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Quitrit quantum computer with trapped ions
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We study the physical implementation of a qutrit quantum computer in the context of trapped ions. Quitrits
are defined in terms of electronic levels of trapped ions. We concentrate our attention on a universal two-quitrit
gate, which corresponds to a controlled¥ gate between qutrits. Using this gate and a general gate of an
individual qutrit, any gate can be decomposed into a sequence of these gates. In particular, we show how this
works for performing the quantum Fourier transform foquitrits.
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[. INTRODUCTION photon states from a parametric down-conversion process
[22].
The building blocks of a quantum computer are quiits In the present work, we study the accomplishment of

which are distinguishable two-level physical systems, whichuantum gates for a qutrit based quantum computer, by ex-
are manipulated individually as well as collectively. Theseploiting the possibility of coherent manipulation of ions in a
operations are performed using the so-called quantum gatéi§ear trap[3]. The main goal in studying quantum compu-
in analogy to their classical counterparts. In the simplestation with qutrits instead of qubits is the exponential in-
case, collective manipulation reduces to bipartite quantur'€ase of the available Hilbert space with the same amount of

gates, for instance, the controlledT gate[2], also called physical resources. In particular, we focus our attention both
’ ’ ’ o0 implementing a quantum Fourier transform for one qutrit

XOR gate. In this gate one qubit acts as a control and th& d to th ditional i te bet i it
other as the target, so that if the state of the control qubit ignd 1o the conditional quantum gate between two qulrits,

(3 i i -
in state|1), the State of the target qubit is flipped, and in XOR'. We also give a protocol for a quantum Fourier trans

other cases the target qubit remains unchanged. The ex efo_rm among many qutrits, The extension of the physical
tal imol t?’ qf ¢ biOR h g ' e dp Wnplementation from qubits to qutrits is, of course, nontrivial

merntal impiementation of a two-qui as been Sldied  pocause of the coherent operations required in a three-

in different physical contexts, as for instance, in trapped iongi 1 ansional Hilbert space. As far as we know, there is a

[3,4], nuclear magnetic resonan£8-7], cavity QED sys-  1qn0sal for an implementation of a conditional gate for qu-
tems and quantum heterostructuf8s-10]. _dits, calledexoRr based on two-mode field interactiofts3],

In recent works, the use of quantum entanglement iRyhich assumes the existence of a discrete Fourier transform
higher-dimensional quantum systems has been studied. Thgr an arbitrary field state lying in B-dimensional subspace
notion of entanglement generation and characterization in thgf one of the field modes.
case of three-level quantum systems, qutrits, has been con- Here, conditional gates between two qutrits are conve-
sidered by authors in Reff11]. The use of qutrits instead of niently expressed as
qubits has been proven to be more secure against a symmet-
ric attack on a quantum key distribution proto¢b2]. These xoRD|iV4])2=1i)1]j )2, (1)
studies require a generalized version of @R, which has
been given in Ref{13], which is called thesxor gate. This  wherej =i denotes the additiofdifference i = j, modulo 3.
gate operates on a tensor product of two qudits, states lyings will be shown, this gate is decomposed mngfr)]
in a d-dimensional Hilbert space. Further studies on qudit=F, P, F,, whereF, is the quantum Fourier transform
systems have been considered, for example, bounds on efor one qutrit, andP,,, is a conditional phase-shift gate for
tanglement between qudifd4], discrimination among the qutrits, wherem and n are the control and target qutrits,
Bell states of qudit$15], entanglement among qudit$6],  respectively. As indicated above, ther®) gate is given in
Greenberger-Horne-Zeilinger paradox for many quflifd/,  two main steps. One is the generation of the discrete quan-
quantum computing with quditl8], quantum tomography tum Fourier transform, which requires the coherent manipu-
for qudits state$19], entanglement swapping between mul- |ation of populations in a three-dimensional Hilbert space.
tiqudit systems[20]. Recently, a quantum communication The second is the conditional phase-shift gate, which re-
complexity protocol with two entangled qutrits has been proquires the intervention of an ancillary quantum channel be-
posed[21]. Finally, an important step towards the use oftween the qutrits.
higher-dimensional quantum systems has been given with
the experimental generation of entangled qutrits using two- Il. ARBITRARY ONE-QUTRIT GATE
Here we consider the achievement of a general gate for a
*Electronic address: carlos.saavedra@udec.cl single qutrit. An arbitrary unitary operation on a qutrit state,
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FIG. 2. Electronic level structure of trapped ion. Quantum in-
formation of qutrits is stored in level®), |1), and|2). The tran-

/172 sitions involving effective interactions between levigs—|1) and

L_1p |0)—|2) are driven by classical fields with different polarizations.

6231/2

EIG. 1. Raman configurations for defining the logical states of a-onditional two-qutrit gate. A key ingredient is the existence
qutrit. of electric dipole forbidden transitionf0)—|1) and |0)

U(3) operation, is split up into a sequence of (@Jopera- —2). Thesg transitions are addressed v'ia Raman transitions
tions. A physical setup for this is obtained in a linear array ofthrough the independent channels associated with orthogonal
trapped ions, where qutrit states are defined using Zeeman@plarizations, driven by classical fieldkyz, 113, (o4, and

level structure, in a3®8Ba* ion in a Paul trap. A representa- {24

tion of this level structure is depicted in Fig. 1. Two Raman In this system, the ion level populations are manipulated
configurations are independently implemented between thY selecting the desired coherent operation. For instance, we
levels  6S,,(m=—1/2), 6P, (m=—1/2), 5Dgym can independently operate with transitiof®—[1), [0)
——1/2) and levels 6,(m=—1/2), 6Py (m=—-3/2), —I2), [1)—[2) by adjusting the parameters. The Hamil-
5D45(m=—3/2). The first and second Raman Conﬁgura_tqnlan descnbln_g this effective ;ystgm, u_nde_r the standard
tions require ar* polarized light and ar~ polarized light, ~dipole and rotating wave approximations, is given by
respectively. Diode lasef®3] are used in order to achieve

the interactions. In this case, typical values of magnetic fields _ T ot

for the Zeeman splitting are of the order of 10 G, and the H_; hoag| DI +Ai{e™"(€0d 4)(0] + Q0d 3)(0D)
corresponding energy differences between two consecutive

Zeeman sublevels are=0.14l§)| (MHz/G) for level Sy,
u=20.14B] (MHz/G) for level P;,, and u=20.14B]
(MHz/G) for Dg». From these values, one finds that a typi-
cal energy difference is of few MHz. The transition fre-
guency between levelS=P and D& P is typically hun-

+e Q4 3)(1] + Dyl 4)(2]) + H.cl, 2

where=0,1,2,3,4. In the case of single-qutrit gates, only
the carrier transition in the ion is considered, so that no ex-
plicit effects on the center-of-mass motion of the ion are
_included. Thus, the spatial dependences of Raman fields have
Seen included as phase factors. Assuming the following con-
Of the Order Of ten.s Of MHil,24] . . ditiOﬂSZ A=(w4—w0)—v2=(w3—w0)—V2=(w4—w2)

An extra single-ion operation is needed for implementing_ 1= (w3— w1)— vy andA> Oy, Qoz, Qag, Oy, rapidly
the contro_lled quantum gate operation, d_ue to the presence g caying upper levels3) and |4) are adiabatically elimi-
a phase if only two Raman configurations are used. Thi ated, leading to an effective Hamiltonian:
phase is removed with an additional Raman configuration, in
this case &;,(m=-1/2), 6P.n(m=—1/2), 5Dj,(m 2 2 2 2
=—1/2). This transitionS< P is achieved with ar polar- H_ 10 11)(1] - |©d 12)(2|— MW(W
ization, and thes< D transition using ar~ polarization for h A A A
the electromagnetic field. A similar physical implementation 510 Q0%
is performed using Ca However, using Ca extra opera- - 30|0><1|+ 40
tions are done via a quadrupole direct transition between the A A
levels 65, and D5, which are forbidden in dipole cou- ) . .
plings. All of these physical parameters make possible th&'SSUming the additional condition
implementation of a qutrit quantum computer with barium ) 5 5 )
trapped ions using the fine structy&s). Q44 _ Q47 _ Q39 °+ Q4 )

For the sake of simplicity, here we consider a simplified A A A '
level structure of ions, only depicting the relevant electronic
transitions of ions, as is shown in Fig. 2. Levelswe can find the evolution for the system. After some calcu-
{]0),|1),]2)} are the logical states of a single qutrit. The lations, the evolution operator in the restricted three-
level |0’) is an auxiliary level necessary when defining thedimensional spacé2), |1), |0)} is given by

|0)(2|+H.c.. (3)
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1+]gI’C(¢)  gg'*C(e)  —igsine
U(e)=| 9'0*Cle) 1+|g'|*C(¢) —ig'sine |,
—ig*sing  —ig'*sing cose

©)

where ¢=Qt is an adimensional interaction tim&(¢e)
=cosp—1, andQ?=|k'|?+|«|?. We have introduced the
notationsg= «/Q and g’ =«'/Q, wherex=Q4,Q,/A and

k' =Q30Q03/A. This evolution operator allows implement-

ing all the required coherent operations between any two

logical states. For instance, to activate the transitibh
—1]2), we assumep= 1 in Eq. (5), so that

coSa —e'fisine 0
U,=| —e 'A1isina —cosa 0 |, (6)
0 0 -1
where we have defined
|12 |? :
cosa= —— 5 and efi=rcr'* /|| (7)
|2+ [ k]

Other transitions are addressed by manipulatingsthmou-
plings in the transitiod0)—|2), or «’ in the transition0)

PHYSICAL REVIEW A7, 062313 (2003

2
1
Flil= — 2I7T|J/3| 11
)= 2, &™) (11
Explicitly, the transformed statd$)=F|j) read as
— 1
|0)=—=(|0)+1)+]2)), (12)

V3

1 : )
_ _(|0>+62|7T/3|1>+e*2|7r/3|2>),

|T>_\/§

2)= (0 +e 3 ™1) + &2 7(2)).

V3

This transformation is obtained by using the general operator
we have calculated before, for the carrier transition, and
combining with adiabatic transitions in both polarization
channels. After some calculations, it is found that the Fourier
transform is decomposed into the form
F:iUDU2U3U1, (13)

where each one of these operations is obtained from the
above process: Iy, if o=m/3, e=mw/6, we get

D . il
—|1). For example, the transitiof®)—|2) is addressed by em™ 0 0
assuming«’ =0 so that Up=| O €™ 0 (14)
) —iml2
COS¢, 0 —ie 'Pesing, 0 0 e
U,= 0 1 0 , (8) In U, with a=w/4,8,=—2m/3,
—ielfesing, 0 coSg, 1 _e-2im3
; ) . . 1 _ e2i77/3 -1 0
where k=€'P?| x| and ¢;=|«|t. Finally, for the transition Ul—ﬁ (15
|0)—]1), we assumex=0: 0 0 -2
1 0 0 If (,02:77/4,,82:_7T/3 in U2,
Us=| O COS@3 —ie'Pssing; (9) 1 0 je2d™s
0 —ie 'Assin ¢3 COSp3 Uz—% 0 \/E 0 (16)
. ia—2i7l3
wherex’ =e'#3|x’| and p3=|«’|t. In order to generate any e 0 1
SU(3) operator[26], we need to have a decomposition of _
height-independent parameters. In the previous cases, wanally, assumingps= = m/3,83="7/6 in Us,
have three operations involving six independent parameters. \/g 0 0
By connecting interactions of classical fields wjf)—|1) 1 i
and the|0)—|2) transitions in the far off-resonance limit, Ufﬁ 0 —\2 ie 17
we obtain the following dispersive evolution: 0 ie™® — 2

e 0 0
Up=| 0 € 0 [, (10)
0 0 e ilete)

which provides two additional parameters.

In particular, we can now focus on the calculation of the
guantum Fourier transform for one qutrit, which is a unitary
operation defined by

In the same way, any arbitrary one-qutrit gate is decomposed
as in the case of the Fourier transform using the evolution
operator given by Eq(5).

IIl. CONDITIONAL TWO-QUTRIT GATE

The Fourier transform that we have found plays the same
role that the Hadamard gate plays for qubits. For example,
the entangled states of two qubits are generated by the appli-
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cation of a Hadamard gate followed by a conditional phasewhere we have defined,nt/2=1m/2. As we shall see, these
shift gate. In what follows we will describe the accomplish- coherent operations allow selecting the quantum channel for
ment of a conditional phase shift between two qutrits, whichtransferring the information to the center-of-mass. After this
allows the achievement of theor(®) gate we have intro- it is necessary to introduce a phase change in the qutrit state,
duced in Sec. I. A basic requirement for performing a condiwhich depends on the energy of the center-of-mass state.
tional gate between two qutrits is providing a mechanism toThis phase change is accomplished through the dispersive
distinguish independent quantum paths, in order to satisfyegime of the first red sideband in E{.8), that is,

the conditional change in the target qutrit depending on the

state of the control. In our case, we have definedxibre(®) DY(p)=€'*3a"|q) (g +e " ¥2'20),(0], (19

in such a way that the target changes only when the control

qutrit is in state|1) or |2), provided that the state of the where = (Q47)%48, which allows for an intensity-
target will be|j®0)=|j) when the control qubit is in state dependent phase shift of the electronic levels.

|0). Thus, we only need to implement a protocol considering From Eq. (12) it is not difficult to figure out that the
independent quantum channels through sttesind|2) of ~ conditional phase shift needed to implement the
the control qutrit. In a set of ions in a linear trap, in the XOR®[i)|j}n=i)mli©i)y is given by

electronic configuration given in Fig. 2, such quantum chan-

nels are established with the compromise of the collective |0)m| O} 10)m|0)n
center-of-mas$CM) motion of ions inside the trap. |0l 1) |0)ml 1)

In the ion-trap quantum computer with qubit3], the 10Y,1/2) 10Y,1/2)
guantum channel between ions is established through the mi=/n mi=/n
center-of-mass motion, which is addressed by adjusting a |1)m|0)n |1)m|0)y
Raman transition to a given red sideband. As we shall see in pRpm) ..
what follows, we can proceed along the same line of reason- | L1y Tmntme e®TE 1) 1),
ing, considering the ion model described in Fig. 2. Let us 2imI3
assume that we adjust the field amplitudes such fhgt | L) ml2)n e ™ 1)l 2)n
=02,=0, and Q3;, Q37 0; or Qge=02#0, and O3, 12)ml0)n 12)mlO)n
Qy3=0. In both cases, after eliminating the upper excited 12) /1) e2im3|2) 1)
level and adjusting to the first red sideband transition, we men , men
obtain the Hamiltonian describing the ion center of mass 12)ml2)n e"32) |2, (20)

coupled to the electronic transitio)—|q):
P 40)—la) whereP{!) and P{?) are defined as follows:

Hna=—aL|a)n(0ae ' 1%+ al|0),(gl 2141, PN b1,62) =Roo (MU (3m/2)D3(£2)DA(b2) Di(£1)
(18 X D¢ U RN(/2)Rog (),

Herea anda' are the annihilation and creation operators of 5(2) _ 1,2 2 2 1

the CM phonons, respectivelg,, is the effective Rabi fre- Pran($2: 1) =Roo (MU (3m/2D1(£1)D(¢1)Da(£2)
quency after adiabatic elimination of upper excited levels, XD p)UEA 712)Rog (77), (21)

is the laser phased=w,— wo— v+ v+ v,=wi— wy— vy

+ w1+ vy, andy=\ik5/(2Mv,) is the Lamb-Dicke param- Wwith &=27— ¢;. The operatiomRyy () is a rotation which
eter (k,=|cosd, with K the laser wave vector ardithe angle  ONly impinges on the ion when it is in the) level, sending
between theX axis and the direction of laser propagation It to the|0") level, avoiding producing any phase shift in this
The subscripg=1,2 refers to the transition excited by the State. The dispersive operations affecting transitigdjs
laser in thenth ion. The center-of-mass motion coupled to —|1) and|0)—|2) are given by

electronic transitions is coherently manipulated by the selec- 1 0 0

tion of the effective interaction time and laser polarizations.
This Hamiltonian allows implementing the coherent interac- Di(¢)=| 0 el 12’ 0
tion between qutrits and the collective center-of-mass mo- ot
tion. In particular, in order to implement a conditional phase 0 0 e 'ha
shift, the following operations are needed:

1 0 0
U($)[0)|0)=[0)rm/0), Dlo)=|0 €e o |
0 0 e'%
lq = I_W —je i%gj |_7T
U0}l 1) =coq o |10)ol1) e 4sin 7] ), 10) 0
gldraa
| | ol Di(¢)=| O 1 0
U a)el0)=cod |l l0)—ie'?sin |0}/, 0 0 ot
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e’ 0 0 from the mathematical guidelines developed to define the
2 | o 1 0 Fourier transform for a system afqubits[1]. In basis 3, the
Da(e2)= general expression for the Fourier transform is given by

0 0 e'%
3"-1
Thus, the particular phase shift in EQO) is achieved for |j_>— - E 2™ ()|, (24)
P (4am/3,27/3) and for PE)(27/3,47/3). Finally, the ef- 3" k=

fective conditional change of the state of the target qutri

gives rise to thecor® gate. In brief t]n this context, one important element is the decomposition

of an integer number€j<3"-1 in basis 3, which is con-

xorB)=F 1p@pME (22)  Veniently given as
i oan-1, i qn-2 i 20
In this way, thexor{) produces the following evolution of J=Ja8" 8N e 43 (25)
state of two qutrits: The fractionk/3" can be written in the 3-basis as
|0>|0> |0>|§> |O>|§> |O>|O> k B k13n—1 . k23n—2+ k 30 2”: -
011 |o)[T) 10)[T) 10)]1) a3 g T 2, k3. (29
2 2) 2) 2 . L .
10)12) |0>|i> |O>|i> 10)12) Following an analysis similar to that carried out for a system
|1)0) |1)]0) |1)]2) |1)[2) of n qubit, so that the Fourier transform now is written in the
form
_ 1 g1
Wiy Fooqpmy PP g6y oo jjo) )
_ _ i\ 2mijk 3~
EEI Y EFV R HEY = 3w {E . '”} 2
2)|10 0) 1) 2)|11
12)10) |2>|3> |2>|i> 1211 If the conditionl<n is satisfied, we get
2)|11) 2)|1) 2)|2) 12)12) _ _ _
212 12)2) 12)/0) 2)/0). e S
(23 _ _ . .
=INt+0jnr1-1ins2-1"""Jn, (29)

Universal quantum computation requires, in addition, a
measurement scheme in the computational basis. In our caséhere “int” denotes an integer number. Then
von Neumann measurements distinguishing among three di- 2
rections|0), |1), |2) are accomplished by connecting reso- lj)= E e?™Kil0in+1-tin+2-1° |k|)}
nant interactions from1), |2) to states|3), |4), respec-
tively. Fast decay of excited optical levels through separated (29
polarization channels allows us to discriminate between oc-
cupation of leveld1), |2), when fluorescence is observed; )
or level |0) when nothing is observed. = - ko0 i

As alfir>1al remark, it should be stated that a conditional 1)~ 3n/2< E e?malnlky) )(k;o e?mkadin ”“|k2>)
modular addition|j®i), as the conditional operation be-

3n/2®| 1

This product is written in an equivalent form as

tween quitrits, is defined instead of a modular difference op- 2 o
- - L . o 2 27ikn0j1j2 ]”|k (30)
eration, just by adjusting the conditional phase shift in Eq. € )
(20) to N
1)l L) — €2 ™3 1) [ 1), H} ;theat:?:rr:g wee hs{:\;r;matlon for each factor, for example, in
i3 3-1
1) ml2)n—e€ 1 1)ml2)n, E eZWikn(Oiliz"'jn)|k )
P k,=0 .
|2>m|1>n_>e4m3|2>m|1>nu "
12)m|2)n— €% "2) |2) .- = E(IOHez”'“’“‘Z'“J“)I1>+e“”'(°‘1‘2'“J“)|2>)
IV. THE FOURIER TRANSFORM FOR n QUTRITS 1
_ . o . - _(|0>+e27ri(j1/3+j2/32-»-jn/3”)|1>
A natural extension of the previous sections is to consider J3
the analysis of the general protocol for the quantum Fourier P,
transform for a system of qutrits. We can benefit, of course, + e (13123 103 2)) (32)
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This state is generated starting with the application of a Fou-
rier transform on the first quitrit,

PHYSICAL REVIEW A 67, 062313 (2003

e2mikn(Oiziz+in) k)

FOliolia)lia) - lin)

= —3(|0>+62”"1’3|1>+e4’*"1’3|2>)|12>-|13>- i

5

and after applying conditional phase transformations on this
qutrit state, conditioned to the initial state of remaining

[i2):]ia)s - - - lin) qutrit states,

Rt - RaiRaaF i )i i)« - |in)

V3

+ U313 10l 20 ) ) )+ [ o)

The conditional phase is given by
47 87
) (32)

27 AT
_p(2) @G == =
RZl_ PZl( 32 ’ 32 PZl( 32 ’ 32>’

47 8 27 AT
_p@ -~ " |\py =
R31_P31(33’33)P3l(33’33>’

_p@p(1
Ra=PIPY,

: 2jym 4j
Go_ [ 4l K
Pk —(— ) (33

3k 7 3k

In the same way, the state

kn=0
:T(|0>+e2ﬂ'l(olzla"'Jn)|1>+e4ﬂ'l(olzl3'"Jn)|2>)
3
1 N P 2 f n—1
:T(|0>+82m(]2/3+]3/3 +. 4 jp/3 )|1>
3

+e47-ri(j2/3+j3/32+-~+jn/3”’l)|2>) (34)
is generated by applying a Fourier transform on the quitrit
lj») and after applying conditional phase operations on this
qutrit state, conditioned to the state of the remaining
lia), - .. .lin) qutrit states.

V. SUMMARY

We have described a physical implementation of a univer-
sal qutrit gquantum computer based on trapped ions. The logi-
cal states of qutrits are codified into the electronic levels of
trapped ions. We have shown how to implement an arbitrary
one-qutrit gate. Besides, we have built a two-qutrit gate,
which is decomposed into a quantum Fourier transform and a
phase-shift gate. The main result of this work is that the same
kind of physical setup used for a qubit quantum computer is
suitable for a qutrit quantum computer, which gives an ex-
ponential increase of the available Hilbert space for the same
amount of physical resources. In principle, this scheme also
allows for entanglement distributions between qutrits allo-
cated in widely distant nodes of a quantum network.
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