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Schmidt numbers of low-rank bipartite mixed states
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Schmidt numbers of bipartite mixed staggs. M. Torhal and P. Horodecki, Phys. Rev.&, R040301
(2001)] characterize the minimum Schmidt ranks of pure states that are needed to construct such mixed states.
Schmidt number is the minimum number of entangled degrees of freedom of a bipartite mixed state. We give
a lower bound for the Schmidt numbers of low-rank bipartite mixed states and conclude that generic low-rank
mixed states have relatively high Schmidt numbers and thus entangled.
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In quantum information theory, the study of bipartite en-calculated for very few bipartite mixed states, for example, it
tanglement is of great importance. A bipartite pure state  is calculated for “isotropic statesp=[(1—F)/(N?>—1)](l
can always be described by its Schmidt decomposition, i.e+ |¥)(¥|)+F|¥)(|¥| on HR@HN, where |W¥)=(1/

the representation ¢fs) in an orthogonal product basis with JN)SN__ i) in Ref. [1]. Some methods to relate Schmidt

.. <k . i=1
minimum number of terms|y)=3{_ pifa)@|bi) with  nympers of bipartite mixed states té-positive” maps and

positive realg;’s. The Schmidt rank is the total number of  {ha so-called “Schmidt number witness” have been devel-
nonvanishing terms in the representation. It is actually th%ped in Refs[1,8].

rank of the reduced density matrpg=Trg(|¢)(¢|). The On the other hand, a method of decomposing a mixed
Schmidt ranks of pure states give a clear insight into theiaie by “edge” entangled states and a separable state was
number of degrees of freedom that are entangled betweedbveloped in Refd9,10]. From this method, it is found that
two parties[2]. A necessary condition for a pure state to beq |ow-rank mixed state entanglement seems to be easier to
convertible by local operations and classical Communicatiorbnderstand, and it is proved in RéL1] that for the mixed
(LOCC) to another pure state is that the Schmidt rank of th%tates orHT®HY with ranks not larger than mém,n} the

first pure state is larger tha_n or equal to th_e Schmiat rank_ 0 PT (positive partial transpositigrproperty is equivalent to
the latter pure state; that is, local operations and classm%e separability

communication cannot increase the Schmidt rank of a pure - - :

state[3]. The characterization of mixed state entanglement ii En)tfgfs Hp %pg:{ dVLen '?;rrog.u (;Eit.ltlge?]r Selébzf;?&g )n aH”n?
a more difficult task. A great effort has been devoted to de-B\? LA B 'parti X P A
tecting the presence of entanglement in a given mixed statg B’ which are closely related t_o the Schmidt numpers of
(see Refs[4—7] for the study of separability criteria. Terhal t_e mixed statep. Roughly speaking the smgller the d|men—.
and Horodecki1] introduced the concept of Schmidt num- sions of these linear subspaces are, the bigger the Schmidt

bers of bipartite mixed states. For a bipartite mixed spatie number ofp is (seel Theorem )1 Then, we giye a lower
has Schmidt numbek if and only if for any decomposition bound for the Schmidt numbers of low rank-mixed staies

p=3ipilvi)vi| with positive real numberp;’s and pure from La(p) andLg(p). On the other hand, it is. very easy to
stategv;)’s, at least one of the pure stafes)’s has Schmidt  COMPUteLA(p) or Lg(p) from any representation of as a
rank at leask, and there exists such a decomposition with allcONVeXx comblnat|orp,;=2ipi| ¥i )| with positive real;’s
pure stategv;)’s Schmidt rank at mosk. Schmidt numbers and pure state$y;)'s. Thus, we give an easy numerical
of bipartite mixed states characterize the minimum Schmigfn€thod to give a lower bound for the Schmidt numbers of
ranks of pure states that are needed to construct such mix&gV-rank bipartite mixed states. Sometimes the lower bound
states. Schmidt number is the minimum number of entangle§&" P& used to compute the Schmidt numbers of mixed states
degrees of freedom of a bipartite mixed state. The mixe(fxactly_. Another |mpI|(r:nat|or:10f our result is that generic rank
states are entangled if and only if their Schmidt numbers aré<n mixed states oki,® Hg (assumen=n without loss of
greater than 1. It is provefdl] that Schmidt number is en- 9enerality have their Schmidt numbers at least {niin,m}
tanglement monotone, i.e., it cannot increase under local oftnd thus entangled. We recall the result in Hédl], it is
erations and classical communication. proved for mixed states of ranks not larger than {na on
Because Schmidt numbers of bipartite mixed states cardA®Hg, the PPT property is equivalent to the separability.
not increase under LOCC, it is desirable if people couldltis also well known that there exist rank n{ax,n}+1 PPT
compute Schmidt numbers of bipartite mixed states effecentangled mixed states dtiy® Hg (see Refs[5,12]). Com-
tively and thus it would offer an effective-deciding criterion bining with our results, here we can see that low-rank mixed
that two bipartite mixed states cannot be convertible bystate entanglement is easier to understand. On the other hand,
LOCC. However, in this aspect, Schmidt numbers are onlyt would be interesting to consider if high-rank bipartite
mixed states have relatively low Schmidt numbers. In this
direction we know from Ref[13] that there exists an open
*Electronic address: chenhao1964cn@yahoo.com.cn or ball consisting of separable mixed stat#sis Schmidt num-
mcsch@zsu.edu.cn ber 1) in the space of ranknn mixed states oM@ HE . We
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do not know if this result could be extended to prove thatthogonal basis oHY®H5 . We represent the matrix gf in

generic rankmn mixed states orHY®Hg have relatively
low Schmidt numbers.

For any given bipartite mixed stafeon HY®@Hg , La(p)
[Le(p)] is the set of pure statel|) in HY [pure states
[b") in HE] such that{(a®b|p|a®b)=0 for any pure state
[b) in HE [(a’®b’|p|]a’®b’)=0 for any pure state
|a’) in HY]. Since (a®b|(U,®Ug)p(Ur®Ug)Ta®b)
=((Uaa)@ (Ugb)|p[(UAa)® (UEb)), La((Ua®Ug)p) is
UL(LA(p)), i.e., the dimensions oE(p) and Lg(p) are

— m,n HH —
invariant under local unitary operations. Here t is the?1 =21 21831 [i1), A= (@) 1<i<m1<j=

adjoint.

For a pure statep=|¢)(y|, from the invariance under
local unitary operations, we can computg(p) andLg(p)
from the Schmidt decomposition ¢#)=3*_,pila;)®|b;),
that is, (a®b|pla®b)=3_,p?[(ala;){b|b;)|>=0 implies
thatLa(p) [Lg(p)] is the orthogonal complementary kil
of the space span by pure stafes)’s [|b;)'s]. Thus, the
Schmidt rankk of the pure statg is just the codimensions of
the linear subspacels,(p) and Lg(p), that is, the linear

subspaces we introduced above can be thought as the degré&&¥€ S

the basis{|11), ...|1n), ... |m1), ... |mn)}, and con-
siderp as a blocked matriy = (pjj)1<j<m 1<j<m With each
block p;; anXn matrix corresponding to thgl), ... |in)
rows and thelj1), ... jn) columns. For any fixed pure
state|a)=r,|1)+ ... +r,/m) in HY, the matrix of the
Hermitian linear form(a®b|pla®b) of |b) in Hy, with
respect to the basi$l), ... |n), is Ei,jrir;rpij. Let p
=31_,pi|v){v| be any given representation pfas a con-
vex combination of projections with;, ... ,p;>0. Suppose
Xt matrix. Then, it is clear that the matrix representation
of p with the basis{|11), ... |1n), ... |m1), ... |mn)}

is APA", whereP is the diagonal matrix with diagonal en-
tries py, ...,p;- We may consider thannxt matrix A
as amX1 blocked matrix with each bloci,,, wherew
=1,...m, a nXt matrix corresponding to
{lw1), ... |wn)}. Then, p;j=APA" and thusS;rir]p;
=3rirfAPA = (ZirA)P(SrA) . We note tha is a
strictly positive definite matrix, thuk(p) is just the set of
tatesa)=rq|1)+---+r/m) in HY such that the ma-

of freedom, which are not entangled in the pure state. ThifX 2ifiA; is the zero matrixof sizenXt). Similarly, we
point is manifested in the following result, which asserts thaa@n have the coordinate form bg(p).

the Schmidt numbeti.e., the minimum number of entangled

degrees of freedojrof a bipartite mixed statp is relatively
high if the dimension oL o(p) or Lg(p) is small.

Theorem 1Let p be a rank mixed state o ® HE with
Schmidt numberk. Then, k=[m—dim(La(p))]/r and k
=[n—dim(Lg(p))]/r.

For any bipartite mixed state on HY®HE, (a®b|p|a
®b)=0 is equivalent tda)®|b) is in the kernel ofp, thus
it is equivalent toja)® |b) is orthogonal to the range of.
This observation implies thata(p) =N{_,La(|v;)) for pure
stategv,), . .. |v,) in HY®HE if they span the range of.
We can now recall a lemma in R¢g], which asserts that for
a mixed state of the formp=3p;| #;){#i|, wherep;’s are
positive reals andi;)'s are pure states, the rangeofs the
linear span of pure statég;)’s. Combining these two points

We can now return to the pure state case. lget
=[v)(v], [v)=3{27;_1a;lij), be a pure state orHy
®@Hg. ,
thenL A(p) is just the pure stateg|1)+---+r/m) (in HY)
such that(y, ... r)A=0 andLg(p) is just the pure states
r{1y+---+rp/n) (in HY) such thatA(ry,...,r,)"=0
(Here, 7 is the transposition.These are of codimensioank
(A) (equal to the Schmidt rank ¢f) as well known.

This can be easily generalized to mixed state caseplLet
=31 _1Pilviy{vil, wherep;’s are positive real numbers, be
a mixed state omy@HE, [v) =317 ,_ aklij) be the ex-
pansion in the standard basis. We arrangetthmatrices of
sizemxn, A*=(a)1<i=m1=j=n. K=1,... 1, in two dif-
ferent waysT,= (AL, ... AY) is a matrix of sizenxtn and
T,=(A%, ... AY)7is a matrix of sizamxn (note in eactAX

together, we can see that we can know some properties of th® transposition imposgdThen,L 5(p) is just the pure states

Schmidt ranks of|¢;)'s for any representationof p as

Spil#i)(i| from La(p) or Lg(p).
Proof of Theorem 1We just prove the conclusiok

r{1)+---+ry/m) (in HY) suchthat¢,, ... r,)T,;=0 and
Lg(p) is just the pure statas|1)+ - - - +r,|n) (in HZ) such
that To(rq, ... ,r,)"=0. Theorem 1 can be reread, as the

=[m—dimLA(p)]/r. Another conclusion can be proved Schmidt number op is at least rank(,)/r and rank{,)/r.

similarly. Take any representation of the mixed statas p

From this point of view, Theorem 1 can be thought as a

=2f:lpi|vi><vi|, wherep;’s are positive and the maximal natural extension of the previously well-known result that
Schmidt rank ofv;)’s is k. As observed above, we only need the Schmidt rank ofv) is just the rank of the matriA. It is

to taker linear independent vectors {v,), . .. vy}, say

[v1), ... |v.), to computela(p)=N{_;La(|vi)). From our

observation of pure states dim(|v;))=m—k(v;), where

k(v;) is the Schmidt rank ofv;). Thus, we know that
dimLa(p)=m—3{_ k(v;)=m—rk, since k(v;)<k. The

conclusion is proved.

immediate we have the following result.

Proposition 1 Let p=3}_,p|v)(v| be a rankr<m
mixed state onHY®HE', where py, ... ,p; are positive
reals and|vy)=3;af|ij). Consider A= (af);<ij=m, K
=1,2,...t, as matrices of sizenxXm. Suppose the linear
span of alltm rows of mxm matricesA?, ... Alis of di-

For the convenience is using Theorem 1, we consider thenensionm. Then the Schmidt number pfis at least m/r,

coordinate form of the above linear subspatggp) and
Le(p). Let {|1),...,|m)} and{|1), ... |n)} be the stan-
dard orthogonal bases ofHZ and Hg, then
{|11), ... |1n), ....|m1), ... |mn)} be the standard or-

thus entangled.

Proof. We consider the tmxXm matrix T,
=(AL, ... AY". Itis of rankm sincetm rows of the matri-
cesAl, ... Al span a dimensiom space. From the coordi-
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nate form of Theorem 1, the Schmidt numberpak at least
rank(T,)/r, thus the conclusion is proved.

In the space of all rankr mixed states p
=31 _1pvi{v] onHY®HE (wherep,, ... p, are eigen-
values, |v4),...,|v,) are eigenvectors, and]|vy)
=S 1alkj|ij)) the rank of the mxm matrix AX
_(ak)1<. Jj=m is m for generic|v,). In fact, the condition
rank(Ak)<m i.e., det@X)=0 (where det is the determinant

1
—=(|44)+|55)),

|¢2>:\/§

1
—=(77)+[88)+[99)),

|¢3>: \/§

1
—=((1D(AD)+((12(12))),

of a square matrix is a polynomial equation of variables |ba)=
s Thus, the set of pomtsaf)1<. j=m satisfying detpk) V2
—O is of measure zero in the space of all possilag)(s if
P possitf). 0= 3112+ (22)+ 33 +44),

this set is not the whole space. Hence, we can see that the
condition of Proposition 1 is satisfied by generic rank
mixed states.

Theorem 1 also implies that if a mixed state is mixed by
not too many pure states and one of these pure states has the
highest possible Schmidt rank, then the mixed state has a
relatively high Schmidt number. This can be sometimes used
as an easy way to detect the entanglement in low rank mixed

(155 +166)+[77)),

| ¢2> \/—

(10(10)) +[(11(11)) +[(12)(12))).

|¢3>_ \/— |

states.

Proposition 2 Let p=3}_;pi|vi)(v,| be a rankr mixed
state onHY®Hg with r<m=n, wherep,, ... ,p, are posi-
tive real numbers and the Schmidt rank|of) is m. Then
the Schmidt number gf is at least m/r and thus entangled.

Proof.  Let  |o)=37;_;aflij) and A
—(a,J)1<,<m 1=j<n ISMXn matrix fork=1, ... t. We con-
sider themxtn matrix T,= (A%, ... AY. Itis clear thatAt
is of rankm since the Schmidt rank db,) is m. Thus, the
rank of the matrixT, is m. From the coordinate form of
Theorem 1 the Schmidt number pfis at least rank(,)/r,
thus the conclusion is proved.

Thus, we know that the Schmidt number @f is 3 and the
Schmidt number op, is 4.

Example 2Letp=3_,pi| ¢i){¢i|, wherep, ... p, are
positive real numbers, be a ramkmixed state orHY® Hg
with rm=n. Suppose the matri¥, (size rmxn) of the
above representation pfis of full rank rm. From the coor-
dinate form of Theorem 1, the Schmidt numberwfis at
least rank{,)/r =m. Sincemis the highest possible value of
Schmidt numbers, the Schmidt numbergpofs exactlym.

Let p=32_,pi| ¢ ){&i|, wherep,,p,,p; are positive real
numbers and

Sometimes the lower bound in Theorem 1 can be used tq¢,)=3(]11)+|12)+|13)+|15+|17)+|22) +|28) +|33)
give exactresults about Schmidt numbers for some bipartite

mixed states.

Example 1Let p=3}_;pl b1){ b be a mixed state on
HX®HE’, wherepy, ...,p, are positive reals anip,)

2|“:1,]:1a”|[(k Lo+il[(k—=1)v+j]) for k=1,...u
From this representation qf, we know that the Schmidt
number ofp is at mostv, since the Schmidt ranks ¢,)’s
are at most v. Consider A*=(a)i<i<,12j=,, K
=1,...U, as matrices of sizesXv , if Eﬁzlrank(Ak)
=uv—u+1 then the Schmidt number @f is exactlyv. In
fact the matrixT, in the coordinate form of Theorem 1 is a
blocked diagonal matrix withu blocks A, ... AY, thus
rank(T;)=3}_rank(A¥)=uv —u+1. From the coordinate
form of Theorem 1, the Schmidt number pfis at leastv
—1+1/u and thus at least. We get the conclusion. We can
observe the following case.

In the casau=3p =4, consider the following two mixed
states:p;= 33| )| and p, =337, (yi] on HZ?
®HZ2, where

f

|¢1)= —=(11D)+[22)+[33)),

+[39)),
1
| o) = ﬁ(|14>+|15>+|16>+|25>+|27>+|36>+|39>),

|#3)=3(117)+|19)+28) +|39),

be a rank 3 mixed state dd3®Hg. We can check that its
T, is a rank 9 matrix of size 89. Thus, the Schmidt num-
ber of p is 3.

For a given mixed state=23!p;|v;)(v;| with positive
reals p;’s, we know from the definition that the Schmidt
number ofp is at most mafk(v,), . . . k(vy)}, wherek(v;)
is the Schmidt rank of the pure state;) for i=1,... t.

This gives an upper bound for the Schmidt numbers of bi-

partite mixed states. On the other hand, there is a lower
bound for the Schmidt numbers of bipartite mixed states

from Theorem 1. Hence, in some cases, we can compare
Schmidt numbers from the above fact and know the first one
cannot be convertible to the latter mixed state by local op-

erations and classical communication.

Example 3Let p=3""%p;| ;}{ ¢i| , wherep;’s are posi-
tive real numbers and¢;)=1/\3[|ii)+|(i+1)(i+1))
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+[(i+2)(i+2))], fori=1,... m—2, be a mixed state on It is clear that the matri¥,= (A%, ... A")7 (of sizerm
HA®HgZ . It is clear that the Schmidt number @f is at  Xn) can reach the highest possible rank fmimn} on the
most 3. spaceX, since we can take mjrm,n} rows of T, (i.e., rows

Let p’ = 2(| )1 +|2)(h5|) be a mixed state ohi, ~ of A', ... A") to be the orthogonal vectors @" with suit-
®H} with n=8, where|;) and |4,) are pure states in ab!e Iengths. The rapkmixeq states corresponding _to these
HN®@HR. Suppose the Schmidt rank b} or |4,) is n.  Points inX have their Schmidt numbers at least {niin,m;}
From Proposition 2, the Schmidt number of is at least 1om the coordinate form of Theorem 1. In the spaGe the
n/2=4. Thus,p cannot be convertible tp’ by local opera- condition rank{T,) < min{rm,n} is just Ciot!™" (binomial
tions and classical communication. coefficien} polynomial equationgi.e., the determinants of

Because of the above discussion about the coordinatll size mifrm,n} square submatrices a% are zer¢ of vari-
form of Theorem 1, we can easily calculate the lower bounda\blesaikj 's. This setS defined by these polynomial equations
of Schmidt numbers of low-rank bipartite mixed states. Thisis of measure zero iX,, since it is an algebraic set not equal
gives us the following conclusion. to the whole spac¥,. Thus, the Schmidt numbers of generic

Theorem 2 Generic rank <n mixed states oHY®HE  mixed states corresponding to points outside the measure
(assumam=n without loss of generalityhave their Schmidt zero setX; XS are at least migm/r,m} from the coordinate

numbers at least min/r,m} and thus entangled. form of Theorem 1. The conclusion is proved.

Proof. We consider the spectral decompositign In conclusion, we proved a lower bound for the Schmidt
=3 1_1pilv) (vl of rankr mixed states omMY®Hp, where ~ numbers of bipartite mixed states. This lower bound can be
p, and |Uk>:2i"lrl,jzlaikj|ii ), k=1,...r, are eigenvalue applied easily to low-rank bipartite mixed states. From this

and corresponding eigenvector, respectively. Then, the spad@Ver bound, it is known that generic low-rank bipartite
of the rankr mixed states can be identified with the spaceMixed states have relatively high Schmidt numbers and thus
X=X, X X,, whereX;={(p1, ...p;): P1=>0, ... p,>0p; entangled. We can compute Schmidt numbers exactly for
+.--4+p,=1} and X ={(a1 a_r.)ecrmn:zulallwz some mixed states by this lower bound as shown in Ex-
i 3 neoo ne amples. This lower bound can also be used effectively to

- 1af12=1S.. gf1qke— i .
L... z'J|a'l| 1’E'Jaij & Oky# k. (Strictly speak determine that some mixed states cannot be convertible to

ing, there is a group action of permutation grpuprcs‘ym' other mixed states by local operations and classical
bols on the spacX and the space of rank mixed states  .ommunication.

should be identified with the quotient space of this group
action. However, it is clear in the discussion below this point

can be neglected. As above discussion AX This work was supported from NNSF China, Information
=(a}‘j)1<i<m,1§j§n, k=1,...r, are considered as sizea  Science Division under Grant No. 69972049 and Distin-
Xn matrix. guished Young Scholar Grant No. 10225106.
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