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Qutrit quantum computer with trapped ions
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We study the physical implementation of a qutrit quantum computer in the context of trapped ions. Qutrits
are defined in terms of electronic levels of trapped ions. We concentrate our attention on a universal two-qutrit
gate, which corresponds to a controlled-NOT gate between qutrits. Using this gate and a general gate of an
individual qutrit, any gate can be decomposed into a sequence of these gates. In particular, we show how this
works for performing the quantum Fourier transform forn qutrits.
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I. INTRODUCTION

The building blocks of a quantum computer are qubits@1#,
which are distinguishable two-level physical systems, wh
are manipulated individually as well as collectively. The
operations are performed using the so-called quantum g
in analogy to their classical counterparts. In the simpl
case, collective manipulation reduces to bipartite quan
gates, for instance, the controlled-NOT gate @2#, also called
XOR gate. In this gate one qubit acts as a control and
other as the target, so that if the state of the control qub
in state u1&, the state of the target qubit is flipped, and
other cases the target qubit remains unchanged. The ex
mental implementation of a two-qubitXOR has been studied
in different physical contexts, as for instance, in trapped i
@3,4#, nuclear magnetic resonance@5–7#, cavity QED sys-
tems and quantum heterostructures@8–10#.

In recent works, the use of quantum entanglement
higher-dimensional quantum systems has been studied.
notion of entanglement generation and characterization in
case of three-level quantum systems, qutrits, has been
sidered by authors in Ref.@11#. The use of qutrits instead o
qubits has been proven to be more secure against a sym
ric attack on a quantum key distribution protocol@12#. These
studies require a generalized version of anXOR, which has
been given in Ref.@13#, which is called theGXOR gate. This
gate operates on a tensor product of two qudits, states l
in a d-dimensional Hilbert space. Further studies on qu
systems have been considered, for example, bounds on
tanglement between qudits@14#, discrimination among the
Bell states of qudits@15#, entanglement among qudits@16#,
Greenberger-Horne-Zeilinger paradox for many qudits@17#,
quantum computing with qudits@18#, quantum tomography
for qudits states@19#, entanglement swapping between mu
tiqudit systems@20#. Recently, a quantum communicatio
complexity protocol with two entangled qutrits has been p
posed@21#. Finally, an important step towards the use
higher-dimensional quantum systems has been given
the experimental generation of entangled qutrits using t
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photon states from a parametric down-conversion proc
@22#.

In the present work, we study the accomplishment
quantum gates for a qutrit based quantum computer, by
ploiting the possibility of coherent manipulation of ions in
linear trap@3#. The main goal in studying quantum comp
tation with qutrits instead of qubits is the exponential i
crease of the available Hilbert space with the same amoun
physical resources. In particular, we focus our attention b
to implementing a quantum Fourier transform for one qu
and to the conditional quantum gate between two qutr
XOR(3). We also give a protocol for a quantum Fourier tran
form among many qutrits. The extension of the physi
implementation from qubits to qutrits is, of course, nontriv
because of the coherent operations required in a th
dimensional Hilbert space. As far as we know, there is
proposal for an implementation of a conditional gate for q
dits, calledGXOR based on two-mode field interactions@13#,
which assumes the existence of a discrete Fourier transf
for an arbitrary field state lying in aD-dimensional subspac
of one of the field modes.

Here, conditional gates between two qutrits are con
niently expressed as

XOR12
(3)u i &1u j &25u i &1u j 6 i &2 , ~1!

wherej 6 i denotes the addition~difference! i 6 j , modulo 3.
As will be shown, this gate is decomposed asXORmn

(3)

5Fn
21PmnFn , whereFn is the quantum Fourier transform

for one qutrit, andPmn is a conditional phase-shift gate fo
qutrits, wherem and n are the control and target qutrits
respectively. As indicated above, theXOR(3) gate is given in
two main steps. One is the generation of the discrete qu
tum Fourier transform, which requires the coherent mani
lation of populations in a three-dimensional Hilbert spa
The second is the conditional phase-shift gate, which
quires the intervention of an ancillary quantum channel
tween the qutrits.

II. ARBITRARY ONE-QUTRIT GATE

Here we consider the achievement of a general gate f
single qutrit. An arbitrary unitary operation on a qutrit sta
©2003 The American Physical Society13-1
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U~3! operation, is split up into a sequence of SU~2! opera-
tions. A physical setup for this is obtained in a linear array
trapped ions, where qutrit states are defined using Zeem
level structure, in a138Ba1 ion in a Paul trap. A representa
tion of this level structure is depicted in Fig. 1. Two Ram
configurations are independently implemented between
levels 6S1/2(m521/2), 6P1/2(m521/2), 5D3/2(m
521/2) and levels 6S1/2(m521/2), 6P3/2(m523/2),
5D3/2(m523/2). The first and second Raman configu
tions require as1 polarized light and as2 polarized light,
respectively. Diode lasers@23# are used in order to achiev
the interactions. In this case, typical values of magnetic fie
for the Zeeman splitting are of the order of 10 G, and
corresponding energy differences between two consecu
Zeeman sublevels areu50.14uBuW ~MHz/G! for level S1/2,
u5 2

3 0.14uBuW ~MHz/G! for level P1/2, and u5 4
5 0.14uBuW

~MHz/G! for D3/2. From these values, one finds that a ty
cal energy difference is of few MHz. The transition fr
quency between levelsS⇔P and D⇔P is typically hun-
dreds of MHz, and the trap oscillation frequency reported
of the order of tens of MHz@1,24#.

An extra single-ion operation is needed for implement
the controlled quantum gate operation, due to the presenc
a phase if only two Raman configurations are used. T
phase is removed with an additional Raman configuration
this case 6S1/2(m521/2), 6P1/2(m521/2), 5D3/2(m
521/2). This transitionS⇔P is achieved with ap polar-
ization, and theS⇔D transition using as2 polarization for
the electromagnetic field. A similar physical implementati
is performed using Ca1. However, using Ca1 extra opera-
tions are done via a quadrupole direct transition between
levels 6S1/2 and 5D5/2, which are forbidden in dipole cou
plings. All of these physical parameters make possible
implementation of a qutrit quantum computer with bariu
trapped ions using the fine structure@25#.

For the sake of simplicity, here we consider a simplifi
level structure of ions, only depicting the relevant electro
transitions of ions, as is shown in Fig. 2. Leve
$u0&,u1&,u2&% are the logical states of a single qutrit. Th
level u08& is an auxiliary level necessary when defining t

FIG. 1. Raman configurations for defining the logical states o
qutrit.
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conditional two-qutrit gate. A key ingredient is the existen
of electric dipole forbidden transitionsu0&→u1& and u0&
→u2&. These transitions are addressed via Raman transit
through the independent channels associated with orthog
polarizations, driven by classical fieldsV03, V13, V04, and
V24.

In this system, the ion level populations are manipula
by selecting the desired coherent operation. For instance
can independently operate with transitionsu0&→u1&, u0&
→u2&, u1&→u2& by adjusting the parameters. The Ham
tonian describing this effective system, under the stand
dipole and rotating wave approximations, is given by

H5(
j

\v j u j &^ j u1\$e2 in2t~V04u4&^0u1V03u3&^0u!

1e2 in1t~V13u3&^1u1V24u4&^2u!1H.c.%, ~2!

where j 50,1,2,3,4. In the case of single-qutrit gates, on
the carrier transition in the ion is considered, so that no
plicit effects on the center-of-mass motion of the ion a
included. Thus, the spatial dependences of Raman fields
been included as phase factors. Assuming the following c
ditions: D5(v42v0)2n25(v32v0)2n25(v42v2)
2n15(v32v1)2n1 andD@V04, V03, V31, V42, rapidly
decaying upper levelsu3& and u4& are adiabatically elimi-
nated, leading to an effective Hamiltonian:

H

\
52

uV31u2

D
u1&^1u2

uV42u2

D
u2&^2u2

uV30u21uV40u2

D
u0&^0u

2H V31V30*

D
u0&^1u1

V42V40*

D
u0&^2u1H.c.J . ~3!

Assuming the additional condition

uV31u2

D
5

uV42u2

D
5

uV30u21uV40u2

D
, ~4!

we can find the evolution for the system. After some calc
lations, the evolution operator in the restricted thre
dimensional space$u2&, u1&, u0&% is given by

a

FIG. 2. Electronic level structure of trapped ion. Quantum
formation of qutrits is stored in levelsu0&, u1&, and u2&. The tran-
sitions involving effective interactions between levelsu0&→u1& and
u0&→u2& are driven by classical fields with different polarization
3-2
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U~w!5S 11ugu2C~w! gg8* C~w! 2 ig sinw

g8g* C~w! 11ug8u2C~w! 2 ig8sinw

2 ig* sinw 2 ig8* sinw cosw
D ,

~5!

where w5Vt is an adimensional interaction time,C(w)
5cosw21, and V25uk8u21uku2. We have introduced the
notationsg5k/V and g85k8/V, wherek5V40V42* /D and
k85V30V31* /D. This evolution operator allows implemen
ing all the required coherent operations between any
logical states. For instance, to activate the transitionu1&
→u2&, we assumew5p in Eq. ~5!, so that

U15S cosa 2eib1sina 0

2e2 ib1sina 2cosa 0

0 0 21
D , ~6!

where we have defined

cosa5
uk8u22uku2

uk8u21uku2
and eib15kk8* /ukk8* u. ~7!

Other transitions are addressed by manipulating thek cou-
plings in the transitionu0&→u2&, or k8 in the transitionu0&
→u1&. For example, the transitionu0&→u2& is addressed by
assumingk850 so that

U25S cosw2 0 2 ie2 ib2sinw2

0 1 0

2 ieib2sinw2 0 cosw2

D , ~8!

where k5eib2uku and w35ukut. Finally, for the transition
u0&→u1&, we assumek50:

U35S 1 0 0

0 cosw3 2 ieib3sinw3

0 2 ie2 ib3sinw3 cosw3

D , ~9!

wherek85eib3uk8u andw35uk8ut. In order to generate an
SU~3! operator@26#, we need to have a decomposition
height-independent parameters. In the previous cases
have three operations involving six independent parame
By connecting interactions of classical fields withu0&→u1&
and theu0&→u2& transitions in the far off-resonance limi
we obtain the following dispersive evolution:

UD5S ei% 0 0

0 ei« 0

0 0 e2 i (%1«)
D , ~10!

which provides two additional parameters.
In particular, we can now focus on the calculation of t

quantum Fourier transform for one qutrit, which is a unita
operation defined by
06231
o
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Fu j &5
1

A3
(
l 50

2

e2ip l j /3u l &. ~11!

Explicitly, the transformed statesu j̄ &5Fu j & read as

u0̄&5
1

A3
~ u0&1u1&1u2&), ~12!

u1̄&5
1

A3
~ u0&1e2ip/3u1&1e22ip/3u2&),

u2̄&5
1

A3
~ u0&1e22ip/3u1&1e2ip/3u2&).

This transformation is obtained by using the general oper
we have calculated before, for the carrier transition, a
combining with adiabatic transitions in both polarizatio
channels. After some calculations, it is found that the Fou
transform is decomposed into the form

F5 iU DU2U3U1, ~13!

where each one of these operations is obtained from
above process: InUD , if %5p/3, «5p/6, we get

UD5S eip/3 0 0

0 eip/6 0

0 0 e2 ip/2
D . ~14!

In U1 with a5p/4,b1522p/3,

U15
1

A2 S 1 2e22ip/3 0

2e2ip/3 21 0

0 0 2A2
D . ~15!

If w25p/4,b252p/3 in U2,

U25
1

A2 S 1 0 ie2ip/3

0 A2 0

ie22ip/3 0 1
D . ~16!

Finally, assumingw352p/3,b357p/6 in U3,

U35
1

A3 S A3 0 0

0 2A2 ie2 ip/6

0 ieip/6 2A2
D . ~17!

In the same way, any arbitrary one-qutrit gate is decompo
as in the case of the Fourier transform using the evolut
operator given by Eq.~5!.

III. CONDITIONAL TWO-QUTRIT GATE

The Fourier transform that we have found plays the sa
role that the Hadamard gate plays for qubits. For exam
the entangled states of two qubits are generated by the a
3-3
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cation of a Hadamard gate followed by a conditional pha
shift gate. In what follows we will describe the accomplis
ment of a conditional phase shift between two qutrits, wh
allows the achievement of theXOR(3) gate we have intro-
duced in Sec. I. A basic requirement for performing a con
tional gate between two qutrits is providing a mechanism
distinguish independent quantum paths, in order to sat
the conditional change in the target qutrit depending on
state of the control. In our case, we have defined theXOR(3)

in such a way that the target changes only when the con
qutrit is in stateu1& or u2&, provided that the state of th
target will beu j % 0&5u j & when the control qubit is in stat
u0&. Thus, we only need to implement a protocol consider
independent quantum channels through statesu1& and u2& of
the control qutrit. In a set of ions in a linear trap, in th
electronic configuration given in Fig. 2, such quantum ch
nels are established with the compromise of the collec
center-of-mass~CM! motion of ions inside the trap.

In the ion-trap quantum computer with qubits@3#, the
quantum channel between ions is established through
center-of-mass motion, which is addressed by adjustin
Raman transition to a given red sideband. As we shall se
what follows, we can proceed along the same line of reas
ing, considering the ion model described in Fig. 2. Let
assume that we adjust the field amplitudes such thatV04
5V2450, and V31, V03Þ0; or V045V24Þ0, and V31,
V0350. In both cases, after eliminating the upper exci
level and adjusting to the first red sideband transition,
obtain the Hamiltonian describing the ion center of ma
coupled to the electronic transitionu0&→uq&:

Hn,q5
Vqh

2
@ uq&n^0uae2 idt2 if1a†u0&n^queidt1 if#.

~18!

Herea anda† are the annihilation and creation operators
the CM phonons, respectively,Vq is the effective Rabi fre-
quency after adiabatic elimination of upper excited levelsf
is the laser phase,d5v22v02n21n11nx5v12v02n2

1n11nx , andh5A\ku
2/(2Mnx) is the Lamb-Dicke param

eter (ku5 lcosu, with kW the laser wave vector andu the angle
between theX axis and the direction of laser propagation!.
The subscriptq51,2 refers to the transition excited by th
laser in thenth ion. The center-of-mass motion coupled
electronic transitions is coherently manipulated by the se
tion of the effective interaction time and laser polarizatio
This Hamiltonian allows implementing the coherent intera
tion between qutrits and the collective center-of-mass m
tion. In particular, in order to implement a conditional pha
shift, the following operations are needed:

Um
l ,q~f!u0&mu0&5u0&mu0&,

Um
l ,q~f!u0&mu1&5cosS lp

2 D u0&mu1&2 ie2 ifsinS lp

2 D uq&mu0&,

Um
l ,q~f!uq&mu0&5cosS lp

2 D uq&mu0&2 ieifsinS lp

2 D u0&mu1&,
06231
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where we have definedVqht/25 lp/2. As we shall see, thes
coherent operations allow selecting the quantum channe
transferring the information to the center-of-mass. After t
it is necessary to introduce a phase change in the qutrit s
which depends on the energy of the center-of-mass s
This phase change is accomplished through the disper
regime of the first red sideband in Eq.~18!, that is,

Dm
q ~w!5eiwaa†

uq&m^qu1e2 iwa†au0&m^0u, ~19!

where w5 (Vqh)2/4d, which allows for an intensity-
dependent phase shift of the electronic levels.

From Eq. ~12! it is not difficult to figure out that the
conditional phase shift needed to implement t
XOR(3)u i &mu j &n5u i &mu j * i &n is given by

u0&mu0&n u0&mu0&n

u0&mu1&n u0&mu1&n

u0&mu2&n u0&mu2&n

u1&mu0&n u1&mu0&n

u1&mu1&n
Pmn

~2!Pmn
~1!

——→ e4ip/3u1&mu1&n

u1&mu2&n e2ip/3u1&mu2&n

u2&mu0&n u2&mu0&n

u2&mu1&n e2ip/3u2&mu1&n

u2&mu2&n e4ip/3u2&mu2&n, ~20!

wherePmn
(1) andPmn

(2) are defined as follows:

Pmn
(1)~f1 ,f2!5R008~p!Um

1,1~3p/2!D n
2~j2!Dn

2~f2!D n
1~j1!

3Dn
1~f1!Um

1,1~p/2!R008~p!,

Pmn
(2)~f2 ,f1!5R008~p!Um

1,2~3p/2!D n
2~j1!Dn

2~f1!D n
1~j2!

3Dn
1~f2!Um

1,2~p/2!R008~p!, ~21!

with j i52p2f i . The operationR008(p) is a rotation which
only impinges on the ion when it is in theu0& level, sending
it to the u08& level, avoiding producing any phase shift in th
state. The dispersive operations affecting transitionsu0&
→u1& and u0&→u2& are given by

Dn
1~f1!5S 1 0 0

0 eif1aa†
0

0 0 e2 if1a†a
D ,

D n
1~w1!5S 1 0 0

0 eiw1 0

0 0 e2 iw
1

D ,

Dn
2~f2!5S eif2aa†

0 0

0 1 0

0 0 e2 if2a†a
D ,
3-4
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D n
2~w2!5S eiw

2 0 0

0 1 0

0 0 e2 iw
2

D .

Thus, the particular phase shift in Eq.~20! is achieved for
Pmn

(1)(4p/3,2p/3) and forPmn
(2)(2p/3,4p/3). Finally, the ef-

fective conditional change of the state of the target qu
gives rise to theXOR(3) gate. In brief,

XORmn
(3)5Fn

21Pmn
(2)Pmn

(1)Fn . ~22!

In this way, theXORmn
(3) produces the following evolution o

state of two qutrits:

u0&u0& u0&u0̄& u0&u0̄& u0&u0&

u0&u1& u0&u1̄& u0&u1̄& u0&u1&

u0&u2& u0&u2̄& u0&u2̄& u0&u2&

u1&u0& u1&u0̄& u1&u2̄& u1&u2&

u1&u1& Fn
→ u1&u1̄&

Pmn
~2!Pmn

~1!

——→ u1&u0̄&
Fn

21

→ u1&u0&

u1&u2& u1&u2̄& u1&u1̄& u1&u1&

u2&u0& u2&u0̄& u2&u1̄& u2&u1&

u2&u1& u2&u1̄& u2&u2̄& u2&u2&

u2&u2& u2&u2̄& u2&u0̄& u2&u0&.

~23!

Universal quantum computation requires, in addition
measurement scheme in the computational basis. In our c
von Neumann measurements distinguishing among three
rectionsu0&, u1&, u2& are accomplished by connecting res
nant interactions fromu1&, u2& to statesu3&, u4&, respec-
tively. Fast decay of excited optical levels through separa
polarization channels allows us to discriminate between
cupation of levelsu1&, u2&, when fluorescence is observe
or level u0& when nothing is observed.

As a final remark, it should be stated that a conditio
modular additionu j % i &, as the conditional operation be
tween qutrits, is defined instead of a modular difference
eration, just by adjusting the conditional phase shift in E
~20! to

u1&mu1&n→e2ip/3u1&mu1&n ,

u1&mu2&n→e4ip/3u1&mu2&n ,

u2&mu1&n→e4ip/3u2&mu1&n ,

u2&mu2&n→e2ip/3u2&mu2&n .

IV. THE FOURIER TRANSFORM FOR n QUTRITS

A natural extension of the previous sections is to consi
the analysis of the general protocol for the quantum Fou
transform for a system ofn qutrits. We can benefit, of course
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from the mathematical guidelines developed to define
Fourier transform for a system ofn qubits@1#. In basis 3, the
general expression for the Fourier transform is given by

u j̄ &5
1

3n/2 (
k50

3n21

e2p i j (k/3n)uk&. ~24!

In this context, one important element is the decomposit
of an integer number 0< j <3n21 in basis 3, which is con-
veniently given as

j 5 j 13n211 j 23n221•••1 j n30. ~25!

The fractionk/3n can be written in the 3-basis as

k

3n
5

k13n21

3n
1

k23n22

3n
1•••1

kn30

3n
5(

l 51

n

kl3
2 l . ~26!

Following an analysis similar to that carried out for a syste
of n qubit, so that the Fourier transform now is written in th
form

u j̄ &5
1

3n/2
^ l 51

n F (
kl50

2

e2p i jk l3
2 l

ukl&G . ~27!

If the conditionl ,n is satisfied, we get

j

3l
5 int1

j n112 l

3
1

j n122 l

32
1•••1

j n

3l

5 int10 j n112 l j n122 l••• j n , ~28!

where ‘‘int’’ denotes an integer number. Then

u j̄ &5
1

3n/2
^ l 51

n F (
kl50

2

e2p ikl [0 j n112 l j n122 l••• j n] ukl&G .

~29!

This product is written in an equivalent form as

u j̄ &5
1

3n/2 S (
k150

2

e2p ik10 j nuk1& D S (
k250

2

e2p ik20 j n2 l j nuk2& D
•••S (

kn50

2

e2p ikn0 j 1 j 2••• j nukn& D . ~30!

If we expand the summation for each factor, for example
the last term we have

(
kn50

321

e2p ikn(0 j 1 j 2••• j n)ukn&

5
1

A3
~ u0&1e2p i (0 j 1 j 2••• j n)u1&1e4p i (0 j 1 j 2••• j n)u2&)

5
1

A3
~ u0&1e2p i ( j 1/31 j 2/32

••• j n/3n)u1&

1e4p i ( j 1/31 j 2/32
••• j n/3n)u2&). ~31!
3-5
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This state is generated starting with the application of a F
rier transform on the first qutrit,

F1
„3…u j 1&u j 2&,u j 3&•••u j n&

5
1

A3
~ u0&1e2p i j 1/3u1&1e4p i j 1/3u2&)u j 2&,u j 3&•••u j n&,

and after applying conditional phase transformations on
qutrit state, conditioned to the initial state of remaini
u j 2&,u j 3&, . . . ,u j n& qutrit states,

Rn1•••R31R21F1
(3)u j 1&u j 2&u j 3&•••u j n&

5
1

A3
~ u0&1e2p i ( j 1/31 j 2/32

••• j n/3n)u1&

1e4p i ( j 1/31 j 2/32
••• j n/3n)u2&)u j 2&u j 3&•••u j n&.

The conditional phase is given by

R215P21
(2)S 4p

32
,
8p

32 D P21
(1)S 2p

32
,
4p

32 D , ~32!

R315P31
(2)S 4p

33
,
8p

33 D P31
(1)S 2p

33
,
4p

33 D ,

. . . .

Rk15Pk1
(2)Pk1

(1) ,

Pk1
( j k)

5S 2 j kp

3k
,
4 j kp

3k D . ~33!

In the same way, the state
-

.

et

S.

.

06231
-

is

(
kn50

2

e2p ikn(0 j 2 j 3••• j n)ukn&

5
1

A3
~ u0&1e2p i (0 j 2 j 3••• j n)u1&1e4p i (0 j 2 j 3••• j n)u2&)

5
1

A3
~ u0&1e2p i ( j 2/31 j 3/321•••1 j n/3n21)u1&

1e4p i ( j 2/31 j 3/321•••1 j n /3n21)u2&) ~34!

is generated by applying a Fourier transform on the qu
u j 2& and after applying conditional phase operations on t
qutrit state, conditioned to the state of the remaini
u j 3&, . . . ,u j n& qutrit states.

V. SUMMARY

We have described a physical implementation of a univ
sal qutrit quantum computer based on trapped ions. The l
cal states of qutrits are codified into the electronic levels
trapped ions. We have shown how to implement an arbitr
one-qutrit gate. Besides, we have built a two-qutrit ga
which is decomposed into a quantum Fourier transform an
phase-shift gate. The main result of this work is that the sa
kind of physical setup used for a qubit quantum compute
suitable for a qutrit quantum computer, which gives an e
ponential increase of the available Hilbert space for the sa
amount of physical resources. In principle, this scheme a
allows for entanglement distributions between qutrits al
cated in widely distant nodes of a quantum network.
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