therefore we alw
have f j j 51. Thus, this decoherence model affects only
off-diagonal terms in thesz basis, in other words, thesz
eigenbasis is a pointer basis.

The remaining task is to evaluate the decoherence fa
f 01(n,T) since on general grounds one can show t
f j l (n,T)5 f l j (n,T)* . To evaluatef j l (n,T) it is convenient to
notice that the integrals in Eq.~21! can be brought forward
through the independent operator terms in the sequenc
Eq. ~22!, and the evolution can be expressed as the suc
sive application of a superoperator on the initial density m
trix of the environmentrE(0). Thus, we can write

f 01~n,T!5TrE@O n
„rE~0!…#, ~23!

where the superoperatorO is defined as

O~r!5E
2a

a de

2a
KEV0

Er~V1
E!†~KE!†

5e22ipnST/nE
2a

a de

2a
e2 i esye2 ip(V/21nE)Tsz /n

3re2 ip(V/22nE)Tsz /nei esy. ~24!

The dependence off 01 on the self-evolution of the system
factors out as a phase factor that modulates the overall
lution in Eq. ~24!. This trivial phase factor will be omitted
from here on because it can be easily restored if neces
After integrating over the random variable the last expr
sion becomes

O~r!5c~e2 ip(V/21nE)Tsz /nre2 ip(V/22nE)Tsz/n!

1d~sye
2 ip(V/21nE)Tsz /nre2 ip(V/22nE)Tsz /nsy!,

~25!

whereg5c2d5sin(2a)/2a andc1d51. It is worth stress-
ing that this superoperator is not trace preserving or Herm
ian. It is easy to show thatO(sx) and O(sy) are linear
combinations ofsx and sy. Similarly, O(I) and O(sz) are
written as linear combinations ofI andsz. The decoherence
factor f 01 is given following a final trace over the environ
ment qubit. So the traceless terms inrE(0), those propor-
tional to sx and sy , do not contribute to the final resul
Therefore, to computef 01(n,T) the superoperatorO is ap-
plied n times to the part of the initial state with componen
along the identity andsz . Writing the initial density matrix
of the environment qubit asrE(0)5(I 1pxsx1pysy
1pzsz)/2, we obtain

f 01~n,T!5
1

2
Tr@On~ I !#1

1

2
pz Tr@On~sz!#. ~26!

The actions ofO on the identity andsz are
06231
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O~ I !5cos~pVT/n!I 2 ig sin~pVT/n!sz ,

O~sz!52 i sin~pVT/n!I 1g cos~pVT/n!sz .

Note that the above expressions have no dependence o
frequenciesnS and nE since they came in as trivial phas
factors.

The eigenvaluesl1 andl2 ~and the corresponding eigen
vectors! of the superoperatorO can be obtained directly, giv
ing

l1
2
5

1

2
~11g!cos~pVT/n!6A~11g!2

4
cos2~pVT/n!2g,

~27!

and, from them one can find the following exact solution

f 01~n,T!5
cos~pVT/n!~l1

n2l2
n!1l1l2

n2l2l1
n

~l12l2!

2 ipz sin~pVT/n!
~l1

n2l2
n!

~l12l2!
. ~28!

Notice that this formula is an explicit expression~obtained
with no approximations! valid for all values of the param
eters defining our model (n, g, etc!. Also, it is worth stress-
ing that the dependence on the initial state of the envir
ment ~entering the above equation through the init
polarizationpz) is rather trivial. Moreover, the first and sec
ond lines of the last equation clearly separate the real
imaginary parts of the decoherence factorf 01. Below, we
will analyze the predictions of this model for some simp
cases.

1. Dependence on kick angle: Limiting cases

We first consider the dependence of the decoherence
tor f 01 on g. Let us consider three cases. First we discuss
limit g51, which corresponds to unitary evolution~that is,
no kicks since the kick anglea50). Then, we consider the
caseg50, which corresponds to averaging over angles
tween 0 and 2p. Finally, we analyze in some detail the ca
whereg is close to 1~small angle kicks!, which is the con-
dition met in our simulations and experiments. In a
these cases the decoherence factorf 01 is directly related to
observable quantities ^sx

S&52 Re@r01f 01# and ^sy
S&

52 Im@r01f 01#.
Unitary evolution:g51. This is the simplest case. Here

the superoperatorO is such thatO(r)5r exp(2ipVTsz/n)
for any operatorr that is a linear combination of the identit
and sz . Recall that we showed earlier thatsx and sy are
eigenvectors ofO and thus vanish after the trace. Using th
or simply replacingg51 in the decoherence factor@Eq.
~28!#,

f 01~n50,T!5cos~pVT!2 ipz sin~pVT!. ~29!

This has a clear physical interpretation. The decoherence
tor is independent of the kicking rate~as it should be since
there are no kicks in this limit!. Recall thatpz is the initial
6-5
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polarization of the environment qubit; therefore the syst
qubit rotates independently of the environment qubit.

Complete randomization:g50. Here the kick anglese j
vary over the entire interval between 0 and 2p. In this case
the above formulas simplify substantially to

f 01~G,T!5cosGTS pV

G D2 ipz sinS pV

G D cosGT21S pV

G D ,

~30!

where use ofn5GT was made.~Recall thatG5n/T is the
kick rate.! In the largeG limit we clearly see a Zeno-like
effect ~for an operator, not a state! which can be obtained
from Eq. ~30! by noting that

cosGTS pV

G D'F12
1

2 S pV

G D 2GGT

'expS 2
~pV!2T

2G D .

~31!

Thus, in this limit for faster kick ratesG the system takes
longer to decohere.

Average over small angles:g512O(a2). Here we con-
sider the case where the averaging is over small angles~the
regime we consider in the simulations and experiment
a5p/20), where

g'12
2

3
a2. ~32!

Defininge5 2
3 a2, we can expand both eigenvalues in powe

of e to obtain an expression which is valid for smalln
5GT:

f 01~G,T!5S 12
e

2D GTS 11
e

2D @cos~pVT!2 ipz sin~pVT!

1O~e!#. ~33!

In this regime the envelope of the decay off 01 is exponential
with a decay rate proportional to the kick rate because
!1 implies (12e/2)n'exp(2ne). The analysis of the exac
formula shows that in this case~largen) a Zeno-type effect
arises~as before!.

The dependence of the decay rateT2 the kicking rate is
shown in Fig. 3. The numerical data in the figures are
tained from the exact expression forf 01. The initial state for
the system qubit is taken to berS5 1

2 (I 1sx), in which case
f 01 is directly proportional to the transverse polarization
the qubit. For small values of the kick rate 1/T2 is linear in
G. However for larger values 1/T2 saturates and decay
again due to the Zeno-like effect. These results substan
our expectation that the kick rate can be applied to con
the attenuation of the recurrences. In the low kick rate lim
the role of the kick rate is analogous to the variable envir
ment size in Zurek’s model.

2. Kraus forms

For a one-spin environment a phase damping channel
be represented by a purification basis@18,19# that evolves the
system and environment with the unitary operator:
06231
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USE5e2 iusz
Ssy

E
5E1

S e2 iusy
E/21E2

S eiusy
E/2, ~34!

whereE6
S 5 1

2 (I 6sz
S), or equivalentlyE15u0&^0u and E2

5u1&^1u. This operator transforms the states ofrSE(0)
5rS(0)^ E1

E as follows:

u0&Su0&E→
U

cos~u/2!u0&Su0&E1sin~u/2!u0&Su1&E ,

u1&Su0&E→
U

cos~u/2!u1&Su0&E2sin~u/2!u1&Su1&E . ~35!

By tracing away the environment states (HE :$u0&E ,u1&E%)
this channel has the Kraus operator sum representation@20–
22# given by

Ŝ~rS!5M̂0rSM̂01M̂1rSM̂1 , ~36!

where

M̂05cos~u/2!I S, M̂15sin~u/2!sz
S , ~37!

and Ŝ is the superoperator map,

Ŝ~rS!5F r00
S br01

S

br10
S r11

S G , ~38!

with b5cos2(u/2)2sin2(u/2). If we parametrize

cos~u/2![A1

2
~11 f 01!, sin~u/2![A1

2
~12 f 01!,

~39!

then we obtain the Kraus operator sum representation for
phase damping channel in our model:

FIG. 3. The decay rate as a function of the kick rateG. For V
5300 Hz andg50.98, the kicking is no longer effective at induc
ing decoherence beyond a kick rate of about 50 kicks/ms. Only k
rates up to 1000 kicks/ms are shown, and after 5000 kicks/ms
decay is no longer exponential. Inset: the decay rate as a functio
the kick rate is linear for small values ofG. The plot is for V
5300 Hz andg50.98.
6-6
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Ŝ~rS!5
1

2
~11 f 01!r

S1
1

2
~12 f 01!sz

SrSsz
S . ~40!

From the analytical solution to the two-qubit model we s
that a single qubit environment interacting with a single q
bit system is sufficient to represent the phase-damping c
nel. Similarly, anN-dimensional system interacting with a
environment of dimensionN through theszsz interaction is
sufficient to describe the open-system dynamics of ph
damping. This is because dephasing is a special case w
the Lie algebra of the noise consists of only the two ope
tors sz and I ~out of a possible four!. In contrast, for an
arbitrary completely positive map the dimension of the en
ronment must be at leastN2 for a system with dimensionN
to induce an arbitrary mapping on the system.

B. Two-qubit environment: Numerical simulation

In the more general case where we wish to implement
completely positive map@20,21# on a one-qubit system th
minimum required environment is two qubits. We therefo
want to consider a two-qubit environment model. Moreov
we want to examine the effect of only a finite number
realization of the random kick variables. Therefore, a thr
qubit model is explored numerically below. The results o
NMR QIP simulation@23,24# of this model are presented i
the next section.

We now consider the following system-environme
Hamiltonian:

Htot5HS1HE1HSE1HE1E2
, ~41!

where

HS5pnSsz
S ,

HE5p(
i 51

2

nEi
sz

Ei ,

HSE5
p

2 (
i 51

2

JSEisz
Ssz

Ei ,

HE1E2
5

p

2
JE1E2 (

i 5x,y,z
s i

E1s i
E2 .

The environment spinsE1 andE2 are also subjected to pe
riodic, instantaneous kicks with an evolution operator of
form

Km5expF(
i 51

2

u i
msy

EiG , ~42!

where theu i
m are the random values of themth kick. The

instantaneous nature of the kicks allows the evolution of
full system over the time intervalT, with n instantaneous
kicks, to be described by the operator
06231
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e

Un5Kn exp@2 iHtot~T/n!#Kn21 exp@2 iHtot~T/n!#3•••

3K1 exp@2 iHtot~T/n!#, ~43!

where eachKm has a different random kick variable.
The resultant system density matrix for a single reali

tion is now obtained by tracing out the environment. As b
fore, we are interested in the system coherence as expre
through the off-diagonal elements of the system state in
basis of the pointer states,

^0urS~T!u1&5^0u TrE1E2
@U nrSE1E2~0!U n

†#u1& . ~44!

Finally, we must average over different realizations of t
random variables, which gives the quantity$^0urSu1&%,
where the curly brackets on̂0urSu1& denote the average
over the finite number of realizations.

In order to simulate the physical system used in the NM
study, we have selected the parameter values presente
Table I. The system and environment were initialized in t
statesx

SE
1

E1E
1

E2 and we simulated the evolution of the syste
on MATLAB . We ran ten different kick rates that ranged fro
3 kicks/ms to 30 kicks/ms in steps of 3. The kicks we
sampled from a uniform distribution of angles that rang
between2p/20 andp/20. The series was run for 150 m
We averaged over 50 realizations and obtain the plots sh
in Fig. 4. As shown in Fig. 5, the late-time oscillations refle
the finite number of realizations of the random variables. T
envelope of the decays in Fig. 4 was fitted to an exponen
and the decay constants exhibited a linear dependence o
kick rate for small kick rates, as expected from the analy
solution ~see Fig. 6!. At about 900 kicks/ms the decay rate
start decreasing with increasing kick rate and the sys
starts to become decoupled from the environment, an ef
noted earlier in Eq.~30!. This is the well-known decoupling
phenomenon in NMR@25#. The onset of decoupling occur
when the rms angle of the stochastic kicks approaches a
tation ofp ~critical damping!. The rms angle is given by the
typical kick size.p/10 times the square root of the numb
of kicks over a cycle time.1/2J of the system-environmen
interaction. For the strongest system-environment coupl
J.250 Hz, the onset of decoupling is expected at a kick r
of 800 kHz, in good agreement with the numerical resu
~see Fig. 6!.

IV. THE NMR IMPLEMENTATION

In this section, we describe the experimental implemen
tion of our model. We chose propyne as the physical sys

TABLE I. Parameters for the model Hamiltonian of Eq.~41!.

nS50
nE1

5630 Hz
nE2

52630 Hz
JSE1

5250 Hz
JSE2

550 Hz
JE1E2

5174 Hz
u5$2p/20,1p/20% (randomly chosen)
6-7
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~see Fig. 7 for the internal Hamiltonian parameters!. The
hydrogen indicated with a circled 1 represents the sys
qubit and the two carbons labeled with a circled 2 and
circled 3 represent the environment qubitsE1 and E2, re-
spectively. These spin-1/2 nuclei have a large resonance
quency offset, so the hydrogen and carbon can be addre
and detected separately. The relatively large coupli
present among these nuclei imply that the interactions t
place over short times, and the long relaxation times al
one to observe the hydrogen signals over a relatively l
time span without significant natural decay. The experime
were carried out on a liquid solution of propyne using

FIG. 4. Some example decays of the system coherence give
$^0urSu1&% obtained from numerical simulation usingMATLAB for
50 realizations of the random kick variables. The kick rates for e
subplot are labeled above the figures. In this range the envelop
the decay is exponential~see inset to Fig. 6 below!. We note that a
higher kick rate leads to a faster system decay.

FIG. 5. A numerical simulation to demonstrate the suppress
of revivals at longer times and higher averages. The times go o
500 ms and the averages are taken for 200 realizations. Note
the revivals that seem prevalent in Figs. 4 and 8 are diminishe
06231
m
a

re-
sed
s
e

w
g
ts

Bruker Avance spectrometer. Neglecting the methyl gro
~because it couples in very weakly!, the internal Hamiltonian
for propyne is given to a good approximation by

Hint5p@n1sz
11n2sz

21n3sz
3

1 1
2 ~J12sz

1sz
21J23s

2
•s31J13sz

1sz
3!#, ~45!

by

h
of

n
to
at

FIG. 6. Numerical simulation of the decoherence rate and
decoupling limit. Beyond a kick frequency of about 900 kicks/m
the decoherence rate from the kicking starts to decrease. This
sition to a decoupling effect is described in the text. After abo
5000 kicks/ms the decays are no longer exponential. Inset: dem
stration of the proportionality between decoherence rate and
rate for low kick rates. This linear relationship can be understo
from the analytic results obtained for the one-qubit environmen

FIG. 7. The propyne molecule. The circled labels on the13C
atoms and the rightmost hydrogen index the spins used in the
periment. The methyl group consists of three hydrogen atoms
an unlabeled carbon. In the experiments the field of the spectr
eter was;9.2 T and the hydrogen resonances were;400 MHz
while the carbon resonances were around;100 MHz. The chemi-
cal shift difference between the two labeled carbons is 1.260 k
Using the indexing scheme in the figure theJ coupling constants are
as follows:J125246.5 Hz,J235173.8 Hz, andJ13551.8 Hz. The
longitudinal relaxation times areT1

158.7 s, T1
2523 s, and T1

3

543 s, while the transverse relaxation times areT2
151.1 s, T2

2

51.9 s, andT2
351.7 s.
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where then ’s are the Larmor frequencies and theJ’s the
spin-spin coupling constants in hertz~the various values are
given in Fig. 7!. Equation~45! should be compared with Eq
~41!. The nonsecular coupling between the carbon nuclei
be observed in the carbon spectra but has a negligible e
on the relevant experimental results.

A convenient choice for the initial state of system a
environment is one where hydrogen is in a superposi
state and both carbons are in an eigenstate. By placing
methyl hydrogens in an eigenstate as well, they can be el
nated from playing a role in the hydrogen spin dynami
This was accomplished by using a highly selective rf pu
that irradiated a spectral line corresponding to the state

sx
HE1

C1E1
C2E1

M , ~46!

whereE15 1
2 (I 1sz), H represents hydrogen, C1 carbon

C2 carbon 2, andM the methyl hydrogen atoms. For th
implementation we used a 5.5 s EBURP1@26,27# pulse. The
spectral resolution of this pulse was 0.5 Hz, and its desig
such that it only generates a uniform excitation profile in
specified bandwidth. Ultimately, only;1/10 of the maxi-
mum intensity was excited. Nonetheless, this yielded su
cient signal-to-noise ratio to carry out the experiments.

The observed hydrogen signal corresponds to^sx
H(t)

1 isy
H(t)& and is equivalent to tracing away the carbons. T

peaks of the hydrogen spectrum had linewidths of;0.4 Hz.
Consequently, the hydrogen signals decayed very slowly
we were able to pick a 150 ms portion of the absolute m
nitude that remained flat within 1%.

The carbon spin dynamics consisted of a series of de
interleaved with pulses. During the delays the spins evol
under the internal Hamiltonian. The pulse flip angles w

FIG. 8. Example decays from the experiment. The hydrog
signal was directly detected and the real part of the complex si
was plotted. The fluctuations at the tail end of the higher kick ra
are due to low statistics. This was confirmed by comparing w
simulations at higher averages.~See Fig. 5.!
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randomly sampled from a uniform distribution that rang
between2p/20 andp/20 about they axis. A cycle time of 1
ms was defined, within which the kick frequency rang
from 3 kicks/cycle to 30 kicks/cycle in steps of 3 for a tot
of ten different kick frequencies. The range of the kick fr
quency was limited by the shortest pulse the spectrom
was capable of generating, which is 100 ns. The time allo
for a sequence of one delay period followed by a pulse w
given by the cycle time/~number of kicks/cycle!. Within this
sequence the delay time is given by the total sequence
minus the pulse-on time. The maximum pulse-on time w
10 ms which corresponded to the maximum flip angle
p/20. The nutation frequency for this rf field was 2500 H
~Compare this to the chemical shifts of the carbons wh
were separated by 1260 Hz.! For a given kick frequency, the
length of the series of successive sequences of delay
pulse, generated as described above, fit the total acquis
time of 150 ms.

The experiments were run for ten different kick freque
cies with an average over 50 realizations. A waiting time
300 s was used between successive realizations. Figu
shows the result of the experiments. The absolute ma
tudes of these plots were fitted to an exponential. Thex2 per
degree of freedom for the 10 fits ranged from 1.1 to 8.5. T
x2 fit the average decays well but do not account for
details in the fine structure evident from the oscillations
the magnitudes. As the kick frequency increases the d
demonstrates that the system is decohered faster. A plo
the decay constants as a function of kick frequency, Fig
shows this trend clearly. The experimental results seem
exhibit revivals in the higher kick rates of Fig. 9. But this
due to low statistics~see Fig. 5!.

n
al
s

h

FIG. 9. The linear dependence of the experimental decay c
stants on kick rate. The data point symbols (3) are larger than the
error bars, which range from60.0075 to60.0573. Compared to
the slope in the simulations of Fig. 6, the experimental slope refl
faster decay. This disparity is due to the slight differences betw
the experiment and simulations.
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V. DISCUSSION

We have described a method for modeling decohere
that requires only limited quantum resources and imp
mented the model on a NMR QIP. The key feature of
model which enables simulation of the dephasing effects
the attenutation of recurrences normally produced by a m
larger quantum environment is the application of class
kicks to randomize the information in the environment stat
Although the quantum system and environment dimensi
are small and remain fixed, the system state exhibits an
versible loss of coherence due to an averaging over the
dom realizations of kicks to the environment states. In p
ticular, in the case of aszsz system-environment interaction
we have shown that the kick frequency can be varied
control the decay rate of the phase damping. Although in
paper we have focused on the simulation of continuous ph
damping, the model can be immediately generalized to o
system-environment couplings and the resultant decoher
channels. A major advantage of this model is that it provid
a procedure through which the mechanisms of decohere
can be explored using techniques currently available in N
QIP.

As resources permit, the model we have described ma
generalized to simulate and study a wider variety of decoh
ence channels and system-environment couplings. In par
lar, the ‘‘nearest’’ quantum environment need not be the o
quantum environment. For example, in order to implemen
time-varying decoherence process with a fixed set of syst
environment couplings it may be advantageous to introd
an environment ‘‘hierarchy’’~see Fig. 1 for a schematic!. The
idea here is to couple the first quantum environment t
n-

f
n,

n
ca

II

,

. A
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second, larger environment~through another set of fixed bi
linear couplings!, and so on. The dimension of the next H
bert space in the environment hierarchy may be limited
N2, whereN is the dimension of the Hilbert space of th
immediately smaller system. In this framework only th
nearest environment remains directly coupled to the sys
of interest. The approximation of using stochastic class
fields to reduce unwanted back action may then be applie
the final quantum environment, which is much more rem
from the system of interest.

In conclusion, we have developed a model that is pract
for simulating quantum decoherence effects associated
a time-independent superoperator on a QIP device. By v
ing the phase kicking rate in the stochastic Hamiltonian
can control the system’s phase-damping rate. In this pre
tation we have shown the effectiveness of the methodolgy
the case of one- and two-spin environments, using analyt
solutions, numerical simulations, and a physical implem
tation on a NMR QIP device. These methods have illustra
the use of stochastic kick rates on the quantum environm
for controlling system decoherence rates and recurre
times.
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