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Pattern recognition on a quantum computer
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By means of a simple example, it is demonstrated that the task of finding and identifying certain patterns in
an otherwisgmacroscopically unstructured picturédataset can be accomplished efficiently by a quantum
computer. Employing the powerful tool of the quantum Fourier transform, the proposed quantum algorithm
exhibits an exponential speedup in comparison with its classical counterpart.
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[. INTRODUCTION necessity of loading the complete dataset into a quantum
memory may represent a drawback the next sectionsin

Pattern recognition is one of the basic problems in artifi-Ref. [13], an algorithm for data clusterin@n pattern recog-
cial intelligence, see, e.g., Réfl]. For example, a glance at nition problems$ is developed, which is based on or inspired
Fig. 1 will generally suffice for the human brain to spot the by principles of quantum mechanics—though not involving
region with the pattern. However, it is a rather nontrivial taskquantum computation.
to accomplish the same performance with a computer—in
particular, if the orientation and structure of the pattern are Il. DESCRIPTION OF THE PROBLEM
not knowna priori and if the pattern is not perfe¢in con-
trast to the one in Fig.)1

Besides the detection and localization of patteifns ex-
ample, identifying seismic waves in the outputs of seismo-

graphs, the comparison and matching of the observed paterctmg (transmitting, respectively, although sufficiently

tern to a set of templatesuch as face recognitiprform Id f his idealized beh | fi

another interesting question. These problems can be solved' 2 eviations from this idealized behavior resulting in fi-

with special classifiers, such as neuronal networks or Founer'te absorption, reflection, and transmission coefficients do
P not alter the following considerations.

analysis, etc., cf. Refl].

The specific propertie§.e., one may consider many pos- The Wh'te cells are distributed with a roughly homoge-
sibilities or combinations simultaneously and one is inter—gzﬁgj df)?nstgg; 1b£fe(3/ritex?21plterfe¢:><1|\//|2)a?rn; VZ'gr:gﬁ]r slge
ested in global features onlpf the task of pattern recogni- b Y, y

tion give rise to the hope that quantum algorithms may be %T(')\;I f%?:,:?aA ;{g:lr: T;a;tlggﬁnZI;tt(;nie.l?en(?tOg:g;sga)r(l |
advantageous in comparison with classigatal) computa- P y

tional methodswith a unique entry rectangular region of the sizegNM, cf. Fig. 1.

During the last decade, the topic of quantum-information IP (;ontrast to Fig. 1, tthe patternﬁdqest not neSed t(\)/ Ee
processing attracted considerable interest, see, e.g.[Ref. periect—average symmetries are sutficient, see Sec. e

for a review. It has been shown that quantum algorithms ca W. For.simplicity we r.estrict our consideration tq linear
be enormously faster than the békhown) classical tech- (but again not necessarily rectanglilpatterns. That is, the

niques: Shor’s factoring algorithfi8], which exhibits an ex- patterns are assumed to (Iaaqaproximatelyiqvariant under at
ponential speedup relative to the bgg&nhown) classical least two(d|scr_ete symmetry transfgrmgtlons descnbe_d by
method; Grover's search routing4] with a quadratic global translations into different directions. Geometrically
speedub' and several black-box problefss-8], some of speaklng, the angles within the pattern do not chapge, con-
which aléo exhibit an exponential speedup: et,c sider, for example, a set of parallel and equidistant lines or a
In the following, a quantum algorithm for the detection, perlod|c repetition of small elements as in some wall papers,

identification, and localization of certain patterns in an oth-&
erwise(macroscopicallyunstructured dataset is presented. It
turns out that this method too is exponentially faster than its
classical counterpart. Furthermore, it outperforms (lso
extremely fast method of optical filtering in terms of accu-
racy and general applicability.

The advantages of using quantum memories and comput-
ers for the aforementioned task of template matclimigich
is somewhat different from pattern detection or localization
have been discussed in R€f8-12. Note, however, that the

Let us consider a rectangul&xX M array of unit cells
that are either black, i.e., absorptive, or white, i.e., reflective
(or, alternatively, transparentf Fig. 1. In the foIIowmg we
shall assume that these cells are perfectly absorbing or re-

FIG. 1. A32x 20 array half filled with points, i.,e@=1/2. In an
8X 8 square, they form a pattethence,y=1/10), otherwise the
*Electronic address: schuetz@physics.ubc.ca points are randomly distributed.
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Let us assume that we knolt, M, and ¢, since these loading could be done without shining a relatively large
guantities can easily be measured having at handNhe number of photons on the array and thereby destroying it, cf.
XM array of unit cells—but we neither know the sizgeof  Sec. II.

the patternor whether there is a pattern at)atior its struc- Moreover, the involved numbem@m) of devices(re-
ture and orientatiorfexcept that it is linear The task is to  fractorg is very small in this case. Each refractor acts
find an algorithm for extracting this information. roughly similar to a controlled swap or a switch gate

In principle, we may find out the position of all points
(white cellg by shining appropriately focused light beams on | @) | )
the array and measuring the reflection or transmission. How- S| 1B | =] |[manB) |, )
ever, the array is also assumed to be very sensffiueh as
an exposed but not yet developed film, for examm@ed 10) |@/\B)

each absorbed photon causes a certain amount of damagemh a,B=0,1; but the series connection of these refractors
similar to the Elitzur-Vaidman problendetection without I ’f - fficient dat :
destruction, cf. Ref.[14]. Therefore, the number of incident allows for a very efficient data processing.
photons should be as small as possible.

At the same time, we wish to obtain the characteristic IV. QUANTUM ALGORITHM
parameters of the pattern with maximum attainable accuracy nNow we may apply the well-known trick of enquiring for
and minimum effort(i.e., number of subsequent operatipns Il possible values of the coordinates) in only one run
In order to cast the above requirements into a weII—definegf the black box(quantum parallelisin To this end, we pre-
complexity-theoretic form, we consider the limit nOf VeIY pare a state as the superposition of all possibilities by using
large arraysN,M>1. Furthermore, we assumé=2" and o Hagamard gatd. For a single qubit in thé0),|1) basis,
M =2™ with integersn,me N allowing for a binary repre- the (unitary) Hadamard gate’ acts as H|0)=(|0)
sentation(Otherwise, we may enlarge the array accordingly+|1>)/\/§_ By multiple application of and running the

or consider only a part of k. black box(only oncg we arrive at the desired superposition

IIl. DATA PROCESSING H(n)|0(n)> Ned M1 |X>
1
It is probably most convenient to view the dataset as a Bl HM|oM) | = N > lyy . @3
NM x=0 y=0
(quantum black box |0) 1f(x,y))
[x) [x) Measuring the third registéf) and obtaining 1 prepares the
By v |, (1)  state|¥) as a superposition of the coordinates and|y) of
|0) 1f(x,y)) all points. Assuming an ideal black box, the outcofe0

would just imply the complementary set—1— 0. How-

where the input state encodes the coordinatesdy of a  ever, in the presence of absorbing units, as described in Sec.
potential point(a white cel) in the array as»- and m-qubit I, the resulting entanglement with the state of the absorptive
strings, respectively, together with a third one-qubit registeicells would destroy the coherence completely in the dase
|0) needed for unitarity. The output functidiix,y) assumes #1.
the value 1 if there is a point at these coordinates and O if It will be advantageous to reorganize the array by dividing
not. it into M rows of lengthN and combining them all to one

As a possible physical realization one might imagine astring of lengthS=NM. The coordinate of a given point is
configuration such as the following. A focused light beamnow onen+ m= s-digit binary numbez=x+ Ny (instead of
passes+m quantum controlled refractor@.g., nonlinear two numbersk andy). The corresponding quantum state is
Kerr media which change its direction by definite angles  simply given by|z)=|x)®|y). In terms of this representa-
if the control qubit is|1) and do not affect it otherwise. For tion, the quantum stateV’) prepared by the measurement of
suitably chosen anglesp{”Y=¢5¥/2), with j e N), the final ~ f=1 reads
direction of the beam encodes the positioy) on theN
X M array if the digits of the coordinatéz),|y) are inserted 1
as the control qubits. Shining the so-directed light beam |‘I’>=\/——Slzl 12)), (4)
(which may consist of only one photpbthrough an aperture @s1=
mask(as in Fig. 2 on a detector reproduces the action of the

black box in Eq(1). where 0=z =S—1 denotes position of thih point (as an

. . L . ... sdigit binary numbey.
Note that, in the physical realization described above, it is 'Ighe nextybasic part of the quantum algorithm is the appli-

not necessary to load the complétiassical information of cation of the quantum Fourier transforf®@FT). It acts on a
the array into a quantum memory. Such a loading procedurBasis element such 45)=|1101® . . .) as

would slow down the whole process drastically and hence
represent a serious drawbac¢khe same problem limits the s-1 K
region of applicability of Grover’s quantum search proce- Fl2y——= > exp 27i X
dure, for example.In addition, it is hard to see how this \/§ k=0 S

k). ®)
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Hence, the superposition stdt&) in Eq. (4) will be trans-  points, all small-scale fluctuations average out and hence the

formed into presence of noise inside the pattern as well as outside does
not affect the main results, see also EtR) below]
. Sil oS 4 F<2 _ z,k) ) . According to Eq.(6), every row of the pattern generates
= —eX i—||k).
|¥) & & 5le i |[K) (6)  peaks at

S
k= Ncosf)aio — : (8

integer

Assuming a distribution of pointg, without any (macro- Dy
scopig pattern(e.g., purely randopn there will be no privi- X

leged values ok (exceptk=0) and the measurement Bf iy the second term denoting their width. Both, the position
>0 yields just noise. However, the presence of a patteriy,q the width of the peaks can be obtained from the associ-
within the dataset introduces a typical length scale and th”ﬁted Laue function £(¢,x)=sind(méx)/sid(mx) with k
leads to peaks of the factor in front (&) at certain values of _ x COsOSD and £= O(N,\/)—() in this case
:(rgvsvg:ctn) rr]]ence can be used as an indicaior, see the follow- However, the sum of all rows interferes constructively
co . - only if kis fine tuned according to

In this way, the proposed algorithm efficiently solves the y g
problem of feature selection—i.e., extracting a small amount k=| N N—tand M+0
of relevant quantitiegsuch as wave numberfrom a large - N - _X .
dataset: Operating the black box with an element of the com- integer

putational basigi.e., classically, a small numberr{+m) of \;nich again can be obtained from the associated Laue func-

refractors enables us to distinguish a large numbevl} of tion with now x=Kk(N+tan9)/S and £=0(My). The

u.n'lt cells on the array. Furthermore, feeding in the S“perpoétrongest peaks in the measurements afccur for values
sition state in Eq(3), the measurement df=1 selects one

. that satisfy both conditiong8) and (9) simultaneously. Ac-

S —

out of a huge number@(z ) for Q—1/2—0.f d'ffere”F cordingly, the wave numbers of these potential peaks read
states in Eq(4), which correspond to the various possible

pictures in the arraysuch as in Fig. l However, the distinct K~
guantum states of this huge set are not mutually orthogonal
and hence the picture cannot be reproduced from the state in
Eq. (4), which indeed extracts a relatively small amount of where the corresponding width or uncertainty has been omit-
relevant information from the huge dataset. Of course, thiged.
has only been possible by exploiting the, from a classical However, for large enougD, not every peak in Eq(8)
point of view, nonlocal quantum correlations and quanturmwill contain wave numbers matching E@), in general. The
parallelism. condition for this to take place is that the integem Eq. (8)
multiplied by cosdN/D is again close to another integer—
V. PATTERN LOCALIZATION the one in Eq(9)—within an accuracy o©(1[Dx]).
Therefore, not all thé values in Eq.(10) do necessarily
The task of pattern reCOgnition does not Only include thQ'epresent |arge peaks_the first few of them may be sup-
mere detection of a pattern, but also its localization and claspressed. On the other hand, the larBes, the morek values
sification. The comparison with a given set of templates willof potential peaks in Eq(10) are contained in the interval
not be discussed here, see, e.g., Réfs12). The next step  g<k<S. Consequently, from the numbB¥ cos® of poten-
is to extract information about the pattern from the peaks injg| peaks in Eq(10), there must be at least a fe®(1/yy)
the measurements & —in close analogy to the reconstruc- \yhich match both conditioné) and (9).
tion of the probe structure from the Laue diagram in diffrac-  petermining the largest common factor of all the wave
tion experiments. _ - numbers of the peakisvithin the given accurady we obtain
Consider, for example, a simple pattern consisting of pary value for the expression in E¢LO—possibly multiplied
allel lines such as the one in Fig. 1. In this case, the basigy an integer. Unfortunately, this information alone is not
quantities are the distand@=const of the lines as well as gyfficient for extractingd and 9. To this end, we may sim-
<¥=m/2. Here,§ denotes the deviation of the line from a anq columngN«<s M and run the same algorithm again. Since
vertical one, i.e., after going dowR rows the sequence is transposing corresponds @ /2— 9 the wave numbers of
shifted by Rtand columns to the right. So the poins  the peaks are now
marking the center of a particular line, are given by

1
: ©)

: (10

integer

N 198 'ﬂM
cosdy —sind

K'~ (12)

: N( sim‘}§—cosﬁﬂ)
ZZZO“"U\(N"'tanﬁ)]integer- (7) D D integer
Note that(in contrast to Fig. Lthe lines do not need to be Combining the possible values f@/cos? from Eg. (10)

perfect—it is sufficient if, on an average, the density ofwith the ones foD/sind from Eq.(11), we obtain approxi-
points within a linewidth of, sayP/2 deviates by a finite mate candidates foD and ¢¥. Comparing with the fine-
amountAg (e.g., Ag=1/4) from the mearp. [Since the tuning conditions such as Eg$3) and (9) and knowing

Fourier transform in Eq(6) involves a sum over many which peaks are suppressed and which do not allow us to
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extract the actual values &f and9 with high (in fact, maxi- sess more than one characteristic anglein general, and
mum attainableprecisionO(1/x). therefore generate a richer peak structure—but the main idea
Alternatively, if D turns out to be very large, one might remains the same.
decrease the resolutidine., average over many cellsand
repeat the algorithm until one reaches the minimum resolu- VI. COMPLEXITY ANALYSIS
tion for which it is still possible to resolve the pattern. An ) ) ) )
efficient way to do this is by bisecting the remaining inter- L&t us estimate the size of the proposed algorithm, i.e., the
vals, i.e., after running the algorithm with the maximum Number of involved computational steps, and compare it with
resolution {M,N}, we go over toM —M¥2 as well asN the cl'assllc'al method in the lim8— o while o, Ap, andy
—N¥2 and repeat the algorithm. If we still see peaks, wefémain finite. o
decrease the resolution even more, iM->MY* as well as In view of Eq. (12), we need only a few-O(S’) or
N—NY4 and, if not, we increase it agaM —M3* as well ~ ©(10g,00;9), cf. Sec. V—queries of the black box in order
asN—N%¥ etc. In this way, one can determine the mini- to find a Ppattern of a given size with h_|gh probgblhty.
mum resolution necessary for resolving the pattern irClearly, th|§ is not possible with any classical algorithm—
0O(log,s)=0(log,log,9 steps. In terms of this resolution, the deémenstrating the advantage of the global quantum compu-
value of D is reasonably smalD=0(1) and hence extract- ta_ltlon over the localonly one point at a timeclassical tech-
ing the values oD and ¢ from the peaks in Eqg10) and  Miaue. Since the number of queries of the _ black box
(11) is easy. The above procedure savelassical calcula- corresponds to the total_amount of photons shining on the
tion time (determining the largest common factor, gtout, ~ &TaY, the quantum algorithm causes lesser danefg&ec.

on the other hand, requires slightly more runs of the black!) than any classical method, see also RRe4].

_ ; . Given the explicit physical realization of the black box
box O(l =0(log,l . Eith s I fig- ' ) M X
u?é( ou(tgggsrzd ﬁ(va?ﬁ (zg?gtrarlily)e Lgﬁyp?onbeagﬁi?y? ways g described in Sec. lll, it is also possible to compare the total

The height of the peaks can be estimated by means of E umber of fundamental manipulations. For the preparation of
(6). In the resonance case, the sum inclugigd ¢ construc- e initial state in Eq(3), one has to apply the Hadamard

tively interfering addends, which lead to an amplitude of9at€ M+n=s=10g,S times. The black box itself involves

o : bout the same number of operations. The QFT in (&Y.
derO(xAe/\/@). Thus, the probability of the 220U or .
S(raairs i(nXEqu(lCQ)))and Flsl) isegFi):/(;nab;tp of meastring the requwesO(IoggS) steps for obtaining the exact result and is

even fastelO(log,9) if we measurd?2] the outcome imme-
diately afterwards—as it is the case here.

In contrast, the begknown) classical algorithm, the fast
Fourier transform(FFT), implementsO(Slog,S) operations
and is therefore exponentially slower. Note that, since we do
not know the typical “wave numbersk associated with the
i.e., independent dfl andM—and, therefore, drastically en- patterna priori, we would have to calculate the FFT for a
hanced over thérandom noise. large numberO(S) of possible values ok—whereas the

Consequently, if a numbédd of measurements yields one QFT accomplishes all this simultaneously, and automatically
or more pronounced peaks besides0, then there exists a gives us the valuek with the largest amplitudes in average
pattern larger thanymn=0(1/YQ)) and not otherwisgat ~ Mmeasurements.
least with a very high probabilily Quite reasonably, the ~ However, it cannot be excluded here that perhaps a clas-
smaller the patterfi.e., x) is, the longer one has to search. sical algorlt_hm exists, which is better than the FFT and may

After having solved the feature selection problem effi-compete with the proposed quantum algoritftitough not
ciently by the quantum algorithm, the remaining analysisin the number of queries of the black hoxut since the
(peak finding and stopping criteria, etof a small(indepen- ~ Processing of the coordinates of only one single point al-
dent ofN andM) amount of measured wave numbers can bg€ady requiresd(log,S) operations, one would have to find
accomplished by a classical algorithm. the pattern by considering a fe®(S°) or O(logzlog,S)

In this way, one can determine the size of the patjehy ~ POINts in order to outrun the quantum computer—which is
the frequency of measuring the peakkandk’ (and their ~@pparently not possible. _
width). Its structure(i.e., the values oD and 9) can be Nevertheless, in certain situations—e.g., for perfect lines
inferred from the location of the peaks. with D=0(1) such as in Fig. 1—it is possible to design an

Having found the parameteB, 9, andy of the pattern, appropriate classical algorithm that determinksy using
it can be localized easily—for example, by dividing the totalonly O(log3S) points with q=1, and thus requires
Nx M array into smaller piece@ccording toy) and running ~ O(logj"*S) computational steps. In this case, the speedup is
the same quantum algorithm again in the smaller domains.merely polynomial.

More complex(but still lineap patterns, such as a regu- In most cases, however, whele can be very largeD
larly recurring pictures(such as in many wall paperpos- =1 and the lines are not perfect, it is really difficult to see

how one might extract basically the same information as the
FFT in (polynomially) logarithmic time with classical meth-
1again, these pictures do not need to be perfect—average featur@s.[An O(4/S) algorithm, for example, would also be ex-
are sufficient. ponentially slower than the QHT.

12
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Assuming that there is indeed no such classical algorithnpears to be impossible to achieve the same accuracy as the
(or that the set of patterns, for which the Fourier transform ioroposed quantum algorithm, i.€©(log,S) digits for 9 and
the best classifier, is not empfythe problem under consid- D, without exponentially increasing effort; and, second, the
eration represents another example for tbenjectureglex-  fact thatD is not knowna priori and may vary over several
ponential speedup of quantum information processing—orders of magnitude makes it difficult to select a suitable
based on the power of QFT for problems relateddoas)  wave number for the incident light. In addition, the investi-
periodical structureévhich is also the basic factor for Shor’s gation of the arrayblack or white cell via incident photons
algorithm[3]; though in that case the periodicity is exact—in js restricted to a certain frequency window generally.

contrast to the situation considered here These obstacles are caused by the main difference be-

Of course, such a speedup has only been p_053|ble sincedteen optical filtering and the proposed quantum algorithm.
was not necessary to load the complete array into a quantu

memory(cf. Refs.[9—12)—this would have involved about R optical filtering, the relevant quantitieuch as wave

O(S) operations, and thereby lead to a dragséigponentigl r!umb_er, position in the focal plang), andD) are directly
slow-down. (i.e., linearly related to each other—whereas the quantum

algorithm employs the digital representation and therewith
outperforms the former method.
VIl. SUMMARY AND OUTLOOK On the other hand, if we happen to know the order of

In summary, quantum algorithms are capable of soIving]ﬂ"’_lgr_‘itude oD in advance and would t_)e_ willing to settle for
certain problems of pattern recognitiéire., detection, local- ¢ limited accuracy of only a fe@(S") digits, we may detect

ization, and classificationaside from template matching the pattern with optical filtering by using only a fe@(S”)
[9-12] much faster than their classical counterpftss). Al- photons—prowded that the c;orrespondmg wave number
though this has been demonstrated explicitly in the preserfpatches with the frequency window of the array. Although
paper for line patterns only, the basic idea applies to mor&uch less powerful, i.e., accurate, this method would be sig-
difficult (but still lineap patterns as wellln some sense, this hificantly faster than the proposed quantum algorithm, which
idea arises from the often successful approach to copy thalso uses only a few photons shining on the pattern—but it
ingenious solutions which nature reveals to us—such as theequiresO(log,S) photons(or, more generally, qubitgor the
possibility of distinguishing a crystal from an amorphoussubsequent data analysi®FT, etc). (This enhancement in
material via x-ray diffraction or the method of optical filter- speed—although at a certain cost—reflects the fact that a
ing, see the following sectionThe investigation of nonlin- quantum field theoretical object, such as a photon, has more
ear patterns, such as a set of concentric circles, is apparentiegrees of freedom than just one single quibit.
more involved and would require adapted methods.

Together with the findings in Ref§9—-12], the results of

the present paper give rise to the hope that quantum algo- ACKNOWLEDGMENTS
rithms are also advantageous for more general pattern recog-
nition problems. The author acknowledges valuable discussions with L.

D’Afonseca, D. Curtis, S. Fuchs, Y. Gusev, D. Meyer, N.
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the black box itself—can be accomplish& least, in prin-
ciple) with present-day optical devices. Hadamard gates as
well as the calculation of the quantum Fourier transform with APPENDIX
subsequently measuring the outcome can be realized by us- . .
) . . ; If there were no absorptive cells in the array at all, but
ing beam splitters and classically controlled phase shifters . )
) . . only (perfectly reflective (white) and transparentblack)
cf. Ref.[2]. This observation leads to the question of whether i o . ; .
; . . .__ones, one couldin principle) realize the following generali-
one could achieve a similar performance with purely optical__,- : .
) zation of the black box in Eq.l):
techniques.
Indeed, the method of optical filtering reproduces some
key features of the proposed quantum algorithm. Shining a |X) [X)
plane wave with an appropriate wave number on an aperture i
mask as in Fig. 1, the far-field diffraction amplitudes are B y) |- v) ’ (AL)
given by the Fourier transform of the objdetg., Fig. 1 in |e) la@f(x,y))
terms of the perpendicular wave number. Using an ordinary
convex lens, one may convert these wave numbers into po-
sitions in the focal plane of the lens, see, e.g., RES)]. with «=0,1. Here,® denotes summation modulo 2, i.e., 1
In this way the described apparatus effectively calculatess0=0®1=1 and 000=1®1=0. In this case, one may
the desired Fourier transform. However, this method goe#mprove the quantum algorithm by sending the superposition
along with serious problems and disadvantages: first, it apstate in Eq.(3) with the third register being|Q)—|1))/\2
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instead of|0) to the black box. The third register does not Assuming ¢ =1/2, the quantum Fourier transform of this
change during this procedure and the resulting state encodetate has certain advantages over the one in(Bg—one
the informatipn about the pointg in the array in the phasegjets rid of the(uselesgpeak atkk=0 and enhances the prob-
(+1 or —1) instead of the amplitudes (1 or 0) abilities of the other peaks by a factor of 2. Unfortunately, it

1 S°1 is hard to see how one might be able to exploit this advan-
|wy=-—= > (-1)!@|z). (A2)  tage of the modified black box in the presence of absorbing
VS 50 units.
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