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Entanglement in quantum computers described by theXXZ model with defects

L. F. Santos*
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

~Received 25 March 2003; published 24 June 2003!

We investigate on how to generate maximally entangled states in systems characterized by the Hamiltonian
of the XXZ model with defects. Some proposed quantum computers are described by such a model. Defects
embedded in this otherwise homogeneous spin chain are used to obtain Einstein-Podolsky-Rosen andW states.
It is well known that a large defect localizes an excitation on the defect site. We can then consider a few
identical and large defects to create a subsystem whose eigenstates are entangled. Here, we examine the cases
of one and two excitations.
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I. INTRODUCTION

Since qubits are two-level systems, they are natur
modeled by spin-1/2 particles. Understanding spin chain
therefore very useful in the study of quantum comput
~QCs!. Interaction between qubits corresponds then to in
action between spins. One of the major problems
condensed-matter-based quantum computers is that the
action between qubits cannot be turned on and off w
desired, and the quantum computer eigenstates soon be
a linear superposition of a large number of noninteract
multiqubit states@1#. However, when performing computa
tions, we would like to operate with well-defined states,
other words, we would like to entangle just some spec
states. In order to do so, we refer to two important char
teristic of most proposed QCs, which are the following: t
energy difference between the qubits states is large comp
to the qubit-qubit interaction and it can be individually co
trolled @2,3#. In the QC based on electrons on helium, f
example, the level spacing of each qubit is controlled
electrodes placed beneath the helium surface@3#. The possi-
bility of individually controlled qubit energies allows us t
entangle just some selected qubits by tuning them in re
nance.

A fundamental requirement for the realization of quantu
computation, quantum teleportation, and some protocol
quantum cryptography is the generation of highly entang
quantum states. The maximally bipartite pure-state entan
ment is identified with the Bell or the Einstein-Podolsk
Rosen~EPR! state (1/A2)(u10&1u01&) @4#. Dür et al showed
that there are two different kinds of genuine tripartite pu
state entanglement: the maximally entangled Greenber
Horne-Zeilinger~GHZ! state@5# and the so calledW state
@6#. The W state is the state of three qubits that retain
maximal amount of bipartite entanglement when any one
the three qubits is traced out. It is written as (1/A3)(u100&
1u010&1u001&).

There is a large list of references dedicated to the prob
of entanglement. There have been attempts to charact
qualitatively and quantitatively the entanglement proper
of multiparticle systems@7#. Several proposals of how t
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prepare entangled states in different kinds of systems h
also been presented@8#. Some papers investigated the e
tanglement between spins in a one-dimensional Heisen
chain @9,10#, which is similar to what we intend to do here
Contrary to the last cited papers, we consider a chain w
defects and study their role in entangling states. In a sys
where all qubits are in resonance but one, a defect co
sponds to the qubit whose level spacing is different from
others.

In this paper, we investigate on how to entangle selec
qubits in a system described by a strongly anisotropic o
dimensionalXXZ model with defects. This is the model use
to describe the quantum computer based on electrons on
lium @3#. Since the coupling falls down quickly with th
interqubit distance, we consider only the nearest-neigh
interaction. The ground state of the system corresponds t
spins pointing down and excitations correspond to sp
pointing up. The interaction can only move excitations o
site to the left or to the right, so the number of excitations
constant. We analyze systems with one or two spins up
the case of one single excitation, we show how the defect
the chain can be used to maximally entangle two qubits
the case of two excitations, we show how EPR states anW
states can be obtained.

II. GENERATION OF MAXIMALLY ENTANGLED STATES
OF SELECTED QUBITS

The Hamiltonian of theXXZ model with defects is

H5 (
n51

N
«n

2
sn

z1
B

2 (
n51

N21 FD2 sn
zsn11

z 1
1

2
HhopG ,

Hhop5~sn
1sn11

2 1sn
2sn11

1 !, ~1!

where \51, sz,1,2 are Pauli matrices, and«n gives the
energy difference between the two states of qubitn. There
areN qubits. Here, we consider a spin chain with free boun
aries, which explains why the second sum runs overn
51, . . . ,N21. In strongly anisotropic systems~such as the
QC based on electrons on helium!, the parameterD is much
larger thanB. The last term in the Hamiltonian,Hhop, is
responsible for the propagation of the excitation.
©2003 The American Physical Society06-1
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The ground state corresponds to all spins pointing do
and its energy isE052(n51

N «n/21(N21)BD/4, which we
will set equal to zero. Moreover, to simplify our analysis w
consider only positive values for the parameters of the Ha
tonian.

To address the different states of the system, we us
notation that is common in the study of spin chains with
Bethe ansatz@11,12#. The state corresponding to one sing
excitation on siten, that is u↓1↓2•••↓n21↑n↓n11•••↓N&, is
simply written asf(n). The state of two excitations, one o
site n and the other one on sitem, is f(n,m), which is a
simplified notation foru↓1•••↑n•••↑m•••↓N&.

A. One excitation

Let us first examine the case of just one excitation. A
sume that there are only two defects, whose level spac
are«01g, while the level spacing of all other qubits is«0.
By choosingg much larger than the interaction strengthB,
we generate maximally entangled states corresponding to
ear combinations of the two defects.

The energy of states, which have the excitation on any
except on the defects, lies within the bandE16B, whereE1
5«02BD @11,12#. If g is much larger thanB, an excitation
on one of the defects will have energy out of the ba
Therefore, the two resonant defects can be treated separ
from all other states by the perturbation theory. It is as if
were working with only two sites. An excitation initially cre
ated on one defect will only oscillate between the two d
fects. All intermediate states for the excitation to go from o
defect to the other are virtual states. The frequency of th
oscillations depend on the distance between the two diffe
qubits. Their separation determines in which order of
perturbation theory they are connected.

The two states corresponding to superpositions of an
citation on a defect on siten0 and an excitation on a defec
on sitem0 are the following EPR states:

c65
1

A2
@f~n0!6f~m0!#, ~2!

wheref(n0)5u↑n0
↓m0

& andf(m0)5u↓n0
↑m0

&.
If the two defects are next to each other (m05n011), the

energies of these two entangled states in the first order

E65E11g6B/2. ~3!

We just need to diagonalize a two-dimensional submat
whose diagonal elements areE11g and off-diagonal ele-
ments areB/2. After shifting the energy levels by a secon
order correctionB2/4(g1B/2), they agree very well with a
complete numerical diagonalization of a long chain withg
much larger thanB.

If the second defect is located on siten012 we have to go
straight to the second order and diagonalize a matrix wh
diagonal elements areE11g1B2/(2g) and off-diagonal el-
ements areB2/(4g). The two energies become much clos
06230
n

i-

a
e

-
gs

n-

te

.
tely
e

-
e
se
nt
e

x-

e

,

se

,

E15E11g13B2/~4g!,
~4!

E25E11g1B2/~4g!.

The more distant the two defects are, the closer the ener
of the two entangled states will be, since we have to go
higher orders to find them.

Suppose that an initial state is prepared, which has
excitation on the defectn0. Let us now see how long we
have to wait for it to become a maximally entangled st
such as given by Eq.~2!. This excitation oscillates betwee
the defectn0 and the defectm0. The probability to find it
later in time on siten0 is

Pf(n0)~ t !5
11cos@~E12E2!t#

2
, ~5!

while the probability to find it onm0 is

Pf(m0)~ t !5
12cos@~E12E2!t#

2
. ~6!

It is seen from Eqs.~5! and~6! that the period of oscilla-
tion of the excitation between the defects is inversely prop
tional to the energy difference of the statesc1 and c2 .
Such a period depends on the numberm of sites between the
defects asTm5T0(2g/B)m, where T052p/B. The maxi-
mally entangled states~2! are obtained whenPf(n0)

5Pf(m0)51/2. The further the defects are from each oth
the longer we will have to wait for an EPR type of state to
created. It is clear, however, that by tuning two qubits
resonance with energies very different from all the others,
can entangle even remote qubits.

At the moment where a maximally entangled state is c
ated, in order for it to be kept this way, the two defects ha
to be detuned. The difference in energy between these
excited qubits should become much larger than the inte
tion strength between them~of course, the defects and th
other qubits are still completely out of resonance!. How fast
this detuning should be done depends on how much close
want to keep our state from a perfect EPR state.

Similarly, a W state can be built with three resonant d
fects, but we postpone the description of how to create s
states to the following section where we have the more
teresting case of two excitations.

B. Two excitations

In order to create EPR states andW states with two exci-
tations we make use of the anisotropy of the system. Beca
D is much larger thanB, two excitations next to each othe
have energy much larger than any state where they are s
rated. The energy of any two free excitations lies inside
band 2E162B, while the bound pair states have ener
within a much narrower band 2E11BD1B/2D6B/2D
@11,12#. As a consequence, the bound pair states can
treated separately from all other two-excitation states@12#.
They are connected in the second order of the perturba
6-2
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theory, which explains the narrow bandwidthB2/(BD)
[B/D. Any intermediate and dissociated state is a virt
state.

Suppose that there is only one defect on siten0 with level
spacing«01g. If g is much larger thanB/2D, the bound
pairs with one excitation on the defect have energy out of
narrow band. They form the EPR states

c65
1

A2
@f~n021,n0!6f~n0 ,n011!#, ~7!

where f(n021,n0)5u↑n021↑n0
↓n011& and f(n0 ,n011)

5u↓n021↑n0
↑n011&. Their energies are

E652E11g1BD1
B

4D
1

B2

4~BD1g!
6

B2

4~BD1g!
.

~8!

By preparing an initial state with one excitation on s
n021 and the other on the defect siten0, following Eqs.~5!
and~6!, we will obtain an EPR state at every instant of tim

tk52~BD1g!@p/21kp#/B2, ~9!

wherek is an integer number.
Using the anisotropy, several other types of EPR sta

can be created. With three defects on sitesn0 , n011, and
n012, if they all have the same level spacing«01g andg
@B/(2D), we would have linear combinations of the bou
pairs f(n0 ,n011)5u↑n0

↑n011↓n012& and f(n011,n012)

5u↓n0
↑n011↑n012&. As mentioned above, these states

connected in the second order of the perturbation theory
Another EPR state that can be created with these th

defects involves the statesf(n0 ,n011)5u↑n0
↑n011↓n012&

and f(n0 ,n012)5u↑n0
↓n011↑n012&. The level spacing of

the defect on siten012 is now«01g1BD. The difference
BD from the other two defects allows the entanglement
tween the bound pairf(n0 ,n011) and the statef(n0 ,n0
12). These states are connected in the first order inB. The
advantage of this entanglement is that the period of osc
tions between an initial statef(n0 ,n011) and the state
f(n0 ,n012) is much shorter than oscillations betwe
bound pairs. On the other hand, to guarantee thatf(n0 ,n0
11) and f(n0 ,n012) are the only two states of the en
tanglement,g has to be larger thanB, instead of just larger
thanB/(2D) as in the bound pair case.

This anisotropic chain with defects can also be used
create aW state. In order to do so we choose four equ
defects on sitesn0 , n011, n012, and n013 with level
spacings«01g andg much larger thanB/(2D). The bound
pairs on the defects are much higher in energy than any o
state and they can be treated separately. It becomes a
approximation to say that three of the eigenfunctions of
total Hamiltonian~1! will correspond to linear combination
of the bound pairsf(n0 ,n011)5u↑n0

↑n011↓n012↓n013&,
f(n011,n012)5u↓n0

↑n011↑n012↓n013&, and f(n012,n0

13)5u↓n0
↓n011↑n012↑n013&. Such eigenfunctions and the
06230
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correspondent eigenvalues are obtained from the diago
ization of the following tridiagonal submatrix:

S E(0)1r 1s r 0

r E (0)12r r

0 r E (0)1r 1s
D .

Above r 5B/(4D), s5B2/@4(BD1g)# and E(0)52E1
1BD12g. The difference in energy between the diagon
element in the middle of the matrix and the diagonal e
ments at the edges,B/(4D)2B2/@4D(BD1g)#, exists be-
cause statesf(n0 ,n011) andf(n012,n013) make virtual
transitions to states that are out of the ‘‘subchain’’ created
the defects.

The eigenvalues are therefore

E15E(0)1
4B2D13Bg2Bu

8D~BD1g!
,

E25E(0)1
B~2BD1g!

4D~BD1g!
,

E35E(0)1
4B2D13Bg1Bu

8D~BD1g!
,

whereu5A8B2D2116BDg19g2.
To generate aW state we have to prepare an initial sta

with excitations onn011 andn012, since this state is the
only one among the three states, which is connected to
two others in the second order. The probability in time
obtain the initial statef(n011,n012) is

Pf(n011,n012)~ t !5
11cos@~E32E1!t#

2
. ~10!

The probability to find statef(n0 ,n011) or statef(n0
12,n013) is the same and is given by

FIG. 1. We considered a chain with 12 qubits,B51, andD
510. The defects are located on sitesn0 , n011, n012, andn0

13, wheren053 andg5BD. The solid line gives the probability
in time to find the initial statef(n011,n012). Both probabilities
to find statef(n0 ,n011) and statef(n012,n013) coincide and
they are given by the dot-dashed line. The vertical dashed l
correspond to the instants of time,Tk5Btk , where we have aW
state.
6-3
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Pf(n0 ,n011)~ t !5
12cos@~E32E1!t#

4
. ~11!

The W state appears at the following instants of time~see
Fig. 1!:

tk5
~21!karccos~21/3!12p@k2 int~k/2!#

E32E1
, ~12!

wherek is an integer and int(k/2) correponds to the intege
part of the ratiok/2.

As pointed out in the preceding section, for the maxima
entangled state to be kept this way, at the moment where
generated, the level spacings of the qubits involved in
process should become different. This detuning should
larger than the interaction strength among them.

The W state with the bound pairsf(n0 ,n011), f(n0
11,n012), andf(n012,n013) can also be created wit
only two defects located on sitesn021 andn014, but here
the situation is more delicate. As before,g has to be larger
than the bandwidth of the bound pair band, but it cannot
close to BD, because this would create resonances w
states that have one excitation on the defect@12#.
a

rin
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III. CONCLUSION

We have investigated on how the defects of a spin ch
with strongly anisotropic coupling can be used to obtain E
andW states. These are the states used in the study of b
tite and tripartite entanglement, respectively. We conside
the XXZ model with defects, for this is the model used
describe some quantum computers, such as the one bas
electrons on helium@3#. It was shown that even though th
interaction among qubits is on all the time, we can determ
among which qubits the interaction is actually effective
controlling the level spacings. This allows the entangling
only certain chosen sites.

Over the years, magnetochemists have refined the a
designing and growing crystals of quasi-one-dimensio
magnetic materials. These systems should therefore be u
in the study of entanglement.
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