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Intermediate states in quantum cryptography and Bell inequalities
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Intermediate states are known from intercept/resend eavesdropping in the Bennett-BrassdBBBIB4
guantum cryptographic protocol. But they also play fundamental roles in the optimal eavesdropping strategy on
the BB84 protocol and in the CHStlauser-Horne-Shimony-Hglinequality. We generalize the intermediate
states to an arbitrary dimension and consider intercept/resend eavesdropping, optimal eavesdropping on the
generalized BB84 protocol and present a generalized Clauser-Horne-Shimony-Holt inequality for two en-
tangled qudits based on these states.
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[. INTRODUCTION in the optimal eavesdropping strategy, the Bell violation
naturally decreases. However, it is interesting to note that for

The quantum cryptographic protocol by Bennett andthe critical disturbance where the classical limit is reached,
Brassard1984, known as the BB84 protocpl], was origi- Bob and Eve have the same amount of information, i.e., this
nally developed for qubits. In this protocol, the legitimate happens at the crossing point of the information lines. This
users, Alice and Bob, both use the same mutually unbiasecrossing point between the two information lines is a very
basesA and A’. Alice uses them for state preparaticand  important point, since up to this limit Alice and Bob can use
Bob chooses between the two bases for his measuremeithe fact that they have more mutual information than the
But an eavesdropper performing the simple intercept/resenelavesdropper and they can create a secure key just by using
eavesdropping may choose to measure in what is known agassical error correction and one-way privacy amplification.
the intermediate basis or the Breidbart bd&ik In the case Hence, the CHSH inequality for qubits can be used as a
of qubits, it is possible to form four intermediate states,security measurgs,7].
which fall into two mutually unbiased bases. However, the In the three situations just described: intercept/resend
eavesdropper need only use one of these bases. eavesdropping, optimal eavesdropping, and the CHSH in-

It turns out that it is not only in the simple intercept/ equality, the intermediate states keep reappearing and seem
resend eavesdropping that these intermediate states appdarplay a fundamental role.

Also in the optimal eavesdropping stratg@®y4], which con- A natural question to ask is “what happens in higher di-
sists of the eavesdropper using the optimal cloning machingnensions?. This is the question we try to answer, at least
these states enter. In this case, they appear at the point whegartially, here. It is possible to generalize the BB84 protocol
Bob and the eavesdropper, Eve, have the same amount tf an arbitrary dimensiof8—10,3,4, simply by adding basis
information, i.e., where their information lines cross. At this vectors to the two mutually unbiased bases, so thatN\or
point, their mixed states may be decomposed into a mixturedimensions each basis contaiNsvectors. The intermediate

of some of the intermediate states. states may also be generalized to arbitrary dimensions. How-

That the intermediate states also appear in the optimaiver, in higher dimensions they, in general, do not form
eavesdropping strategy, also explains a curious observatiohases. But it is possible to associate with each intermediate
Namely, the amount of information obtained by the eavesstate a projector, which represents a binary measurement.
dropper at the crossing point between the information lines With the use of these generalized intermediate states, we
using optimal eavesdropping, and the amount of informationnvestigate intercept/resend eavesdropping, optimal eaves-
she obtains on performing intercept/resend eavesdropping iropping, and a generalized CHSH inequality in an arbitrary
the intermediate basis are the same. However, the error ratdgnension to see if they play the same roles as in two dimen-
are quite different. sions.

Furthermore, intermediate states reappear in the Clauser- In this paper, we discuss the connection between some
Horne-Shimony-Holt(CHSH) inequality [5] for two en-  specific eavesdropping attacks in quantum cryptography and
tangled qubits, where the maximal violation is obtainedBell inequalities in the arbitrary dimension. In Sec. II, we
when on the first qubit the measurement settings corresporidtroduce the intermediate states for qudidé-dimensional
to the two mutually unbiased basésand A’, and on the quantum systemsIn Sec. Ill we discuss intercept/resend
second qubit to the two intermediate bases. Moreover, whe@avesdropping using the intermediate states and compare op-
introducing the same kind of noise as the eavesdropper dodisnal eavesdropping with the intercept/resend eavesdropping

strategy. Then, in Sec. IV, we present a generalized Bell in-

equality for two entangled qudits. In Sec. V, we consider the

INotice that Alice may use a maximally entangled state of twoBell violation as a function of the disturbance that the opti-
qubits for preparing the state she sends to Bob, since a measureménal eavesdropping strategy would lead to. The final sections
on one qubit will “prepare” the state of the other qubit. of the paper are devoted to studying the inequality we have
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TABLE I. The intermediate states formed by the states from the

, 1 2mikn
two basesA andA'. =75 exp(T a+lan), @
ag ay I
whereC=2(1+ 1/yN) is the normalization constant and the
o Moo Mox : MoN-1 /
phase comes from the overlap betwdap) and |a,), see

& Mo M1y ' Min-1 Eq. (3). The indices of them states are such that the first

a m m _ m index always refers to thA basis and the second to tiaé
N~1 N-10 N-1l N-IN-1 basis. Since each basis contahstates it is possible to form
N? intermediate states, simply by forming all pairs of states

presented. In Sec. VI, we discuss some features of the iffom the two base_s. )

equality by giving examples in three dimensions. Since re- . In ggn_e_ral, the mtermedlate_ 5‘4"?&3> between wo ar-
cently the strength of a Bell inequality has been measured iRitra" initial statega) and|p) is defined as

terms of its resistance to noise, we discuss this issue in Sec.

VII. Section VIl is devoted to a brief study of the required Im. )= V(a|B)|a)+(Bla)|B) ©)
g(ra];ecétigcnugglcc)::fncy. Finally, in Sec. IX, we have conclusion p \/Ex/l(a|,3>|+|<a|ﬁ>|2

The intermediate states may be defined in complete general-
Il. THE INTERMEDIATE STATES ity for arbitrary initial states and any number of them. In this
case, the intermediate state is found by forming the mixture

The quantum cryptographic protocol BB84 can easily beof all the initial states with equal weight, the eigenstate state

gﬁsr;i;iﬂlez(je?nt?hti tz:glt:%yl%l]m'le'ﬂzl(:)?E)ttgclzsoIh\?vf)?lgeiﬁdgxk-)eevr\}ith the largest eigenvalue of this mixture corresponds to the

N " ) intermediate state. Naturally, these definitions are equivalent
actly the same way as it did for qubits, with the sole eXCeP— 1 lead to the same intermediate state

Zon tgzt, for q:;db'ts :?Ch Of;hg tl\;v 0 m:;t}:qallljy u'nbl?ste d pases Consider that the intermediate states lead to the following
an used by Alice and Bob contaiN basis states in- . .00 probabilities:

stead of two. So Alice sends at rand¢amd with equal prob-

ability) one of the A possible states, and Bob chooses to

measure in one of the two basdsandA’. 1+ i
In this section, we define the intermediate states between

these two bases. The bagiss chosen as the computational p(Mpilan) =p(myay) = — =F. (6)

basis,

lag) lay_ 1) 2 Note that this definition indeed recovers the formula for co-
O7s +r o ION=1/ sine of half the angle: coéf2)= [ 1+ cos@)]/2. Therefore,
the states have been named intermediate states, since they
indeed lie in between the two original states.
The probability for making an error is

and the second basts is the Fourier transform of the com-
putational basis:

N—-1

1 2mikn
== X exp ——|law. 2 1
JN =0 N 1
(Mpdag) = p(mpyag) N 0 ()
p(Mmylag)=p(Myla))=so—=——.
These two bases are mutually unbiased, i.e., T TPTU2(N-1) N-1
2mikn It is important to notice that the intermediate states, in
ex;{ N ) general, are not orthogonal, indeed we have
apla)y=——F——. 3
< n| k> \/N ( ) )
1 2
(M| Moy = —=—| VN Smex w (mn—lk) + NS
This means that the distance between pairs of state from the INC
two bases is cosf=1/\/N. 2 2
On having two states, it is possible to define a state that +exp(W(m—I)k +exp(W(m—I)n) )
lies exactly in between the two, which means that it has the
same overlap with both states and it is the state closest to the (8

two original states that have this property. The intermediate

states are obtained by forming all possible pairs of the state®his means that the generalized intermediate states, in gen-
from the two bases. They are shown in Table I. Explicitly, theeral, do not form bases, as in the two-dimensional case. But
intermediate state betweén,) and |ay) is defined in the they can still be used as binary measurements, this is dis-
following way: cussed in the following section.
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A. Intermediate states as binary measurements states do not form bases, this strategy becomes a bit artificial.
is, nevertheless, interesting to consider it briefly. We will
ater show that there exists a connection between this simple
gavesdropping attack and the optimal eavesdropping attack.

In the arbitrary dimension, where the intermediate states
correspond to binary measurements, the intercept/resend

Since the intermediate states are nonorthogonal, it meargrﬁtegy using tfgesg—:- me?sgremeﬂts may arﬁ)pear I|kekth|s:
that the corresponding binary measurements are mutually in'' "eNever Eve obtains a *1,” which means she can make a
compatible. In other words, none of them can be measured°0d guess of the state, she prepares a new state and sends it

together, but they have to be measured one by one. A binarbg Bob, whereas in the cases where she gets a “0,” which

measurement has, as the name indicates, two possible ou \eans she is unable to make a good guess, she _doe_s not send
anything to Bob. In this way, we are only considering the

cases where Eve does obtain a useful answer. This strategy,
terpretedas “I guess the state walsn,).” However, the of course, gives rise to a large amount of losses and errors on

answers are statistical, in the sense that there is a certaﬁlob’S ‘:"d?_bfm It 't% hctJ;]/vetvleE:r, |ntE:e§t|ng t(t)h_evaluate _the
probability for making the wrong identification. amount of information that Eve obtains In this case, 1.€.,

It should be mentioned that thid? intermediate states considering only the measurements where she gets a positive

constitute a generalized measurement, namely, a so-call&@swer.

o The probability of making the correct identification is
ositive operator valued measuiROVM). We have
P P . ) given by Eq.(6) and is equal tc; +1/(2\N), whereas the

It has just been shown that, in general, the intermediat
statesm,,) are not orthogonal, and hence they do not form
bases as in the two-dimensional case. It is, however, possib
to use the corresponding projectdms,)(my| as binary
measurements.

comes, 0 and 1, where the zero outcomamisrpretedas “I
guess the state was njohy,),” and the “1” outcome isin-

N1 probability of wrong identification, i.e., of an error, is given
MEZO M (Mo = 1. (9 by Eq.(7) and is equal td 1/(N—1)][1—1/(2JN)]. This
means that théShannoh information obtained by Eve is
However, we do not make use of this in what follows. given by[10]
lll. EAVESDROPPING IN £ o=logy(N) + l+ L) |092<1+ L
JEve 2 2\/N 2 2\/ﬁ

In this section, we consider two different kinds of eaves-
dropping strategies: intercept/resend eavesdropping and op- 1 1 1 1 1
timal eavedropping by using the optimal cIoning machine. + 2- 2N log, (N—1) 2 2N
We show that the amount of information obtained by the
eavesdropper at the crossing point between the information (120
lines using optimal eavesdropping, and the amount of infor-
mation she obtains on performing the much simpleron the “1” outcomes of her measurements.
intercept/resend eavesdropping in the intermediate basis are In the following section, we will compare this amount of
the same. The crossing point between the information lines igformation to the amount of information obtained by per-
of fundamental importance, because it gives the maximunfiorming optimal eavesdropping at the point where the infor-
tolerated disturbance that allows Alice and Bob to create anation lines between Bob and Eve cross.
secure key by using classical error correction and one-way
privacy amplification. B. The optimal cloning machine

Until now, the crossing point has been identified by con- , ) ) ) o
sidering the optimal eavesdropping strategy, which, in gen- 1N€ optimal eavesdropping strategy in any dimension is
eral, is quite a difficult problem to solve. The fact that it is believed to be given by an asymmetric version of the quan-
possible to identify the crossing point by considering thetuM cloning maching11], which clones optimally the two
much simpler intercept/resend eavesdropping in the intermdnutually unbiased bas¢d]. Using this cloner, Eve can ob-
diate basis greatly simplifies this problem. We show that thid&in two copies of different fidelities of the state prepared by
holds for any dimension, and that this is due to the fact thaf\lice- Usually, Eve keeps the bad copy and sends the good

the intermediate states appear in both eavesdropping straf@2€ on to Bob. For a full description of this eavesdropping
gies. strategy and the cloning machine involved, see Réf.

Here, we are only concerned with the final state that Bob

receives, which means how the optimal eavesdropping strat-

egy influences the state obtained by Bob. In the case of no
Assume that the eavesdropper, Eve, performs the simpleavesdropping, Bob receives the same pure state as was sent

intercept/resend eavesdropping. This means that she intdsy Alice. But in the case of eavesdropping, Bob receives a

cepts the particle sent by Alice, performs a measurement, andixed state.

according to the result prepares a particle which she then Assume that without eavesdropping Bob would have

sends to Bob. She may choose to measure in the same bagdesnd the statéa,) if measuring in the computational basis.

as Alice and Bob, but she may also choose to use the inteffhe question is what: “happens ta,) as a result of eaves-

mediate states. In higher dimensions, where the intermediatropping”? Or in other words, how does the cloning ma-

A. Intercept/resend eavesdropping
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chine influence the stat@,)? We are only interested in the where again it has been assumed tlzg) was the correct
final mixed states that Bob receives, and that may be writtestate. The same result holds for Bob, since at the crossing
as point Bob and Eve possess the same mixed state.
The mixture of the intermediate states may be interpreted
B as if Eve with probability IN has the statem,;) (there areN

pe=Fglan)(an + N—1 jzozjstn ENCHE 1D possible values of). Eve, naturally, Waiti“a:?d performs her

' measurement after Alice has revealed in which basis the qu-
whereFg is the fidelity andDg=1—Fj is the total distur- dit was originally prepared. Then, she measures her qudit in
bance. A similar expression can be obtained forAhebasis the same basis, which means that she uses either thefasis
states. As a result of eavesdropping, the amount of informaer the basisA’.
tion that Bob gets is This means that the situation is the following. For the

optimal eavesdropping strategy, Eve possess one of the inter-
N 1-Fg mediate states and she measures in one of the corresponding
loptbon=10G2(N) +Fglogy(Fg) + (1= Fg)l0g| 57| basisA or A’; whereas in the intercept/resend eavesdropping
(12  with the intermediate states, the situation is exactly the op-
posite, namely, Eve has one of the basis states fkamA'

The optimal eavesdropping strategy is symmetric undeand she measures the intermediate states. The two situations
the exchange of Bob and Eve. This means that the mixedbviously lead to the same probabilities and hence the same
statepg, which Eve obtains, can be written in the same formamount of information.
as Bob’s mixed state, just with different coefficients, i.e., This means that by considering the simple intercept/
resend eavesdropping with intermediate state, it is possible to
identify the crossing point; hence, the computation of the

E
pe=Felay)(an|+ N—1 j:OEj;ﬁn |aj)(ayl (13 maximal tolerated disturbance becomes a trivial task.

N—1

N—-1

;ngi,vt—:é%ug;alently, the amount of information obtained by EveN THE BELL INEQUALITY IN ARBITRARY DIMENSION
1_F Recently, there has been considerable interest in general-
N _ —E izing various types of Bell inequalitiegl2—18 in higher
= + +(1— —. . i ) .
lopteve=1002(N) + Felogy(Fe) +(1 FE)Iogz( N—1 ) dimensions. The Bell inequality we present hg26] makes
(14)  use of the intermediate states, in a way similar to the CHSH
o ] ] ) ] inequality. This means that first we present the measurements
It is interesting and important to consider the point where;ng the quantum limit and only afterwards the local variable
the information lines between Bob and Eve cross. When Aly,ond. So, at first we just write down a particular sum of

ice and Bob share more information than Alice and Eve,gint probabilities and later we show that it is a Bell inequal-
Alice and Bob can use one-way privacy amplification to ob-j;,

tain a secret key. Using the explicit form and coefficients of |, sec. VI, we describe some of the remarkable properties
the cloning machine, it is possible to shéthis was done in  hat the Bell inequality, we present here, posseses, but it

Ref.[4]) that the information curves cross at the point wheregpould be mentioned that this inequality, compared to other
inequalities in higher dimensions, exhibits maximal violation

Fop gt t (15  for the maximally entangled state. However, we do not pro-
BTTE 2 2N’ vide an analytic proof for this statement, but refer to numeric
results that have been obtained by using polytope software
1 1 [13,21]—the same kind of software which has been used to
Dg=Dg=D=-—- ——. (16) show that the other inequalities do not reach their maximal
2 2\N violation for the maximally entangled state.

This is exactly the same fidelitor probability of guessing _ _ o
correctly the statethat Eve obtained using the intercept/  A. The Bell inequality: The quantum-mechanical limit
resend eavesdropping using the intermediate states, which aAssyme that Alice and Bob share many maximally en-
means that we have just shown tangled states of two qudits. In the computational basis, this

. . state may be written as
It eve=lopt eve( CrOSSING pOINt (17)
N—-1
This is explained by the fact that, at the crossing point of ly)y=—= > |ai,a). (19
the information lines, Eve’s mixed state can be decomposed VN =0
into a mixture of some of the intermediate states, namely,

= For each of her qudits, Alice has the choice of two mea-
pross=_ 2 |mnj><mnj|, (18) surements, namely to measure the basisr the b§S|SA ;
N <o whereas Bob for each of his qudits has the choice between
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TABLE Il. The values assigned to the basis states and the intermediate states.

Value A A’ Mo M Mn_1

0 lao) lag") |Mao) |Moy) T [Mon-1)
1 las) la;") |myy) |my,) e Imyo)
N—-1 lan-1) lan-1") |mN—1,N—1> |mN—1,o> |mN—1,N—2>

N? binary measurements, corresponding to all the intermedithis state has been assigned the valliel. Similar is the
ate states of the two bases used by Alice. case for all the other states, which leadsPtM ;= A’ + (N

In order to write down the Bell inequality, it is convenient —1))=1+1/(2/N) and PM;#A +(N-1))=3
to assign values to the various states. In Table Il, the values-1/(2 JN)_ Actually, whenever Alice measurés and Bob
are shown. Notice that intermediate states have been org@ses any of theM;, Bob consistently finds a value that is
nized intoN sets so that the value of the state is always giverN—i higher than the one that correlates him with Alice. This
by the first index. Moreover, this organization into the setsmeans thatP(M;=A’+(N—i))=3+1/(2yN) and P(M,
Mg, ... ,My_1 simplifies the notation in what follows. £A"+(N=i))=1—1/(2yN).
However, it is important to remember that the states in each |t is now possible to write and evaluate the s@m:
of the sets are not orthogonal, in other words, they do not

form N orthogonal bases. N—1 N—1
The inequality is a sum of joint probabilities. It is ob- Bn= 2 P(M{=A)— 2 P(M;#A)
tained by summing all the probabilities for when the results =0 =0
of the measurements are correlated and from this sum all the N-1
probabilities when the results are not correlated are sub- + > P(M;=A"+(N—i))
tracted, i.e., i=o0
N—1
By=2>, p(results correlated- >, p(results not correlated - iZO P(M;#A"+(N—1))
Assume that Alice measures in tAebasis and Bob mea- 1 1 1 1
sures the projectors in the skt,. For this combination of =2N|| 5+ 208 2720 =2N. (22
measurements, there are the following contributions to the
SumBy: The quantityBy is a sum of NXN? terms if written out
N-1 1 1 explicitly. In the follovying sectiqn, we s_hqw that a local
P(Mg=A)= p(m;Na;) ==+ —, (200  Vvariable model that tries to attribute definite values to the
i=0 2 2\/N observables will reach a maximum value of 2. This shows
that we have obtained a Bell inequality where the quantum
N-1 violation grows with the square root .

1 1
P(Mo#A)= > p(miNa)=5—-——=, (21

NEET 2 2N’

whereP(Mo=A) should be read as follows: Bob measures On Alice’s side, ag, ...,ay_; are measured simulta-
one of the projectors iMy and Alice measure8, and Bob  neously in a single measurement as the bAsishich means
obtains the value that is correlated with Alice’s result. On thethat only one of them can come out true in a local variable
other handP(My# A) means that Bob’s result is not corre- model. The same is the case faf, ..., ay_,, which is
lated with the result obtained by Alice. The probability measured as the ba#i$. This means that, for example,af
p(myNa,)=p(myla,)p(an) is the joint probability for ob- s true, meaning that the measurement\ofiill result in the
taining both|a,) and[my). The same is the case if Bob outcomea;, then all probabilities involvinga; with j i
measures the projectors in any of the other setsnust be zero. It is different on Bob’s side where eaghis

B. The Bell inequality: The local variable limit

My, ... ,My_; andAlice always measures A& and again if measured independently and hence they may all be true at
Bob usesM, and Alice A’. This means that we have the same time in a local variable model.
P(Mi=A)=P(My=A")=3+ 1/(2yYN) and P(M;#A) Assume now that according to some local variable model,
=P(My#A")=3—1/(2YN). a, andaj’ are true. At the same time, in principle, all thg,

Now consider the case where Bob usésand Alice uses could be true, too. But notice now that the omlystate that
A’; in this case, Bob consistently finds a value that iswill give a positive contribution to the quanti®y is the one
N—1 higher than the value that correlates him with Alice. Tothat identifies botha; and aj’ correctly, i.e.,m;;. This will
observe this, assume, for example, that Bob has the|sigte give rise to a contribution of+-2, whereasm, and My,
which is assigned the value O; but the stateMn, which  where only one index is correct, will only identify one of the
gives the correct identification of this state|isy_; o), and  states correctly and the other one wrong. This means that
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these states, since this gives rise to one correct and orkhere are two different cases that have to be checked inde-
wrong identification, will result in a zero contribution; and pendently, namely;=0 andj#0: Forj=0, we have
finally the statesm,,, where both indices are wrong, will

only give rise to errors and will hence give a negative con- _ _ Dg

tribution of —2 to the sunmBy. This means that (Mool pg|Mog) = FF +(N—1) N—1N-1’ (25
Bns2. (23)  and forj#0, we have

However, we have already shown that quantum mechanically —F D s Dg

it is possible to violate this limit. Quantum mechanically the (my;[pelm;;)jo=Fs N—1 N—1

limit is 2/N. This means that we have obtained a Bell in-

equality where the violation increases with the square root of +(N=2) Dg D (26)

the dimension. N—-1N-1’

For N=3, the inequality has been checked in various
ways numerically. First of all, it has been checked thg82 Where we have used tha(mggao) =F and p(mjj|ag);-o
is indeed the quantum-mechanical limit to this sum of prob-=D/(N—1) [see Eq/(6) and Eq.(7)]. _ _
abilities and that this maximum is reached for the maximally In the inequality{ moo| ps|moe) appears with a plus sign,
entangled state. Moreover, it has been checked using “polysince this is the probability of correctly identifying the state.
tope software 13,21 that the inequality, Eq23) is optimal At the same timeqm;; [ pg|m;;); .0 appeaN—1 times with a
for the measurement settings which we have presented her@inus sign in the inequality, since these correspond to all the

possible errors. This means that we can define

V. BELL PARAMETER AS A FUNCTION OF pg s(p) =(Mod pslMog) — (N—1)(my;| pg|M;; ) 20
In this section, we address the question if the Bell in- N—
equality we have presented here can be used as a security =Fg(F-D)—FDg— mDDB- (27

measure in quantum cryptography. It is knoffj that for

qubits, violation of the CHSH inequality is analytically thare are 12 terms equal ts(pg) in the Bell inequality,
equivalent to security in the BB84 cryptographic protocol. I, since there aré? intermediate states and each of them ap-
therefore, seems natural to investigate how the Bell violatio ear twice(once for each of the bas#sand A’). On the
decreases as a function of the disturbance introduced by t her hand, in each of the baseendA’ each state appears

eave_sdroppe_r in the arbitrary dimension. It is not Necessalyith a probability 1N. This means that the total Bell param-
to think of it in terms of quantum cryptography and eaves-gior is equal to

dropping, but simply that the quantum channel from Alice to

Bob is noisy and that the noise which is introduced is iden- N—3
tical to the noise an eavesdropper would introduce, using theS(pg) =2Ns(pg)=2N| Fg(F— D)—FDB—N_1 DDg]|.
optimal cloning machine. (28)

Assume, without loss of generality, that without distur-
bance, Bob would have received the stgag), then we
know that the mixed state that he obtains as a function of th
disturbance can be written, E(L1), as

It is now possible to answer a very interesting question,
Elamely, for which disturbance 8(pg) =27 Using the val-
ues of F, Eq. (6), and D, Eq. (7), and expressindg-g=1
—Dg, one finds thaB(pg) =2 for

N-1
Dg N%2— yN-N+1
PB:FB|aO><aO|+_N_1 Z |a)(al. Dgzzz—. (29

i=1 N3/2+N2_2N

In order to computeéS(pg), it is enough to consider the case This can be compared to the disturbarizeat the crossing
where Bob, for example, uses the statedip for his mea-  point between the information lines. This is shown in Fig. 1.
surements, the rest of the terms in the inequality follows bywWe find that it is only forN=2 thatD§=2:D, and, hence,

symmetry. only in two dimensions that the inequality we have presented
All the states in theM set are of the fornjm“). First,  here can be used as a security measure in quantum cryptog-
computing the various probabilitigsn;;|pg|m;;), we find raphy. However, it should be stressed that the violation of the
inequality stops before the crossing point is reached. So a

plmjjlag) violation of the inequality, in any dimension, still means that

—_—— Alice and Bob are within the secure zone. A similar result

(mjjlpalm;)=F p(mjlag)aolm;;) has recently been obtained in a slightly different situation

b m [19]. o |

L s E (m,-,-|a,->(a,-|mjj> Why th_e Bell |r_1equal_|ty on_Iy works as a pe_rfect security

N—1 i=t . (29 measure in two dimensions, is a very interesting and highly

plmjjlap) nontrivial question, and a complete answer to this problem
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P(M,=A)=5/6, P(M,#A)=1/6;
0s P(My=A")=5/6, P(My#A")=1/6;

o P(M;=A"+2)=4/6, P(M;#A"+2)=2/6;
° P(M,=A"+1)=5/6, P(M,#A"+1)=1/6.
0.2
Alice and Bob are still assumed to share the maximally en-
tangled stateéy). Inserting these probabilities in tH; in-
equality leads td@;=10/3~3.333, which is smaller than the
maximal violation that is 23~ 3.464.

The explanation for this difference can be found in the
fact that the inequalitydy has been optimized for mutually

FIG. 1. This figure shows, as a function of the dimension, theunbiased bases. In two dimensions, it is possible to have two
disturbance at the crossing poibt (upper curvg and the distur- such bases, for example, tkeand thex-bases are mutually
bance for which the Bell violation stog3>=2 (lower curve. unbiased and both real. But while moving to higher dimen-

sions this is not the case; for example, in three dimension it

lies beyond the scope of the present paper. However, an iis not possibles to have two mutually unbiased bases and
tuitive understanding can be found in the discussion of théiave them both real. This means that in order to reach the
clonning machine in Sec. Ill, especially from the last para-maximum value, for the inequality we have presented here, it

0.1

0 20 P " 60 80 100

graph. is necessary to introduce complex numbers. However, the
CGLMP inequality for qutrits has not been optimized for
VI. INTERESTING FEATURES OF THE Bj INEQUALITY mutually unbiased bases, which explains why it does not

require complex numbers.
In this section, we restrict ourselves to three dimensions

in order to show, in a simple way, some interesting properties g Binary measurements versus basis measurements

of the inequality.
uetiy The By, inequality is on Bob’s side optimized for tHé?

binary measurements corresponding to the intermediate
states of the two bases chosen by Alice. However, it is pos-
The first is related to the use of complex numbers. In thesible to impose the additional requirement that not only must
CHSH inequality for qubits, the maximal violation may be the measurements chosen by Bob maximize the probabilities,
obtained by using real numbers only. Also, the Collins, Gi-but they must also form a basis. In other words, it is possible
sin, Linden, Massar, and Popes@@GLMP) inequality[18]  to require that thé\l sets correspond to orthogonal basé's
shows no difference between real and complex numbergb refers to the basjsWe have considered this question in
Here, we show that if restricted to real numbers it is notthree dimensions.
possible to obtain the maximal violation for the inequality ~The MP bases that provide the optimal solution are de-
we have presented. fined in the following way. For the two mutually unbiased
Numerically, we have found the settings which lead to thebases chosen by Alice, there exist unitary operathrsuch
largest violation when restricted to real numbers. On Alice’sthat
side, the first basis is again the computational basis

A. Complex versus real numbers

whereas the second bagis (r stands for realis found by Ula)=la), U=A'A"% (3D
making an/3 rotation around the (1,1,1) axis i, and is
explicitly given by In this way, the intermediatbasisis defined as
|lap) =3 (2|ag) +2[a;) — 1]ap)), Imp)=+Ula;),  M;=UA. (32
|al) =13 (—1|ag)+2|a;)+2|ap)), (30) SinceU is unitary, U is well defined. It is possible to con-
struct all three based 5, M2, andM3 in this way, choosing
lah) =1 (2]ag)— 1]ay)+2|ag)). the unitary operator such that it transforms the stateé in

into any of the states iA’. This definition leads to the

The intermediate states are defined in the same way, and tii@/l0Wing probabilities:

three setdMy, M, andM, again consist of nonorthogonal

b_ Ay _ b — /0
states. We find the following probabilities: P(Mo=A)=719, P(Mo#A)=2/9;

P(Mg=A)=5/6, P(Mg#A)=1/6; P(M=A)=7/9, P(MS#A)=2/9;
P(M,=A)=4/6, P(M,%A)=2/6: P(M3=A)=7/9, P(M3#A)=2/9;

062310-7
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P(MBzA’)=7/9, p(Mgg&A'):z/g; maximally entangled state, the Bell inequalBy, Eq. (23),
has maximal violation, i.eS=2/N; whereas for the maxi-
P(MP=A"+2)=7/9, P(M2#A’"+2)=2/9; mally mixed state each of the probabilities in the inequality

is equal to 1N, henceS(1/N?)=2(2—N). This leads to
P(MS=A'+1)=7/9, P(MJ#A’+1)=2/9.
N—1
These probabilities may again be used in Byinequality; S(Pmix):2<:>)\s1’}‘x: N+—\/N—2 (39
but it is important to realize that even if the notation for the

[ lity is th the int tation is diff t. Si . .
inequality is the same, the interpretation is different. Since_ N=3. this |s)\iﬁx= 2/(1+3)=0.73. In comparison,

the states in thé? sets are orthogonal ard?® are bases, he CGLMP i e b his kind of noi
Bob no longer chooses between the nine different binary'€ Inequality Is more robust to this kind of noise,

. : : CGLMP__
measurements but between the three basis measuremertélCe they find a violation untik y5~""=0.69.
However, it is possible to check that the local variable limit ~R€cently, it has been argued that the use of uncolored
is not changed, i.e., it is still 2. Inserting the above probabili-N0iS€ in this measure leads to problef@2,23. At the same
ties leads tB2=6(7/9— 2/9)=10/3~3.333. time, a different kind of noise was introduced, namely, to

However, using basis measurements on Bob’s side Iead?ix the maximally entangled state with the closest separable
' State, i.e.,

to some other interesting results. It turns out that it is pos-
sible to reduce the number of terms in the inequality. Bhe _

. L . =\ +(1-\ , 36
inequality is the sum of all correct guesses, subtracting all Pos=Nsed )(¥]+( sepPsep (36)

the errors. Using the intermediate baMa%, itis possible to  \yhere Psep=(1/N)2iN§ol|ai a;)(a,a] [24]. Examining
subtract only half of the errors and, in this way, obtain ayhat happens to the Bell violation when introducing the state
different inequality with a different local variable limit, psepin By, EQ.(23), shows that when Alice measures in the
namely,S;,=3: A basis, Alice and Bob remain perfectly correlated—which

_ b_ b_ b_ b s means maximal violation of that part of the inequality which
S12=P(Mo=A)+ P(M1=A)+ P(M2=A) +P(Mo=A") concerns the measurement combinations invoMin®n the
+P(MP=A"+2)+P(M3=A"+1)~P(MB=A+1) other hand, when Alice measures in the basis, Bob is left

with the maximally mixed state, which means that all the

—P(M2=A+1)-P(M=A+1)—P(MJ=A"+2) joint probabilities involving the use d&’ on Alice’s side are
equal to IN. In total, this leads to

—P(MP=A"+1)-P(M5=A")<3. (33
: i B N—+N
Inserting the above probabilities leads to the quantum- =2 \ON—
. . .. . S(pcs) =2 )\se ) (37)
mechanical maximum for this inequality, namel, PN+ N-2

=6(7/9-1/9)=4.
which for N=3 is )\Sgp= (3—/3)/(1+/3)=0.46, whereas
VII. RESISTANCE TO NOISE the CGLMP inequality again has>""'P~0.69. This means
hat the inequality we have introduced here is much more
. . ; . . obust to this kind of noise. However, it should be stressed
the inequality has been measured in terms of its resistance Rat the same measurement settings have been used in both

Poolniz[ln?a_xilrﬁ;lll—hir?tuaenﬁ;gg Isstakj]t;\;v;lécgtiﬂogz?a?r??hgeBa;:?e evaluations ofA, and that the CGLMP inequality has been
y 9 orptimized to be resistant to the uncolored noise.

violation. The more the noise added to the system, the bette As already mentioned, it has recently been sham23
it is, since this means that the inequality is robust agams{hat the use of uncolorea noise in the measure of resistance

nOISV\?Hat is meant by noise naturally has to be specified IntO noise leads to problems. Also, the results that we have
y y P " . "obtained here further seem to support the view that resistance

the preceding section we, for example, considered the NOISE™ | Jise is not a good measure of the strength of a Bell

that is introduced by an eavesdropper when she uses tri‘r(‘:fequality, since the robustness of a Bell inequality depends

optlmally eavesdropplng strategy. However, the noise tha n the choice of the noise added to the system.
was until recently used in the measure of the strength of an

inequality was uncolored noise. This means that the maxi-
mally entangled state is mixed with the maximally mixed Viil. MINIMUM DETECTION EFFICIENCY
state, so that the quantum state becomes

In the recent papers on Bell inequalities, the strength o

To conclude the study of inequalif23), let us consider
1 the minimum detection efficiency required to violate it. This
oy N question is interesting both from a fundamental point of view
Pmix=Amisd Y]+ (1 }\m'X)NZ' 39 (the so-called detector efficiency loophd®5]) and for the
practical question: How does one test a quantum device,
This can be interpreted as if Bob with probability,;, re-  such as a quantum cryptography systé@®,7]. For simplic-
ceives the maximally entangled state, and with probabilityity, we assume that all detectors have the same efficiency
1—\mix he receives the maximally mixed state. For theThe problem is what to do with the cases that only one
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detector fires. A natural possibility attributes the value zerdact that in any dimension, Eve’'s mixed state can at the
to Bob whenever his detector did not fire and a random valuerossing point be decomposed into a sum of some of the
to Alice whenever her detector did not fire. In this way, if intermediate states. Hence, in the optimal eavesdropping
only Alice detects a qudit, the Bell function vanishes; strategy, at the crossing point, Eve has one of the intermedi-
whereas, if only Bob detects, the Bell function is the same agte states but performs her measurement in the same basis in

for the maximally mixed state, i.e., 2(2N), as in the pre- which the state was originally prepared. Whereas, in the
ceding section. Thus, the inequality reads intercept/resend strategy, using the intermediate states as bi-
5 nary measurements, Eve has the state which was originally

n '(2\/NH77(1_77)[0+2(2_N)]$ prepared by Alice, but measures one of the intermediate

72+ 25(1—n) 2 (38) states. This means that the two situations are exactly opposite
and, therefore, lead to the same probabilities and hence the
From this inequality, one finds the threshold efficiency same information. In other words, we have shown a connec-
tion between the intercept/resend eavesdropping strategy
N where the eavesdropper uses the intermediate states, and the

(39 optimal eavesdropping attack where the eavesdropper uses a

77thresho|d_N_}_—\/ﬁ_l- . . . .
special version of the quantum cloning machine.
This result was discovered independently by Pironio and Ro- The maximal settings for the CHSH inequality for qubits
land [27]. For qubits, i.e.,N=2, one recovers the well- are two mutually unbiased bases on Alice’s side and using
known threshold, usually derived from the Clauser-Horn in-the intermediate states on Bob’s side. In the case of qubits,
equality[28]: »{N22) ,~82.8%. This threshold is minimal _the four intermediat(_e states form two bases. T_his means that
and slightly better foN=4: 5{N=4  =80%. For higher I this case, both Alice and Bob have the choice of measur-

dimensions, the threshold increases and tends to 1. ing one of the two mutually unbiased bases.
It would be interesting to investigate the behavior of non- In higher dimensions, where the intermediate states do not

maximally entangled states, since Eberhard found that fofor™ bases, Bob instead uses the corresponding projectors as
qubits the threshold then decreaf2d). Let us mention that blgary measurements. This means that he chooses between
recently Massar proved that there are inequalities for which\”~ mutually incompatible measurements, whereas Alice still

the threshold tends to zero exponentially, at least for ver$N00Ses between two basis measurements. The generalized

large dimension§30] and, with colleagues he investigated a IN€quality, we present, has the local variable limit equal to 2
situation similar to the one studied in this sect[@i]. in any dimension, whereas the maximal quantum-mechanical

value is 2/N. In other words, we find a violation that in-
creases with the square root of the dimension. Due to the
construction, we also obtain the familiar CHSH inequality
For qubits, the intermediate states play fundamental rolefor N=2.
in at least three different places: intercept/resend eavesdrop- It is known that the CHSH inequality may be used as a
ping in the BB84 protocol for quantum cryptography, opti- security measure in quantum cryptography for qubits, since,
mal eavesdropping also in the BB84 protocol and in then this case, a violation of the inequality is obtained until the
CHSH-inequality for two entangled qubits. The work we disturbance introduced by the eavesdropper reaches the dis-
have presented here is the result of a study of the use of theterbance at the crossing point of the information lines be-
intermediate states in the same situations but in an arbitrafyveen Eve and Bob. Until this point, Alice and Bob can use
dimension. the fact that they share more mutual information than with
In this paper, we have first discussed the generalization dEve to obtain a secret key by means of one-way privacy
the intermediates states of two mutually unbiased basesmplification. We have investigated the violation of the in-
showing that these states are, in general, not orthogonal arefjuality, presented here, as a function of the disturbance in-
hence do not form a basis as in the case for qubits. We haweoduced by the eavesdropper. We found that it is only for
also discussed how they, nevertheless, can be used as bindy-2 that the inequality can be used as a security measure,
measurements. With these measurements, we have consid-the sense that in higher dimensions the violation stops for
ered the same situations as known from the qubit case. a lower disturbance than the disturbance at the crossing
We have considered eavesdropping in the generalizedoint. This, however, does not mean that such an inequality
BB84 protocol(always considering only two bagesVhen  does not exist; it only shows that the inequality which mim-
the eavesdropper uses the optimal eavesdropping stratedgs the situation from two dimensions is not the one that has
her information increases as a function of the disturbancehis property in higher dimensions.
that she introduces, and at the same time Bob’s information On the other hand, the inequality we have presented here
is a decreasing function of the disturbance. For a given dismay stand as a result by itself, and as a Bell inequality in an
turbance, their information lines cross. We have shown thaarbitrary dimension it has many interesting properties. First
the amount of information that the eavesdropper obtains aif all, compared to other inequalities, which have been pre-
this crossing point is exactly the same amount of informatiorsented recently, this inequality gives maximal violation for
which she would have obtained using the simple interceptmaximally entangled states. Moreover, we have shown in
resend strategy using the intermediate states; however, leaeixamples in three dimensions that this inequality requires
ing to a much higher disturbance. This is explained by thecomplex numbers in order to have maximal violation. Re-

IX. CONCLUSION
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striction to the use of real numbers leads to a smaller violahowever be mentioned that these inequalities have been op-
tion. In comparison, the CHSH inequality for qubits and thetimized for this kind of noise. However, recently it was ar-
CGLMP inequality for qutrits show no difference betweengued that using the uncolored noise leads to problems
using real or complex numbers. The explanation is due to thgp2 23. At the same time, a different kind of noise was in-
fact that the inequality we present here is optimized for mutroduced, namely, mixing the maximally entangled state with
tually unbiased bases, and in three dimensions it is not poshe closest separable state. When using this measure we find
sible to have two such bases without the use of Complemat the inequa"w we present herE, is much more robust
numbers. However, in two dimensions th@ndz bases are than, for example, the CGLMP inequality. The results that
mutually unbiased and both real, and for the CGLMP in-ywe have obtained here further seem to indicate that resis-
equality the explanation is that it is not optimized for mutu- tance to noise is not a good measure of the strength of a Bell

ally unbiased bases. _ _ N inequality, since the robustness of a Bell inequality depends
We have also shown that imposing the additional conyn the choice of the noise added to the system.

straint that theM sets actually form bases leads to new in-
equalities. We have explicitly given an example in three di-
mensions, showing the optimal solution, for two basis
measurements on Alice’s side and three basis measurements
on Bob’s side. We benefited from stimulating discussions with S. Piro-

In recent papers on the subj¢d6-18, the strength of a nio, J. Roland, and S. Massar. This work was done while
Bell inequality has been measured in terms of its resistanckl.B.-P. was at the Group of Applied Physics, University of
to noise. Until recently, the noise was taken to be uncoloredseneva, CH, supported by the Danish National Science Re-
noise, which means that the maximally entangled state isearch CouncilGrant No. 9601646 This work was also
mixed with the maximally mixed state. The inequality we supported by the Swiss NCCR “Quantum Photonics” and by
present here is less resistant to this kind of noise than othehe European IST project EQUIP, sponsored by the Swiss
inequalities which have been presented recently. It shoul®FES.
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