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We examine stochastic maps in the context of quantum optics. Making use of the master equation, the
damping basis, and the Bloch picture we calculate a nonunital, completely positive, trace-preserving map with
unequal damping eigenvalues. This results in what we call the squeezed vacuum channel. A geometrical picture
of the effect of stochastic noise on the set of pure state qubit density operators is provided. Finally, we study
the capacity of the squeezed vacuum channel to transmit quantum information and to distribute Einstein-
Podolsky-Rosen states.

DOI: 10.1103/PhysRevA.67.062312 PACS nuntber03.67.Hk, 42.50.Lc, 03.65.Yz

[. INTRODUCTION unequal damping eigenvalues, which makes it different from

previously introduced channel42]. We use this channel to

One of the aims of quantum information theory is to give geometrical insight into the Holevo channel capacity.
achieve the storage or transmission of information encoded We begin this paper by defining a noisy quantum channel

in quantum states in a fast and reliable Way. It is unreal-  in Sec. Il in terms of stochastic maps and the Kraus decom-
istic to consider a physical system, in which information isPosition. A special case of the Markov channel is discussed.
stored, as being isolated. It is well known that, when theln Sec. lll, a general Lindblad equation for a finite-

system of interest interacts with its environment, irreversibledimensional Hilbert space is introduced. In Sec. IV, the
decoherence occurs, which is, in most cases, both undesfl@mping basis is introduced as an alternative way to calcu-
able and unavoidablg2]. This interaction causes pure stateslate the stochastic map explicitly without using a Kraus de-
to become mixed states. This process describes the influené@mpostion. Stochastic maps in the context of quantum op-
of noise on quantum states, which results in information protics described by a set of Bloch equations are discussed in
cessing errors. Sec. V. Section VI reviews some known quantum channels

The question of how to reliably transmit information be- and presents some more general types of channels. The sto-
gan with communication systems. Shannon’s noisy channdlhastic map that defines the squeezed vacuum channel is
coding theorem is the fundamental theorem of informatioreXplicitly calculated in Sec. VII, and the restrictions imposed
theory [3,4]. It states that information can be transmitted by the condition of complete positivity are presented. These
with arbitrarily good reliability over a noisy channel pro- results are used to determine a Kraus decomposition explic-
vided the transmission rate is less than the channel capacitiy- The geometrical picture of the channel is given in Sec.
and that a code exists which achieves this. There has be&!l. Finally, Sec. IX deals with the channel’s ability to send
recent interest in studying quantum channels for Sendinglassically encoded quantum states and its ability to send the
quantum information and defining quantum channel capacitesource of entanglement.
ties[5-11].

As in classical information theory, a quantum channel ca- 1. NOISY QUANTUM CHANNELS
pacity is characterized by the type of noise present in the
channel. There exists a set of input states or alphabet which
the sender transmits through the channel. The noise in the The concept of a noisy quantum channel arose from the
channel generally degrades the states. The receiver tries field of quantum communication. Information is encoded in
recover the message that was sent from the output stateguantum states and transmitted across some channel where
This process of induced errors may be described by a systethe receiver decodes the information to retreive the original
interacting with a reservoir. For a classical communicatiormessage. The ability to send messages reliably depends on
channel, the channel is completely characterized by its trarthe noise present in the channel. The effect of the noise is to
sition probability matrix which determines the errors that cantake an initial quantum state and transform it to another
occur. In constrast, a quantum channel is characterized by guantum state. The noisy quantum channel is then defined by
completely positive, trace-preserving or stochastic mag map
which takes the input state to an output state. This character-
izes the type of noise present in the channel. C:p—®(p) ()

In this paper, we use a special basis of left and right
damping eigenoperators for a Lindblad superoperator to caWwhich takes a quantum state described by a density operator
culate explicitly the image of a stochastic map for a widep into a quantum state described by a density operh{or).
class of Markov quantum channels. We use this method tdhere are certain restrictions on the class of maps which
derive a noisy quantum channel for qubits, which we call thegenerate legitimate density operators. We require that
squeezed vacuum channel. This channel is nonunital witAr{®(p)]=1 so that unit trace of the density operator is

A. Stochastic maps
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conserved for all time. In addition, the image of the map,tors with damping eigenvalues;, which allow for an ex-
®(p), must be a positive operator. A map that takes positiveplicit calculation of the stochastic map and the Kraus opera-
operators into positive operators is called a positive map. Butors. This method works for any Markov channel.

if one considers the noise to come from a larger Hilbert

space of a reservoir, then the stronger condition of complete ll. THE GENERAL LINDBLAD EQUATION

positivity is required for the process to be physiths,14. o )

Therefore, we restrict our attention to completely positive, The Schrdinger evolution of a system coupled to a res-

trace-preserving maps, which are called stochastic maps. €rvoir can be described in terms of a master equation of the
' form

o B. The Kraus decomp05|-t|on - p=Lp=Lep+Lop, ®)
Noise in the channel may be considered as a reservoir to

which the quantum state of interest is coupled. The state andtherep is the density operator of the system alone, obtained

the reservoir interact unitarily for some time and they be-by tracing over the reservoir degrees of freedom. The first

come correlated. If we are now interested only in the systemierm describes the coherent or unitary evolution and is sim-

we trace over the environment degrees of freedom. One magly given by the commutator

think of the reservoir as extracting information from the sys- .

tem as it will typically map pure states into mixed states. Lop=— I—{H o} @)

This noise process can be described by a quantum operation cP at o

involving only operators on the system of interest. This is

called a Kraus decomposition and has the form whereH is the Hamiltonian of the undamped system.

The general form of the nonunitary part which describes
the dissipation of the density operator is

®(p)=2 AcpA 2 2
Ne—1
" =EZ A[Fi, pFI1+[Fip,FI
where the condition Lop=73 - i i{[Fi.pFj1+[Fip,Fj1} €S
> AAl=I (3  valid for a finite N-dimensional Hilbert space. TH&;} are
k system operators which satisfy the conditions Ffrﬁ)

: . . =¢,; and TrF;)=0. The set of complex elemen{sg;;
ensures that unit trace is preserved for all tifaé]. If an ¢ positiv(glznatrix P e}

operation has a Kraus decomposition, then it is completely It has been provefil6] that a linear operator on a finite

positive. The converse is also true so that all stochastic Mang._4imensional Hilbert spacé:M(N)—M(N) is the genera-

have a Kraus decomposition. tor of a completely positive dynamical semigroup in the
_ Schralinger picture if and only if it can be written in the
C. The Lindblad form form of £:p— Lp where Lp takes the form of Eqq7) and

The formalism we have outlined so far is general. For ar(8). We will call the generator of the semigroup, which gov-
important type of noise, Markov noise, we have a speciaBrns the dissipation, the Lindbladian and denote itdpy.
class of completely positive maps. We call a Markov quan-Equation(8) may be recognized as the master equation de-
tum channel one in which the noise in the channel arisescribing irreversible evolution of an open quantum system
from a coupling of the system with a reservoir under theunder the Markov and Born approximations. This Lindblad
Markov and Born approximations. This is a commonly usedequation is widely used in many branches of statistical me-
approximation in quantum optics and leads to the well-chanics and quantum optics. This form, the Lindblad form,
known Lindblad form of a master equation. For this type ofhas been shown to guarantee positivity and trace preserva-
channel, one can always write a stochastic map as tion of the density operatdi7,18.

D (p)=ep(0). (4) IV. THE DAMPING BASIS

The equation describes the evolution of a system coupled to There are many methods for solving master equations, the
a reservoir in terms of the system of interest alone. All Lind-use of Fokker-Planck equations built on methods in stochas-
blad superoperators are stochastic maps and have a Kratis processes and Monte Carlo wave functions, to name two

decomposition. The converse is not true in general. [19,2Q. In this paper, we make use of the damping basis in
In this paper, we derive an equivalent equationdoiof  order to solve a master equation which has the form of Eq.
the form (6) containing both the coherent and damping dynamics.
This amounts to solving an eigenvalue equation. In some
D(p)= EI Tr{Rp(0)}AL; (5) cases, this problem can seem formidable and finding a damp-

ing basis first is useful. To solve the master equation in this
fashion involves first solving the eigenvalue equation

to obtain the image of the stochastic map for Markov noise.

We use a special basis of left,, and right,R;, eigenopera- Lpp=A\p 9
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for the nonunitary part of the density operator evolution de- . 1

scribing an open system. This provides one with a complete, u=-— T—U—Av,
L) . . u

orthogonal basis with which to expand the density operator

at any time. Such a basis is called the damping baxi

This basis is obtained by finding the eigenoperators of the -1

. . . . . v=—=—v+tAu+Qw,

eigenvalue equation. Likewise, the dual eigenoperators are T,

found by solving the dual eigenvalue equation. The original

basis and the dual basis are orthogonal.

If the eigenoperators of E¢9) areR; with corresponding w=— i(w—w )—Qu (15)
. ) . . T eq ’
eigenvalues,;, then once the initial state is known w
P(O):Ei Tr{L,p(0)}R;, (10) where() is the Rabi frequency, the constafitg and T, are

decay rates of the atomic dipole, amg is the decay rate of
the atomic inversion into an equilibrium statg,. One typi-

the state of the system at any later time can be found througkally finds that the phenomenological decay rates in the
Bloch equations appear as

p<t>=e“p<0>=2 Tr{Lip<0>}AiRi=Z Tr{Rip(0)}AL;, .
(12) ==, ===, —==— (16)

where A;=e!i' are the damping eigenvalues ahdis the
state dual tdR; . These are called the left and right eigenop-so that the parts of the atomic dipole that are in phase and out
erators, respectively, and satisfy the following duality rela-of phase with the driving field are affected in the same way
tion: by the damping. This description is in terms of a two-level
atom coupled to an external field as well as a reservoir. The
THLiRj} = & - (12) coupling to the external field causes the Bloch vector to ro-
tate. The coupling to the reservoir, which might be a con-
tinuum of vacuum field modes, causes the Bloch vector to
decrease in magnitude. The combination of these two behav-

It is easy to show that and R have the same eigenvalues.
The left eigenoperators satisfy the eigenvalue equation

LLp=\L (13)  iors leads to a spiraling in of the Bloch vector. Although we
describe these dynamics in terms of the two-level atom, the
while the right eigenoperators satisfy Bloch picture can describe any two-level system. Here we
shall consider the more general form of Ef5) where all
LpR=RA\. (14 three damping constants may be unequal. As we shall see,

This method is a simple wav of finding the density o eratorthis describes the physical situation where the two-level
. np Y ing Y Ope atom is coupled to a squeezed vacuum reservoir rather than a
for a given/ for all times. The solution of the left and right

. . ) . .~ regular vacuum field. The damping parameters lead to deco-
eigenvalue equations yields a set of eigenvalues and eige

: ) 7 . ®Herence of the system of interest.
solutions:{},L,R}. Once the damping basis is obtained, " The decoherence is caused by the presence of noise and

can be used to expand the density operator. Then the dens ay be viewed as a stochastic map acting on the Bloch vec-
operator in this basis can be substituted back into the fulﬁr in the form of a mapping23]

Liouville equation(6). By doing this, one obtains a set of

coupled differential equations for the coefficients of the den- .

sity operator in the damping basis. Solution of this set of ®:b—b'. 17
coupled differential equations yields the solution to the total

Liouville dynamics. The important point is that once all ei- Because there is a correspondence between the Bloch vector

genvalues and all left and right eigenoperators of the SUPeE and the density operatgr, we see that the stochastic map

operator are found, the master equation can be solved and all superoperator which maps density operators into density
system observables can be computed. operators:

V. BLOCH STOCHASTIC MAP d:p—p'. (18)

When studying two-level systems there is the added ad-

vantage of a geometrical picture offered by the vector mode|ve can expand the density operator in the Pauli basis
of the density matrix. For instance, decoherence of a twos| ,0y,0y,0,} and consider how the componentsofrans-
level atom is described by the dynamics of a Bloch vectoform under the map. This latter transformation is character-
with three componentsﬁz(u,v,w), inside a unit three- ized by a 4X4 matrix representation @b. It has been found
sphere, governed by a set of Bloch equatip28]. These that the general form of any stochastic map on the set of
constitute a set of differential equations, one for each comeomplex 2<2 matrices may be represented by such>ad4
ponent of the Bloch vector, of the form matrix containing 12 parametef24]:
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Lo oo 1(|+6 7) 1(|+B) (27)
p: —_ CO)==
tio tin 2 g3 2 2
7= . (19
tho tr tp 1t under the map becomes
typ t31 13 fg3 1
The 3X 3 block of the matrixZ7 can be diagonalized using P(p):p—®(p)= E(I +BY). (28)
two rotations. This amounts to a change of basis. Without _ _ _ _
loss of generality, we can consider the matrix This is possible only if the eigenvalués are contractions.
In the following sections we provide an explicit construction
1 0 0 O of the stochastic mag@ from the Bloch equationgl5).
tw Ay 0 O
Tp= (20 VI. TWO-LEVEL ATOM IN A SQUEEZED VACUUM
ty 0 0 Ag The master equatio(®) yields a plethora of possible com-

pletely positive dynamical maps. In the remainder of this
which uniquely determines the map. To preserve HermiticityPaper, we wish to examine a particular form of ). which

the trace of the density operator. We call the 3 part of the ~ ¢ase where the three components of the Bloch vector have
matrix 7,,, consisting of the damping eigenvaluaswhich  different decay rates and where the Bloch vector is shifted

are contractions, the damping matix Explicitly. from the origin of the Bloch sphere. As will be seen, this
leads to a contraction of the set of states that lie on the Bloch
A, 0 O sphere surface. Some states in the set become very mixed,
while some remain almost pure.
A=| 0 A, O] (21) p

We will consider a special case of the Lindbladian in Eq.
0 0 Aj (8) for a two-dimensional Hilbert space by choosing the fol-

. lowing set of system operatof§;}:
In terms of the Bloch vector, a general stochastic map may
be written in the form o3
Fi=0, Fy=0', F3=—, (29)
®:5—b"= Ab+b,, (22) V2

wheres ando' are the qubit lowering and raising operators
ndo; is thez-component Pauli spin operator. If, along with
this set of system operators, we choose the matrix elements

where b, = (t10,t20.t30) is a translation. The overall opera-
tion consists of a damping part and translations. Due to th
presence of translations, the transformation is affine.

To see the properties required by the stochastic map ifjii such that

terms of the Bloch vector consider the matrix representation 1 1
of the Bloch vector as an expansion in terms of the Pauli 5= (1-Wwgg) - 0
matrices: 2T, T3

' 1 1 (1+w) 0

N w u—ilv c= - _ W ,
B=b-o=| .. _. ) (23) T3 2T, ea
v 0 o 1 1
In the absence of noise, the Bloch vector remains on the T_2 2_'I'1
Bloch sphere so that (30
detB=—(u?+v?+w?) (24)  the resulting Lindbladian is

has magnitude_ unity. Thg presence of stochastic noise trans-  (1-wo[o optpoto—20pot]
forms the matrixB according to DP= 4T, eq pTe p

®:B—B'. (25) 1 ; : ;
_ —4—T1(1+Weq)[0'0' ptpoog'—20'po]
To guarantee that the malp transforms the density operator

into another density operator, the Bloch vector can be trans- 1 1 1 Py

formed only into a vector contained in the interior of the _(Z_Tg_ 4—1-1)[13—03903]— T—S[U po'+opo].

Bloch sphere, or the Bloch ball. Equivalently, we require

(31
|detB’|<|detB], (26) _ o _
This part of the master equation is known to describe the
so that the qubit density operator dissipative evolution of a two-level atom coupled to a bath
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[19]. The raising and lowering operators describe transitions 1 1 1
between the ground and excited states, andcthelescribe .70 =0 720, weq=0. (35

. 1 2 3
the losses caused by the reservoir and depend on phenom-
enological decay constants. . _ _ This describes the process of phase randomization of the

The coherent part of the dynamicSe, is described by  atomic dipole caused by atomic collisions. This leads to
the Hamiltonian equal damping for thes andv components of the Bloch
vector with contractions that depend on the paramétdue
hQ) .
H= 7(0T+ o), (32  tocollisions.

. . I C. The th | field ch |
where () is the Rabi frequency of oscillation between the € fnermat field channe

ground and excited states. The full dynamics describe a two- In the case of spontaneous emission, the atom is coupled
level atom driven by a laser field subjected to irreversibleto a vacuum reservoir. But one can consider an atom inter-
decoherence by its environment. This corresponds to a linea@cting with a thermal field, so that now the field has a non-
mapping from a two-dimensional Hilbert space into a two-zero photon number. The reservoir may be considered as a
dimensional Hilbert space. More generally, this Liouvillian large number of harmonic oscillators such as modes of the
generates a completely positive dynamical map of a generittee electromagnetic field or a heat bath in equilibrium. In
two-level system or qubit. this case, one finds that the decay constants are related to the
The Bloch equations for a two-level system described byphoton number in the following way:
this Lindblad operatof31) are given by Eqs(15) where

! =2A[ N L ! =A[N L 36
111 T, 2AINT S T =AINT ) (36
T, T, TS )
1 1 1 T,- 0 Wea™ T oNTT
T, T, T _ :
voo2 3 Note that settingN=0 reduces this to the case of spontane-
11 ous emission. In this thermal field case, the valuewgf,

= (33 indicates that the atomic inversion approaches a steady state,
Tw Ty which is the ground state in the limit of zero photon number,
) but asN becomes large it approaches zero. Therefore, the
The presence of the parametey is the source of the damp- gquilibrium state for the inversion is boundee:1<weq
ing asymmetry between theandv components of the Bloch 4 one can see from Eq¢33) that this leads to equal

vector. Equation(31) describes many well-known physical damping for theu andv components of the Bloch vector.
processes in quantum optics. We wish now to briefly discuss

the physics behind this Lindblad form of the master equa- D. The squeezed vacuum channel

tion.
A more general case occurs when all parameters are non-
A. The amplitude damping channel zero and explicitly are
The amplitude damping channel is identical to the case of 1 1 1 1
spontaneous emission for a two-level atom. This corresponds T -2AIN+ 5] - =A|N+ 3], (37)
to the following choice for the parameters: ! 2
1 1

1 1 A 1

R - = = —=AM, Wes=— .

A T 10 Weesmlo (34 Ts =T 2N+ 1

The parameteA is the Einstein coefficient of spontanteous 1NiS describes an atom in a squeezed vacuum wiesethe
emission, which depends on the density of vacuum field?hoton number and M is the squeezing parameter. The pa-

modes and how strongly the atom couples to the modes Thi@meterN is related to the two-time correlation function for
i ; .y i int N\ —
describes the exponential decay of an atom, from excited tH“e, noise operators of the reservdia’(t)a(t’))=Na(t
ground state, due to vacuum fluctuations. The equilibriumi_t") wherea(t) is the field amplitude for a reservoir mode.
state isweq=—1 indicating that, given enough time, the Th'e squeezing parametlst arises from the two-time corre-
atom will be in the ground state. lation function involving the square of the field amplitudes

(a(t)a(t’))=M*S(t—t"). These are the familiar relations
obeyed by squeezed white noise, which lead to squeezing of
a vacuum reservo[r20]. A squeezed vacuum has fluctuations
Another type of noisy quantum channel is the depolarizin one quadrature smaller than allowed by the uncertainty
ing channel. This channel is identical to the quantum opticaprinciple at the expense of larger fluctuations in the other
model for pure phase decay. This channel has parameters quadrature. This type of reservoir leads to two dipole decay

B. The depolarizing channel
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constants in the Bloch equations, the one in the squeezestjuationA =e'. We call the sefA} the damping eigenval-
quadrature being correspondingly smaller than that for theiles and the sgi\} the eigenvaluegof the damping basjs
stretched quadrature. This indicates a relation between the decay constants in the
The steady state for the inversion is the same here as iBloch equations and the damping basis. The damping eigen-
the previous case and depends only on the photon numberalues of the damping matriX contain the decay constants
When the field is not squeezel=0), the master equation for the three components of the Bloch vector. The fourth of
reduces to the previous case of an atom in a thermal fieldhe damping eigenvalues is unity, which is a necessary con-
The important difference now is that the squeezing parametetition for the density operator to have trace unity. The den-
has introduced a new paramefey, which leads to unequal sity operator may be expanded in any complete basis. Choos-
damping for theu andv components of the Bloch vector. In ing the right eigenoperators as a basis we can write the
what follows, we deal with the most general case, corredensity operator as
sponding to the Lindbladia31), of a qubit coupled to a
squeezed vacuum reservoir. This defines a noisy quantum p=loRo+11R1+12Rx+13Rs, (41)
channel that we call the squeezed vacuum cha(®€LC),
which has different properties from the depolarizing and am
plitude damping channels.

where the coefficients are obtained by projecting on to the
left eigenbasis;=Tr{L;p}. Next we substitute the expansion
on the right eigenoperators into the equation for the total
Liouville operator equation and use the fact thagR,
=\;R;. After the substitution ofp into the total Liouville
A. The image of the map equation, one obtains a set of differential equations for the
coefficientsl; in the right eigenbasis and the generator of the
aMarkovian time evolution has the following matrix represen-
tation in the same basis:

VII. THE SQUEEZED VACUUM CHANNEL

So far, we have introduced a general set of Bloch equ
tions (15) which correspond to the Liouvillian with Eq31)
in addition to the coherent dynamics describedtbyn Eq.

(32). We are now in a position to solve this master equation. o 0 0 0

We proceed with the method described in Sec. IV. This tells

us how the noise affects all states of the two-level system. = 0 Ay O 0 42)
Using the damping basis, the solution to the Liouville equa- —iWeg2 O N, —iQ]’

tion (9) with Lindblad operator of the form of Eq31) fol-
lows. For a two-level system in a squeezed vacuum reservoir,
the left eigenoperators are

The solution top=Lp is

1 ct
Lo= —I, Li=—(c'+0), (39 p(t)=e~p(0). (43
0 \/E 1 \/E( )
One can perform a rotation of the right eigenbasis to obtain
1 the following diagonalized form of the above matrix:
Lo=—=(0"=0), Ls=—=(—Weg +03)

V2 y2o N O O 0
found from solving Eq(13) while the right eigenoperators = 0 M 0 0 (44)
are 0 0 Npgty 0 '

0 0 0 )\23_ X

1 1
Ro= —=(I+Weqo3), Ri=—=(c'+0), (39

2 2 whereh,3=(A,+X3)/2, x=3V(Ao—\3)?—(2Q)?, and the
\; are given in Eq(40). It follows that the superoperatef*
1 1 which maps the density operator forward in time is
R =—(0'—0'T), Ry=—0
2 T2 10 0 0
found by solving Eq(14). They correspond to the following elt— 0 Ay 0 0 (45)
four eigenvalues: 0 0 Ayet 0
1 1 0 0 0 Azge_)(t
)\OZO, )\1__ -+ =, (40) . i I
T T3 The matrices above are represented in two different bases.
Equation(42) is in the damping basis, while E¢44) is in a
e 11 N 1 rotated damping basis. Geometrically, one may consider the
20T, T YT first case to be dynamics as viewed from a shifting center of

the Bloch sphere. In this case, there is one affine shift toward
Of the four eigenvalues, three of them are precisely the dithe south pole of the Bloch sphere. This is the viewpoint in
agonal elements of the damping matii®l) through the the damping basis. This can be seen by noting that in Egs.
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(39 for the damping basis there is one shift presenRjn  eration of® on the Bloch vector must transform the vector
From the right eigenoperators of the damping basis, onéto another vector inside the Bloch sphere. This is just one
finds that they are almost the same as the Pauli operatomather obvious condition. What is not as obvious is that not
From the viewpoint of the Pauli basis, the dynamics wouldall states inside the Bloch sphere are allowable for the sys-
take place as seen from the stationary center of the Bloctem. In other words, the Bloch vector cannot access all
sphere. In the rotated damping basis, the viewpoint is from @oints in the interior of the Bloch sphere. This is because of
frame that is rotating with the driving field as well as shifting the condition of complete positivity, related to the existence
from the center of the Bloch sphere, and, consequently, thef a Kraus representation which we discuss in the following
eigenvalues lead to contractions or pure damping in this disection.

agonal basis. Although the most general dynamics contains It has been showf25] that the damping eigenvalues must
both coherent and incoherent parts, in certain situations ongbey the four inequalities

part may dominate the dynamics. We consider the case

where the system is not isolated from its environment but At A= Ag=l,
unaffected by coherent dynamics. In this case, rotations oc-
cur on a time scale much longer than the dissipation so that A=A+ Az<l,
effectively (0 —0. We will see that this case is advantageous.
With these explicit formulas for the damping basis and the — A+ A+ Azsl,
damping eigenvalues we can calculate the density operator
for all times. This gives us the image of the map(p). —Ayj—Ay—Azs1 (49)
Assuming that the initial density matrix is of the form

to guarantee complete positivity of the map. This is a neces-
sary condition. These inequalities are the most general case,
' (46) i.e., they apply to the damping matrix no matter which case
is considered. These inequalities are a consequence of the set
we find that the stochastic map generates a new density m&f equations given in the Appendix which involve the damp-
trix ing matrix elementsA;. There are five such equations
which, taken with the first equation, are inner products of
A D vectors. The fact that the inner product must be positive
CI)(P):(D* C) (47 semidefinite leads to the inequalities above. For the specific
example we present, they reduce to a more familiar form.
in accordance with Eq18). This is obtained using the set of Because for spontaneous emission we haVe=2T,, the
eigenoperators and eigenvalues for the damping basis. FPUT inequalities become:
the stochastic map that characterizes the squeezed vacuum
channel, we have that the elementsdgfp) are given by tcosk(

a d
P=la ¢

t

3

t

< cosl‘( T_z) , (50

<gj ¢
=SIn T2 )

which are satisfied if and only if

1 1
A=E(a+c)(1+weq)+§A3[a—c—weq(a+c)], . r( t
*sin
3

1 1
C= E(a+ c)(l—weq)—§A3[a—c—weq(a+ o],

1 1 1
D=5[d" (A= Ay +d(A1+A))], =T 6D
1 In terms of the parameteid andN, this condition for com-
D*= E[d(Al—A2)+d*(A1+A2)]. (48)  plete positivity becomes
These elements are in terms of the initial density matrix el- IM|<N+ E (52)
ements as well as the damping eigenvalues which contain the 2

parametersT;, andw,q. The image gives us the density . .
matrix after the noise operatdr has acted on it. The chan- 25 expe(;:ttra]d. Itis well ]!mown thid f"mldN. a:jebnothlndepeg- .
nel capacity of a noisy quantum channel is characterized bgent and the amount of squeezing s limited by the number o

the types of errors that result after the input is transmitted.thtons', A Ttricter ineqfuariity can lbe .derifved directly from
The noise operation defines the channel. the matrix elements;; of the Lindbladian form in Eq(8).

This must be a non-negative matrix. Using the matrix ele-
" ments of Eq(30) one finds that the matrix is non-negative
B. Complete positivity if M2<N(N+ 1) where N is the photon number ahtiis the
The restriction that this map be completely positive issqueezing parameter. In the case of equality, we have pure
somewhat stringent. We have mentioned so far that the opqueezing. While the general inequalities of E4P) are a
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necessary condition for complete positivity, the stricter in- As=mygl, (55)
equality M2<N(N+1) for the SVC is both necessary and
sufficient. with constants given by

It is worth pointing out that while contractions, without
shifts, will always map the Bloch sphere into the Bloch ball, 1 Wey(1—As)
not all contractions satisfy the inequalitié49). Those that Myp= = ——m S
do not satisfy them do not have a Kraus representation and 2 J1-A1—AytAg
hence are not completely positive maps. We shall see that the
condition of complete positivity restricts the allowable ellip- 1 Weg(1—-Ay)
soids of the image. Because the Lindblad form of the master M= 5 )

VI=A+A,— A,

equation guarantees complete positivity, by Kraus’ theorem
there must exist a decomposition with Kraus operators which

acts on the system of interest alone. In the next section, we _ _i_ T-ATA—A
give an explicit form of the Kraus operators. M22= "3 1 e

C. The Kraus decomposition

1
m13: E\ 1_A1_A2+ A3,

For the special case of a qubit there can be at most four
Kraus operators. To see why this is true, the reader is referred
to a lemma where it is shown that the minimum number of
Kraus operators is equal to the rank of a certain magH. Myp= 5\/1+A1+ A+ Az—
It follows that the minimum number of Kraus operators
needed to represent the map for the squeezed vacuum chan- .
nel is four. We do not show this, but rather use this fact to \/ Weq(1—Aj)?
find an operator-sum representation using the minimum M= 5 1+ A= A= Asm 1-Aj+A,—Ag
number of Kraus operators possible. We start by assuming
that the four Kraus operators exist and that they are realrhe Kraus decomposition is not unique, so a different set of
although in general they are represented by complex matrfour Kraus matrices can represent the same map. The mini-
ces. Next we expand all>22 matrices in Eq(2) in the Pauli  mum number of Kraus operators, for the map constructed

W(1—Ag)?
1-A— A+ Ag

(56)

basis. If we let here, is four, but one could just as well use more than four to
. - produce the map. This freedom in the Kraus decomposition
A= Myl + M- o =Ay(m), (53) s related to the many possible ways of performing measure-
ments on the system. The system is decohered as a result of
Al:mﬁol +rﬁ;-5:Al(rﬁ*), being measured by the environment. The many different

Kraus operators correspond to the many different positive-
then Eg. (20 becomes 3[1+si(a,c,d,d*)o;]=3[1  operator-valued measures which lead to the decohered state.
+t;,(m,m*,a,c,d,d*);]. Equating each coefficient s and  This is why there are many different sets of possible Kraus
t; leads to a set of linear equations which underdetermine th@Perators which would result in the same mbp o
16 coefficients of the Kraus operators in E&3) in the Pauli One can verify that this choice of Kraus operators satisfies
basis. Thus, the Kraus representation is not unique. The eld2€ condition in Eq(3) so that the final density operator has
ments of the Kraus operators can be written as vector conff@ce unity. This is a necessary condition for a trace-

ponents preserving map, to which we restrict ourselves. However,
one could consider maps that are not trace-preserving, in
my which case Eq(3) becomes an inequality. Since the map is
m nonunital, i.e., it does not map identity into identity, we have
2j
m; = , 54
ol mg 649 o) 1+Weg(1—Aj) 0 -
My, - 0 1_Weq(l_A3) .

wherej=0,1,2,3. The set of linear equations that need to beThis is due to the presence of the affine shift. Next, we dis-
satisfied is given in the Appendix. The stochastic map for theeuss what all this means geometrically in terms of the Bloch
squeezed vacuum chann@?) has Kraus operators which sphere.

can be realized in the following way:

Ay=myd +Mys0s, VIIl. THE GEOMETRICAL PICTURE

For a set of general Bloch equations and a Lindbladian

Ay=(My+Myy) o+ (My—myy) o, there exists a 44 matrix of the form(20). For the Lindblad
equation we have considered here, this map can also be ex-
Az=mgy(o'+0), pressed, in terms of the>d4 matrix, as
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Y

FIG. 1. The effect of noise on
the set of qubit density operators

W for an atom in a squeezed
vacuum. Parameters areN
=1, M=2, t=0,05,1.
u u JLL
1 0O O O damping while thas component is rapidly damped, as shown
0 A 0 0 in Fig. 2. The explicit expression for the shift in termsvaf,
Tp= ] (58) indicates that the ellipsoid is translated in the negative
0 0 A, O direction over time and settles into an equilibrium or fixed
(1-Az)weqg O 0 Agj point, as shown in Fig. 3.
The matrix of Eq.(20) is in the Pauli basis and describes
This is a special case of EO) with the dissipative dynamics from the stationary viewpoint at the
center of the Bloch sphere. From this viewpoint, one would
0<A3<A1<A,<1 (59) observe a contracting ellipsoid moving away from the Bloch

sphere center to some equilibrium point. The matrix could
also be represented in the damping basis, in which case it
t01=0, 15p=0, 1toz=Weq(l—Ajz), —1<wg<O. would be diagonal. This amounts to transforming to a frame
(600  where, instead of being a stationary observer at the Bloch

. sphere center, one is moving along with the shifting ellip-

From this we see that the components of the Bloqh Vector argyig |n this case, one observes only a contracting ellipsoid.

cqnt_racted. To guarantee that _the Bloc_h_ vector is cor!talne(ilhis is the geometrical picture of the damping basis.

within the Bloch ball the following condition must hold: If the effect of noise on all input states is known, then the
(AqU)2+ (Ap0) 2+ [AawW+(1— AgWeg?<1. (61) least noisy output states can be identified. The minimal en-
tropy states are the states least affected by the noise and

and affine shifts

2

2
+ ) =1. (62

Furthermore, we see that the mat(B8) transforms the consequently the least mixed states. Geometrically, these
Bloch sphereu®+v?+w?=1 into an ellipsoid inside the would all be states whose distance from the surface of the
Bloch ball. That is, the image of the set of pure state densityBloch vector is a minimum. These states form a set of ex-
matrices under the stochastic map is given by the family ofreme points of the convex set of density operators. Such a
ellipsoids set of points on the ellipsoid having minimal distance to the
Bloch sphere may consist of one or two points, a circle, or
u v |2 [W—Wey(1—Ay) the entire surface of the ellipsoid. For a given noise, these
A_1 A_z Ajg nearest points represent states of maximum purity in the set
of states affected by the noise. For the squeezed vacuum
The shiftw(1—A3) determines the center of the ellipsoid channel, the set of minimal entropy states consists of two
while the eigenvalue§A 1,A,,A 3} define the lengths of the states along the major axis of the ellipsoid.
axes. If we start with the set of pure state density operators The purest minimal entropy states are obtained by maxi-
that lie on the Bloch sphere, then as time progresses thmal squeezing of the reservoir. This results in the most ec-
states move onto the surface of a contracting ellipsoid. Theentric ellipsoid which is stretched in one particular direction
pure states have become mixed states. By(5®), each axis and places the two points along the major axis of the ellip-
is unequally contracted, as shown in Fig. 1. Because of theoid close to the Bloch sphere surface, as seen in Fig. 1. As
squeezed vacuum, the component experiences very little the squeezing parametét goes to zero, the ellipsoid be-

FIG. 2. From a top view one
can see that the& component is
rapidly damped while the com-
ponent is slowly damped. Param-
eters are N=1, M=42, t
=0,0.5,1.
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¥ FIG. 3. Aside view makes ap-
W W w : 212 parent the affine shift of the non-
unital map. Parameters ar&l
N =1, M=42, t=0,0.5,1.
AN 2
u u u

comes less elongated and the minimal entropy states logke channel capacity for classical information over a noisy
their purity. WhenM is identically zero, the minimal entropy quantum channel has been defined as
points lie in a circle. Equivalently, &g approaches zero, the
damping for thes component of the Bloch vector approaches _ PRl . '
that for thev component. c(®) (r;iﬁs QD(Z p'p') 2.: p'S[q)(p')]]'

If we had included the coherent dynamics as well as the (63)
dissipative dynamics, the minimal entropy points on the el-
lipsoid would be more mixed than without the coherent dy-S is the von Neumann entropy defined aS(p)
namics. The reason for this is that the ellipsoid would begin=—Tr(p logp) and is the quantum analog of the Shannon
to rotate and the minimal entropy points along theompo-  entropy. The maximum is taken over all possible ensembles
nent would rotate away from this axis where there is moreof input states. The input alphabet consists of a set of states
noise. Consequently, the minimal entropy points get dep; which are transmitted with probability; . For the case of
graded by being moved away from the axis with least noisehe SVC, the maximization is achieved using the two or-
so that for this channel it is advantageous to keep coheremihogonal input states for which the damping is smallest with
dynamics suppressed. a uniform distribution over these states. With the convention

Other noisy quantum channels have been introduced sudiready chosen, this is thecomponent of the Bloch sphere.
as the depolarizing channel, the amplitude-damping channethus, the optimal way to send classical information through
and the phase-damping chanfE?]. The depolarizing chan- the SVC is to prepare product states using the two orthogo-
nel has all three components of the Bloch sphere equallyal input stateg,=|0)(0|, and p;=|1)(1|,, which lie in
damped and it is a unital channel. The set of minimal entropythe equatorial plane of the Bloch sphere, with corresponding
points would lie on a sphere. The amplitude-damping chanprobabilitiesp,=1/2 andp,;=1/2 to encode messages. For
nel has two of the three components equally damped and it isxample, pgl)®p(12)® c. ®P(1N) , requiring N uses of the
a nonunital channel. It arises from the master equation dechannel, would represent the-length classical bit string
scribing spontaneous emission as in E2d). The setof all (1...1.
states moves on an ellipsoid which shifts toward the south The noise operatiodd causes the output of these two
pole. The phase-damping channel is the case described in Egtates to be nonorthogonal, mixed states. No single measure-
(35). It has two equally damped components, one undampeghent at the receiving end can perfectly determine which in-
component, and is unital. It has two extreme points, one aput state was sent. There are two errors that can occur; one
the north pole and one at the south pole. Given any type oérror arises because of the nondistinguishability of nonor-
noise, the geometrical picture is a useful aid and allows for ghogonal states while the other arises because the state is
Simple analySiS of the channel CapaCity. To transmit informamixed_ The first term in Eq(63) takes into account the in-
tion over the channel it is ideal to use as input states thosgyrmation loss due to the fact that the output states are non-
states which result in the minimum amount of measuremengrthogonal while the second term takes into account the fact

error. the the output states are mixed. The Holevo capacity has a
nice geometrical interpretation. To see this we consider an
IX. CHANNEL CAPACITY example. For simplicity, let us assume that the SVC has

maximum squeezing and the input states are received after a

A. Encoding classical information in qubits 1 s pass through the channel. Then, using the same param-

One way to use a quantum channel is to send classicaters as in Figs. 1-3, nameN=1, M=.2, andt=1, we
information encoded in quantum states. Although quantuniind explicitly that the Holevo capacity i€(SVC)=0.93
information is being sent because qubits are sent through the 0.11=0.82 qubits per transmission. This is calculated by
channel, these qubits are being used in an entirely classicebing po=|0){0|, andp,;=|1)(1|, as input states with cor-
way. A natural extension of the classical channel capacity foresponding probabilitiep,=1/2 andp,=1/2 and calculat-

a quantum channel was proposed by Holg¢¥6]. In this ing the quantity inside the braces of E§3).

case, quantum states are used to transmit messages reliablyNote that the first term is present because of the affine
across some noisy quantum channel. Also known as thehift while the second term is due to a contraction of the
product state capacity, because messages are sent using tBiech sphere. To see the various errors that can occur we can
sor products of the input states which comprise the alphabetyrite C(SVC)=1—(1—-0.93)—0.11=0.82 qubits per trans-
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mission. Now the first term is the number of qubits thatrally, noise will corrupt the transmitted state and lead to a
could be sent if there was no noise present. The second tergecrease in the entanglement of the joint state.

is the error caused by the affine shift. This is the distance A channel has the capacity to transmit entanglement if
from the center of the Bloch sphere to the center of theafter passing through the channel there is any nonzero en-
ellipsoid. This error occurs because the states lose their ofanglement present in the joint state. It has been shown by
thogonality. The last term is the error due to the contractiorfiorodecki et al. that any nonseparable bipartite system
of the ellipsoid. The contractions cause the states to beconhich has entanglement, however small, can be distilled to a
mixed and consequently there will be measurement errors ¢tinglet form[26]. Therefore, if a channel can transmit any
this kind. This term is a distance from the Bloch sphere€ntanglement, itis a useful channilicopies can be sent and
surface to the surface of the ellipsoid. It is interesting to notét Singlet state can be distilled. _ _
that the affine shift actually takes the maximally mixed state ASsuming the initial Bell state has the following density
into a state with less entropy. This can occur because genepPerator representation:
alized measurements can decrease entropy. Also, if no noise

were present the capacity would 8¢1)=1 qubit per trans- Lt ool

mission, meaning that one error-free qubit can be transmitted 1/0 0 0 O

in one use of the channel. PAe=51 0 0 o0 ol (64)
1 0 0 1

B. Entanglement transmission

Another way in which a quantum channel can be used tha€ output state will be determined by the operation
does not have a classical counterpart is for entanglement
transmission. In this case, one is interested in distributing Pas=1a®@Pg[pagl, (65
parts of an entangled state to different locations. For ex-
ample, a source may generate Einstein-Podolsky-Rosemhich describes the process of sending one qubit to Bob
(EPR pairs, and one may be interested in sending one-halivhile Alice keeps her qubit intact. In matrix notation, the
of this EPR pair through some channel to a receiver. Natueutput state for the joint system is

14+ Weqt Ag(1—Weg) 0 0 A+ A,
0 1-Weq— As(1—Wgg) A=A 0
0 A=A, 1+ Weq— Ag(1+Weg) 0
A+A, 0 0 1= Weqt Ag(1+Weg)

(66)

At the initial time the joint state is maximally entangled and eigenvalue
the noise process should result in a decrease in the entangl 0.2¢
ment until some critical time when the joint state is separable eI
and remains separable thereafter. Using the Peres criterion ¢ s
the positivity of the partial transpose, one can determine ~ 3 5 time
when the state becomes separdlg. A necessary and suf- Y
ficient condition for the output state to be nonseparable is
that the partial transpose map be negafR@. To check the  -o0.2
positivity of the partial transpose it suffices to examine the
eigenvalues of the operator given by

/T !
P’ az=1a®Telpasl, (67) 0.5

whereTg denotes the transpose of the state of Bob’s qubit.
The four eigenvalues of the partial transpose matrix are

1
€= Z{1+A3_ \/(Al_A2)2+[Weq(1_A3)]2}, FIG. 4. The eigenvalue; is shown as a function of time for
photon numbeMN=1. The three curves correspond to squeezing
1 parameterM =0 (dash-dottej M =0.8M,,, (dashedi and M
0= 14 Aot VA — AN+ TWAl—A ]2 =Mpax- The larger the squeezing parameter, the longer the joint
2 4{ 3T V(A=A eq )1 state is nonseparable.
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1 maximization over all input states. Using the Bloch picture,
€= 11— As- VA L+ A2+ [Weg(1-Ag) 17, we were able to determine the channel capacity for the
squeezed vacuum channel to transmit classical information
1 in quantum states. We found that the channel has two mini-
e,= Z{l_A3+ \/(A1+A2)2+[Weq(1_A3)]2}- (69) m_al_entropy_pomts which s_houl_d be used_to optimally trans-
mit information. A geometrical interpretation of the Holevo
capacity was given and used to identify two types of errors—
those arising from nonorthogonal states and those arising
from mixed states. We also discussed the ability of this chan-
nel to distribute EPR states. We found that, after sending
one-half of the EPR state through the channel, there is some
itical time after which the state becomes separable.

This paper shows that with the priori knowledge of the
effect of noise given by a Lindblad form, one can choose to
encode messages using the pure states that are closest to the
(g'nal states of minimum entropy. The squeezed vacuum chan-

There is some critical time when the eigenvalue is zero an . . .

then remains positive thereafter. The value of this criticaImEI.IS Ia morle gelneral noisy Bh?ﬂnel der!vedlfro.m qgantt:jm
time depends on the parameters of the reservoir. As the ph(g)-ptICa two-level systems. Unlike previously introduce
ton number of the reservoir increases the critical time dephannels, it has unequal damping eigenvalues and it is non-

creases. One would expect this to be the case since the reusr]'tal' We found that channel capacity is enhanced by the

ervoir is more noisy. It is not as obvious what effect the >94€€2INg parametéd, whether it is used to send product

squeezing of the reservoir has on the entanglement becaugteat(':'S or used 1o transmit EPR states. This channel may

. . oo rove useful as a testing ground for future conjectures on
the squeezing results in a trade-off of more noise in oné 99 J

component and a decrease in another component. We firfgantum channel capacities.

that a squeezed reservoir results in a longer entanglement

time for the inital maximally entangled state. The critical ACKNOWLEDGMENTS
time is longer for a maximally squeezed vacuum. This is . . .
shown by the solid curve in Fig. 4. In both the case of send-. Wet tr;ﬁnkf. Drl. c? f?'TTfr“ng lzor dlscustsﬁns and cto:jrebc—
ing product states and for distributing EPR states, th lons o the final draft. This work was partially supported by

- . - BN Grant No. 2PO3B 02123 and the European Commis-
iﬂ;ﬁﬁzllng parametdt is able to enhance the capacity of the sion through the Research Training Network QUEST.

Initially, the eigenvalues have values=1/2, e,=1/2, e;
=—1/2, ande,=1/2, while in the steady state they become
e;=1/6, e,=2/6, e3=1/6, ande,=2/6. We find that the
nonseparability is determined solely by the eigenvadye
The transmitted EPR state remains nonseparable provid
that

1= Ag<V(A1+ A%+ [Weg(1-Ag)]%. (69

X. CONCLUSION APPENDIX

In this paper we provided a method for calculating a sto- For the Hilbert space of 22 matrices, one may always
chastic map for any quantum Markov channel. Our methodeépPresent the quantum channel using four or fewer Kraus
uses a special damping basis of left and right eigenoperatorgPerators. To find a representation, one can construct a set of
This basis provides a natural way to generate noisy quantufimultaneous equations via the prescription given in Sec.
channels from a quantum optical approach. This techniqu¥!B. The squeezed vacuum channel has Kraus operators
allows one to calculate the stochastic map and from this on@hich must satisfy the following set of equations. There are
can then determine a set of Kraus operators which define tHf@ur for the shifts:
noisy quantum channel.

We used this method to calculate explicitly a noisy quan- mg Mo+ mymy +mym,+mims=1, (A1)
tum channel we called the squeezed vacuum channel. We
showed the relationship between a set of quantum optical
Bloch equations and the damping basis. Some known quan-
tum channels such as the amplitude-damping channel and the

* >* H * >
Mgmy + Memj +i(m;mg—mymz) =tqq,

* * H * L
depolarizing channel arise from this set of Bloch equations. MM, + MM, — i (M Mg —mym3) =top,
These quantum Markov channels are special cases of the

squeezed vacuum channel. The channel we derived is a non- MeM3+ MeM3 +i(Mjmy—mym3) =tog.

unital stochastic map which is characterized by three unequal

damping. eigenvalues. By using the damping basis, We WerR.: the coefficients of, ¢, d, andd*:
able to find a set of Kraus operators for the stochastic map.
From this, the effect of noise on the set of input states was
interpreted geometrically. The Bloch picture was used to
study the effect of noise present in the channel and the co-
herent dynamics was considered in addition to the incoherent  mgmg+mjm; —m>m, —mims+i(mjm,+mym3)
dynamics.

The procedure to calculate the channel capacity requires a —(mgmz—mgmz) = A,

i (Mgmy—mem3) —(mjmg+mym3) =0,
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mjMg+ M} m; —mim,— mjimz—i(mjm,+m;m}) construction of Kraus matrices,. we will consider the pure
phase decay case of E5), which is the phase-damping
+(mgmz—mem3)=A, channel. For t_his case\;=A,, {\3=0, and_t01=t02=t03 .
=0. Any solution of the set of linear equations along with
* * H * * e . . .
MoMy —MeMj —i(m;mz+m,m;3) =0, these conditions will give a Kraus representation. The fol-
lowing solution for elements of the Kraus matrices is easily
> > > +* H * * - -
Mo Mo — MMy + MMy — MaMg — i (MM, +m;m;) found to bem,=0, mz;=0, and
—(mgmz—mgmz)=A,,
My 0
mg Mg — Mimy +mym,—m3ms+i(mjm,+m;m5) 0
mO_ ’ m3_ (A4)
+(megmz—memz) = A, 0 0
0 m
* * * * _ 43
MyMy— MMy — MM+ mgmz=A3,
with
mgm; — mymj +mjmz-+m;mj;
+i(mgmy—mem3+m;ms+m,m3) =0, 1+A 1-A
M=\ 5 Ma=\ 5 (A5)

* * * *
MpMy — MpMy —M;Mz— M M3

+1/(— MMy + mom3 + mims +m,m3) = 0. The phase-damping channel has a Kraus representation given

by
(A2)
And to satisfy the conditiomkAl= l: A= 1+A| (A6)
2 1
mgms+mym3; —i(mim,—m;m3)=0. (A3)
The set of equations leads to restrictions on the damping A= 1_A0_ (A7)
eigenvalues as in Eq49). As an example of the explicit 2 2 3
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