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Entanglement in quantum computers described by theXXZ model with defects
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We investigate on how to generate maximally entangled states in systems characterized by the Hamiltonian
of the XXZ model with defects. Some proposed quantum computers are described by such a model. Defects
embedded in this otherwise homogeneous spin chain are used to obtain Einstein-Podolsky-Ru¢states]
It is well known that a large defect localizes an excitation on the defect site. We can then consider a few
identical and large defects to create a subsystem whose eigenstates are entangled. Here, we examine the cases
of one and two excitations.
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[. INTRODUCTION prepare entangled states in different kinds of systems have
also been presentd®]. Some papers investigated the en-
Since qubits are two-level systems, they are naturallfanglement between spins in a one-dimensional Heisenberg
modeled by spin-1/2 particles. Understanding spin chains ishain[9,10], which is similar to what we intend to do here.
therefore very useful in the study of quantum computersContrary to the last cited papers, we consider a chain with
(QCs. Interaction between qubits corresponds then to interdefects and study their role in entangling states. In a system
action between spins. One of the major problems ofwhere all qubits are in resonance but one, a defect corre-
condensed-matter-based quantum computers is that the intesponds to the qubit whose level spacing is different from the
action between qubits cannot be turned on and off whemthers.
desired, and the quantum computer eigenstates soon becomeln this paper, we investigate on how to entangle selected
a linear superposition of a large number of noninteractingjubits in a system described by a strongly anisotropic one-
multiqubit stateg1]. However, when performing computa- dimensionaX XZ model with defects. This is the model used
tions, we would like to operate with well-defined states, into describe the quantum computer based on electrons on he-
other words, we would like to entangle just some specifidium [3]. Since the coupling falls down quickly with the
states. In order to do so, we refer to two important characinterqubit distance, we consider only the nearest-neighbor
teristic of most proposed QCs, which are the following: theinteraction. The ground state of the system corresponds to all
energy difference between the qubits states is large comparegins pointing down and excitations correspond to spins
to the qubit-qubit interaction and it can be individually con- pointing up. The interaction can only move excitations one
trolled [2,3]. In the QC based on electrons on helium, for site to the left or to the right, so the number of excitations is
example, the level spacing of each qubit is controlled byconstant. We analyze systems with one or two spins up. In
electrodes placed beneath the helium surf&eThe possi- the case of one single excitation, we show how the defects of
bility of individually controlled qubit energies allows us to the chain can be used to maximally entangle two qubits. In
entangle just some selected qubits by tuning them in resadhe case of two excitations, we show how EPR statesVéind
nance. states can be obtained.
A fundamental requirement for the realization of quantum
computation, quantum _teleportation, _and some protocols of, SENERATION OF MAXIMALLY ENTANGLED STATES
guantum cryptography is the generation of highly entangle OF SELECTED QUBITS
guantum states. The maximally bipartite pure-state entangle-
ment is identified with the Bell or the Einstein-Podolsky- The Hamiltonian of theXXZ model with defects is
Rosen(EPR) state (1//2)(|10)+|01)) [4]. Dir et al showed
that there are two different kinds of genuine tripartite pure- €n BN1raA
state entanglement: the maximally entangled Greenberger- HZE 7Uﬁ+§ E 50ﬁ0ﬁ+1+ EHhopr
Horne-Zeilinger(GHZ) state[5] and the so calledV state n=t =t
[6]. The W state is the state of three qubits that retains a

N

maximal amount of bipartite entanglement when any one of Hhop= (00 01t 0 0111, (1)
the three qubits is traced out. It is written as+(3J(|100
+]010 +|001)). wherei=1, o>~ are Pauli matrices, and, gives the

There is a large list of references dedicated to the problergnergy difference between the two states of qubiThere
of entanglement. There have been attempts to characterizgeN qubits. Here, we consider a spin chain with free bound-
qualitatively and quantitatively the entanglement propertiesiries, which explains why the second sum runs omer
of multiparticle systemg7]. Several proposals of how to =1,... N—1. In strongly anisotropic systentsuch as the
QC based on electrons on heliyrthe parameteA is much
larger thanB. The last term in the Hamiltoniarkly,y,, is
*Electronic address: santos@pa.msu.edu responsible for the propagation of the excitation.
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The ground state corresponds to all spins pointing down E+=51+g+382/(4g),
and its energy i€,=—3=)_,&,/2+(N—1)BA/4, which we @)
will set equal to zero. Moreover, to simplify our analysis we E_=&+g+B2(4q).
consider only positive values for the parameters of the Hami-
tonian. The more distant the two defects are, the closer the energies

To address the different states of the system, we use & the two entangled states will be, since we have to go to
notation that is common in the study of spin chains with thenigher orders to find them.

Bethe ansatf11,12. The state corresponding to one single Suppose that an initial state is prepared, which has an

excitation on siten, that is[ (15 - [n-1Tnln+1 - In). IS excitation on the defeat,. Let us now see how long we

simply written as¢(n). The state of two excitations, one on paye to wait for it to become a maximally entangled state

site n and the other one on sit®@, is ¢(n,m), which is a  gych as given by Eq2). This excitation oscillates between

simplified notation forf ;- - Tn-- T -+ In)- the defectn, and the defectn,. The probability to find it
later in time on siteng is

A. One excitation
1+cog§(E,—E_)t]

2 ’

Let us first examine the case of just one excitation. As- P(/,(no)(t):
sume that there are only two defects, whose level spacings
aregy+g, while the level spacing of all other qubits é3. ) . N .
By choosingg much larger than the interaction strenggh ~ While the probability to find it omy is
we generate maximally entangled states corresponding to lin-
ear combinations of the two defects.

The energy of states, which have the excitation on any site
except on the defects, lies within the bafid-B, where&;
=go—BA [11,17. If g is much larger thamB, an excitation It is seen from Eqs(5) and(6) that the period of oscilla-
on one of the defects will have energy out of the bandtion of the excitation between the defects is inversely propor-
Therefore, the two resonant defects can be treated separateiynal to the energy difference of the statgs and ¢_ .
from all other states by the perturbation theory. It is as if weSuch a period depends on the numpeof sites between the
were working with only two sites. An excitation initially cre- defects asT,=T,(29/B)*, where To=27/B. The maxi-
ated on one defect will only oscillate between the two de-mally entangled stateg2) are obtained Whe”P¢(no)
fects. All intermediate states for the excitation to go from one—= p #(mgy=1/2. The further the defects are from each other,

defe_zct _to the other are virtuz_;ll states. The frequency o_f thesg,o longer we will have to wait for an EPR type of state to be
oscillations depend on the distance between the two different.oated. It is clear. however. that by tuning two qubits in

qubits. Their separation determines in which order of thggggnance with energies very different from all the others, we
perturbation theory they are connected. can entangle even remote qubits.

The two states corresponding to superpositions of an ex- At the moment where a maximally entangled state is cre-
citati.on on a defect on ;itao and an excitation on a defect ated, in order for it to be kept this way, the two defects have
on sitem, are the following EPR states: to be detuned. The difference in energy between these two

1 excited qubits should become much larger than the interac-
_ - tion strength between theiff course, the defects and the
Ve \/E[d)(nO) =#(Mo)l, @ other qubits are still completely out of resonandg¢ow fast
this detuning should be done depends on how much close we
want to keep our state from a perfect EPR state.
where¢(n0)=|TnOlmo> and ¢(m0):|l“ono>' Similarly,paW state can be l:F))uiIt with three resonant de-

If the two defects are next to each othem=no+1), the  fects, but we postpone the description of how to create such
energies of these two entangled states in the first order al6states to the fo”owing section where we have the more in-

teresting case of two excitations.

®)

1-cog(E, —E_)t
P a0 = = ©

E.=&+g=B/2. (3
B. Two excitations

We just need to diagonalize a two-dimensional submatrix, In order to create EPR states aWbstates with two exci-
whose diagonal elements agg+g and off-diagonal ele- tations we make use of the anisotropy of the system. Because
ments areB/2. After shifting the energy levels by a second- A is much larger tham, two excitations next to each other
order correctiorB?/4(g+ B/2), they agree very well with a have energy much larger than any state where they are sepa-
complete numerical diagonalization of a long chain wgth rated. The energy of any two free excitations lies inside the
much larger tharB. band Z,£2B, while the bound pair states have energy
If the second defect is located on siigt 2 we have to go  within a much narrower band &+BA +B/2A =B/2A
straight to the second order and diagonalize a matrix whosgl1,12. As a consequence, the bound pair states can be
diagonal elements ar® + g+ B?/(2g) and off-diagonal el- treated separately from all other two-excitation stdtes.
ements ard3?/(4g). The two energies become much closer, They are connected in the second order of the perturbation
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theory, which explains the narrow bandwid®?/(BA) 1
=B/A. Any intermediate and dissociated state is a virtual
State.
Suppose that there is only one defect on sjjavith level
spacingey+g. If g is much larger tharB/2A, the bound

pairs with one excitation on the defect have energy out of the i 05 | . P
narrow band. They form the EPR states o //’ \\ // '\\
1 A :‘\\ /l
v:= gl #M0= Lo (Moot 1) () A IAA
o Y T°: .T‘: N //. T, I T,
where ¢(n0_1!”0):|Tn071Tn0ln0+1> and ¢(ng,np+1) 0 50 Bt 100 150

= _ . Their energies are
H”O 1o g+ 1) g FIG. 1. We considered a chain with 12 qubiB=1, andA

B B2 B2 =10. The defects are located on sit_ag_ no+_1, ng+2, andn_o_
E.=28+g+BA+—+ + _ +3 where_n0=3 a_n(_j_g=BA. The solid line gives the prob_a'b_lllty
4N  A(BA+g) 4(BA+Q) in time to find the initial statep(ny+ 1,no+2). Both probabilities
(8)  to find stateg(ng,ny+1) and statep(ng+ 2,0+ 3) coincide and
they are given by the dot-dashed line. The vertical dashed lines
By preparing an initial state with one excitation on site correspond to the instants of tim&,=Bt,, where we have &V
ny—1 and the other on the defect siig, following Egs.(5) state.
and(6), we will obtain an EPR state at every instant of time
correspondent eigenvalues are obtained from the diagonal-

ty=2(BA+g)[ m/2+km]/B?, (9 ization of the following tridiagonal submatrix:
wherek is an integer number. E@+r+s r 0
Using the anisotropy, several other types of EPR states r EO® 1 op r

can be created. With three defects on sitgs ng+1, and
no+2, if they all have the same level spaciag+g andg
>B/(2A), we wou_ld have linear combinations of the bound Above r=B/(4A), s=B%[4(BA+g)] and E@=2¢
pairs ¢(n0’n0+l)_|TnoT”o+}i”o+2> and ¢(no+1no+2) +BA+2g. The difference in energy between the diagonal
=|lnyTng+1Tny+2)- As mentioned above, these states areelement in the middle of the matrix and the diagonal ele-
connected in the second order of the perturbation theory. ments at the edge&/(4A)—B2/[4A(BA+Q)], exists be-
Another EPR state that can be created with these thregause stateg(ng,ng+1) and¢(ng+2,ng+3) make virtual
defects involves the states(ng,ng+ 1)=|Tn0Tn0+1lno+2> transitions to states that are out of the “subchain” created by
and ¢(no.No+2)=|Tn Ln+17n,+2)- The level spacing of the defects.
the defect on siteg+2 is nowey+g+BA. The difference The eigenvalues are therefore

0 r E@+r+s

BA from the other two defects allows the entanglement be- 4B?A+3Bg—Bu
tween the bound paith(ng,np+1) and the statep(ng,ng E,=E( BA(BA+g)
+2). These states are connected in the first ordd. ilfihe 9
advantage of this entanglement is that the period of oscilla- B(2BA+g)
tions between an initial statéd(ny,ny+1) and the state E,=EO@+4+———— —
¢(ng,ng+2) is much shorter than oscillations between 4A(BA+9)
bound pairs. On the other hand, to guarantee #at,,n, 2

+1) and ¢(ng,ng+2) are the only two states of the en- E;=E© 4B°A+3Bg+Bu
tanglementg has to be larger thaB, instead of just larger 8A(BA+g)

thanB/(2A) as in the bound pair case.

This anisotropic chain with defects can also be used t
create aW state. In order to do so we choose four equal
defects on sitesy, ng+1, ng+2, andny+3 with level
spacingsey+ g andg much larger thaB/(2A). The bound

gvhereu= 8B*A°+16BAg+9g°.

To generate &V state we have to prepare an initial state
with excitations omgy+1 andng+ 2, since this state is the
only one among the three states, which is connected to the

pairs on the defects are much higher in energy than any othd© Others in the second order. The probability in time to
state and they can be treated separately. It becomes a goBRt@in the initial states(ny+1ne+2) is
approximation to say that three of the eigenfunctions of the 1+cod (Es—Ept]
total Hamiltonian(1) will correspond to linear combinations P g(n+1n+2)(1) = s 1
of the bound pairs¢(no,Mo*1)=1n,nys 1lnyr2lnyrs): T ?
B(No+1no+2)=|ln Tny+1Tny+2bng+3)s and ¢(No+2No  The probability to find statep(ng,ne+1) or state (N,
+3):|lnolno+1Tno+2Tn0+3>- Such eigenfunctions and their +2,ny+ 3) is the same and is given by

(10
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1-cog(E;—Eyt]

7 (11)

P¢(no Mg+ 1)(t) =

The W state appears at the following instants of tifsee
Fig. D:

. (—1)*arccos—1/3)+ 27 k—int(k/2)]

k E._E, (12

wherek is an integer and ink/2) correponds to the integer
part of the ratiok/2.

As pointed out in the preceding section, for the maximally
entangled state to be kept this way, at the moment where it i
generated, the level spacings of the qubits involved in th
process should become different. This detuning should b
larger than the interaction strength among them.

The W state with the bound pairg(ng,ng+1), &(ng
+1ny+2), andp(ng+2n,+3) can also be created with
only two defects located on siteg—1 andng+4, but here
the situation is more delicate. As befogghas to be larger

e
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IlI. CONCLUSION

We have investigated on how the defects of a spin chain
with strongly anisotropic coupling can be used to obtain EPR
andW states. These are the states used in the study of bipar-
tite and tripartite entanglement, respectively. We considered
the XXZ model with defects, for this is the model used to
describe some quantum computers, such as the one based on
electrons on heliun3]. It was shown that even though the
interaction among qubits is on all the time, we can determine
among which qubits the interaction is actually effective by
controlling the level spacings. This allows the entangling of
gnly certain chosen sites.

Over the years, magnetochemists have refined the art of
gesigning and growing crystals of quasi-one-dimensional
magnetic materials. These systems should therefore be useful
in the study of entanglement.
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