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Intermediate states in quantum cryptography and Bell inequalities
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Intermediate states are known from intercept/resend eavesdropping in the Bennett-Brassard 1984~BB84!
quantum cryptographic protocol. But they also play fundamental roles in the optimal eavesdropping strategy on
the BB84 protocol and in the CHSH~Clauser-Horne-Shimony-Holt! inequality. We generalize the intermediate
states to an arbitrary dimension and consider intercept/resend eavesdropping, optimal eavesdropping on the
generalized BB84 protocol and present a generalized Clauser-Horne-Shimony-Holt inequality for two en-
tangled qudits based on these states.
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I. INTRODUCTION

The quantum cryptographic protocol by Bennett a
Brassard~1984!, known as the BB84 protocol@1#, was origi-
nally developed for qubits. In this protocol, the legitima
users, Alice and Bob, both use the same mutually unbia
basesA and A8. Alice uses them for state preparation1 and
Bob chooses between the two bases for his measurem
But an eavesdropper performing the simple intercept/res
eavesdropping may choose to measure in what is know
the intermediate basis or the Breidbart basis@2#. In the case
of qubits, it is possible to form four intermediate state
which fall into two mutually unbiased bases. However, t
eavesdropper need only use one of these bases.

It turns out that it is not only in the simple intercep
resend eavesdropping that these intermediate states ap
Also in the optimal eavesdropping strategy@3,4#, which con-
sists of the eavesdropper using the optimal cloning mach
these states enter. In this case, they appear at the point w
Bob and the eavesdropper, Eve, have the same amou
information, i.e., where their information lines cross. At th
point, their mixed states may be decomposed into a mix
of some of the intermediate states.

That the intermediate states also appear in the opti
eavesdropping strategy, also explains a curious observa
Namely, the amount of information obtained by the eav
dropper at the crossing point between the information li
using optimal eavesdropping, and the amount of informat
she obtains on performing intercept/resend eavesdroppin
the intermediate basis are the same. However, the error
are quite different.

Furthermore, intermediate states reappear in the Clau
Horne-Shimony-Holt~CHSH! inequality @5# for two en-
tangled qubits, where the maximal violation is obtain
when on the first qubit the measurement settings corresp
to the two mutually unbiased basesA and A8, and on the
second qubit to the two intermediate bases. Moreover, w
introducing the same kind of noise as the eavesdropper

1Notice that Alice may use a maximally entangled state of t
qubits for preparing the state she sends to Bob, since a measure
on one qubit will ‘‘prepare’’ the state of the other qubit.
1050-2947/2003/67~6!/062310~10!/$20.00 67 0623
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in the optimal eavesdropping strategy, the Bell violati
naturally decreases. However, it is interesting to note that
the critical disturbance where the classical limit is reach
Bob and Eve have the same amount of information, i.e.,
happens at the crossing point of the information lines. T
crossing point between the two information lines is a ve
important point, since up to this limit Alice and Bob can u
the fact that they have more mutual information than
eavesdropper and they can create a secure key just by u
classical error correction and one-way privacy amplificatio
Hence, the CHSH inequality for qubits can be used a
security measure@6,7#.

In the three situations just described: intercept/res
eavesdropping, optimal eavesdropping, and the CHSH
equality, the intermediate states keep reappearing and s
to play a fundamental role.

A natural question to ask is ‘‘what happens in higher
mensions’’?. This is the question we try to answer, at le
partially, here. It is possible to generalize the BB84 proto
to an arbitrary dimension@8–10,3,4#, simply by adding basis
vectors to the two mutually unbiased bases, so that foN
dimensions each basis containsN vectors. The intermediate
states may also be generalized to arbitrary dimensions. H
ever, in higher dimensions they, in general, do not fo
bases. But it is possible to associate with each intermed
state a projector, which represents a binary measuremen

With the use of these generalized intermediate states
investigate intercept/resend eavesdropping, optimal ea
dropping, and a generalized CHSH inequality in an arbitr
dimension to see if they play the same roles as in two dim
sions.

In this paper, we discuss the connection between so
specific eavesdropping attacks in quantum cryptography
Bell inequalities in the arbitrary dimension. In Sec. II, w
introduce the intermediate states for qudits (N-dimensional
quantum systems!. In Sec. III we discuss intercept/resen
eavesdropping using the intermediate states and compar
timal eavesdropping with the intercept/resend eavesdrop
strategy. Then, in Sec. IV, we present a generalized Bell
equality for two entangled qudits. In Sec. V, we consider
Bell violation as a function of the disturbance that the op
mal eavesdropping strategy would lead to. The final secti
of the paper are devoted to studying the inequality we h
ent
©2003 The American Physical Society10-1
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presented. In Sec. VI, we discuss some features of the
equality by giving examples in three dimensions. Since
cently the strength of a Bell inequality has been measure
terms of its resistance to noise, we discuss this issue in
VII. Section VIII is devoted to a brief study of the require
detection efficiency. Finally, in Sec. IX, we have conclusi
and discussion.

II. THE INTERMEDIATE STATES

The quantum cryptographic protocol BB84 can easily
generalized to the arbitrary dimension, this has already b
discussed in the literature@8,10#. The protocol works in ex-
actly the same way as it did for qubits, with the sole exc
tion that for qudits each of the two mutually unbiased ba
A and A8 used by Alice and Bob containN basis states in-
stead of two. So Alice sends at random~and with equal prob-
ability! one of the 2N possible states, and Bob chooses
measure in one of the two basesA andA8.

In this section, we define the intermediate states betw
these two bases. The basisA is chosen as the computation
basis,

ua0&, . . . ,uaN21&, ~1!

and the second basisA8 is the Fourier transform of the com
putational basis:

uak8&5
1

AN
(
n50

N21

expS 2p i kn

N D uan&. ~2!

These two bases are mutually unbiased, i.e.,

^anuak8&5

expS 2p i kn

N D
AN

. ~3!

This means that the distance between pairs of state from
two bases is cos(u)51/AN.

On having two states, it is possible to define a state
lies exactly in between the two, which means that it has
same overlap with both states and it is the state closest to
two original states that have this property. The intermed
states are obtained by forming all possible pairs of the st
from the two bases. They are shown in Table I. Explicitly, t
intermediate state betweenuan& and uak8& is defined in the
following way:

TABLE I. The intermediate states formed by the states from
two basesA andA8.

a08 a18 ••• aN218

a0 m00 m01 • m0,N21

a1 m10 m11 • m1,N21

A • • • •

aN21 mN21,0 mN21,1 • mN21,N21
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umnk&5
1

AC
FexpS 2p i kn

N D uan&1uak8&G , ~4!

whereC52(111/AN) is the normalization constant and th
phase comes from the overlap betweenuan& and uak8&, see
Eq. ~3!. The indices of them states are such that the fir
index always refers to theA basis and the second to theA8
basis. Since each basis containsN states it is possible to form
N2 intermediate states, simply by forming all pairs of sta
from the two bases.

In general, the intermediate stateumab& between two ar-
bitrary initial statesua& and ub& is defined as

umab&5
A^aub&ua&1A^bua&ub&

A2Au^aub&u1u^aub&u2
. ~5!

The intermediate states may be defined in complete gen
ity for arbitrary initial states and any number of them. In th
case, the intermediate state is found by forming the mixt
of all the initial states with equal weight, the eigenstate st
with the largest eigenvalue of this mixture corresponds to
intermediate state. Naturally, these definitions are equiva
and lead to the same intermediate state.

Consider that the intermediate states lead to the follow
conditional probabilities:

p~mnkuan!5p~mnkuak8!5

11
1

AN

2
[F. ~6!

Note that this definition indeed recovers the formula for c
sine of half the angle: cos(u/2)5A@11cos(u)#/2. Therefore,
the states have been named intermediate states, since
indeed lie in between the two original states.

The probability for making an error is

p~mnkuaq!5p~mnkuap8!5

12
1

AN

2~N21!
[

D

N21
. ~7!

It is important to notice that the intermediate states,
general, are not orthogonal, indeed we have

^mklumnm&5
1

ANC
FANdknexpS 2p i

N
~mn2 lk ! D1ANd lm

1expS 2p i

N
~m2 l !kD1expS 2p i

N
~m2 l !nD G .

~8!

This means that the generalized intermediate states, in
eral, do not form bases, as in the two-dimensional case.
they can still be used as binary measurements, this is
cussed in the following section.

e
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A. Intermediate states as binary measurements

It has just been shown that, in general, the intermed
statesumkl& are not orthogonal, and hence they do not fo
bases as in the two-dimensional case. It is, however, pos
to use the corresponding projectorsumkl&^mklu as binary
measurements.

Since the intermediate states are nonorthogonal, it me
that the corresponding binary measurements are mutuall
compatible. In other words, none of them can be measu
together, but they have to be measured one by one. A bi
measurement has, as the name indicates, two possible
comes, 0 and 1, where the zero outcome isinterpretedas ‘‘I
guess the state was notumkl&, ’’ and the ‘‘1’’ outcome is in-
terpreted as ‘‘I guess the state wasumkl&. ’’ However, the
answers are statistical, in the sense that there is a ce
probability for making the wrong identification.

It should be mentioned that theN2 intermediate states
constitute a generalized measurement, namely, a so-c
positive operator valued measure~POVM!. We have

(
n,k50

N21
1

N
umnk&^mnku51. ~9!

However, we do not make use of this in what follows.

III. EAVESDROPPING

In this section, we consider two different kinds of eave
dropping strategies: intercept/resend eavesdropping and
timal eavedropping by using the optimal cloning machin
We show that the amount of information obtained by t
eavesdropper at the crossing point between the informa
lines using optimal eavesdropping, and the amount of in
mation she obtains on performing the much simp
intercept/resend eavesdropping in the intermediate basis
the same. The crossing point between the information line
of fundamental importance, because it gives the maxim
tolerated disturbance that allows Alice and Bob to creat
secure key by using classical error correction and one-
privacy amplification.

Until now, the crossing point has been identified by co
sidering the optimal eavesdropping strategy, which, in g
eral, is quite a difficult problem to solve. The fact that it
possible to identify the crossing point by considering t
much simpler intercept/resend eavesdropping in the inter
diate basis greatly simplifies this problem. We show that t
holds for any dimension, and that this is due to the fact t
the intermediate states appear in both eavesdropping st
gies.

A. InterceptÕresend eavesdropping

Assume that the eavesdropper, Eve, performs the sim
intercept/resend eavesdropping. This means that she i
cepts the particle sent by Alice, performs a measurement,
according to the result prepares a particle which she t
sends to Bob. She may choose to measure in the same
as Alice and Bob, but she may also choose to use the in
mediate states. In higher dimensions, where the intermed
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states do not form bases, this strategy becomes a bit artifi
It is, nevertheless, interesting to consider it briefly. We w
later show that there exists a connection between this sim
eavesdropping attack and the optimal eavesdropping att

In the arbitrary dimension, where the intermediate sta
correspond to binary measurements, the intercept/res
strategy using these measurements may appear like
Whenever Eve obtains a ‘‘1,’’ which means she can mak
good guess of the state, she prepares a new state and se
to Bob, whereas in the cases where she gets a ‘‘0,’’ wh
means she is unable to make a good guess, she does no
anything to Bob. In this way, we are only considering t
cases where Eve does obtain a useful answer. This stra
of course, gives rise to a large amount of losses and error
Bob’s side, but it is, however, interesting to evaluate t
amount of information that Eve obtains in this case, i.
considering only the measurements where she gets a pos
answer.

The probability of making the correct identification
given by Eq.~6! and is equal to1

2 11/(2AN), whereas the
probability of wrong identification, i.e., of an error, is give

by Eq. ~7! and is equal to@1/(N21)#@ 1
2 21/(2AN)#. This

means that the~Shannon! information obtained by Eve is
given by @10#

I int,Eve
N 5 log2~N!1S 1

2
1

1

2AN
D log2S 1

2
1

1

2AN
D

1S 1

2
2

1

2AN
D log2F 1

~N21! S 1

2
2

1

2AN
D G

~10!

on the ‘‘1’’ outcomes of her measurements.
In the following section, we will compare this amount o

information to the amount of information obtained by pe
forming optimal eavesdropping at the point where the inf
mation lines between Bob and Eve cross.

B. The optimal cloning machine

The optimal eavesdropping strategy in any dimension
believed to be given by an asymmetric version of the qu
tum cloning machine@11#, which clones optimally the two
mutually unbiased bases@4#. Using this cloner, Eve can ob
tain two copies of different fidelities of the state prepared
Alice. Usually, Eve keeps the bad copy and sends the g
one on to Bob. For a full description of this eavesdroppi
strategy and the cloning machine involved, see Ref.@4#.
Here, we are only concerned with the final state that B
receives, which means how the optimal eavesdropping s
egy influences the state obtained by Bob. In the case o
eavesdropping, Bob receives the same pure state as was
by Alice. But in the case of eavesdropping, Bob receive
mixed state.

Assume that without eavesdropping Bob would ha
found the stateuan& if measuring in the computational basi
The question is what: ‘‘happens touan& as a result of eaves
dropping’’? Or in other words, how does the cloning m
0-3
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chine influence the stateuan&? We are only interested in th
final mixed states that Bob receives, and that may be wri
as

rB5FBuan&^anu1
DB

N21 (
j 50,j Þn

N21

uaj&^aj u, ~11!

whereFB is the fidelity andDB512FB is the total distur-
bance. A similar expression can be obtained for theA8 basis
states. As a result of eavesdropping, the amount of infor
tion that Bob gets is

I opt,bob
N 5 log2~N!1FBlog2~FB!1~12FB!log2S 12FB

N21 D .

~12!

The optimal eavesdropping strategy is symmetric un
the exchange of Bob and Eve. This means that the mi
staterE , which Eve obtains, can be written in the same fo
as Bob’s mixed state, just with different coefficients, i.e.,

rE5FEuan&^anu1
DE

N21 (
j 50,j Þn

N21

uaj&^aj u ~13!

and, equivalently, the amount of information obtained by E
is given by

I opt,eve
N 5 log2~N!1FElog2~FE!1~12FE!log2S 12FE

N21 D .

~14!

It is interesting and important to consider the point whe
the information lines between Bob and Eve cross. When
ice and Bob share more information than Alice and E
Alice and Bob can use one-way privacy amplification to o
tain a secret key. Using the explicit form and coefficients
the cloning machine, it is possible to show~this was done in
Ref. @4#! that the information curves cross at the point whe

FB5FE5F5
1

2
1

1

2AN
, ~15!

DB5DE5D5
1

2
2

1

2AN
. ~16!

This is exactly the same fidelity~or probability of guessing
correctly the state! that Eve obtained using the intercep
resend eavesdropping using the intermediate states, w
means that we have just shown

I Int,eve
N 5I opt,eve

N ~crossing point!. ~17!

This is explained by the fact that, at the crossing point
the information lines, Eve’s mixed state can be decompo
into a mixture of some of the intermediate states, namel

rE
cross5

1

N (
j 50

N21

umn j&^mn ju, ~18!
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where again it has been assumed thatuan& was the correct
state. The same result holds for Bob, since at the cros
point Bob and Eve possess the same mixed state.

The mixture of the intermediate states may be interpre
as if Eve with probability 1/N has the stateumn j& ~there areN
possible values ofj ). Eve, naturally, waits and performs he
measurement after Alice has revealed in which basis the
dit was originally prepared. Then, she measures her qud
the same basis, which means that she uses either the baA
or the basisA8.

This means that the situation is the following. For t
optimal eavesdropping strategy, Eve possess one of the i
mediate states and she measures in one of the correspo
basisA or A8; whereas in the intercept/resend eavesdropp
with the intermediate states, the situation is exactly the
posite, namely, Eve has one of the basis states fromA or A8
and she measures the intermediate states. The two situa
obviously lead to the same probabilities and hence the s
amount of information.

This means that by considering the simple interce
resend eavesdropping with intermediate state, it is possib
identify the crossing point; hence, the computation of t
maximal tolerated disturbance becomes a trivial task.

IV. THE BELL INEQUALITY IN ARBITRARY DIMENSION

Recently, there has been considerable interest in gen
izing various types of Bell inequalities@12–18# in higher
dimensions. The Bell inequality we present here@20# makes
use of the intermediate states, in a way similar to the CH
inequality. This means that first we present the measurem
and the quantum limit and only afterwards the local varia
bound. So, at first we just write down a particular sum
joint probabilities and later we show that it is a Bell inequa
ity.

In Sec. VI, we describe some of the remarkable proper
that the Bell inequality, we present here, posseses, bu
should be mentioned that this inequality, compared to ot
inequalities in higher dimensions, exhibits maximal violati
for the maximally entangled state. However, we do not p
vide an analytic proof for this statement, but refer to nume
results that have been obtained by using polytope softw
@13,21#—the same kind of software which has been used
show that the other inequalities do not reach their maxim
violation for the maximally entangled state.

A. The Bell inequality: The quantum-mechanical limit

Assume that Alice and Bob share many maximally e
tangled states of two qudits. In the computational basis,
state may be written as

uc&5
1

AN
(
i 50

N21

uai ,ai&. ~19!

For each of her qudits, Alice has the choice of two me
surements, namely to measure the basisA or the basisA8;
whereas Bob for each of his qudits has the choice betw
0-4
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TABLE II. The values assigned to the basis states and the intermediate states.

Value A A8 M0 M1 ••• MN21

0 ua0& ua08& um00& um01& ••• um0,N21&
1 ua1& ua18& um11& um12& ••• um10&
••• ••• ••• ••• ••• ••• •••

N21 uaN21& uaN218& umN21,N21& umN21,0& ••• umN21,N22&
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N2 binary measurements, corresponding to all the interm
ate states of the two bases used by Alice.

In order to write down the Bell inequality, it is convenie
to assign values to the various states. In Table II, the va
are shown. Notice that intermediate states have been o
nized intoN sets so that the value of the state is always giv
by the first index. Moreover, this organization into the s
M0 , . . . ,MN21 simplifies the notation in what follows
However, it is important to remember that the states in e
of the sets are not orthogonal, in other words, they do
form N orthogonal bases.

The inequality is a sum of joint probabilities. It is ob
tained by summing all the probabilities for when the resu
of the measurements are correlated and from this sum al
probabilities when the results are not correlated are s
tracted, i.e.,

BN5( p~results correlated!2( p~results not correlated!

Assume that Alice measures in theA basis and Bob mea
sures the projectors in the setM0. For this combination of
measurements, there are the following contributions to
sumBN :

P~M05A!5 (
i 50

N21

p~mii ùai !5
1

2
1

1

2AN
, ~20!

P~M0ÞA!5 (
i , j 50,j Þ i

N21

p~mii ùaj !5
1

2
2

1

2AN
, ~21!

whereP(M05A) should be read as follows: Bob measur
one of the projectors inM0 and Alice measuresA, and Bob
obtains the value that is correlated with Alice’s result. On
other hand,P(M0ÞA) means that Bob’s result is not corre
lated with the result obtained by Alice. The probabili
p(mklùan)5p(mkluan)p(an) is the joint probability for ob-
taining both uan& and umkl&. The same is the case if Bo
measures the projectors in any of the other s
M1 , . . . ,MN21 and Alice always measures inA, and again if
Bob usesM0 and Alice A8. This means that we hav
P(Mi5A)5P(M05A8)5 1

2 11/(2AN) and P(MiÞA)
5P(M0ÞA8)5 1

2 21/(2AN).
Now consider the case where Bob usesM1 and Alice uses

A8; in this case, Bob consistently finds a value that
N21 higher than the value that correlates him with Alice.
observe this, assume, for example, that Bob has the stateua08&
which is assigned the value 0; but the state inM1, which
gives the correct identification of this state, isumN21,0&, and
06231
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this state has been assigned the valueN21. Similar is the
case for all the other states, which leads toP„M15A81(N
21)…5 1

2 11/(2AN) and P„M1ÞA81(N21)…5 1
2

21/(2AN). Actually, whenever Alice measuresA8 and Bob
uses any of theMi , Bob consistently finds a value that
N2 i higher than the one that correlates him with Alice. Th
means thatP„Mi5A81(N2 i )…5 1

2 11/(2AN) and P„Mi

ÞA81(N2 i )…5 1
2 21/(2AN).

It is now possible to write and evaluate the sumBN :

BN5 (
i 50

N21

P~Mi5A!2 (
i 50

N21

P~MiÞA!

1 (
i 50

N21

P„Mi5A81~N2 i !…

2 (
i 50

N21

P„MiÞA81~N2 i !…

52NF S 1

2
1

1

2AN
D 2S 1

2
2

1

2AN
D G52AN. ~22!

The quantityBN is a sum of 2N3N2 terms if written out
explicitly. In the following section, we show that a loca
variable model that tries to attribute definite values to
observables will reach a maximum value of 2. This sho
that we have obtained a Bell inequality where the quant
violation grows with the square root ofN.

B. The Bell inequality: The local variable limit

On Alice’s side, a0 , . . . ,aN21 are measured simulta
neously in a single measurement as the basisA, which means
that only one of them can come out true in a local varia
model. The same is the case fora08 , . . . ,aN218 , which is
measured as the basisA8. This means that, for example, ifai
is true, meaning that the measurement ofA will result in the
outcomeai , then all probabilities involvingaj with j Þ i
must be zero. It is different on Bob’s side where eachmkl is
measured independently and hence they may all be tru
the same time in a local variable model.

Assume now that according to some local variable mod
ai andaj8 are true. At the same time, in principle, all themkl

could be true, too. But notice now that the onlym state that
will give a positive contribution to the quantityBN is the one
that identifies bothai and aj8 correctly, i.e.,mi j . This will
give rise to a contribution of12, whereasmil and mk j ,
where only one index is correct, will only identify one of th
states correctly and the other one wrong. This means
0-5
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these states, since this gives rise to one correct and
wrong identification, will result in a zero contribution; an
finally the statesmkl , where both indices are wrong, wi
only give rise to errors and will hence give a negative co
tribution of 22 to the sumBN . This means that

BN<2. ~23!

However, we have already shown that quantum mechanic
it is possible to violate this limit. Quantum mechanically t
limit is 2AN. This means that we have obtained a Bell
equality where the violation increases with the square roo
the dimension.

For N53, the inequality has been checked in vario
ways numerically. First of all, it has been checked that 2A3
is indeed the quantum-mechanical limit to this sum of pro
abilities and that this maximum is reached for the maxima
entangled state. Moreover, it has been checked using ‘‘p
tope software’’@13,21# that the inequality, Eq.~23! is optimal
for the measurement settings which we have presented h

V. BELL PARAMETER AS A FUNCTION OF rB

In this section, we address the question if the Bell
equality we have presented here can be used as a sec
measure in quantum cryptography. It is known@7# that for
qubits, violation of the CHSH inequality is analyticall
equivalent to security in the BB84 cryptographic protocol.
therefore, seems natural to investigate how the Bell violat
decreases as a function of the disturbance introduced by
eavesdropper in the arbitrary dimension. It is not necess
to think of it in terms of quantum cryptography and eave
dropping, but simply that the quantum channel from Alice
Bob is noisy and that the noise which is introduced is id
tical to the noise an eavesdropper would introduce, using
optimal cloning machine.

Assume, without loss of generality, that without distu
bance, Bob would have received the stateua0&, then we
know that the mixed state that he obtains as a function of
disturbance can be written, Eq.~11!, as

rB5FBua0&^a0u1
DB

N21 (
i 51

N21

uai&^ai u.

In order to computeS(rB), it is enough to consider the cas
where Bob, for example, uses the states inM0 for his mea-
surements, the rest of the terms in the inequality follows
symmetry.

All the states in theM0 set are of the formumj j &. First,
computing the various probabilities^mj j urBumj j &, we find

. ~24!
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There are two different cases that have to be checked in
pendently, namely,j 50 and j Þ0: For j 50, we have

^m00urBum00&5FBF1~N21!
DB

N21

D

N21
, ~25!

and for j Þ0, we have

^mj j urBumj j & j Þ05FB

D

N21
1F

DB

N21

1~N22!
DB

N21

D

N21
, ~26!

where we have used thatp(m00ua0)5F and p(mj j ua0) j Þ0
5D/(N21) @see Eq.~6! and Eq.~7!#.

In the inequality,̂ m00urBum00& appears with a plus sign
since this is the probability of correctly identifying the stat
At the same time,̂mj j urBumj j & j Þ0 appearN21 times with a
minus sign in the inequality, since these correspond to all
possible errors. This means that we can define

s~r!5^m00urBum00&2~N21!^mj j urBumj j & j Þ0

5FB~F2D !2FDB2
N23

N21
DDB . ~27!

There are 2N2 terms equal tos(rB) in the Bell inequality,
since there areN2 intermediate states and each of them a
pear twice~once for each of the basesA and A8). On the
other hand, in each of the basesA andA8 each state appear
with a probability 1/N. This means that the total Bell param
eter is equal to

S~rB!52Ns~rB!52NS FB~F2D !2FDB2
N23

N21
DDBD .

~28!
It is now possible to answer a very interesting questi

namely, for which disturbance isS(rB)52? Using the val-
ues of F, Eq. ~6!, and D, Eq. ~7!, and expressingFB51
2DB , one finds thatS(rB)52 for

DB
S525

N3/22AN2N11

N3/21N222N
. ~29!

This can be compared to the disturbanceD at the crossing
point between the information lines. This is shown in Fig.
We find that it is only forN52 thatDB

S525D, and, hence,
only in two dimensions that the inequality we have presen
here can be used as a security measure in quantum cryp
raphy. However, it should be stressed that the violation of
inequality stops before the crossing point is reached. S
violation of the inequality, in any dimension, still means th
Alice and Bob are within the secure zone. A similar res
has recently been obtained in a slightly different situat
@19#.

Why the Bell inequality only works as a perfect secur
measure in two dimensions, is a very interesting and hig
nontrivial question, and a complete answer to this probl
0-6
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lies beyond the scope of the present paper. However, an
tuitive understanding can be found in the discussion of
clonning machine in Sec. III, especially from the last pa
graph.

VI. INTERESTING FEATURES OF THE B3 INEQUALITY

In this section, we restrict ourselves to three dimensi
in order to show, in a simple way, some interesting proper
of the inequality.

A. Complex versus real numbers

The first is related to the use of complex numbers. In
CHSH inequality for qubits, the maximal violation may b
obtained by using real numbers only. Also, the Collins, G
sin, Linden, Massar, and Popescu~CGLMP! inequality @18#
shows no difference between real and complex numb
Here, we show that if restricted to real numbers it is n
possible to obtain the maximal violation for the inequal
we have presented.

Numerically, we have found the settings which lead to
largest violation when restricted to real numbers. On Alic
side, the first basis is again the computational basisA,
whereas the second basisAr (r stands for real! is found by
making ap/3 rotation around the (1,1,1) axis inR3, and is
explicitly given by

ua0
r &5 1

3 ~2ua0&12ua1&21ua0&),

ua1
r &5 1

3 ~21ua0&12ua1&12ua0&), ~30!

ua2
r &5 1

3 ~2ua0&21ua1&12ua0&).

The intermediate states are defined in the same way, an
three setsM0 , M1, andM2 again consist of nonorthogona
states. We find the following probabilities:

P~M05A!55/6, P~M0ÞA!51/6;

P~M15A!54/6, P~M1ÞA!52/6;

FIG. 1. This figure shows, as a function of the dimension,
disturbance at the crossing pointD ~upper curve!, and the distur-
bance for which the Bell violation stopsDS52 ~lower curve!.
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P~M25A!55/6, P~M2ÞA!51/6;

P~M05Ar !55/6, P~M0ÞAr !51/6;

P~M15Ar12!54/6, P~M1ÞAr12!52/6;

P~M25Ar11!55/6, P~M2ÞAr11!51/6.

Alice and Bob are still assumed to share the maximally
tangled stateuc&. Inserting these probabilities in theB3 in-
equality leads toB3510/3'3.333, which is smaller than th
maximal violation that is 2A3'3.464.

The explanation for this difference can be found in t
fact that the inequalityBN has been optimized for mutuall
unbiased bases. In two dimensions, it is possible to have
such bases, for example, thez and thex-bases are mutually
unbiased and both real. But while moving to higher dime
sions this is not the case; for example, in three dimensio
is not possibles to have two mutually unbiased bases
have them both real. This means that in order to reach
maximum value, for the inequality we have presented her
is necessary to introduce complex numbers. However,
CGLMP inequality for qutrits has not been optimized f
mutually unbiased bases, which explains why it does
require complex numbers.

B. Binary measurements versus basis measurements

The BN inequality is on Bob’s side optimized for theN2

binary measurements corresponding to the intermed
states of the two bases chosen by Alice. However, it is p
sible to impose the additional requirement that not only m
the measurements chosen by Bob maximize the probabili
but they must also form a basis. In other words, it is poss
to require that theM sets correspond to orthogonal basesMb

(b refers to the basis!. We have considered this question
three dimensions.

The Mb bases that provide the optimal solution are d
fined in the following way. For the two mutually unbiase
bases chosen by Alice, there exist unitary operatorsUi such
that

Uuai&5uai8&, U5A8A21. ~31!

In this way, the intermediatebasisis defined as

umii
b &5AUuai&, Mi5AUA. ~32!

SinceU is unitary,AU is well defined. It is possible to con
struct all three basesM0

b , M1
b , andM2

b in this way, choosing
the unitary operator such that it transforms the states iA
into any of the states inA8. This definition leads to the
following probabilities:

P~M0
b5A!57/9, P~M0

bÞA!52/9;

P~M1
b5A!57/9, P~M1

bÞA!52/9;

P~M2
b5A!57/9, P~M2

bÞA!52/9;

e

0-7
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P~M0
b5A8!57/9, P~M0

bÞA8!52/9;

P~M1
b5A812!57/9, P~M1

bÞA812!52/9;

P~M2
b5A811!57/9, P~M2

bÞA811!52/9.

These probabilities may again be used in theB3 inequality;
but it is important to realize that even if the notation for t
inequality is the same, the interpretation is different. Sin
the states in theMi

b sets are orthogonal andMi
b are bases,

Bob no longer chooses between the nine different bin
measurements but between the three basis measurem
However, it is possible to check that the local variable lim
is not changed, i.e., it is still 2. Inserting the above probab
ties leads toB3

b56(7/922/9)510/3'3.333.
However, using basis measurements on Bob’s side le

to some other interesting results. It turns out that it is p
sible to reduce the number of terms in the inequality. TheB3
inequality is the sum of all correct guesses, subtracting
the errors. Using the intermediate basesMi

b , it is possible to
subtract only half of the errors and, in this way, obtain
different inequality with a different local variable limit
namely,S12<3:

S125P~M0
b5A!1P~M1

b5A!1P~M2
b5A!1P~M0

b5A8!

1P~M1
b5A812!1P~M2

b5A811!2P~M0
b5A11!

2P~M1
b5A11!2P~M2

b5A11!2P~M0
b5A812!

2P~M1
b5A811!2P~M2

b5A8!<3. ~33!

Inserting the above probabilities leads to the quantu
mechanical maximum for this inequality, namely,S12
56(7/921/9)54.

VII. RESISTANCE TO NOISE

In the recent papers on Bell inequalities, the strength
the inequality has been measured in terms of its resistanc
noise@16–18#. The question is how much noise can be add
to the maximally entangled stateuc& and still obtain the Bell
violation. The more the noise added to the system, the be
it is, since this means that the inequality is robust aga
noise.

What is meant by noise naturally has to be specified
the preceding section we, for example, considered the n
that is introduced by an eavesdropper when she uses
optimally eavesdropping strategy. However, the noise
was until recently used in the measure of the strength o
inequality was uncolored noise. This means that the m
mally entangled state is mixed with the maximally mix
state, so that the quantum state becomes

rmix5lmixuc&^cu1~12lmix!
1

N2
. ~34!

This can be interpreted as if Bob with probabilitylmix re-
ceives the maximally entangled state, and with probabi
12lmix he receives the maximally mixed state. For t
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maximally entangled state, the Bell inequalityBN Eq. ~23!,
has maximal violation, i.e.,S52AN; whereas for the maxi-
mally mixed state each of the probabilities in the inequa
is equal to 1/N, henceS(1/N2)52(22N). This leads to

S~rmix!52⇔lmix
BN 5

N21

N1AN22
. ~35!

For N53, this is lmix
B3 52/(11A3).0.73. In comparison,

the CGLMP inequality is more robust to this kind of nois
since they find a violation untillmix

CGLM P.0.69.
Recently, it has been argued that the use of uncolo

noise in this measure leads to problems@22,23#. At the same
time, a different kind of noise was introduced, namely,
mix the maximally entangled state with the closest separa
state, i.e.,

rcs5lsepuc&^cu1~12lsep!rsep, ~36!

where rsep5(1/N)( i 50
N21uai ,ai&^ai ,ai u @24#. Examining

what happens to the Bell violation when introducing the st
rsep in BN , Eq. ~23!, shows that when Alice measures in th
A basis, Alice and Bob remain perfectly correlated—whi
means maximal violation of that part of the inequality whi
concerns the measurement combinations involvingA. On the
other hand, when Alice measures in theA8 basis, Bob is left
with the maximally mixed state, which means that all t
joint probabilities involving the use ofA8 on Alice’s side are
equal to 1/N. In total, this leads to

S~rcs!52⇔lsep
BN 5

N2AN

N1AN22
, ~37!

which for N53 is lsep
B3 5(32A3)/(11A3).0.46, whereas

the CGLMP inequality again haslsep
CGLM P.0.69. This means

that the inequality we have introduced here is much m
robust to this kind of noise. However, it should be stress
that the same measurement settings have been used in
evaluations ofl, and that the CGLMP inequality has bee
optimized to be resistant to the uncolored noise.

As already mentioned, it has recently been shown@22,23#
that the use of uncolored noise in the measure of resista
to noise leads to problems. Also, the results that we h
obtained here further seem to support the view that resista
to noise is not a good measure of the strength of a B
inequality, since the robustness of a Bell inequality depe
on the choice of the noise added to the system.

VIII. MINIMUM DETECTION EFFICIENCY

To conclude the study of inequality~23!, let us consider
the minimum detection efficiency required to violate it. Th
question is interesting both from a fundamental point of vi
~the so-called detector efficiency loophole@25#! and for the
practical question: How does one test a quantum dev
such as a quantum cryptography system?@26,7#. For simplic-
ity, we assume that all detectors have the same efficiencyh.
The problem is what to do with the cases that only o
0-8
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detector fires. A natural possibility attributes the value z
to Bob whenever his detector did not fire and a random va
to Alice whenever her detector did not fire. In this way,
only Alice detects a qudit, the Bell function vanishe
whereas, if only Bob detects, the Bell function is the same
for the maximally mixed state, i.e., 2(22N), as in the pre-
ceding section. Thus, the inequality reads

h2
•~2AN!1h~12h!@012~22N!#

h212h~12h!
<2. ~38!

From this inequality, one finds the threshold efficiency

h threshold5
N

N1AN21
. ~39!

This result was discovered independently by Pironio and
land @27#. For qubits, i.e.,N52, one recovers the well
known threshold, usually derived from the Clauser-Horn
equality @28#: h threshold

(N52) '82.8%. This threshold is minima
and slightly better forN54: h threshold

(N54) 580%. For higher
dimensions, the threshold increases and tends to 1.

It would be interesting to investigate the behavior of no
maximally entangled states, since Eberhard found that
qubits the threshold then decreases@29#. Let us mention that
recently Massar proved that there are inequalities for wh
the threshold tends to zero exponentially, at least for v
large dimensions@30# and, with colleagues he investigated
situation similar to the one studied in this section@31#.

IX. CONCLUSION

For qubits, the intermediate states play fundamental ro
in at least three different places: intercept/resend eavesd
ping in the BB84 protocol for quantum cryptography, op
mal eavesdropping also in the BB84 protocol and in
CHSH-inequality for two entangled qubits. The work w
have presented here is the result of a study of the use of t
intermediate states in the same situations but in an arbit
dimension.

In this paper, we have first discussed the generalizatio
the intermediates states of two mutually unbiased ba
showing that these states are, in general, not orthogonal
hence do not form a basis as in the case for qubits. We h
also discussed how they, nevertheless, can be used as b
measurements. With these measurements, we have co
ered the same situations as known from the qubit case.

We have considered eavesdropping in the general
BB84 protocol~always considering only two bases!. When
the eavesdropper uses the optimal eavesdropping stra
her information increases as a function of the disturba
that she introduces, and at the same time Bob’s informa
is a decreasing function of the disturbance. For a given
turbance, their information lines cross. We have shown
the amount of information that the eavesdropper obtain
this crossing point is exactly the same amount of informat
which she would have obtained using the simple interce
resend strategy using the intermediate states; however,
ing to a much higher disturbance. This is explained by
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fact that in any dimension, Eve’s mixed state can at
crossing point be decomposed into a sum of some of
intermediate states. Hence, in the optimal eavesdropp
strategy, at the crossing point, Eve has one of the interm
ate states but performs her measurement in the same ba
which the state was originally prepared. Whereas, in
intercept/resend strategy, using the intermediate states a
nary measurements, Eve has the state which was origin
prepared by Alice, but measures one of the intermed
states. This means that the two situations are exactly oppo
and, therefore, lead to the same probabilities and hence
same information. In other words, we have shown a conn
tion between the intercept/resend eavesdropping stra
where the eavesdropper uses the intermediate states, an
optimal eavesdropping attack where the eavesdropper us
special version of the quantum cloning machine.

The maximal settings for the CHSH inequality for qub
are two mutually unbiased bases on Alice’s side and us
the intermediate states on Bob’s side. In the case of qu
the four intermediate states form two bases. This means
in this case, both Alice and Bob have the choice of meas
ing one of the two mutually unbiased bases.

In higher dimensions, where the intermediate states do
form bases, Bob instead uses the corresponding projecto
binary measurements. This means that he chooses bet
N2 mutually incompatible measurements, whereas Alice s
chooses between two basis measurements. The genera
inequality, we present, has the local variable limit equal to
in any dimension, whereas the maximal quantum-mechan
value is 2AN. In other words, we find a violation that in
creases with the square root of the dimension. Due to
construction, we also obtain the familiar CHSH inequal
for N52.

It is known that the CHSH inequality may be used as
security measure in quantum cryptography for qubits, sin
in this case, a violation of the inequality is obtained until t
disturbance introduced by the eavesdropper reaches the
turbance at the crossing point of the information lines b
tween Eve and Bob. Until this point, Alice and Bob can u
the fact that they share more mutual information than w
Eve to obtain a secret key by means of one-way priva
amplification. We have investigated the violation of the i
equality, presented here, as a function of the disturbance
troduced by the eavesdropper. We found that it is only
N52 that the inequality can be used as a security meas
in the sense that in higher dimensions the violation stops
a lower disturbance than the disturbance at the cros
point. This, however, does not mean that such an inequa
does not exist; it only shows that the inequality which mim
ics the situation from two dimensions is not the one that
this property in higher dimensions.

On the other hand, the inequality we have presented h
may stand as a result by itself, and as a Bell inequality in
arbitrary dimension it has many interesting properties. F
of all, compared to other inequalities, which have been p
sented recently, this inequality gives maximal violation f
maximally entangled states. Moreover, we have shown
examples in three dimensions that this inequality requ
complex numbers in order to have maximal violation. R
0-9
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striction to the use of real numbers leads to a smaller vio
tion. In comparison, the CHSH inequality for qubits and t
CGLMP inequality for qutrits show no difference betwe
using real or complex numbers. The explanation is due to
fact that the inequality we present here is optimized for m
tually unbiased bases, and in three dimensions it is not p
sible to have two such bases without the use of comp
numbers. However, in two dimensions thex andz bases are
mutually unbiased and both real, and for the CGLMP
equality the explanation is that it is not optimized for mut
ally unbiased bases.

We have also shown that imposing the additional c
straint that theM sets actually form bases leads to new
equalities. We have explicitly given an example in three
mensions, showing the optimal solution, for two ba
measurements on Alice’s side and three basis measurem
on Bob’s side.

In recent papers on the subject@16–18#, the strength of a
Bell inequality has been measured in terms of its resista
to noise. Until recently, the noise was taken to be uncolo
noise, which means that the maximally entangled stat
mixed with the maximally mixed state. The inequality w
present here is less resistant to this kind of noise than o
inequalities which have been presented recently. It sho
gn
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however be mentioned that these inequalities have been
timized for this kind of noise. However, recently it was a
gued that using the uncolored noise leads to proble
@22,23#. At the same time, a different kind of noise was i
troduced, namely, mixing the maximally entangled state w
the closest separable state. When using this measure we
that the inequality we present here, is much more rob
than, for example, the CGLMP inequality. The results th
we have obtained here further seem to indicate that re
tance to noise is not a good measure of the strength of a
inequality, since the robustness of a Bell inequality depe
on the choice of the noise added to the system.
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