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Schmidt numbers of low-rank bipartite mixed states
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Schmidt numbers of bipartite mixed states@B. M. Torhal and P. Horodecki, Phys. Rev. A61, R040301
~2001!# characterize the minimum Schmidt ranks of pure states that are needed to construct such mixed states.
Schmidt number is the minimum number of entangled degrees of freedom of a bipartite mixed state. We give
a lower bound for the Schmidt numbers of low-rank bipartite mixed states and conclude that generic low-rank
mixed states have relatively high Schmidt numbers and thus entangled.
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In quantum information theory, the study of bipartite e
tanglement is of great importance. A bipartite pure stateuc&
can always be described by its Schmidt decomposition,
the representation ofuc& in an orthogonal product basis wit
minimum number of terms,uc&5S i 51

k pi uai& ^ ubi& with
positive realspi ’s. The Schmidt rankk is the total number of
nonvanishing terms in the representation. It is actually
rank of the reduced density matrixrB5TrB(uc&^cu). The
Schmidt ranks of pure states give a clear insight into
number of degrees of freedom that are entangled betw
two parties@2#. A necessary condition for a pure state to
convertible by local operations and classical communica
~LOCC! to another pure state is that the Schmidt rank of
first pure state is larger than or equal to the Schmidt rank
the latter pure state; that is, local operations and class
communication cannot increase the Schmidt rank of a p
state@3#. The characterization of mixed state entanglemen
a more difficult task. A great effort has been devoted to
tecting the presence of entanglement in a given mixed s
~see Refs.@4–7# for the study of separability criteria. Terha
and Horodecki@1# introduced the concept of Schmidt num
bers of bipartite mixed states. For a bipartite mixed stater, it
has Schmidt numberk if and only if for any decomposition
r5S i pi uv i&^v i u with positive real numberspi ’s and pure
statesuv i& ’s, at least one of the pure statesuv i& ’s has Schmidt
rank at leastk, and there exists such a decomposition with
pure statesuv i& ’s Schmidt rank at mostk. Schmidt numbers
of bipartite mixed states characterize the minimum Schm
ranks of pure states that are needed to construct such m
states. Schmidt number is the minimum number of entang
degrees of freedom of a bipartite mixed state. The mix
states are entangled if and only if their Schmidt numbers
greater than 1. It is proved@1# that Schmidt number is en
tanglement monotone, i.e., it cannot increase under local
erations and classical communication.

Because Schmidt numbers of bipartite mixed states c
not increase under LOCC, it is desirable if people co
compute Schmidt numbers of bipartite mixed states eff
tively and thus it would offer an effective-deciding criterio
that two bipartite mixed states cannot be convertible
LOCC. However, in this aspect, Schmidt numbers are o
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calculated for very few bipartite mixed states, for example
is calculated for ‘‘isotropic states’’r5@(12F)/(N221)#(I
2uC&^Cu)1FuC&^uCu on HA

N
^ HB

N , where uC&5(1/
AN)S i 51

N u i i & in Ref. @1#. Some methods to relate Schmi
numbers of bipartite mixed states to ‘‘k-positive’’ maps and
the so-called ‘‘Schmidt number witness’’ have been dev
oped in Refs.@1,8#.

On the other hand, a method of decomposing a mix
state by ‘‘edge’’ entangled states and a separable state
developed in Refs.@9,10#. From this method, it is found tha
the low-rank mixed state entanglement seems to be easi
understand, and it is proved in Ref.@11# that for the mixed
states onHA

m
^ HB

n with ranks not larger than max$m,n% the
PPT~positive partial transposition! property is equivalent to
the separability.

In this paper, we introduce linear subspacesLA(r) and
LB(r) of HA

m and HB
n for bipartite mixed statesr on HA

m

^ HB
n , which are closely related to the Schmidt numbers

the mixed statesr. Roughly speaking the smaller the dime
sions of these linear subspaces are, the bigger the Sch
number of r is ~see Theorem 1!. Then, we give a lower
bound for the Schmidt numbers of low rank-mixed statesr
from LA(r) andLB(r). On the other hand, it is very easy t
computeLA(r) or LB(r) from any representation ofr as a
convex combinationr5S i pi uc i&^c i u with positive realspi ’s
and pure statesuc i& ’s. Thus, we give an easy numeric
method to give a lower bound for the Schmidt numbers
low-rank bipartite mixed states. Sometimes the lower bou
can be used to compute the Schmidt numbers of mixed st
exactly. Another implication of our result is that generic ra
r ,n mixed states onHA

m
^ HB

n ~assumem<n without loss of
generality! have their Schmidt numbers at least min$n/r,m%
and thus entangled. We recall the result in Ref.@11#, it is
proved for mixed states of ranks not larger than max$m,n% on
HA

m
^ HB

n , the PPT property is equivalent to the separabil
It is also well known that there exist rank max$m,n%11 PPT
entangled mixed states onHA

m
^ HB

n ~see Refs.@5,12#!. Com-
bining with our results, here we can see that low-rank mix
state entanglement is easier to understand. On the other h
it would be interesting to consider if high-rank biparti
mixed states have relatively low Schmidt numbers. In t
direction we know from Ref.@13# that there exists an ope
ball consisting of separable mixed states~thus Schmidt num-
ber 1! in the space of rankmn mixed states onHA

m
^ HB

n . We
©2003 The American Physical Society01-1
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do not know if this result could be extended to prove th
generic rankmn mixed states onHA

m
^ HB

n have relatively
low Schmidt numbers.

For any given bipartite mixed stater on HA
m

^ HB
n , LA(r)

@LB(r)# is the set of pure statesua& in HA
m @pure states

ub8& in HB
n ] such that^a^ burua^ b&50 for any pure state

ub& in HB
n @^a8^ b8urua8^ b8&50 for any pure state

ua8& in HA
m]. Since ^a^ bu(UA^ UB)r(UA^ UB)†ua^ b&

5^(UA
†a) ^ (UB

†b)uru(UA
†a) ^ (UB

†b)&, LA„(UA^ UB)r… is
UA

†
„LA(r)…, i.e., the dimensions ofLA(r) and LB(r) are

invariant under local unitary operations. Here † is t
adjoint.

For a pure stater5uc&^cu, from the invariance unde
local unitary operations, we can computeLA(r) and LB(r)
from the Schmidt decomposition ofuc&5S i 51

k pi uai& ^ ubi&,
that is, ^a^ burua^ b&5S i 51pi

2u^auai&^bubi&u250 implies
that LA(r) @LB(r)# is the orthogonal complementary inHA

m

of the space span by pure statesuai& ’s @ ubi& ’s#. Thus, the
Schmidt rankk of the pure stater is just the codimensions o
the linear subspacesLA(r) and LB(r), that is, the linear
subspaces we introduced above can be thought as the de
of freedom, which are not entangled in the pure state. T
point is manifested in the following result, which asserts t
the Schmidt number~i.e., the minimum number of entangle
degrees of freedom! of a bipartite mixed stater is relatively
high if the dimension ofLA(r) or LB(r) is small.

Theorem 1.Let r be a rankr mixed state onHA
m

^ HB
n with

Schmidt numberk. Then, k>@m2dim(LA(r))#/r and k
>@n2dim(LB(r))#/r .

For any bipartite mixed stater on HA
m

^ HB
n , ^a^ burua

^ b&50 is equivalent toua& ^ ub& is in the kernel ofr, thus
it is equivalent toua& ^ ub& is orthogonal to the range ofr.
This observation implies thatLA(r)5ù i 51

r LA(uv i&) for pure
statesuv1&, . . . ,uv r& in HA

m
^ HB

n if they span the range ofr.
We can now recall a lemma in Ref.@5#, which asserts that fo
a mixed state of the formr5Spi uf i&^f i u, wherepi ’s are
positive reals anduf i& ’s are pure states, the range ofr is the
linear span of pure statesuf i& ’s. Combining these two points
together, we can see that we can know some properties o
Schmidt ranks ofuf i& ’s for any representationof r as
Spi uf i&^f i u from LA(r) or LB(r).

Proof of Theorem 1. We just prove the conclusionk
>@m2dimLA(r)#/r . Another conclusion can be prove
similarly. Take any representation of the mixed stater asr
5S i 51

t pi uv i&^v i u, wherepi ’s are positive and the maxima
Schmidt rank ofuv i& ’s is k. As observed above, we only nee
to taker linear independent vectors in$uv1&, . . . ,uv t&%, say
uv1&, . . . ,uv r&, to computeLA(r)5ù i 51

r LA(uv i&). From our
observation of pure states dimLA(uv i&)5m2k(v i), where
k(v i) is the Schmidt rank ofuv i&. Thus, we know that
dimLA(r)>m2S i 51

r k(v i)>m2rk, since k(v i)<k. The
conclusion is proved.

For the convenience is using Theorem 1, we consider
coordinate form of the above linear subspacesLA(r) and
LB(r). Let $u1&, . . . ,um&% and $u1&, . . . ,un&% be the stan-
dard orthogonal bases of HA

m and HB
n , then

$u11&, . . . ,u1n&, . . . .,um1&, . . . ,umn&% be the standard or
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thogonal basis ofHA
m

^ HB
n . We represent the matrix ofr in

the basis$u11&, . . . u1n&, . . . ,um1&, . . . ,umn&%, and con-
siderr as a blocked matrixr5(r i j )1< i<m,1< j <m with each
block r i j a n3n matrix corresponding to theu i1&, . . . ,u in&
rows and theu j 1&, . . . ,u jn& columns. For any fixed pure
state ua&5r 1u1&1 . . . 1r mum& in HA

m , the matrix of the
Hermitian linear form^a^ burua^ b& of ub& in HB

n , with
respect to the basisu1&, . . . ,un&, is S i , j r i r j

†r i j . Let r
5S l 51

t pl uv l&^v l u be any given representation ofr as a con-
vex combination of projections withp1 , . . . ,pt.0. Suppose
v l5S i , j 51

m,n ai j l u i j &, A5(ai j l )1< i<m,1< j <n,1< l<t is the mn
3t matrix. Then, it is clear that the matrix representati
of r with the basis$u11&, . . . ,u1n&, . . . ,um1&, . . . ,umn&%
is APA†, whereP is the diagonal matrix with diagonal en
tries p1 , . . . ,pt . We may consider themn3t matrix A
as am31 blocked matrix with each blockAw , where w
51, . . . ,m, a n3t matrix corresponding to
$uw1&, . . . ,uwn&%. Then, r i j 5Ai PAj

† and thusS i j r i r j
†r i j

5S i j r i r j
†Ai PAj

†5(S i r iAi)P(S j r jAj )
†. We note thatP is a

strictly positive definite matrix, thusLA(r) is just the set of
pure statesua&5r 1u1&1¯1r mum& in HA

m such that the ma-
trix S i r iAi is the zero matrix~of size n3t). Similarly, we
can have the coordinate form ofLB(r).

We can now return to the pure state case. Letr
5uv&^vu, uv&5S i 51,j 51

m,n ai j u i j &, be a pure state onHA
m

^ HB
n . Consider A5(ai j )1< i<m,1< j <n as a m3n matrix,

thenLA(r) is just the pure statesr 1u1&1¯1r mum& ~in HA
m)

such that (r 1 , . . . ,r m)A50 andLB(r) is just the pure states
r 1u1&1¯1r nun& ~in HB

n) such that A(r 1 , . . . ,r n)t50
~Here,t is the transposition.! These are of codimensionrank
~A! ~equal to the Schmidt rank ofuv& as well known!.

This can be easily generalized to mixed state case. Lr
5Sk51

t pi uvk&^vku, wherepi ’s are positive real numbers, b
a mixed state onHA

m
^ HB

n , uvk&5S i 51,j 5n
m,n ai j

k u i j & be the ex-
pansion in the standard basis. We arrange thet matrices of
size m3n, Ak5(ai j

k )1< i<m,1< j <n , k51, . . . ,t, in two dif-
ferent ways.T15(A1, . . . ,At) is a matrix of sizem3tn and
T25(A1, . . . ,At)t is a matrix of sizetm3n ~note in eachAk

no transposition imposed!. Then,LA(r) is just the pure states
r 1u1&1¯1r mum& ~in HA

m) such that (r 1 , . . . ,r m)T150 and
LB(r) is just the pure statesr 1u1&1•••1r nun& ~in HB

n) such
that T2(r 1 , . . . ,r n)t50. Theorem 1 can be reread, as t
Schmidt number ofr is at least rank(T1)/r and rank(T2)/r .
From this point of view, Theorem 1 can be thought as
natural extension of the previously well-known result th
the Schmidt rank ofuv& is just the rank of the matrixA. It is
immediate we have the following result.

Proposition 1. Let r5Sk51
t pkuvk&^vku be a rankr ,m

mixed state onHA
m

^ HB
m , where p1 , . . . ,pt are positive

reals anduvk&5S i j ai j
k u i j &. Consider Ak5(ai j

k )1< i , j <m , k
51,2, . . . ,t, as matrices of sizem3m. Suppose the linea
span of alltm rows of m3m matricesA1, . . . ,At is of di-
mensionm. Then the Schmidt number ofr is at least m/r,
thus entangled.

Proof. We consider the tm3m matrix T2
5(A1, . . . ,At)t. It is of rankm sincetm rows of the matri-
cesA1, . . . ,At span a dimensionm space. From the coordi
1-2
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nate form of Theorem 1, the Schmidt number ofr is at least
rank(T2)/r , thus the conclusion is proved.

In the space of all rank r mixed states r
5Sk51

r pkuvk&^vku on HA
m

^ HB
n ~wherep1 , . . . ,pr are eigen-

values, uv1&, . . . ,uv r& are eigenvectors, and uvk&
5S i 51,j 51

m ai j
k u i j &), the rank of the m3m matrix Ak

5(ai j
k )1< i , j <m is m for genericuvk&. In fact, the condition

rank(Ak),m, i.e., det(Ak)50 ~where det is the determinan
of a square matrix!, is a polynomial equation of variable
ai j

k ’s. Thus, the set of points (ai j
k )1< i , j <m satisfying det(Ak)

50 is of measure zero in the space of all possible (ai j
k )’s if

this set is not the whole space. Hence, we can see tha
condition of Proposition 1 is satisfied by generic rankr
mixed states.

Theorem 1 also implies that if a mixed state is mixed
not too many pure states and one of these pure states ha
highest possible Schmidt rank, then the mixed state ha
relatively high Schmidt number. This can be sometimes u
as an easy way to detect the entanglement in low rank m
states.

Proposition 2. Let r5Sk51
t pkuvk&^vku be a rankr mixed

state onHA
m

^ HB
n with r,m<n, wherep1 , . . . ,pt are posi-

tive real numbers and the Schmidt rank ofuv1& is m. Then
the Schmidt number ofr is at least m/r and thus entangle

Proof. Let uvk&5S i 51,j 51
m,n ai j

k u i j & and Ak

5(ai j
k )1< i<m,1< j <n is m3n matrix for k51, . . . ,t. We con-

sider them3tn matrix T15(A1, . . . ,At). It is clear thatA1

is of rankm since the Schmidt rank ofuv1& is m. Thus, the
rank of the matrixT1 is m. From the coordinate form o
Theorem 1 the Schmidt number ofr is at least rank(T1)/r ,
thus the conclusion is proved.

Sometimes the lower bound in Theorem 1 can be use
give exactresults about Schmidt numbers for some bipar
mixed states.

Example 1. Let r5Sk51
u pkufk&^fku be a mixed state on

HA
uv

^ HB
uv , where p1 , . . . ,pu are positive reals andufk&

5S i 51,j 51
v ai j

k u@(k21)v1 i #@(k21)v1 j #& for k51, . . . ,u.
From this representation ofr, we know that the Schmid
number ofr is at mostv, since the Schmidt ranks ofufk& ’s
are at most v. Consider Ak5(ai j

k )1< i<v,1< j <v , k
51, . . . ,u, as matrices of sizev3v , if Sk51

u rank(Ak)
>uv2u11 then the Schmidt number ofr is exactlyv. In
fact the matrixT1 in the coordinate form of Theorem 1 is
blocked diagonal matrix withu blocks A1, . . . ,Au, thus
rank(T1)5Sk51

u rank(Ak)>uv2u11. From the coordinate
form of Theorem 1, the Schmidt number ofr is at leastv
2111/u and thus at leastv. We get the conclusion. We ca
observe the following case.

In the caseu53,v54, consider the following two mixed
states:r15 1

4 S i 51
4 uf i&^f i u and r25 1

3 S i 51
3 uc i&^c i u on HA

12

^ HB
12, where

uf1&5
1

A3
~ u11&1u22&1u33&),
06230
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uf2&5
1

A2
~ u44&1u55&),

uf3&5
1

A3
~ u77&1u88&1u99&),

uf4&5
1

A2
~ u~11!~11!&1u~12!~12!&),

uc1&5 1
2 ~ u11&1u22&1u33&1u44&),

uc2&5
1

A3
~ u55&1u66&1u77&),

uc3&5
1

A3
~ u~10!~10!&1u~11!~11!&1u~12!~12!&).

Thus, we know that the Schmidt number ofr1 is 3 and the
Schmidt number ofr2 is 4.

Example 2. Let r5S i 51
r pi uf i&^f i u, wherep1 , . . . ,pr are

positive real numbers, be a rankr mixed state onHA
m

^ HB
n

with rm<n. Suppose the matrixT2 ~size rm3n) of the
above representation ofr is of full rank rm. From the coor-
dinate form of Theorem 1, the Schmidt number ofr is at
least rank(T2)/r 5m. Sincem is the highest possible value o
Schmidt numbers, the Schmidt number ofr is exactlym.

Let r5S i 51
3 pi uf i&^f i u, wherep1 ,p2 ,p3 are positive real

numbers and

uf1&5 1
3 ~ u11&1u12&1u13&1u15&1u17&1u22&1u28&1u33&

1u39&),

uf2&5
1

A7
~ u14&1u15&1u16&1u25&1u27&1u36&1u39&),

uf3&5 1
2 ~ u17&1u19&1u28&1u39&),

be a rank 3 mixed state onHA
3

^ HB
9 . We can check that its

T2 is a rank 9 matrix of size 939. Thus, the Schmidt num
ber of r is 3.

For a given mixed stater5S i
tpi uv i&^v i u with positive

reals pi ’s, we know from the definition that the Schmid
number ofr is at most max$k(v1), . . . ,k(v t)%, wherek(v i)
is the Schmidt rank of the pure stateuv i& for i 51, . . . ,t.
This gives an upper bound for the Schmidt numbers of
partite mixed states. On the other hand, there is a lo
bound for the Schmidt numbers of bipartite mixed sta
from Theorem 1. Hence, in some cases, we can comp
Schmidt numbers from the above fact and know the first o
cannot be convertible to the latter mixed state by local
erations and classical communication.

Example 3. Let r5S i 51
m22pi uf i&^f i u , wherepi ’s are posi-

tive real numbers anduf i&51/A3@ u i i &1u( i 11)(i 11)&
1-3
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1u( i 12)(i 12)&], for i 51, . . . ,m22 , be a mixed state on
HA

m
^ HB

m . It is clear that the Schmidt number ofr is at
most 3.

Let r85 1
2 (uc1&^c1u1uc2&^c2u) be a mixed state onHA

n

^ HB
n with n>8, where uc1& and uc2& are pure states in

HA
n

^ HB
n . Suppose the Schmidt rank ofuc1& or uc2& is n.

From Proposition 2, the Schmidt number ofr8 is at least
n/2>4. Thus,r cannot be convertible tor8 by local opera-
tions and classical communication.

Because of the above discussion about the coordi
form of Theorem 1, we can easily calculate the lower bou
of Schmidt numbers of low-rank bipartite mixed states. T
gives us the following conclusion.

Theorem 2. Generic rankr ,n mixed states onHA
m

^ HB
n

~assumem<n without loss of generality! have their Schmidt
numbers at least min$n/r,m% and thus entangled.

Proof. We consider the spectral decompositionr
5Sk51

r pi uvk&^vku of rank r mixed states onHA
m

^ HB
n , where

pk and uvk&5S i 51,j 51
m,n ai j

k u i j &, k51, . . . ,r , are eigenvalue
and corresponding eigenvector, respectively. Then, the s
of the rankr mixed states can be identified with the spa
X5X13X2, whereX15$(p1 , . . . pr): p1.0, . . . ,pr.0,p1

1•••1pr51% and X25$(ai j
1 , . . . ,ai j

r )PCrmn:S i j uai j
1 u2

51, . . . ,S i j uai j
r u251,S i j ai j

k1ai j
k250,k1Þk2%. ~Strictly speak-

ing, there is a group action of permutation group ofr sym-
bols on the spaceX and the space of rankr mixed states
should be identified with the quotient space of this gro
action. However, it is clear in the discussion below this po
can be neglected.! As above discussion Ak

5(ai j
k )1< i<m,1< j <n , k51, . . . ,r , are considered as sizem

3n matrix.
o-

v
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It is clear that the matrixT25(A1, . . . ,Ar)t ~of size rm
3n) can reach the highest possible rank min$rm,n% on the
spaceX, since we can take min$rm,n% rows of T2 ~i.e., rows
of A1, . . . ,Ar) to be the orthogonal vectors inCn with suit-
able lengths. The rankr mixed states corresponding to the
points in X have their Schmidt numbers at least min$n/r,m%
from the coordinate form of Theorem 1. In the spaceX2, the
condition rank(T2), min$rm,n% is just Cmax$rm,n%

min$rm,n% ~binomial
coefficient! polynomial equations~i.e., the determinants o
all size min$rm,n% square submatrices ofT2 are zero! of vari-
ablesai j

k ’s. This setSdefined by these polynomial equation
is of measure zero inX2, since it is an algebraic set not equ
to the whole spaceX2. Thus, the Schmidt numbers of gener
mixed states corresponding to points outside the mea
zero setX13S are at least min$n/r,m% from the coordinate
form of Theorem 1. The conclusion is proved.

In conclusion, we proved a lower bound for the Schm
numbers of bipartite mixed states. This lower bound can
applied easily to low-rank bipartite mixed states. From t
lower bound, it is known that generic low-rank biparti
mixed states have relatively high Schmidt numbers and t
entangled. We can compute Schmidt numbers exactly
some mixed states by this lower bound as shown in
amples. This lower bound can also be used effectively
determine that some mixed states cannot be convertibl
other mixed states by local operations and class
communication.
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