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Quantum Markov channels for qubits
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We examine stochastic maps in the context of quantum optics. Making use of the master equation, the
damping basis, and the Bloch picture we calculate a nonunital, completely positive, trace-preserving map with
unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture
of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study
the capacity of the squeezed vacuum channel to transmit quantum information and to distribute Einstein-
Podolsky-Rosen states.
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I. INTRODUCTION

One of the aims of quantum information theory is
achieve the storage or transmission of information enco
in quantum states in a fast and reliable way@1#. It is unreal-
istic to consider a physical system, in which information
stored, as being isolated. It is well known that, when
system of interest interacts with its environment, irreversi
decoherence occurs, which is, in most cases, both und
able and unavoidable@2#. This interaction causes pure stat
to become mixed states. This process describes the influ
of noise on quantum states, which results in information p
cessing errors.

The question of how to reliably transmit information b
gan with communication systems. Shannon’s noisy chan
coding theorem is the fundamental theorem of informat
theory @3,4#. It states that information can be transmitt
with arbitrarily good reliability over a noisy channel pro
vided the transmission rate is less than the channel cap
and that a code exists which achieves this. There has b
recent interest in studying quantum channels for send
quantum information and defining quantum channel cap
ties @5–11#.

As in classical information theory, a quantum channel
pacity is characterized by the type of noise present in
channel. There exists a set of input states or alphabet w
the sender transmits through the channel. The noise in
channel generally degrades the states. The receiver trie
recover the message that was sent from the output st
This process of induced errors may be described by a sys
interacting with a reservoir. For a classical communicat
channel, the channel is completely characterized by its t
sition probability matrix which determines the errors that c
occur. In constrast, a quantum channel is characterized
completely positive, trace-preserving or stochastic m
which takes the input state to an output state. This chara
izes the type of noise present in the channel.

In this paper, we use a special basis of left and ri
damping eigenoperators for a Lindblad superoperator to
culate explicitly the image of a stochastic map for a wi
class of Markov quantum channels. We use this method
derive a noisy quantum channel for qubits, which we call
squeezed vacuum channel. This channel is nonunital w
1050-2947/2003/67~6!/062312~13!/$20.00 67 0623
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unequal damping eigenvalues, which makes it different fr
previously introduced channels@12#. We use this channel to
give geometrical insight into the Holevo channel capacity

We begin this paper by defining a noisy quantum chan
in Sec. II in terms of stochastic maps and the Kraus deco
position. A special case of the Markov channel is discuss
In Sec. III, a general Lindblad equation for a finite
dimensional Hilbert space is introduced. In Sec. IV, t
damping basis is introduced as an alternative way to ca
late the stochastic map explicitly without using a Kraus d
compostion. Stochastic maps in the context of quantum
tics described by a set of Bloch equations are discusse
Sec. V. Section VI reviews some known quantum chann
and presents some more general types of channels. The
chastic map that defines the squeezed vacuum chann
explicitly calculated in Sec. VII, and the restrictions impos
by the condition of complete positivity are presented. The
results are used to determine a Kraus decomposition ex
itly. The geometrical picture of the channel is given in Se
VIII. Finally, Sec. IX deals with the channel’s ability to sen
classically encoded quantum states and its ability to send
resource of entanglement.

II. NOISY QUANTUM CHANNELS

A. Stochastic maps

The concept of a noisy quantum channel arose from
field of quantum communication. Information is encoded
quantum states and transmitted across some channel w
the receiver decodes the information to retreive the origi
message. The ability to send messages reliably depend
the noise present in the channel. The effect of the noise i
take an initial quantum state and transform it to anot
quantum state. The noisy quantum channel is then define
a map

F:r→F~r! ~1!

which takes a quantum state described by a density ope
r into a quantum state described by a density operatorF(r).
There are certain restrictions on the class of maps wh
generate legitimate density operators. We require t
Tr@F(r)#51 so that unit trace of the density operator
©2003 The American Physical Society12-1
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DAFFER, WÓDKIEWICZ, AND McIVER PHYSICAL REVIEW A 67, 062312 ~2003!
conserved for all time. In addition, the image of the ma
F(r), must be a positive operator. A map that takes posi
operators into positive operators is called a positive map.
if one considers the noise to come from a larger Hilb
space of a reservoir, then the stronger condition of comp
positivity is required for the process to be physical@13,14#.
Therefore, we restrict our attention to completely positi
trace-preserving maps, which are called stochastic maps

B. The Kraus decomposition

Noise in the channel may be considered as a reservo
which the quantum state of interest is coupled. The state
the reservoir interact unitarily for some time and they b
come correlated. If we are now interested only in the syst
we trace over the environment degrees of freedom. One
think of the reservoir as extracting information from the sy
tem as it will typically map pure states into mixed state
This noise process can be described by a quantum oper
involving only operators on the system of interest. This
called a Kraus decomposition and has the form

F~r!5(
k

Ak
†rAk, ~2!

where the condition

(
k

AkAk
†5I ~3!

ensures that unit trace is preserved for all time@15#. If an
operation has a Kraus decomposition, then it is comple
positive. The converse is also true so that all stochastic m
have a Kraus decomposition.

C. The Lindblad form

The formalism we have outlined so far is general. For
important type of noise, Markov noise, we have a spe
class of completely positive maps. We call a Markov qua
tum channel one in which the noise in the channel ari
from a coupling of the system with a reservoir under t
Markov and Born approximations. This is a commonly us
approximation in quantum optics and leads to the w
known Lindblad form of a master equation. For this type
channel, one can always write a stochastic map as

F~r!5eLtr~0!. ~4!

The equation describes the evolution of a system couple
a reservoir in terms of the system of interest alone. All Lin
blad superoperators are stochastic maps and have a K
decomposition. The converse is not true in general.

In this paper, we derive an equivalent equation forF of
the form

F~r!5(
i

Tr$Rir~0!%L iL i ~5!

to obtain the image of the stochastic map for Markov noi
We use a special basis of left,Li , and right,Ri , eigenopera-
06231
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tors with damping eigenvaluesL i , which allow for an ex-
plicit calculation of the stochastic map and the Kraus ope
tors. This method works for any Markov channel.

III. THE GENERAL LINDBLAD EQUATION

The Schro¨dinger evolution of a system coupled to a re
ervoir can be described in terms of a master equation of
form

ṙ5Lr5LCr1LDr, ~6!

wherer is the density operator of the system alone, obtain
by tracing over the reservoir degrees of freedom. The fi
term describes the coherent or unitary evolution and is s
ply given by the commutator

Lcr52
i

\
$H,r% , ~7!

whereH is the Hamiltonian of the undamped system.
The general form of the nonunitary part which describ

the dissipation of the density operator is

LDr5
1

2 (
i , j

N221

ci , j$@Fi ,rF j
†#1@Fir,F j

†#% ~8!

valid for a finiteN-dimensional Hilbert space. The$Fi% are
system operators which satisfy the conditions Tr(Fi

† F j )
5d i , j and Tr(Fi)50. The set of complex elements$ci j %
form a positive matrix.

It has been proven@16# that a linear operator on a finit
N-dimensional Hilbert spaceL:M (N)→M (N) is the genera-
tor of a completely positive dynamical semigroup in t
Schrödinger picture if and only if it can be written in th
form of L:r→Lr whereLr takes the form of Eqs.~7! and
~8!. We will call the generator of the semigroup, which go
erns the dissipation, the Lindbladian and denote it byLD .
Equation~8! may be recognized as the master equation
scribing irreversible evolution of an open quantum syst
under the Markov and Born approximations. This Lindbl
equation is widely used in many branches of statistical m
chanics and quantum optics. This form, the Lindblad for
has been shown to guarantee positivity and trace prese
tion of the density operator@17,18#.

IV. THE DAMPING BASIS

There are many methods for solving master equations,
use of Fokker-Planck equations built on methods in stoch
tic processes and Monte Carlo wave functions, to name
@19,20#. In this paper, we make use of the damping basis
order to solve a master equation which has the form of
~6! containing both the coherent and damping dynam
This amounts to solving an eigenvalue equation. In so
cases, this problem can seem formidable and finding a da
ing basis first is useful. To solve the master equation in t
fashion involves first solving the eigenvalue equation

LDr5lr ~9!
2-2
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QUANTUM MARKOV CHANNELS FOR QUBITS PHYSICAL REVIEW A67, 062312 ~2003!
for the nonunitary part of the density operator evolution d
scribing an open system. This provides one with a compl
orthogonal basis with which to expand the density opera
at any time. Such a basis is called the damping basis@21#.
This basis is obtained by finding the eigenoperators of
eigenvalue equation. Likewise, the dual eigenoperators
found by solving the dual eigenvalue equation. The origi
basis and the dual basis are orthogonal.

If the eigenoperators of Eq.~9! areRi with corresponding
eigenvaluesl i , then once the initial state is known

r~0!5(
i

Tr$Lir~0!%Ri , ~10!

the state of the system at any later time can be found thro

r~ t !5eLtr~0!5(
i

Tr$Lir~0!%L iRi5(
i

Tr$Rir~0!%L iL i ,

~11!

where L i5el i t are the damping eigenvalues andLi is the
state dual toRi . These are called the left and right eigeno
erators, respectively, and satisfy the following duality re
tion:

Tr$LiRj%5d i j . ~12!

It is easy to show thatL and R have the same eigenvalue
The left eigenoperators satisfy the eigenvalue equation

LLD5lL ~13!

while the right eigenoperators satisfy

LDR5Rl. ~14!

This method is a simple way of finding the density opera
for a givenL for all times. The solution of the left and righ
eigenvalue equations yields a set of eigenvalues and ei
solutions:$l,L,R%. Once the damping basis is obtained,
can be used to expand the density operator. Then the de
operator in this basis can be substituted back into the
Liouville equation~6!. By doing this, one obtains a set o
coupled differential equations for the coefficients of the d
sity operator in the damping basis. Solution of this set
coupled differential equations yields the solution to the to
Liouville dynamics. The important point is that once all e
genvalues and all left and right eigenoperators of the su
operator are found, the master equation can be solved an
system observables can be computed.

V. BLOCH STOCHASTIC MAP

When studying two-level systems there is the added
vantage of a geometrical picture offered by the vector mo
of the density matrix. For instance, decoherence of a t
level atom is described by the dynamics of a Bloch vec
with three components,bW 5(u,v,w), inside a unit three-
sphere, governed by a set of Bloch equations@22#. These
constitute a set of differential equations, one for each co
ponent of the Bloch vector, of the form
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u̇52
1

Tu
u2Dv,

v̇52
1

Tv
v1Du1Vw,

ẇ52
1

Tw
~w2weq!2Vv, ~15!

whereV is the Rabi frequency, the constantsTu andTv are
decay rates of the atomic dipole, andTw is the decay rate of
the atomic inversion into an equilibrium stateweq . One typi-
cally finds that the phenomenological decay rates in
Bloch equations appear as

1

Tu
5

1

T2
,

1

Tv
5

1

T2
,

1

Tw
5

1

T1
, ~16!

so that the parts of the atomic dipole that are in phase and
of phase with the driving field are affected in the same w
by the damping. This description is in terms of a two-lev
atom coupled to an external field as well as a reservoir. T
coupling to the external field causes the Bloch vector to
tate. The coupling to the reservoir, which might be a co
tinuum of vacuum field modes, causes the Bloch vector
decrease in magnitude. The combination of these two beh
iors leads to a spiraling in of the Bloch vector. Although w
describe these dynamics in terms of the two-level atom,
Bloch picture can describe any two-level system. Here
shall consider the more general form of Eq.~15! where all
three damping constants may be unequal. As we shall
this describes the physical situation where the two-le
atom is coupled to a squeezed vacuum reservoir rather th
regular vacuum field. The damping parameters lead to de
herence of the system of interest.

The decoherence is caused by the presence of noise
may be viewed as a stochastic map acting on the Bloch v
tor in the form of a mapping@23#

F:bW→bW 8. ~17!

Because there is a correspondence between the Bloch v
bW and the density operatorr, we see that the stochastic ma
is a superoperator which maps density operators into den
operators:

F:r→r8. ~18!

We can expand the density operator in the Pauli ba
$I ,sx ,sy ,sz% and consider how the components ofr trans-
form under the map. This latter transformation is charac
ized by a 434 matrix representation ofF. It has been found
that the general form of any stochastic map on the se
complex 232 matrices may be represented by such a 434
matrix containing 12 parameters@24#:
2-3
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T5S 1 0 0 0

t10 t11 t12 t13

t20 t21 t22 t23

t30 t31 t32 t33

D . ~19!

The 333 block of the matrixT can be diagonalized usin
two rotations. This amounts to a change of basis. With
loss of generality, we can consider the matrix

TD5S 1 0 0 0

t10 L1 0 0

t20 0 L2 0

t30 0 0 L3

D ~20!

which uniquely determines the map. To preserve Hermitic
T must be real. The first row must be$1,0,0,0% to preserve
the trace of the density operator. We call the 333 part of the
matrix TD , consisting of the damping eigenvaluesL i which
are contractions, the damping matrixL. Explicitly,

L5S L1 0 0

0 L2 0

0 0 L3

D . ~21!

In terms of the Bloch vector, a general stochastic map m
be written in the form

F:bW→bW 85LbW 1bW o, ~22!

wherebW o5(t10,t20,t30) is a translation. The overall opera
tion consists of a damping part and translations. Due to
presence of translations, the transformation is affine.

To see the properties required by the stochastic ma
terms of the Bloch vector consider the matrix representa
of the Bloch vector as an expansion in terms of the Pa
matrices:

B5bW •sW 5S w u2 iv

u1 iv 2w D . ~23!

In the absence of noise, the Bloch vector remains on
Bloch sphere so that

detB52~u21v21w2! ~24!

has magnitude unity. The presence of stochastic noise tr
forms the matrixB according to

F:B→B8. ~25!

To guarantee that the mapF transforms the density operato
into another density operator, the Bloch vector can be tra
formed only into a vector contained in the interior of th
Bloch sphere, or the Bloch ball. Equivalently, we require

udetB8u<udetBu, ~26!

so that the qubit density operator
06231
t
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r5
1

2
~ I 1bW •sW !5

1

2
~ I 1B! ~27!

under the map becomes

F~r!:r→F~r!5
1

2
~ I 1B8!. ~28!

This is possible only if the eigenvaluesL i are contractions.
In the following sections we provide an explicit constructio
of the stochastic mapF from the Bloch equations~15!.

VI. TWO-LEVEL ATOM IN A SQUEEZED VACUUM

The master equation~6! yields a plethora of possible com
pletely positive dynamical maps. In the remainder of th
paper, we wish to examine a particular form of Eq.~6! which
retains a relation to the Bloch equations~15! and leads to the
case where the three components of the Bloch vector h
different decay rates and where the Bloch vector is shif
from the origin of the Bloch sphere. As will be seen, th
leads to a contraction of the set of states that lie on the Bl
sphere surface. Some states in the set become very m
while some remain almost pure.

We will consider a special case of the Lindbladian in E
~8! for a two-dimensional Hilbert space by choosing the f
lowing set of system operators$Fi%:

F15s, F25s†, F35
s3

A2
, ~29!

wheres ands† are the qubit lowering and raising operato
ands3 is thez-component Pauli spin operator. If, along wi
this set of system operators, we choose the matrix elem
ci j such that

c5S 1

2T1
~12weq! 2

1

T3
0

2
1

T3

1

2T1
~11weq! 0

0 0
1

T2
2

1

2T1

D ,

~30!

the resulting Lindbladian is

LDr52
1

4T1
~12weq!@s†sr1rs†s22srs†#

2
1

4T1
~11weq!@ss†r1rss†22s†rs#

2S 1

2T2
2

1

4T1
D @r2s3rs3#2

1

T3
@s†rs†1srs#.

~31!

This part of the master equation is known to describe
dissipative evolution of a two-level atom coupled to a ba
2-4



on

no

he
w
bl
e
o
n
er

b

-

l
us
ua

o
n

us
el
Th
d
um
e

riz
ica
rs

the
to

pled
ter-
n-

as a
the
In
o the

e-

tate,
er,
the

l

non-

pa-
r

.
-
es
s
g of
ns
inty
her
cay

QUANTUM MARKOV CHANNELS FOR QUBITS PHYSICAL REVIEW A67, 062312 ~2003!
@19#. The raising and lowering operators describe transiti
between the ground and excited states, and theci j describe
the losses caused by the reservoir and depend on phe
enological decay constants.

The coherent part of the dynamics,LC , is described by
the Hamiltonian

H5
\V

2
~s†1s!, ~32!

where V is the Rabi frequency of oscillation between t
ground and excited states. The full dynamics describe a t
level atom driven by a laser field subjected to irreversi
decoherence by its environment. This corresponds to a lin
mapping from a two-dimensional Hilbert space into a tw
dimensional Hilbert space. More generally, this Liouvillia
generates a completely positive dynamical map of a gen
two-level system or qubit.

The Bloch equations for a two-level system described
this Lindblad operator~31! are given by Eqs.~15! where

1

Tu
5

1

T2
1

1

T3
,

1

Tv
5

1

T2
2

1

T3
,

1

Tw
5

1

T1
. ~33!

The presence of the parameterT3 is the source of the damp
ing asymmetry between theu andv components of the Bloch
vector. Equation~31! describes many well-known physica
processes in quantum optics. We wish now to briefly disc
the physics behind this Lindblad form of the master eq
tion.

A. The amplitude damping channel

The amplitude damping channel is identical to the case
spontaneous emission for a two-level atom. This correspo
to the following choice for the parameters:

1

T1
5A,

1

T2
5

A

2
,

1

T3
50, weq521. ~34!

The parameterA is the Einstein coefficient of spontanteo
emission, which depends on the density of vacuum fi
modes and how strongly the atom couples to the modes.
describes the exponential decay of an atom, from excite
ground state, due to vacuum fluctuations. The equilibri
state isweq521 indicating that, given enough time, th
atom will be in the ground state.

B. The depolarizing channel

Another type of noisy quantum channel is the depola
ing channel. This channel is identical to the quantum opt
model for pure phase decay. This channel has paramete
06231
s
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e
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l

1

T1
50,

1

T2
5G,

1

T3
50, weq50. ~35!

This describes the process of phase randomization of
atomic dipole caused by atomic collisions. This leads
equal damping for theu and v components of the Bloch
vector with contractions that depend on the parameterG due
to collisions.

C. The thermal field channel

In the case of spontaneous emission, the atom is cou
to a vacuum reservoir. But one can consider an atom in
acting with a thermal field, so that now the field has a no
zero photon number. The reservoir may be considered
large number of harmonic oscillators such as modes of
free electromagnetic field or a heat bath in equilibrium.
this case, one finds that the decay constants are related t
photon number in the following way:

1

T1
52AS N1

1

2D ,
1

T2
5AS N1

1

2D , ~36!

1

T3
50, weq52

1

2N11
.

Note that settingN50 reduces this to the case of spontan
ous emission. In this thermal field case, the value ofweq
indicates that the atomic inversion approaches a steady s
which is the ground state in the limit of zero photon numb
but asN becomes large it approaches zero. Therefore,
equilibrium state for the inversion is bounded:21,weq
,0. One can see from Eqs.~33! that this leads to equa
damping for theu andv components of the Bloch vector.

D. The squeezed vacuum channel

A more general case occurs when all parameters are
zero and explicitly are

1

T1
52AS N1

1

2D ,
1

T2
5AS N1

1

2D , ~37!

1

T3
5AM, weq52

1

2N11
.

This describes an atom in a squeezed vacuum whereN is the
photon number and M is the squeezing parameter. The
rameterN is related to the two-time correlation function fo
the noise operators of the reservoir^a†(t)a(t8)&5Nd(t
2t8) wherea(t) is the field amplitude for a reservoir mode
The squeezing parameterM arises from the two-time corre
lation function involving the square of the field amplitud
^a(t)a(t8)&5M !d(t2t8). These are the familiar relation
obeyed by squeezed white noise, which lead to squeezin
a vacuum reservoir@20#. A squeezed vacuum has fluctuatio
in one quadrature smaller than allowed by the uncerta
principle at the expense of larger fluctuations in the ot
quadrature. This type of reservoir leads to two dipole de
2-5
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constants in the Bloch equations, the one in the squee
quadrature being correspondingly smaller than that for
stretched quadrature.

The steady state for the inversion is the same here a
the previous case and depends only on the photon num
When the field is not squeezed (M50), the master equation
reduces to the previous case of an atom in a thermal fi
The important difference now is that the squeezing param
has introduced a new parameterT3, which leads to unequa
damping for theu andv components of the Bloch vector. I
what follows, we deal with the most general case, cor
sponding to the Lindbladian~31!, of a qubit coupled to a
squeezed vacuum reservoir. This defines a noisy quan
channel that we call the squeezed vacuum channel~SVC!,
which has different properties from the depolarizing and a
plitude damping channels.

VII. THE SQUEEZED VACUUM CHANNEL

A. The image of the map

So far, we have introduced a general set of Bloch eq
tions ~15! which correspond to the Liouvillian with Eq.~31!
in addition to the coherent dynamics described byH in Eq.
~32!. We are now in a position to solve this master equati
We proceed with the method described in Sec. IV. This t
us how the noise affects all states of the two-level syst
Using the damping basis, the solution to the Liouville equ
tion ~9! with Lindblad operator of the form of Eq.~31! fol-
lows. For a two-level system in a squeezed vacuum reser
the left eigenoperators are

L05
1

A2
I , L15

1

A2
~s†1s!, ~38!

L25
1

A2
~s†2s!, L35

1

A2
~2weqI 1s3!

found from solving Eq.~13! while the right eigenoperator
are

R05
1

A2
~ I 1weqs3!, R15

1

A2
~s†1s!, ~39!

R25
1

A2
~s2s†!, R35

1

A2
s3

found by solving Eq.~14!. They correspond to the following
four eigenvalues:

l050, l152S 1

T2
1

1

T3
D , ~40!

l252S 1

T2
2

1

T3
D , l352

1

T1
.

Of the four eigenvalues, three of them are precisely the
agonal elements of the damping matrix~21! through the
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equationL5elt. We call the set$L% the damping eigenval-
ues and the set$l% the eigenvalues~of the damping basis!.
This indicates a relation between the decay constants in
Bloch equations and the damping basis. The damping eig
values of the damping matrixL contain the decay constan
for the three components of the Bloch vector. The fourth
the damping eigenvalues is unity, which is a necessary c
dition for the density operator to have trace unity. The de
sity operator may be expanded in any complete basis. Ch
ing the right eigenoperators as a basis we can write
density operator as

r5 l 0R01 l 1R11 l 2R21 l 3R3 , ~41!

where the coefficients are obtained by projecting on to
left eigenbasisl i5Tr$Lir%. Next we substitute the expansio
on the right eigenoperators into the equation for the to
Liouville operator equation and use the fact thatLDRi
5l iRi . After the substitution ofr into the total Liouville
equation, one obtains a set of differential equations for
coefficientsl i in the right eigenbasis and the generator of t
Markovian time evolution has the following matrix represe
tation in the same basis:

L5S l0 0 0 0

0 l1 0 0

2 iweqV 0 l2 2 iV

0 0 2 iV l3

D . ~42!

The solution toṙ5Lr is

r~ t !5eLtr~0!. ~43!

One can perform a rotation of the right eigenbasis to obt
the following diagonalized form of the above matrix:

L5S l0 0 0 0

0 l1 0 0

0 0 l231x 0

0 0 0 l232x

D , ~44!

wherel235(l21l3)/2, x5 1
2 A(l22l3)22(2V)2, and the

l i are given in Eq.~40!. It follows that the superoperatoreLt

which maps the density operator forward in time is

eLt5S 1 0 0 0

0 L1 0 0

0 0 L23e
xt 0

0 0 0 L23e
2xt

D . ~45!

The matrices above are represented in two different ba
Equation~42! is in the damping basis, while Eq.~44! is in a
rotated damping basis. Geometrically, one may consider
first case to be dynamics as viewed from a shifting cente
the Bloch sphere. In this case, there is one affine shift tow
the south pole of the Bloch sphere. This is the viewpoint
the damping basis. This can be seen by noting that in E
2-6
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~39! for the damping basis there is one shift present inR0.
From the right eigenoperators of the damping basis,
finds that they are almost the same as the Pauli opera
From the viewpoint of the Pauli basis, the dynamics wo
take place as seen from the stationary center of the B
sphere. In the rotated damping basis, the viewpoint is fro
frame that is rotating with the driving field as well as shiftin
from the center of the Bloch sphere, and, consequently,
eigenvalues lead to contractions or pure damping in this
agonal basis. Although the most general dynamics cont
both coherent and incoherent parts, in certain situations
part may dominate the dynamics. We consider the c
where the system is not isolated from its environment
unaffected by coherent dynamics. In this case, rotations
cur on a time scale much longer than the dissipation so
effectivelyV→0. We will see that this case is advantageo

With these explicit formulas for the damping basis and
damping eigenvalues we can calculate the density oper
for all times. This gives us the image of the map,F(r).
Assuming that the initial density matrix is of the form

r5S a d

d! cD , ~46!

we find that the stochastic map generates a new density
trix

F~r!5S A D

D! CD ~47!

in accordance with Eq.~18!. This is obtained using the set o
eigenoperators and eigenvalues for the damping basis.
the stochastic map that characterizes the squeezed va
channel, we have that the elements ofF(r) are given by

A5
1

2
~a1c!~11weq!1

1

2
L3@a2c2weq~a1c!#,

C5
1

2
~a1c!~12weq!2

1

2
L3@a2c2weq~a1c!#,

D5
1

2
@d!~L12L2!1d~L11L2!#,

D!5
1

2
@d~L12L2!1d!~L11L2!#. ~48!

These elements are in terms of the initial density matrix
ements as well as the damping eigenvalues which contain
parametersTi , and weq . The image gives us the densi
matrix after the noise operatorF has acted on it. The chan
nel capacity of a noisy quantum channel is characterized
the types of errors that result after the input is transmitt
The noise operation defines the channel.

B. Complete positivity

The restriction that this map be completely positive
somewhat stringent. We have mentioned so far that the
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eration ofF on the Bloch vector must transform the vect
into another vector inside the Bloch sphere. This is just o
rather obvious condition. What is not as obvious is that
all states inside the Bloch sphere are allowable for the s
tem. In other words, the Bloch vector cannot access
points in the interior of the Bloch sphere. This is because
the condition of complete positivity, related to the existen
of a Kraus representation which we discuss in the follow
section.

It has been shown@25# that the damping eigenvalues mu
obey the four inequalities

L11L22L3<1,

L12L21L3<1,

2L11L21L3<1,

2L12L22L3<1 ~49!

to guarantee complete positivity of the map. This is a nec
sary condition. These inequalities are the most general c
i.e., they apply to the damping matrix no matter which ca
is considered. These inequalities are a consequence of th
of equations given in the Appendix which involve the dam
ing matrix elementsL i . There are five such equation
which, taken with the first equation, are inner products
vectors. The fact that the inner product must be posit
semidefinite leads to the inequalities above. For the spe
example we present, they reduce to a more familiar fo
Because for spontaneous emission we have 2T15T2, the
four inequalities become:

6coshS t

T3
D<coshS t

T2
D , ~50!

6sinhS t

T3
D<sinhS t

T2
D ,

which are satisfied if and only if

U 1

T3
U<U 1

T2
U. ~51!

In terms of the parametersM andN, this condition for com-
plete positivity becomes

uM u<N1
1

2
, ~52!

as expected. It is well known thatM andN are not indepen-
dent and the amount of squeezing is limited by the numbe
photons. A stricter inequality can be derived directly fro
the matrix elementsci j of the Lindbladian form in Eq.~8!.
This must be a non-negative matrix. Using the matrix e
ments of Eq.~30! one finds that thec matrix is non-negative
if M2<N(N11) where N is the photon number andM is the
squeezing parameter. In the case of equality, we have
squeezing. While the general inequalities of Eq.~49! are a
2-7
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necessary condition for complete positivity, the stricter
equality M2<N(N11) for the SVC is both necessary an
sufficient.

It is worth pointing out that while contractions, withou
shifts, will always map the Bloch sphere into the Bloch ba
not all contractions satisfy the inequalities~49!. Those that
do not satisfy them do not have a Kraus representation
hence are not completely positive maps. We shall see tha
condition of complete positivity restricts the allowable elli
soids of the image. Because the Lindblad form of the ma
equation guarantees complete positivity, by Kraus’ theor
there must exist a decomposition with Kraus operators wh
acts on the system of interest alone. In the next section
give an explicit form of the Kraus operators.

C. The Kraus decomposition

For the special case of a qubit there can be at most
Kraus operators. To see why this is true, the reader is refe
to a lemma where it is shown that the minimum number
Kraus operators is equal to the rank of a certain matrix@25#.
It follows that the minimum number of Kraus operato
needed to represent the map for the squeezed vacuum c
nel is four. We do not show this, but rather use this fact
find an operator-sum representation using the minim
number of Kraus operators possible. We start by assum
that the four Kraus operators exist and that they are r
although in general they are represented by complex m
ces. Next we expand all 232 matrices in Eq.~2! in the Pauli
basis. If we let

Ak5mk0I 1mW k•sW 5Ak~mW !, ~53!

Ak
†5mk0

! I 1mW k
!
•sW 5Ak

†~mW !!,

then Eq. ~2! becomes 1
2 @11si(a,c,d,d!)s i #5 1

2 @1
1t i(mW ,mW !,a,c,d,d!)s i #. Equating each coefficient insi and
t i leads to a set of linear equations which underdetermine
16 coefficients of the Kraus operators in Eq.~53! in the Pauli
basis. Thus, the Kraus representation is not unique. The
ments of the Kraus operators can be written as vector c
ponents

mj5S m1 j

m2 j

m3 j

m4 j

D , ~54!

where j 50,1,2,3. The set of linear equations that need to
satisfied is given in the Appendix. The stochastic map for
squeezed vacuum channel~47! has Kraus operators whic
can be realized in the following way:

A15m10I 1m13s3 ,

A25~m211m22!s
†1~m212m22!s,

A35m31~s†1s!,
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A45m40I , ~55!

with constants given by

m105
1

2

weq~12L3!

A12L12L21L3

,

m215
1

2

weq~12L3!

A12L11L22L3

,

m2252
i

2
A12L11L22L3,

m135
1

2
A12L12L21L3,

m405
1

2
A11L11L21L32

weq
2 ~12L3!2

12L12L21L3
,

m315
1

2
A11L12L22L32

weq
2 ~12L3!2

12L11L22L3
. ~56!

The Kraus decomposition is not unique, so a different se
four Kraus matrices can represent the same map. The m
mum number of Kraus operators, for the map construc
here, is four, but one could just as well use more than fou
produce the map. This freedom in the Kraus decomposi
is related to the many possible ways of performing measu
ments on the system. The system is decohered as a res
being measured by the environment. The many differ
Kraus operators correspond to the many different positi
operator-valued measures which lead to the decohered s
This is why there are many different sets of possible Kra
operators which would result in the same mapF.

One can verify that this choice of Kraus operators satis
the condition in Eq.~3! so that the final density operator ha
trace unity. This is a necessary condition for a trac
preserving map, to which we restrict ourselves. Howev
one could consider maps that are not trace-preserving
which case Eq.~3! becomes an inequality. Since the map
nonunital, i.e., it does not map identity into identity, we ha

F~ I !5S 11weq~12L3! 0

0 12weq~12L3!
D . ~57!

This is due to the presence of the affine shift. Next, we d
cuss what all this means geometrically in terms of the Blo
sphere.

VIII. THE GEOMETRICAL PICTURE

For a set of general Bloch equations and a Lindblad
there exists a 434 matrix of the form~20!. For the Lindblad
equation we have considered here, this map can also be
pressed, in terms of the 434 matrix, as
2-8
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FIG. 1. The effect of noise on
the set of qubit density operator
for an atom in a squeeze
vacuum. Parameters areN
51, M5A2, t50,0.5,1.
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TD5S 1 0 0 0

0 L1 0 0

0 0 L2 0

~12L3!weq 0 0 L3

D . ~58!

This is a special case of Eq.~20! with

0,L3,L1,L2,1 ~59!

and affine shifts

t0150, t0250, t035weq~12L3!, 21,weq,0.
~60!

From this we see that the components of the Bloch vector
contracted. To guarantee that the Bloch vector is contai
within the Bloch ball the following condition must hold:

~L1u!21~L2v !21@L3w1~12L3!weq#
2<1. ~61!

Furthermore, we see that the matrix~58! transforms the
Bloch sphereu21v21w251 into an ellipsoid inside the
Bloch ball. That is, the image of the set of pure state den
matrices under the stochastic map is given by the family
ellipsoids

S u

L1
D 2

1S v
L2

D 2

1S w2weq~12L3!

L3
D 2

51. ~62!

The shiftweq(12L3) determines the center of the ellipso
while the eigenvalues$L1 ,L2 ,L3% define the lengths of the
axes. If we start with the set of pure state density opera
that lie on the Bloch sphere, then as time progresses
states move onto the surface of a contracting ellipsoid.
pure states have become mixed states. By Eq.~59!, each axis
is unequally contracted, as shown in Fig. 1. Because of
squeezed vacuum, thev component experiences very littl
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damping while theu component is rapidly damped, as show
in Fig. 2. The explicit expression for the shift in terms ofweq

indicates that the ellipsoid is translated in the negativew
direction over time and settles into an equilibrium or fix
point, as shown in Fig. 3.

The matrix of Eq.~20! is in the Pauli basis and describe
the dissipative dynamics from the stationary viewpoint at
center of the Bloch sphere. From this viewpoint, one wo
observe a contracting ellipsoid moving away from the Blo
sphere center to some equilibrium point. The matrix co
also be represented in the damping basis, in which cas
would be diagonal. This amounts to transforming to a fra
where, instead of being a stationary observer at the Bl
sphere center, one is moving along with the shifting ell
soid. In this case, one observes only a contracting ellips
This is the geometrical picture of the damping basis.

If the effect of noise on all input states is known, then t
least noisy output states can be identified. The minimal
tropy states are the states least affected by the noise
consequently the least mixed states. Geometrically, th
would all be states whose distance from the surface of
Bloch vector is a minimum. These states form a set of
treme points of the convex set of density operators. Suc
set of points on the ellipsoid having minimal distance to t
Bloch sphere may consist of one or two points, a circle,
the entire surface of the ellipsoid. For a given noise, th
nearest points represent states of maximum purity in the
of states affected by the noise. For the squeezed vac
channel, the set of minimal entropy states consists of
states along the major axis of the ellipsoid.

The purest minimal entropy states are obtained by ma
mal squeezing of the reservoir. This results in the most
centric ellipsoid which is stretched in one particular directi
and places the two points along the major axis of the el
soid close to the Bloch sphere surface, as seen in Fig. 1
the squeezing parameterM goes to zero, the ellipsoid be
-

FIG. 2. From a top view one
can see that theu component is
rapidly damped while thev com-
ponent is slowly damped. Param
eters are N51, M5A2, t
50,0.5,1.
2-9
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FIG. 3. A side view makes ap
parent the affine shift of the non
unital map. Parameters areN
51, M5A2, t50,0.5,1.
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comes less elongated and the minimal entropy states
their purity. WhenM is identically zero, the minimal entrop
points lie in a circle. Equivalently, asM approaches zero, th
damping for theu component of the Bloch vector approach
that for thev component.

If we had included the coherent dynamics as well as
dissipative dynamics, the minimal entropy points on the
lipsoid would be more mixed than without the coherent d
namics. The reason for this is that the ellipsoid would be
to rotate and the minimal entropy points along thev compo-
nent would rotate away from this axis where there is m
noise. Consequently, the minimal entropy points get
graded by being moved away from the axis with least no
so that for this channel it is advantageous to keep cohe
dynamics suppressed.

Other noisy quantum channels have been introduced s
as the depolarizing channel, the amplitude-damping chan
and the phase-damping channel@12#. The depolarizing chan
nel has all three components of the Bloch sphere equ
damped and it is a unital channel. The set of minimal entro
points would lie on a sphere. The amplitude-damping ch
nel has two of the three components equally damped and
a nonunital channel. It arises from the master equation
scribing spontaneous emission as in Eq.~34!. The set of all
states moves on an ellipsoid which shifts toward the so
pole. The phase-damping channel is the case described in
~35!. It has two equally damped components, one undam
component, and is unital. It has two extreme points, one
the north pole and one at the south pole. Given any type
noise, the geometrical picture is a useful aid and allows fo
simple analysis of the channel capacity. To transmit inform
tion over the channel it is ideal to use as input states th
states which result in the minimum amount of measurem
error.

IX. CHANNEL CAPACITY

A. Encoding classical information in qubits

One way to use a quantum channel is to send class
information encoded in quantum states. Although quant
information is being sent because qubits are sent through
channel, these qubits are being used in an entirely clas
way. A natural extension of the classical channel capacity
a quantum channel was proposed by Holevo@10#. In this
case, quantum states are used to transmit messages re
across some noisy quantum channel. Also known as
product state capacity, because messages are sent usin
sor products of the input states which comprise the alpha
06231
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the channel capacity for classical information over a no
quantum channel has been defined as

C~F!5 max
(pi ,r i )

H SFFS (
i

pir i D G2(
i

piS@F~r i !#J .

~63!

S is the von Neumann entropy defined asS(r)
52Tr(r logr) and is the quantum analog of the Shann
entropy. The maximum is taken over all possible ensemb
of input states. The input alphabet consists of a set of st
r i which are transmitted with probabilitypi . For the case of
the SVC, the maximization is achieved using the two
thogonal input states for which the damping is smallest w
a uniform distribution over these states. With the convent
already chosen, this is thev component of the Bloch sphere
Thus, the optimal way to send classical information throu
the SVC is to prepare product states using the two ortho
nal input statesr05u0&^0uv and r15u1&^1uv , which lie in
the equatorial plane of the Bloch sphere, with correspond
probabilitiesp051/2 andp151/2 to encode messages. F
example, r0

(1)
^ r1

(2)
^ •••^ r1

(N) , requiring N uses of the
channel, would represent theN-length classical bit string
01•••1.

The noise operationF causes the output of these tw
states to be nonorthogonal, mixed states. No single meas
ment at the receiving end can perfectly determine which
put state was sent. There are two errors that can occur;
error arises because of the nondistinguishability of non
thogonal states while the other arises because the sta
mixed. The first term in Eq.~63! takes into account the in
formation loss due to the fact that the output states are n
orthogonal while the second term takes into account the
the the output states are mixed. The Holevo capacity ha
nice geometrical interpretation. To see this we consider
example. For simplicity, let us assume that the SVC h
maximum squeezing and the input states are received af
1 s pass through the channel. Then, using the same pa
eters as in Figs. 1–3, namely,N51, M5A2, andt51, we
find explicitly that the Holevo capacity isC(SVC)50.93
20.1150.82 qubits per transmission. This is calculated
usingr05u0&^0uv andr15u1&^1uv as input states with cor
responding probabilitiesp051/2 andp151/2 and calculat-
ing the quantity inside the braces of Eq.~63!.

Note that the first term is present because of the af
shift while the second term is due to a contraction of t
Bloch sphere. To see the various errors that can occur we
write C(SVC)512(120.93)20.1150.82 qubits per trans-
2-10
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mission. Now the first term is the number of qubits th
could be sent if there was no noise present. The second
is the error caused by the affine shift. This is the dista
from the center of the Bloch sphere to the center of
ellipsoid. This error occurs because the states lose thei
thogonality. The last term is the error due to the contract
of the ellipsoid. The contractions cause the states to bec
mixed and consequently there will be measurement error
this kind. This term is a distance from the Bloch sphe
surface to the surface of the ellipsoid. It is interesting to n
that the affine shift actually takes the maximally mixed st
into a state with less entropy. This can occur because ge
alized measurements can decrease entropy. Also, if no n
were present the capacity would beC(I )51 qubit per trans-
mission, meaning that one error-free qubit can be transmi
in one use of the channel.

B. Entanglement transmission

Another way in which a quantum channel can be used
does not have a classical counterpart is for entanglem
transmission. In this case, one is interested in distribu
parts of an entangled state to different locations. For
ample, a source may generate Einstein-Podolsky-Ro
~EPR! pairs, and one may be interested in sending one-
of this EPR pair through some channel to a receiver. Na
nd
ng
b
n
in
-

th

bi
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rally, noise will corrupt the transmitted state and lead to
decrease in the entanglement of the joint state.

A channel has the capacity to transmit entanglemen
after passing through the channel there is any nonzero
tanglement present in the joint state. It has been shown
Horodecki et al. that any nonseparable bipartite syste
which has entanglement, however small, can be distilled
singlet form @26#. Therefore, if a channel can transmit an
entanglement, it is a useful channel.N copies can be sent an
a singlet state can be distilled.

Assuming the initial Bell state has the following densi
operator representation:

rAB5
1

2 S 1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

D , ~64!

the output state will be determined by the operation

rAB8 51A^ FB@rAB#, ~65!

which describes the process of sending one qubit to B
while Alice keeps her qubit intact. In matrix notation, th
output state for the joint system is
rAB8 5
1

4 S 11weq1L3~12weq! 0 0 L11L2

0 12weq2L3~12weq! L12L2 0

0 L12L2 11weq2L3~11weq! 0

L11L2 0 0 12weq1L3~11weq!

D . ~66!
r
ing

oint
At the initial time the joint state is maximally entangled a
the noise process should result in a decrease in the enta
ment until some critical time when the joint state is separa
and remains separable thereafter. Using the Peres criterio
the positivity of the partial transpose, one can determ
when the state becomes separable@27#. A necessary and suf
ficient condition for the output state to be nonseparable
that the partial transpose map be negative@28#. To check the
positivity of the partial transpose it suffices to examine
eigenvalues of the operator given by

r8AB
TB 51A^ TB@rAB8 #, ~67!

whereTB denotes the transpose of the state of Bob’s qu
The four eigenvalues of the partial transpose matrix are

e15
1

4
$11L32A~L12L2!21@weq~12L3!#2%,

e25
1

4
$11L31A~L12L2!21@weq~12L3!#2%,
le-
le
of

e

is

e

t.

FIG. 4. The eigenvaluee3 is shown as a function of time fo
photon numberN51. The three curves correspond to squeez
parameterM50 ~dash-dotted!, M50.8Mmax ~dashed!, and M
5Mmax. The larger the squeezing parameter, the longer the j
state is nonseparable.
2-11
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e35
1

4
$12L32A~L11L2!21@weq~12L3!#2%,

e45
1

4
$12L31A~L11L2!21@weq~12L3!#2%. ~68!

Initially, the eigenvalues have valuese151/2, e251/2, e3
521/2, ande451/2, while in the steady state they becom
e151/6, e252/6, e351/6, ande452/6. We find that the
nonseparability is determined solely by the eigenvaluee3.
The transmitted EPR state remains nonseparable prov
that

12L3,A~L11L2!21@weq~12L3!#2. ~69!

There is some critical time when the eigenvalue is zero
then remains positive thereafter. The value of this criti
time depends on the parameters of the reservoir. As the
ton number of the reservoir increases the critical time
creases. One would expect this to be the case since the
ervoir is more noisy. It is not as obvious what effect t
squeezing of the reservoir has on the entanglement bec
the squeezing results in a trade-off of more noise in o
component and a decrease in another component. We
that a squeezed reservoir results in a longer entanglem
time for the inital maximally entangled state. The critic
time is longer for a maximally squeezed vacuum. This
shown by the solid curve in Fig. 4. In both the case of se
ing product states and for distributing EPR states,
squeezing parameterM is able to enhance the capacity of th
channel.

X. CONCLUSION

In this paper we provided a method for calculating a s
chastic map for any quantum Markov channel. Our meth
uses a special damping basis of left and right eigenopera
This basis provides a natural way to generate noisy quan
channels from a quantum optical approach. This techni
allows one to calculate the stochastic map and from this
can then determine a set of Kraus operators which define
noisy quantum channel.

We used this method to calculate explicitly a noisy qua
tum channel we called the squeezed vacuum channel.
showed the relationship between a set of quantum op
Bloch equations and the damping basis. Some known qu
tum channels such as the amplitude-damping channel an
depolarizing channel arise from this set of Bloch equatio
These quantum Markov channels are special cases of
squeezed vacuum channel. The channel we derived is a
unital stochastic map which is characterized by three une
damping eigenvalues. By using the damping basis, we w
able to find a set of Kraus operators for the stochastic m
From this, the effect of noise on the set of input states w
interpreted geometrically. The Bloch picture was used
study the effect of noise present in the channel and the
herent dynamics was considered in addition to the incohe
dynamics.

The procedure to calculate the channel capacity requir
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maximization over all input states. Using the Bloch pictu
we were able to determine the channel capacity for
squeezed vacuum channel to transmit classical informa
in quantum states. We found that the channel has two m
mal entropy points which should be used to optimally tra
mit information. A geometrical interpretation of the Holev
capacity was given and used to identify two types of errors
those arising from nonorthogonal states and those ari
from mixed states. We also discussed the ability of this ch
nel to distribute EPR states. We found that, after send
one-half of the EPR state through the channel, there is s
critical time after which the state becomes separable.

This paper shows that with thea priori knowledge of the
effect of noise given by a Lindblad form, one can choose
encode messages using the pure states that are closest
final states of minimum entropy. The squeezed vacuum ch
nel is a more general noisy channel derived from quant
optical two-level systems. Unlike previously introduce
channels, it has unequal damping eigenvalues and it is n
unital. We found that channel capacity is enhanced by
squeezing parameterM, whether it is used to send produ
states or used to transmit EPR states. This channel
prove useful as a testing ground for future conjectures
quantum channel capacities.
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APPENDIX

For the Hilbert space of 232 matrices, one may alway
represent the quantum channel using four or fewer Kr
operators. To find a representation, one can construct a s
simultaneous equations via the prescription given in S
VI B. The squeezed vacuum channel has Kraus opera
which must satisfy the following set of equations. There a
four for the shifts:

m0
!m01m1

!m11m2
!m21m3

!m351, ~A1!

m0
!m11m0m1

!1 i ~m2
!m32m2m3

!!5t01,

m0
!m21m0m2

!2 i ~m1
!m32m1m3

!!5t02,

m0
!m31m0m3

!1 i ~m1
!m22m1m2

!!5t03.

For the coefficients ofa, c, d, andd!:

i ~m0
!m22m0m2

!!2~m1
!m31m1m3

!!50,

m0
!m01m1

!m12m2
!m22m3

!m31 i ~m1
!m21m1m2

!!

2~m0
!m32m0m3

!!5L1 ,
2-12
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m0
!m01m1

!m12m2
!m22m3

!m32 i ~m1
!m21m1m2

!!

1~m0
!m32m0m3

!!5L1 ,

m0
!m12m0m1

!2 i ~m2
!m31m2m3

!!50,

m0
!m02m1

!m11m2
!m22m3

!m32 i ~m1
!m21m1m2

!!

2~m0
!m32m0m3

!!5L2 ,

m0
!m02m1

!m11m2
!m22m3

!m31 i ~m1
!m21m1m2

!!

1~m0
!m32m0m3

!!5L2 ,

m0
!m02m1

!m12m2
!m21m3

!m35L3 ,

m0
!m12m0m1

!1m1
!m31m1m3

!

1 i ~m0
!m22m0m2

!1m2
!m31m2m3

!!50,

m0
!m12m0m1

!2m1
!m32m1m3

!

1 i ~2m0
!m21m0m2

!1m2
!m31m2m3

!!50.

~A2!

And to satisfy the conditionAkAk
†5I :

m0
!m31m0m3

!2 i ~m1
!m22m1m2

!!50. ~A3!

The set of equations leads to restrictions on the damp
eigenvalues as in Eq.~49!. As an example of the explici
y

, a

ev

. A

-

o
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construction of Kraus matrices, we will consider the pu
phase decay case of Eq.~35!, which is the phase-dampin
channel. For this case,L15L2 , L350, and t015t025t03
50. Any solution of the set of linear equations along wi
these conditions will give a Kraus representation. The f
lowing solution for elements of the Kraus matrices is eas
found to bem250W , m350W , and

m05S m10

0

0

0

D , m35S 0

0

0

m43

D ~A4!

with

m105A11L

2
, m435A12L

2
. ~A5!

The phase-damping channel has a Kraus representation g
by

A15A11L

2
I , ~A6!

A25A12L

2
s3 . ~A7!
th.
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