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Vortex lines of the electromagnetic field
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Relativistic definition of the phase of the electromagnetic field, involving two Lorentz invariants, based on
the Riemann-Silberstein vector is adopted to extend our previous study@I. Bialynicki-Birula, Z. Bialynicka-
Birula, and C. S´ liwa, Phys. Rev. A61, 032110~2000!# of the motion of vortex lines embedded in the solutions
of wave equations from Schro¨dinger wave mechanics to Maxwell theory. It is shown that time evolution of
vortex lines has universal features; in Maxwell theory it is very similar to that in Schro¨dinger wave mechanics.
Connection with some early work on geometrodynamics is established. Simple examples of solutions of the
Maxwell equations with embedded vortex lines are given. Vortex lines in the Laguerre-Gaussian beams are
treated in some detail.
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I. INTRODUCTION

The physical significance of the singularities of the pha
of quantum-mechanical wave functions has been recogn
by Dirac in his work on magnetic monopoles@1#. The hydro-
dynamic formulation of the Schro¨dinger theory discovered
by Madelung@2# provided a vivid interpretation of the line
in space where the phase is singular. These are simply
vortex lines in the flow of the probability fluid. The velocit
field v(r,t) of this fluid, defined in terms of the probabilit
currentj, is equal to the gradient of the phaseS of the wave
function c5R exp(iS/\),

v5
j

r
5

\

2mi

c*“c2“c* c

ucu2
5

“S

m
. ~1!

Therefore, the flow is strictly irrotational in the bulk; vortic
ity may live only on the lines of singularities of the phas
Regular wave functions may have a singular phase o
where the wave function vanishes, i.e., where Rec50 and
Im c50. These two equations define two surfaces in sp
whose intersection determines the position of vortex lin
However, the vanishing of the wave function is the necess
but not the sufficient condition for the existence of vort
lines. They exist only if the circulation around the line whe
the wave function vanishes is different from zero. The u
valuedness of the wave function requires the quantizatio
the circulation,

R dl •v52pn\/m. ~2!

The importance of this condition in the hydrodynamic fo
mulation of wave mechanics has been elucidated for the
time by Takabayasi@3#. If Eq. ~2! holds for every closed

*Electronic address: birula@cft.edu.pl
1050-2947/2003/67~6!/062114~8!/$20.00 67 0621
e
ed

he

.
ly

e
s.
ry

-
of

st

contour, we may recover the phaseS ~modulo 2p\) from v
up to a global, constant phase with the help of the formu

S~r!5mE
r0

r
dl •v. ~3!

Early studies of vortex lines were restricted to wave mech
ics but Nye and Berry@4–7# have shown that phase singu
larities or wave-front dislocations play an important role n
only in wave mechanics but in all wave theories. A gene
review of phase singularities in wave fields has been rece
given by Dennis@8,9#. There is a substantial overlap of con
cepts~but not of the results! between our work and the work
of Berry, Nye, and Dennis. While they concentrate mostly
the stationary vortex lines that are found in monochroma
fields, we emphasize the time evolution.

More recently, the study of phase singularities and vo
ces in optics has evolved into a separate area of resea
both theoretical and experimental, called singular optics
recent review of this field is given in Ref.@10#.

In order to find a natural generalization of Eq.~1!, we
need a replacement for the wave functionc in electromag-
netism. A suitable object appears in the complex form of
Maxwell equations known already to Riemann@11# and in-
vestigated more closely by Silberstein@12# at the beginning
of the last century. In this formulation, the electric- an
magnetic-field vectors are replaced by a single complex v
tor F that we proposed to call the Riemann-Silberstein~RS!
vector @13,14#,

F5~E1 iB!/A2. ~4!

The Maxwell equations in free space written in terms ofF
read (c51)

i ] tF5“3F, ~5a!

“•F50. ~5b!
©2003 The American Physical Society14-1
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I. BIALYNICKI-BIRULA AND Z. BIALYNICKA-BIRULA PHYSICAL REVIEW A 67, 062114 ~2003!
The analogy between Eq.~5a! and the Schro¨dinger wave
equation is so close that one is led to treatF as the photon
wave function@14# and apply similar methods to analyze th
vortex lines and their motion as we have done in Re
@15,16# in nonrelativistic wave mechanics. There is, ho
ever, an important difference that requires an extension
our previous methods: the RS vector has three compon
instead of one. Thus, there are three independent phasew1 ,
w2 , w3—one for each component and it is not clear whi
combination of these phases should be treated as an ov
phase of the electromagnetic field.

In the case of the Schro¨dinger wave function, the infor-
mation about the phaseS of the wave function is stored in
the velocity fieldv5“S/m. Hence, one may try to find th
proper definition of the phase of the electromagnetic field
introducing first the counterpart of Eq.~1! and then use the
velocity field to reconstruct the phase. The natural gener
zation of definition~1! is ~in dimensionless form!

v5
1

2i

(
k

@Fk*“Fk2~“Fk* !Fk#

(
k

Fk* Fk

. ~6!

However, as has been noticed already by Takabayasi in
study of the hydrodynamic formulation of wave mechan
of spinning particles@17#, this generalization does not work
For a multicomponent field, the velocity defined in this w
cannot be used to reconstruct the phase because, in ge
“3v does not vanish. Even though one can still give
hydrodynamic interpretation of Maxwell theory based
formula ~1!, the simplicity of the scalar case is complete
lost @18#.

In the present paper, the phase of the electromagnetic
and the vortex lines associated with this phase are define
terms of the square of the Riemann-Silberstein vector. S
F2 is a sum of two electromagnetic invariants, the struct
of phase singularities associated withF2 is relativistically
invariant. This definition of the phase turns out to be equi
lent ~provided F obeys the Maxwell equations! to the one
used in the classic papers on geometrodynamics@20–22#.

Despite the fact thatF2 does not obey any simple wav
equation, the time evolution of the vortices exhibits all t
typical features found before by us for the Schro¨dinger equa-
tion. During the time evolution governed by Maxwell equ
tions, vortex lines are created and annihilated at a point o
pairs and undergo vortex reconnections.

II. GEOMETRODYNAMICS AND THE PHASE
OF THE ELECTROMAGNETIC FIELD

In nonrelativistic wave mechanics, the phase of the w
function can be obtained from its modulus provided we a
assume that the wave function obeys the Schro¨dinger equa-
tion. As a matter of fact, it was shown by Feenberg@19# that
to determine the phase from the modulus, it is sufficient t
the wave function obeyssomewave equation that leads t
conservation of the probability, i.e., to continuity equation
similar reasoning applied to the electromagnetic field a
06211
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enables one to determine the~properly defined! phase of this
field. This discovery has been made by Rainich@20# in con-
nection with the problem of the reconstruction of the ele
tromagnetic field from purely geometric quantities in gene
relativity. Independently, although much later, this proble
was solved by Wheeler and co-workers@21–24# in the con-
text of geometrodynamics.

Very briefly, the reconstruction of the electromagne
field from geometry may be described as follows. The E
stein equations

Rmn2gmnR/25kTmn ~7!

enable one to determine the energy-momentum tensorTmn of
the electromagnetic field from the Einstein tensorRmn

2gmnR/2 that is made of the metric tensor and its deriv
tives. However, the knowledge of the energy-momentum t
sor alone is not sufficient to determine completely the el
tromagnetic field. This is best seen from the formulas for
components of this tensor expressed in terms of the RS
tor:

T005F* •F, ~8a!

T0i5e i jkF j* Fk / i , ~8b!

Ti j 52Fi* F j2F j* Fi1d i j F* •F. ~8c!

All components of the energy-momentum tensor are inv
ant under the common change of the phase of all three c
ponents of the RS vector—the duality transformation,

E85E cosw2B sinw, ~9a!

B85E sinw1B cosw. ~9b!

Therefore, the overall phase cannot be determined from
energy-momentum tensor. Note, that in contrast to the si
tion in quantum mechanics, even the global, constant ph
of F has a direct physical meaning. It controls the relat
contribution to the energy-momentum tensor from the el
tric and magnetic parts. The duality rotations~9! with a con-
stant value ofw leave the free Maxwell equations un
changed. However, a phase varying in space and/or t
would modify the Maxwell equations. That is the reason w
the Rainich construction works. Namely, he has shown tha
one assumes that the electromagnetic field obeys the M
well equations, the phase of the field may be extracted fr
Tmn . For this purpose, he introduced the following fou
vector built from the components of the energy-moment
tensor and its derivatives:

wm52
emnlrTnk]lTr

k

Ts
t Tt

s
~10!

and used the line integral ofwm to reconstruct the phase.
Our proposal, how to define the phase of the electrom

netic field, is much simpler and yet it turns out to be co
pletely equivalent to the definition given by Rainich. W
4-2
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VORTEX LINES OF THE ELECTROMAGNETIC FIELD PHYSICAL REVIEW A67, 062114 ~2003!
shall define the phase of the electromagnetic fieldw(x) as
half of the phase of the square of the RS vector

F2~x!5e2iw(x)uF2~x!u. ~11!

In full analogy with Eq.~1! of nonrelativistic wave mechan
ics, we define a ‘‘velocity’’ four-vectorum as

um5
~F2!* ]mF22F2]m~F2!*

4i uF2u2
5]mw~x!. ~12!

SinceF2 is a complex sum of two electromagnetic invarian

F25S1 iP5 1
2 ~E22B2!1 iE•B, ~13!

um is a true relativistic four-vector,

um5
S]mP2P]mS
2~S 21P 2!

. ~14!

This vector has the same denominator~up to a factor of 2
that scales both the numerator and the denominator! as the
vector wm defined by Eq.~10! since Ts

t Tt
s54(S 21P 2).

However, in general, the numerators of vectorswm and um
are different. They do become equal when the electrom
netic field obeys the Maxwell equations. The proof
straightforward but rather tedious and will not be presen
here.

In our formulation, the square of the RS vector plays
role of the wave functionc. Vortex lines are to be found a
the intersection of theS50 and P50 surfaces. As in the
case of the Schro¨dinger wave function, at all points whereF2

does not vanish, the vectorum is by constructiona pure
gradient:

um~x!5]mw~x!. ~15!

Therefore, one may recover the phase ofF by the following
line integral:

w~x!5E
x0

x
djmum~j!. ~16!

Since the RS vector is univalued, the phases obtained
choosing different paths connecting the pointsx andx0 may
differ only by a multiple of 2p. In other words, the vorticity
associated withum ~or with wm in the Rainich construction!
must be quantized,

R djmum~j!52pn. ~17!

The phase defined by Eq.~16! is determined up to a globa
phasew0: the value ofw(x) at the lower limit x0 of the
integral. The value ofw0 cannot be obtained from th
energy-momentum tensor.

Under duality rotations~9! whenw varies from 0 to 2p,
the vectorE8 at each space-time point draws an ellipse in
E-B plane. The same ellipse is drawn by the vectorB8.
These ellipses become circles on each vortex line, since
06211
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the vectorsE andB are orthogonal and of equal length. Th
property led Berry and Dennis@8# to name the vortex lines
associated with the square of a complex vector field theC
~circle! lines in their general classification scheme of pha
singularities.

The denominator in Eq.~14! may also be expressed in th
form

S 21P 25S E21B2

2 D 2

2~E3B!2. ~18!

Therefore, the vanishing ofS 21P 2 at a point also means
that the electromagnetic field at this point is pure radiati
the energy density and the Poynting vector form a null fo
vector. One may say that on vortex lines, the energy of
electromagnetic field moves locally with the speed of lig
We would like to emphasize that the velocity of the ener
flow of the electromagnetic field is not correlated with t
vector um . Even the geometric properties of the Poynti
vector and the space part ofum are different. SinceS is a
scalar andP is a pseudoscalar, the vectorum is a pseudovec-
tor. In the simplest case of a constant electromagnetic fi
the Poynting vector isE3B, while the vectorum vanishes
identically. There does not seem to exist a physical quan
whose flow can be identified withum . In this respect, the
situation is quite different from nonrelativistic wave mecha
ics where the gradient of the phase determines the velocit
the probability flow.

III. SIMPLE EXAMPLES OF VORTEX LINES

The analogy between the phase of wave function and
phase of the electromagnetic field is not exact. Unlike
Schrödinger wave function, the electromagnetic field do
not have to vanishidenticallyalong the lines where the phas
is singular. It is only necessary that the field is null, i.e., t
two invariantsS andP vanish. Still, we believe that the line
along which the field is null deserve the name of vort
lines.

The time evolution of the vortex lines embedded in t
solutions of the Maxwell equations is quite similar to th
evolution of such lines embedded in the solutions of
Schrödinger equation. The simplest examples of solutio
with vortex lines can again be found among the polynom
functions. Such functions may be viewed as long-wavelen
expansions and were found to be very useful in the study
vortex solutions of the Schro¨dinger equation@15,16# and the
Helmholtz equation@4,25#. Alternatively, these polynomia
solutions may be viewed as local approximations to the
solution, valid close to the vortex lines under study. In th
case, one may imagine that in the exact solution the poly
mial is multiplied by some slowly varying envelope th
makes the full solution localized. We shall give at the end
this section an example of such a solution.

As an illustration of a typical behavior of electromagne
vortex lines, we present very simple examples of the elec
magnetic field. The following four fields satisfy the Maxwe
equations and possess the vortex structures very simila
those found in Schro¨dinger wave mechanics@15,16#:
4-3
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I. BIALYNICKI-BIRULA AND Z. BIALYNICKA-BIRULA PHYSICAL REVIEW A 67, 062114 ~2003!
F(a)5„y1 i t ,z2a1 i ~a1t !,x1 i t …, ~19a!

F(b)5„y1t,a2 i ~z1a1t !,x1 i t …, ~19b!

F(c)5„2x1y2a1 i ~z1y1t !,z2y1t1 i ~y2a!,2t1 i t …,
~19c!

F(d)5„z21t22 iat,a22 i ~2zt1a21ax!,a~y2t !…,
~19d!

where a is a parameter that sets the scale for the vor
configuration. In the first three cases, the electromagn
fields are linear functions of the coordinates and in the
case the field is quadratic. In the first case, the two invaria
are

S5x21y21~z2a!22a222at23t2, ~20a!

P52az12t~x1y1z2a!22a2. ~20b!

The equationsS50 andP50 describe a sphere centered
the point (0,0,a) with the time-dependent radiu
Aa212at13t2 and a moving plane, respectively. The inte
section of these two surfaces is a moving ring shown in F
1. The radius of the sphere decreases for negative valuest
until t52a/3 and then starts increasing. The rate of chan
of the radius exceeds~by a factor ofA3) the speed of light
showing once again that various characteristic features
relativistic fields~such as their zeros or maxima! may travel
with superluminal speeds without violating causality. In th
simple example, no change of the topology of vortex li
takes place. However, in the three remaining cases, the
pology changes according to the same universal pattern
those found in Schro¨dinger wave mechanics. This univers
behavior of vortex lines is reminiscent of the catastrop
theory @27,28#.

The graphical representation of the motion of the vor
lines in all four cases is straightforward, since the equati
S50 andP50 can be solved analytically givingx andy for

FIG. 1. Time evolution of a vortex line in the form of a rotatin
and expanding ring. All figures in this paper were produced with
use ofMATHEMATICA @26#.
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each value oft as parametric functions ofz. In each case,
there are two branches that differ by the sign of the squ
root:

x~z,t !5@~a2z!~a1t !

6Aa212at13t2A2t22~a2z!2#/~2t !,

y~z,t !5@~a1t !~a2z!

7Aa212at13t2A2t22~a2z!2#/~2t !,

~21a!

x~z,t !5a~a1z!/t2a,

y~z,t !52t6At22a2Aa222at12t212az22zt1z2/t,
~21b!

x~z,t !5t1@ t26At428t2~z2a!z216~z2a!2z2#/

@4~z2a!#,

y~z,t !5~a2z!/2

1@ t27At428 t2~z2a!z216~z2a!2z2#/~8z!,

~21c!

x~z,t !5t6At22a2Aa41~ t21z2!2/a2,

y~z,t !52a2@ t31zt~2a1z!#/a2. ~21d!

The plots of functions~21b! and~21d! show vortex creations
and annihilations~Figs. 2 and 3! and for functions~21c! one
obtains vortex reconnections~Fig. 4!. Vortex annihilations
occur att52a and vortex creations occur att5a. Note that
according to formulas~21b! and~21d!, at these moments th
vortex velocity (dx/dt,dy/dt) becomes infinite.

It is also possible to construct localized, finite-energy s
lutions of the Maxwell equation with vortices. We shall giv

e
FIG. 2. Time evolution of two vortex lines that att5a suddenly

appear as a straight line and then separate and fly away. The
solution for negative times would show a reversed process:
convergence of two vortex line and their annihilation att52a.
4-4
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VORTEX LINES OF THE ELECTROMAGNETIC FIELD PHYSICAL REVIEW A67, 062114 ~2003!
just one simple example of such a solution constructed fr
the following localized solution of the wave equation:

Z~r,t !5~y,x,2t2 i t!@~ t1 i t!22r 2#22. ~22!

With each vector solution of the wave equation, one m
associate a solution of the Maxwell equations treating
solution of the wave equation as a complex counterpar
the Hertz potential. Namely, one may check that the RS v
tor F(r,t) constructed according to the following prescri
tion @29#:

F~r,t !5“3@ i ] tZ~r,t !1“3Z~r,t !# ~23!

indeed satisfies the Maxwell equations. The square of
vectorF has the form

32
2~ t212x212y22t2!1 i ~3x223y214tt!

@~ t1 i t!22r 2#6
. ~24!

FIG. 3. Time evolution of two vortex lines that att5a suddenly
appear along a parabola in they5a plane~shown as a line in the
first frame! that first opens up very fast into two symmetric win
that later slowly separate.

FIG. 4. Time evolution of two vortex lines that att50 are
mutually perpendicular and nonintersecting. At the timet5a(A2
21)1/2, the vortex lines cross and undergo a reconnection.
06211
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Since the numerator does not contain the variablez, the vor-
tex lines embedded in this localized solution are strai
lines parallel to thez axis. Two pairs of such lines are create
at t52t/3 at the points (62t/3,0) in thexy plane. The four
vortex lines move~Fig. 5! until they annihilate in pairs att
5t/3 at the points (0,62t/3). The speed of each vortex lin
at the moment of creation and annihilation isinfinite, show-
ing very vividly that also for localized solutions of the Max
well equations, the motion of vortex lines may be super
minal without any limitations. Arbitrarily high speed o
vortex lines associated with solutions of the relativistic sca
wave equation has already been noted in Refs.@4,15#.

IV. VORTEX LINES IN SUPERPOSITIONS OF PLANE
WAVES AND IN GAUSSIAN BEAMS

Solutions of the Maxwell equations exhibiting vorte
structures may also be obtained with the use of stand
building blocks—the monochromatic plane waves. A sing
plane wave is described by a null field, since both invaria
vanish. Therefore, velocity~14! vanishes—a single plan
wave has no vortex structure. Also, the sum of two pla
waves does not have any vortex structure; even though it
a nonvanishing velocity field. However, for three pla
waves we may have various kinds of vortex structures. As
example, we choose three circularly polarized monoch
matic waves of the same frequency, handedness, and am
tude, moving in three mutually orthogonal directions. T
RS vector in this case~up to a constant amplitude! has the
form

F~r,t !5~m̂1 i n̂!e2 i (t2 l̂•r)1~ n̂1 i l̂ !e2 i (t2m̂•r)

1~ l̂1 i m̂!e2 i (t2n̂•r), ~25!

FIG. 5. Time evolution in thex-y plane of two pairs of straight
vortex lines parallel to thez axis. The evolution is indicated by th
arrows. Pairs of vortex lines are created at the points denoted
crosses and annihilated at the points denoted by circles.
4-5
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I. BIALYNICKI-BIRULA AND Z. BIALYNICKA-BIRULA PHYSICAL REVIEW A 67, 062114 ~2003!
where l̂ , m̂, and n̂ are three orthogonal unit vectors, th
coordinates are measured in units of the inverse wave ve
and time is measured in units of inverse angular freque
The square of this vector vanishes at the points satisfying
equation

ei ( l̂1m̂)•r1ei (m̂1n̂)•r1ei (n̂1 l̂)•r50. ~26!

It is convenient to choose the coordinate system in suc
way that the three basis vectors have the form

l̂5S 1

A6

2
1

A2

1

A3

D , m̂5S 1

A6

1

A2

1

A3

D , n̂5S 2A2

3

0

1

A3

D ,

~27!

because then all the vortex lines are parallel to thez axis. The
position of the vortex lines in thexy plane is determined by
Eq. ~26!. For choice~27! of unit vectors, this equation ha
the form „apart from an overall phase-factor exp@i(A2 x
12 z)/A3#…

11e2 i (A3x1y)/A21e2 i (A3x2y)/A250. ~28!

The solutions of this equation are

xmn
6 5pA2

3
~m1n!, ymn

6 5pA2~6 2
3 1m2n!, ~29!

wherem and n are arbitrary integers. The lattice of vorte
lines is shown in Fig. 6. This example shows that vor
lines associated with the phase of the RS vector do not
essarily move; they can also be stationary.

When one of the polarizations of the three waves, say
last one in Eq.~25!, is opposite, the position of vortex lines
determined by a time-dependent equation

ei ( l̂1m̂)•r22i t1ei (m̂2n̂)•r1ei ( l̂2n̂)•r50. ~30!

In this case, it is convenient to choose the orthonormal u
vectors in the form

l̂5S 1

A6

1

A2

1

A3

D , m̂5S 1

A6

2
1

A2

1

A3

D , n̂5S A2

3

0

2
1

A3

D .

~31!

The position of vortex lines in thexy plane is determined by
the equation
06211
or,
y.
e

a

x
c-

e

it

11e2 i (A3x1y)/A212i t1e2 i (A3x2y)/A212i t50. ~32!

Thus, in this case the lattice of vortex lines is not station
but it is moving as a whole with the speed ofA8/3c in the x
direction.

The most interesting case, of course, is a superposi
not of a few but of a continuum of plane waves, forming
collimated beam. We shall concentrate on the Lague
Gaussian beams, in view of their applicability to realis
situations~cf., for example, Ref.@30#!. We use the represen
tation of these beams in the vector theory as in Refs.@31–34#
but we combine the electric- and magnetic-field vectors i
the complex RS vector~4!. This vector for the Laguerre
Gaussian beams of circular polarization can be written in
form

F~x,y,z,t !5e2 i (vt2kz)
„ku,iku,i ~]xu1 i ]yu!…. ~33!

The square of this vector is equal to

@F~x,y,z,t !#252e22i (vt2kz)@~]x1 i ]y!u#2. ~34!

Note, that the vectorF given by Eq. ~33! is not just the
analytic signal but the full RS vector as defined by Eq.~4!
whose real part is the electric field and the imaginary par
the magnetic induction. The slowly varying complex env
lope functionu5u(x,y,z) is an arbitrary linear superpos
tion of the functionsunm(r,f,z) defined as~we use the no-
tation of Ref.@34#!

FIG. 6. Positions of vortex lines in thexy plane~measured in
units of the inverse wave vector! for the three plane waves movin
in orthogonal directions. Points marked with different symbols c
respond to vortices with opposite circulation.
4-6
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unm~r,f,z!5Cnm

w0

w~z!
exp@2 r̃2#expF ikr2z

2~z21zR
2 !

G
3~A2r̃ ! umuLn

umu~2r̃2!

3eimfe2 i (2n1umu11)arctan(z/zR), ~35!

where Cnm is the normalization constant,w(z)
5w0A11(z/zR)2 is thez-dependent radius of the beam,r̃ is
the radial coordinate divided byw(z), Ln

m is the generalized
Laguerre polynomial, andzR5pw0 /l is the Rayleigh
length. The functionsunm describe the beam with the proje
tion of the orbital angular momentum on the propagat
axis defined bym. They may be written in the form

unm~r,f,z!5~x6 iy ! umu f nm~r,z!, ~36!

where the upper sign corresponds to the positive values om.
This leads to the following formula:

~]x1 i ]y!~x6 iy ! umu f nm5~x6 iy ! umu61r71@] f nm /]r

1~171! f nm /r#. ~37!

Velocity ~12! can be obtained by differentiating the phase
the function (]x1 i ]y)u but the expression is quite cumbe
some. However, it is clear from Eq.~37! that the function
(]x1 i ]y)u for positive and for negative values ofm carries
m11 units of angular momentum in thez direction. Vortex
m
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.
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a
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n

f

lines defined in terms of the RS vector run along thez axis
and their vorticity has the strengthm11. At first, these re-
sults seem to be in disagreement with the detailed analys
angular momentum of the Laguerre-Gauss beams by Al
Padgett, and Babiker given in Ref.@33#, since they have
shown that the additional unit of angular momentum is to
added tom or subtracted fromm depending on the~right or
left! polarizationof the beam. However, we have broken th
symmetry by considering the RS vectorF and not its com-
plex conjugate. This~arbitrary! choice has fixed the~posi-
tive! sign of the polarization. With this proviso, our defin
tion of vortex lines in terms of the RS vector leads to t
same results as the analysis of angular momentum. E
componentunm has only one vortex line associated with th
total angular momentum. However, superpositions of sev
unm components, depending on their composition, may h
additional vortex lines.

The presence of vortex lines in the Laguerre-Gauss
beams is due to the definite angular momentum in the di
tion of propagation. The same vortex lines appear also
electromagnetic multipole fields. In this case, the RS vec
can be written in the form@35#

F~x,y,z,t !5e2 ivt~k1“3 ! j J~kr !~r3“ !YJM~ r̂!.
~38!

For the dipole field (J51,M51),
@F~x,y,z,t !#25e22ivt~x1 iy !2
@314k2r 222k4r 41~2k2r 223!cos~2kr !26kr sin~2kr !#

2k6r 8
. ~39!
e
ro-
ve

lec-
the
t,

The
-

a
les

l
us.
3B
Thus, the dipole field forM51 exhibits one vortex line
along thez axis ~the direction of the angular-momentu
quantization! with unit vorticity. Higher multipoles will ex-
hibit vortex lines carrying more units of vorticity, dependin
on the value of thez component of the angular momentum

V. CONCLUSIONS

The study presented in this paper fully unifies the desc
tion of vortex lines in electromagnetism and in Schro¨dinger
wave mechanics. In both cases, there is a single com
function of space and time whose phase generically has
gularities along one-dimensional curves in three-dimensio
space—the vortex lines. The velocity four-vectorum associ-
ated with the phase of the electromagnetic field plays
same role as the velocityv of the probability fluid in wave
mechanics. The circulation around each vortex line is qu
tized in units of 2p. There are two important difference
First, the gradient of the electromagnetic phase does not h
any obvious dynamical interpretation. Second, the elec
magnetic field does not vanish identically on vortex lines
only the two relativistic invariants vanish and the ener
-

ex
in-
al

e

n-

ve
-
t

momentum becomes locally a null four-vector.
Finally, we would like to mention that, in principle, on

should be able to construct a hydrodynamic form of elect
dynamics, analogous to the Madelung formulation of wa
mechanics. The set of hydrodynamic variables for the e
tromagnetic field would comprise the components of
energy-momentum tensor~only five of them are independen
cf., for example, Ref.@18#! and the velocity vectorum that
carries the information about the phase of the RS vector.
quantization condition~17! effectively reduces the informa
tion contained inum to just one scalar function giving finally
six independent functions. However, we have not found
simpleset of equations for these hydrodynamiclike variab
that would be equivalent to Maxwell theory.
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