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Pattern recognition on a quantum computer

Ralf Schützhold*
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

~Received 26 August 2002; published 26 June 2003!

By means of a simple example, it is demonstrated that the task of finding and identifying certain patterns in
an otherwise~macroscopically! unstructured picture~dataset! can be accomplished efficiently by a quantum
computer. Employing the powerful tool of the quantum Fourier transform, the proposed quantum algorithm
exhibits an exponential speedup in comparison with its classical counterpart.
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I. INTRODUCTION

Pattern recognition is one of the basic problems in ar
cial intelligence, see, e.g., Ref.@1#. For example, a glance a
Fig. 1 will generally suffice for the human brain to spot t
region with the pattern. However, it is a rather nontrivial ta
to accomplish the same performance with a computer—
particular, if the orientation and structure of the pattern
not knowna priori and if the pattern is not perfect~in con-
trast to the one in Fig. 1!.

Besides the detection and localization of patterns~for ex-
ample, identifying seismic waves in the outputs of seism
graphs!, the comparison and matching of the observed p
tern to a set of templates~such as face recognition! form
another interesting question. These problems can be so
with special classifiers, such as neuronal networks or Fou
analysis, etc., cf. Ref.@1#.

The specific properties~i.e., one may consider many po
sibilities or combinations simultaneously and one is int
ested in global features only! of the task of pattern recogni
tion give rise to the hope that quantum algorithms may
advantageous in comparison with classical~local! computa-
tional methods~with a unique entry!.

During the last decade, the topic of quantum-informat
processing attracted considerable interest, see, e.g., Re@2#
for a review. It has been shown that quantum algorithms
be enormously faster than the best~known! classical tech-
niques: Shor’s factoring algorithm@3#, which exhibits an ex-
ponential speedup relative to the best~known! classical
method; Grover’s search routine@4# with a quadratic
speedup; and several black-box problems@5–8#, some of
which also exhibit an exponential speedup; etc.

In the following, a quantum algorithm for the detectio
identification, and localization of certain patterns in an o
erwise~macroscopically! unstructured dataset is presented
turns out that this method too is exponentially faster than
classical counterpart. Furthermore, it outperforms the~also
extremely fast! method of optical filtering in terms of accu
racy and general applicability.

The advantages of using quantum memories and com
ers for the aforementioned task of template matching~which
is somewhat different from pattern detection or localizatio!
have been discussed in Refs.@9–12#. Note, however, that the

*Electronic address: schuetz@physics.ubc.ca
1050-2947/2003/67~6!/062311~6!/$20.00 67 0623
-

in
e

-
t-

ed
er

-

e

n

n

-
t
s

t-

necessity of loading the complete dataset into a quan
memory may represent a drawback~cf. the next sections!. In
Ref. @13#, an algorithm for data clustering~in pattern recog-
nition problems! is developed, which is based on or inspire
by principles of quantum mechanics—though not involvi
quantum computation.

II. DESCRIPTION OF THE PROBLEM

Let us consider a rectangularN3M array of unit cells
that are either black, i.e., absorptive, or white, i.e., reflect
~or, alternatively, transparent!, cf. Fig. 1. In the following, we
shall assume that these cells are perfectly absorbing or
flecting ~transmitting!, respectively, although sufficiently
small deviations from this idealized behavior resulting in
nite absorption, reflection, and transmission coefficients
not alter the following considerations.

The white cells are distributed with a roughly homog
neous density%,1 ~for example,%51/2) and will later be
called points for brevity, i.e., theN3M array containsP
5%NM points. A small fractionx of these points~say x
51/10) forms a pattern in a connected~but not necessarily
rectangular! region of the sizexNM, cf. Fig. 1.

In contrast to Fig. 1, the pattern does not need to
perfect—average symmetries are sufficient, see Sec. V
low. For simplicity we restrict our consideration to linea
~but again not necessarily rectangular! patterns. That is, the
patterns are assumed to be~approximately! invariant under at
least two~discrete! symmetry transformations described b
global translations into different directions. Geometrica
speaking, the angles within the pattern do not change, c
sider, for example, a set of parallel and equidistant lines o
periodic repetition of small elements as in some wall pape
etc.

FIG. 1. A 32320 array half filled with points, i.e.,%51/2. In an
838 square, they form a pattern~hence,x51/10), otherwise the
points are randomly distributed.
©2003 The American Physical Society11-1
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Let us assume that we knowN, M, and %, since these
quantities can easily be measured having at hand thN
3M array of unit cells—but we neither know the sizex of
the pattern~or whether there is a pattern at all! nor its struc-
ture and orientation~except that it is linear!. The task is to
find an algorithm for extracting this information.

In principle, we may find out the position of all point
~white cells! by shining appropriately focused light beams
the array and measuring the reflection or transmission. H
ever, the array is also assumed to be very sensitive~such as
an exposed but not yet developed film, for example! and
each absorbed photon causes a certain amount of dama
similar to the Elitzur-Vaidman problem~detection without
destruction!, cf. Ref. @14#. Therefore, the number of inciden
photons should be as small as possible.

At the same time, we wish to obtain the characteris
parameters of the pattern with maximum attainable accur
and minimum effort~i.e., number of subsequent operation!.
In order to cast the above requirements into a well-defi
complexity-theoretic form, we consider the limit of ver
large arraysN,M@1. Furthermore, we assumeN52n and
M52m with integersn,mPN allowing for a binary repre-
sentation.~Otherwise, we may enlarge the array accordin
or consider only a part of it.!

III. DATA PROCESSING

It is probably most convenient to view the dataset a
~quantum! black box

B:F ux&

uy&

u0&
G→F ux&

uy&

u f (x,y)&
G , ~1!

where the input state encodes the coordinatesx and y of a
potential point~a white cell! in the array asn- andm-qubit
strings, respectively, together with a third one-qubit regis
u0& needed for unitarity. The output functionf (x,y) assumes
the value 1 if there is a point at these coordinates and
not.

As a possible physical realization one might imagine
configuration such as the following. A focused light bea
passesn1m quantum controlled refractors~e.g., nonlinear
Kerr media! which change its direction by definite anglesw j
if the control qubit isu1& and do not affect it otherwise. Fo
suitably chosen angles (w j

x,y5w0
x,y/2j , with j PN), the final

direction of the beam encodes the position (x,y) on theN
3M array if the digits of the coordinatesux&,uy& are inserted
as the control qubits. Shining the so-directed light be
~which may consist of only one photon! through an aperture
mask~as in Fig. 1! on a detector reproduces the action of t
black box in Eq.~1!.

Note that, in the physical realization described above,
not necessary to load the complete~classical! information of
the array into a quantum memory. Such a loading proced
would slow down the whole process drastically and he
represent a serious drawback.~The same problem limits the
region of applicability of Grover’s quantum search proc
dure, for example.! In addition, it is hard to see how thi
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loading could be done without shining a relatively lar
number of photons on the array and thereby destroying it
Sec. II.

Moreover, the involved number (n1m) of devices~re-
fractors! is very small in this case. Each refractor ac
roughly similar to a controlled swap or a switch gate

S:F ua&

ub&

u0&
G→F ua&

u¬a`b&

ua`b&
G , ~2!

with a,b50,1; but the series connection of these refract
allows for a very efficient data processing.

IV. QUANTUM ALGORITHM

Now we may apply the well-known trick of enquiring fo
all possible values of the coordinates (x,y) in only one run
of the black box~quantum parallelism!. To this end, we pre-
pare a state as the superposition of all possibilities by us
the Hadamard gateH. For a single qubit in theu0&,u1& basis,
the ~unitary! Hadamard gateH acts as Hu0&5(u0&
1u1&)/A2. By multiple application ofH and running the
black box~only once! we arrive at the desired superpositio

BF H (n)u0(n)&

H (m)u0(m)&

u0&
G5

1

ANM
(
x50

N21

(
y50

M21 F ux&

uy&

u f (x,y)&
G . ~3!

Measuring the third registeru f & and obtaining 1 prepares th
stateuC& as a superposition of the coordinatesux& anduy& of
all points. Assuming an ideal black box, the outcomef 50
would just imply the complementary set%→12%. How-
ever, in the presence of absorbing units, as described in
II, the resulting entanglement with the state of the absorp
cells would destroy the coherence completely in the casf
Þ1.

It will be advantageous to reorganize the array by dividi
it into M rows of lengthN and combining them all to one
string of lengthS5NM. The coordinate of a given point i
now onen1m5s-digit binary numberz5x1Ny ~instead of
two numbersx and y). The corresponding quantum state
simply given byuz&5ux& ^ uy&. In terms of this representa
tion, the quantum stateuC& prepared by the measurement
f 51 reads

uC&5
1

A%S
(
l 51

%S

uzl&, ~4!

where 0>zl>S21 denotes position of thel th point ~as an
s-digit binary number!.

The next basic part of the quantum algorithm is the ap
cation of the quantum Fourier transform~QFT!. It acts on a
basis element such asuz&5u110100 . . . & as

F:uz&→
1

AS
(
k50

S21

expS 2p i
zk

S D uk&. ~5!
1-2
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Hence, the superposition stateuC& in Eq. ~4! will be trans-
formed into

F uC&5 (
k50

S21

(
l 51

%S
1

SA%
expS 2p i

zlk

S D uk&. ~6!

Assuming a distribution of pointszl without any ~macro-
scopic! pattern~e.g., purely random!, there will be no privi-
leged values ofk ~exceptk50) and the measurement ofk
.0 yields just noise. However, the presence of a patt
within the dataset introduces a typical length scale and t
leads to peaks of the factor in front ofuk& at certain values of
k—which hence can be used as an indicator, see the foll
ing section.

In this way, the proposed algorithm efficiently solves t
problem of feature selection—i.e., extracting a small amo
of relevant quantities~such as wave numbers! from a large
dataset: Operating the black box with an element of the c
putational basis~i.e., classically!, a small number (n1m) of
refractors enables us to distinguish a large number (NM) of
unit cells on the array. Furthermore, feeding in the super
sition state in Eq.~3!, the measurement off 51 selects one
out of a huge number—O(2S) for %51/2—of different
states in Eq.~4!, which correspond to the various possib
pictures in the array~such as in Fig. 1!. However, the distinct
quantum states of this huge set are not mutually orthogo
and hence the picture cannot be reproduced from the sta
Eq. ~4!, which indeed extracts a relatively small amount
relevant information from the huge dataset. Of course,
has only been possible by exploiting the, from a class
point of view, nonlocal quantum correlations and quant
parallelism.

V. PATTERN LOCALIZATION

The task of pattern recognition does not only include
mere detection of a pattern, but also its localization and c
sification. The comparison with a given set of templates w
not be discussed here, see, e.g., Refs.@9–12#. The next step
is to extract information about the pattern from the peaks
the measurements ofk—in close analogy to the reconstru
tion of the probe structure from the Laue diagram in diffra
tion experiments.

Consider, for example, a simple pattern consisting of p
allel lines such as the one in Fig. 1. In this case, the ba
quantities are the distanceD5const of the lines as well a
their orientation as described by the~constant! angle2p/2
<q<p/2. Here,q denotes the deviation of the line from
vertical one, i.e., after going downR rows the sequence i
shifted by R tanq columns to the right. So the pointsz,
marking the center of a particular line, are given by

z5z01@N~N1tanq!# integer. ~7!

Note that~in contrast to Fig. 1! the lines do not need to b
perfect—it is sufficient if, on an average, the density
points within a linewidth of, say,D/2 deviates by a finite
amountD% ~e.g., D%51/4) from the mean%. @Since the
Fourier transform in Eq.~6! involves a sum over many
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points, all small-scale fluctuations average out and hence
presence of noise inside the pattern as well as outside
not affect the main results, see also Eq.~12! below.#

According to Eq.~6!, every row of the pattern generate
peaks at

k5FN cosq
S

D
6OS M

DAx
D G

integer

, ~8!

with the second term denoting their width. Both, the positi
and the width of the peaks can be obtained from the ass
ated Laue functionL(j,k)5sin2(pjk)/sin2(pk) with k
5k cosqS/D andj5O(NAx) in this case.

However, the sum of all rows interferes constructive
only if k is fine tuned according to

k5FN N2tanq

N
M6OS 1

Ax
D G

integer

, ~9!

which again can be obtained from the associated Laue fu
tion with now k5k(N1tanq)/S and j5O(MAx). The
strongest peaks in the measurements ofk occur for values
that satisfy both conditions~8! and ~9! simultaneously. Ac-
cordingly, the wave numbers of these potential peaks rea

k'FNS cosq
S

D
2sinq

M

D D G
integer

, ~10!

where the corresponding width or uncertainty has been o
ted.

However, for large enoughD, not every peak in Eq.~8!
will contain wave numbers matching Eq.~9!, in general. The
condition for this to take place is that the integerN in Eq. ~8!
multiplied by cosqN/D is again close to another integer—
the one in Eq.~9!—within an accuracy ofO(1/@DAx#).

Therefore, not all thek values in Eq.~10! do necessarily
represent large peaks—the first few of them may be s
pressed. On the other hand, the largerD is, the morek values
of potential peaks in Eq.~10! are contained in the interva
0,k,S. Consequently, from the numberD/cosq of poten-
tial peaks in Eq.~10!, there must be at least a fewO(1/Ax)
which match both conditions~8! and ~9!.

Determining the largest common factor of all the wa
numbers of the peaks~within the given accuracy!, we obtain
a value for the expression in Eq.~10!—possibly multiplied
by an integer. Unfortunately, this information alone is n
sufficient for extractingD andq. To this end, we may sim-
ply transpose the array~e.g., Fig. 1! by interchanging rows
and columnsN↔M and run the same algorithm again. Sin
transposing corresponds toq→p/22q the wave numbers o
the peaks are now

k8'FNS sinq
S

D
2cosq

N

D D G
integer

. ~11!

Combining the possible values forD/cosq from Eq. ~10!
with the ones forD/sinq from Eq. ~11!, we obtain approxi-
mate candidates forD and q. Comparing with the fine-
tuning conditions such as Eqs.~8! and ~9! and knowing
which peaks are suppressed and which do not allow u
1-3
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RALF SCHÜTZHOLD PHYSICAL REVIEW A 67, 062311 ~2003!
extract the actual values ofD andq with high ~in fact, maxi-
mum attainable! precisionO(1/Ax).

Alternatively, if D turns out to be very large, one migh
decrease the resolution~i.e., average over many cells! and
repeat the algorithm until one reaches the minimum res
tion for which it is still possible to resolve the pattern. A
efficient way to do this is by bisecting the remaining inte
vals, i.e., after running the algorithm with the maximu
resolution $M,N%, we go over toM→M1/2 as well asN
→N1/2 and repeat the algorithm. If we still see peaks,
decrease the resolution even more, i.e.,M→M1/4 as well as
N→N1/4, and, if not, we increase it againM→M3/4 as well
as N→N3/4, etc. In this way, one can determine the min
mum resolution necessary for resolving the pattern
O(log2s)5O(log2log2S) steps. In terms of this resolution, th
value ofD is reasonably smallD5O(1) and hence extract
ing the values ofD andq from the peaks in Eqs.~10! and
~11! is easy. The above procedure saves~classical! calcula-
tion time ~determining the largest common factor, etc.!, but,
on the other hand, requires slightly more runs of the bla
box O(log2s)5O(log2log2S). Either way, one can always fig
ure outD andq with ~arbitrarily! high probability.

The height of the peaks can be estimated by means of
~6!. In the resonance case, the sum includesSxD% construc-
tively interfering addends, which lead to an amplitude
orderO(xD%/A%). Thus, the probabilityp of measuring the
peaks in Eqs.~10! and ~11! is given by

p5OS ~xD% !2

% D , ~12!

i.e., independent ofN andM—and, therefore, drastically en
hanced over the~random! noise.

Consequently, if a numberV of measurements yields on
or more pronounced peaks besidesk50, then there exists a
pattern larger thanxmin5O(1/AV) and not otherwise~at
least with a very high probability!. Quite reasonably, the
smaller the pattern~i.e., x! is, the longer one has to searc

After having solved the feature selection problem e
ciently by the quantum algorithm, the remaining analy
~peak finding and stopping criteria, etc.! of a small~indepen-
dent ofN andM ) amount of measured wave numbers can
accomplished by a classical algorithm.

In this way, one can determine the size of the patternx by
the frequency of measuring the peaks atk andk8 ~and their
width!. Its structure~i.e., the values ofD and q) can be
inferred from the location of the peaks.

Having found the parametersD, q, andx of the pattern,
it can be localized easily—for example, by dividing the to
N3M array into smaller pieces~according tox) and running
the same quantum algorithm again in the smaller domain

More complex~but still linear! patterns, such as a regu
larly recurring pictures1 ~such as in many wall papers!, pos-

1Again, these pictures do not need to be perfect—average fea
are sufficient.
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sess more than one characteristic angleq, in general, and
therefore generate a richer peak structure—but the main
remains the same.

VI. COMPLEXITY ANALYSIS

Let us estimate the size of the proposed algorithm, i.e.,
number of involved computational steps, and compare it w
the classical method in the limitS→` while %, D%, andx
remain finite.

In view of Eq. ~12!, we need only a few—O(S0) or
O(log2log2S), cf. Sec. V—queries of the black box in orde
to find a pattern of a given size with high probabilit
Clearly, this is not possible with any classical algorithm
demonstrating the advantage of the global quantum com
tation over the local~only one point at a time! classical tech-
nique. Since the number of queries of the black b
corresponds to the total amount of photons shining on
array, the quantum algorithm causes lesser damage~cf. Sec.
II ! than any classical method, see also Ref.@14#.

Given the explicit physical realization of the black bo
described in Sec. III, it is also possible to compare the to
number of fundamental manipulations. For the preparation
the initial state in Eq.~3!, one has to apply the Hadamar
gate m1n5s5 log2S times. The black box itself involves
about the same number of operations. The QFT in Eq.~5!
requiresO(log2

2S) steps for obtaining the exact result and
even fasterO(log2S) if we measure@2# the outcome imme-
diately afterwards—as it is the case here.

In contrast, the best~known! classical algorithm, the fas
Fourier transform~FFT!, implementsO(Slog2S) operations
and is therefore exponentially slower. Note that, since we
not know the typical ‘‘wave numbers’’k associated with the
patterna priori, we would have to calculate the FFT for
large numberO(S) of possible values ofk—whereas the
QFT accomplishes all this simultaneously, and automatic
gives us the valuesk with the largest amplitudes in averag
measurements.

However, it cannot be excluded here that perhaps a c
sical algorithm exists, which is better than the FFT and m
compete with the proposed quantum algorithm~though not
in the number of queries of the black box!. But since the
processing of the coordinates of only one single point
ready requiresO(log2S) operations, one would have to fin
the pattern by considering a fewO(S0) or O(log2log2S)
points in order to outrun the quantum computer—which
apparently not possible.

Nevertheless, in certain situations—e.g., for perfect lin
with D5O(1) such as in Fig. 1—it is possible to design a
appropriate classical algorithm that determinesq by using
only O(log2

qS) points with q>1, and thus requires
O(log2

q11S) computational steps. In this case, the speedu
merely polynomial.

In most cases, however, whereD can be very largeD
@1 and the lines are not perfect, it is really difficult to s
how one might extract basically the same information as
FFT in ~polynomially! logarithmic time with classical meth
ods. @An O(AS) algorithm, for example, would also be ex
ponentially slower than the QFT.#

res
1-4
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PATTERN RECOGNITION ON A QUANTUM COMPUTER PHYSICAL REVIEW A67, 062311 ~2003!
Assuming that there is indeed no such classical algori
~or that the set of patterns, for which the Fourier transform
the best classifier, is not empty!, the problem under consid
eration represents another example for the~conjectured! ex-
ponential speedup of quantum information processin
based on the power of QFT for problems related to~quasi!
periodical structures~which is also the basic factor for Shor
algorithm@3#; though in that case the periodicity is exact—
contrast to the situation considered here!.

Of course, such a speedup has only been possible sin
was not necessary to load the complete array into a quan
memory~cf. Refs.@9–12#!—this would have involved abou
O(S) operations, and thereby lead to a drastic~exponential!
slow-down.

VII. SUMMARY AND OUTLOOK

In summary, quantum algorithms are capable of solv
certain problems of pattern recognition~i.e., detection, local-
ization, and classification! aside from template matchin
@9–12# much faster than their classical counterparts@15#. Al-
though this has been demonstrated explicitly in the pres
paper for line patterns only, the basic idea applies to m
difficult ~but still linear! patterns as well.~In some sense, this
idea arises from the often successful approach to copy
ingenious solutions which nature reveals to us—such as
possibility of distinguishing a crystal from an amorpho
material via x-ray diffraction or the method of optical filte
ing, see the following section.! The investigation of nonlin-
ear patterns, such as a set of concentric circles, is appar
more involved and would require adapted methods.

Together with the findings in Refs.@9–12#, the results of
the present paper give rise to the hope that quantum a
rithms are also advantageous for more general pattern re
nition problems.

VIII. OPTICAL FILTERING

Interestingly, the manipulations involved in the propos
quantum algorithm—apart from the physical realization
the black box itself—can be accomplished~at least, in prin-
ciple! with present-day optical devices. Hadamard gates
well as the calculation of the quantum Fourier transform w
subsequently measuring the outcome can be realized by
ing beam splitters and classically controlled phase shift
cf. Ref.@2#. This observation leads to the question of wheth
one could achieve a similar performance with purely opti
techniques.

Indeed, the method of optical filtering reproduces so
key features of the proposed quantum algorithm. Shinin
plane wave with an appropriate wave number on an aper
mask as in Fig. 1, the far-field diffraction amplitudes a
given by the Fourier transform of the object~e.g., Fig. 1! in
terms of the perpendicular wave number. Using an ordin
convex lens, one may convert these wave numbers into
sitions in the focal plane of the lens, see, e.g., Ref.@16#.

In this way the described apparatus effectively calcula
the desired Fourier transform. However, this method g
along with serious problems and disadvantages: first, it
06231
m
s

it
m

g

nt
re

he
he

tly

o-
g-

d
f

s

s-
s,
r
l

e
a
re

ry
o-

s
s

p-

pears to be impossible to achieve the same accuracy a
proposed quantum algorithm, i.e.,O(log2S) digits for q and
D, without exponentially increasing effort; and, second, t
fact thatD is not knowna priori and may vary over severa
orders of magnitude makes it difficult to select a suita
wave number for the incident light. In addition, the inves
gation of the array~black or white cell! via incident photons
is restricted to a certain frequency window generally.

These obstacles are caused by the main difference
tween optical filtering and the proposed quantum algorith
In optical filtering, the relevant quantities~such as wave
number, position in the focal plane,q, andD) are directly
~i.e., linearly! related to each other—whereas the quant
algorithm employs the digital representation and therew
outperforms the former method.

On the other hand, if we happen to know the order
magnitude ofD in advance and would be willing to settle fo
a limited accuracy of only a fewO(S0) digits, we may detect
the pattern with optical filtering by using only a fewO(S0)
photons—provided that the corresponding wave num
matches with the frequency window of the array. Althou
much less powerful, i.e., accurate, this method would be
nificantly faster than the proposed quantum algorithm, wh
also uses only a few photons shining on the pattern—bu
requiresO(log2S) photons~or, more generally, qubits! for the
subsequent data analysis~QFT, etc.!. ~This enhancement in
speed—although at a certain cost—reflects the fact tha
quantum field theoretical object, such as a photon, has m
degrees of freedom than just one single qubit.!
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APPENDIX

If there were no absorptive cells in the array at all, b
only ~perfectly! reflective ~white! and transparent~black!
ones, one could~in principle! realize the following generali-
zation of the black box in Eq.~1!:

B:F ux&

uy&

ua&
G→F ux&

uy&

ua % f (x,y)&
G , ~A1!

with a50,1. Here,% denotes summation modulo 2, i.e.,
% 050% 151 and 0% 051% 150. In this case, one may
improve the quantum algorithm by sending the superposi
state in Eq.~3! with the third register being (u0&2u1&)/A2
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instead ofu0& to the black box. The third register does n
change during this procedure and the resulting state enc
the information about the points in the array in the pha
(11 or 21) instead of the amplitudes (1 or 0)

uC&5
1

AS
(
z50

S21

~21! f (z)uz&. ~A2!
n

-
nd

06231
es
s

Assuming %51/2, the quantum Fourier transform of th
state has certain advantages over the one in Eq.~4!—one
gets rid of the~useless! peak atk50 and enhances the prob
abilities of the other peaks by a factor of 2. Unfortunately
is hard to see how one might be able to exploit this adv
tage of the modified black box in the presence of absorb
units.
one
lv-
lly
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