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Relativistic definition of the phase of the electromagnetic field, involving two Lorentz invariants, based on
the Riemann-Silberstein vector is adopted to extend our previous BtuBjalynicki-Birula, Z. Bialynicka-
Birula, and C. 8wa, Phys. Rev. /61, 032110(2000] of the motion of vortex lines embedded in the solutions
of wave equations from Schidimger wave mechanics to Maxwell theory. It is shown that time evolution of
vortex lines has universal features; in Maxwell theory it is very similar to that in " Slahger wave mechanics.
Connection with some early work on geometrodynamics is established. Simple examples of solutions of the
Maxwell equations with embedded vortex lines are given. Vortex lines in the Laguerre-Gaussian beams are
treated in some detalil.
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[. INTRODUCTION contour, we may recover the phaSémodulo 27#) from v
up to a global, constant phase with the help of the formula
The physical significance of the singularities of the phase
of quantum-mechanical wave functions has been recognized
by Dirac in his work on magnetic monopolgs. The hydro-
dynamic formulation of the Schdinger theory discovered
by Madelung[2] provided a vivid interpretation of the lines Early studies of vortex lines were restricted to wave mechan-
in space where the phase is singular. These are simply thes but Nye and Berry4—7] have shown that phase singu-
vortex lines in the flow of the probability fluid. The velocity |arities or wave-front dislocations play an important role not
field v(r,t) of this fluid, defined in terms of the probability only in wave mechanics but in all wave theories. A general
currentj, is equal to the gradient of the phaSef the wave  review of phase singularities in wave fields has been recently
function =R exp(S/t), given by Dennig8,9]. There is a substantial overlap of con-
cepts(but not of the resuljsbetween our work and the works
Jh PrVY=Vyry VS of Berry, Nye, and Dennis. While they concentrate mostly on
v_;_ﬁ |2 “m’ D the stationary vortex lines that are found in monochromatic
fields, we emphasize the time evolution.
Therefore, the flow is strictly irrotational in the bulk; vortic-  More recently, the study of phase singularities and vorti-
ity may live only on the lines of singularities of the phase.ces in optics has evolved into a separate area of research,
Regular wave functions may have a singular phase onlfoth theoretical and experimental, called singular optics. A
where the wave function vanishes, i.e., whereyRed and  recent review of this field is given in Reff10].
Im =0. These two equations define two surfaces in space In order to find a natural generalization of Ed), we
whose intersection determines the position of vortex linesneed a replacement for the wave functigrin electromag-
However, the vanishing of the wave function is the necessarfpetism. A suitable object appears in the complex form of the
but not the sufficient condition for the existence of vortexMaxwell equations known already to Riemafti] and in-
lines. They exist only if the circulation around the line where vestigated more closely by Silberstdit2] at the beginning
the wave function vanishes is different from zero. The uni-of the last century. In this formulation, the electric- and

valuedness of the wave function requires the quantization ghagnetic-field vectors are replaced by a single complex vec-
the circulation, tor F that we proposed to call the Riemann-Silbersi&ts)

vector[13,14],
édl-vzzwnh/m. 2 F=(E+iB)/\2. (4

The importance of this condition in the hydrodynamic for- The Maxwell equations in free space written in termsFof
mulation of wave mechanics has been elucidated for the firsead c=1)
time by Takabayasf3]. If Eq. (2) holds for every closed

S(r):mfrdl-v. 3

o

i0;F=VXF, (5a
*Electronic address: birula@cft.edu.pl V.-F=0. (5b)
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The analogy between Ed5a and the Schrdinger wave enables one to determine throperly definetiphase of this
equation is so close that one is led to trEahs the photon field. This discovery has been made by Rairi28] in con-
wave function14] and apply similar methods to analyze the nection with the problem of the reconstruction of the elec-
vortex lines and their motion as we have done in Refstromagnetic field from purely geometric quantities in general
[15,16 in nonrelativistic wave mechanics. There is, how-relativity. Independently, although much later, this problem
ever, an important difference that requires an extension ofvas solved by Wheeler and co-work¢2l—24 in the con-
our previous methods: the RS vector has three componentsxt of geometrodynamics.
instead of one. Thus, there are three independent plagses Very briefly, the reconstruction of the electromagnetic
©,, @3—one for each component and it is not clear whichfield from geometry may be described as follows. The Ein-
combination of these phases should be treated as an overatein equations
phase of the electromagnetic field.

In the case of the Schadinger wave function, the infor- Ruv=0u,R2=KT,, (7)
mation about the phas® of the wave function is stored in )
the velocity fieldv =V S/m. Hence, one may try to find the €nable one to determine the energy-momentum tehspof
proper definition of the phase of the electromagnetic field byhe electromagnetic field from the Einstein tensRy,,
introducing first the counterpart of E¢L) and then use the —9,,R/2 that is made of the metric tensor and its deriva-

velocity field to reconstruct the phase. The natural generalitives. However, the knowledge of the energy-momentum ten-
zation of definition(1) is (in dimensionless forim sor alone is not sufficient to determine completely the elec-

tromagnetic field. This is best seen from the formulas for the
components of this tensor expressed in terms of the RS vec-

L > [FEVR (VRORY] tor-
v=or . (6)
> FrFy Too=F*-F, (8a)
k
— * H
However, as has been noticed already by Takabayasi in his Toi = €ijcF Fi/i, (8b)
study of the hydrodynamic formulation of wave mechanics R " N
Tij__Fi F]_F] F|+5|JF -F. (8C)

of spinning particle$17], this generalization does not work.

For a multicomponent field, the velocity defined in this way . .
pa«lll components of the energy-momentum tensor are invari-

cannot be used to reconstruct the phase because, in gene t under th h f the ph £ all th
V Xv does not vanish. Even though one can still give aant under the common change ot the phase ot all three com-

hydrodynamic interpretation of Maxwell theory based onPONents of the RS vector—the duality transformation,

Ifg;n[il&% (1), the simplicity of the scalar case is completely E'=E cose—Bsine, (9a)
In the present paper, the phase of the electromagnetic field

and the vortex lines associated with this phase are defined in

tezrr_ns of the square of the Riemann-_SiIbe_rstein vector. SinC‘%herefore, the overall phase cannot be determined from the
F* is a sum of two electromagnetic invariants, the Structure,ne oy momentum tensor. Note, that in contrast to the situa-
of phase singularities associated wit is relativistically o i guantum mechanics, even the global, constant phase
invariant. _Thls definition of the phase turns_out to be equiVayt £ has a direct physical meaning. It controls the relative
Ientd(prO\ﬂdedl F obeys the Maxwell equdatlohsoethe ON€  contribution to the energy-momentum tensor from the elec-
US% In the rc;‘a?sm pr?pezrsaon geomegro ynam_ 52|Z- tric and magnetic parts. The duality rotatiai® with a con-
espite the fact thak” does not obey any simple wave giani yajue ofp leave the free Maxwell equations un-
equation, the time evolution of the vortices exhibits all thechanged However, a phase varying in space and/or time
typical fe_atur(;s found beflorg by us for tf(ljebsmnger Pilqua- would modify the Maxwell equations. That is the reason why
tion. During the time evolution governed by Maxwell equa- o Rainich construction works. Namely, he has shown that if
tions, vortex lines are created and annihilated at a point or i\« 2ssumes that the electromagnetic field obeys the Max-
pairs and undergo vortex reconnections. well equations, the phase of the field may be extracted from
Il. GEOMETRODYNAMICS AND THE PHASE T,,. For this purpose, he introduced the following four-
OF THE ELECTROMAGNETIC FIELD ;’eerf;g; gﬁgt i{rso(rjnertir\llzﬂcz/c;rgponents of the energy-momentum

B’'=Esing+B cose. (9b)

In nonrelativistic wave mechanics, the phase of the wave wvhp x
. . . : € T, AT
function can be obtained from its modulus provided we also Y e (10)
assume that the wave function obeys the Sdimger equa- T, T

tion. As a matter of fact, it was shown by Feenbgt§] that

to determine the phase from the modulus, it is sufficient thatind used the line integral e#* to reconstruct the phase.

the wave function obeysomewave equation that leads to ~ Our proposal, how to define the phase of the electromag-
conservation of the probability, i.e., to continuity equation. Anetic field, is much simpler and yet it turns out to be com-
similar reasoning applied to the electromagnetic field alsgletely equivalent to the definition given by Rainich. We
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shall define the phase of the electromagnetic fig{et) as  the vectorsE andB are orthogonal and of equal length. This
half of the phase of the square of the RS vector property led Berry and Dennis$] to name the vortex lines
associated with the square of a complex vector fieldGhe

2(y)=2ie(V)|E2 . . . . P
F200) = *P|FA(x)]. (1D (circle) lines in their general classification scheme of phase
: P ingularities.
In full analogy with Eq.(1) of nonrelativistic wave mechan- singu . . .
ics, we define a “velocity” four-vectou” as for'rIT']he denominator in Eq14) may also be expressed in the
(F?)* 9, F>=F29,(FH)* 2. p2\2
u,u: = =212 = :ﬁ#QD(X). (12) 82+P2: * —(EXB 2 18
4i|F?| 5 ( )< (18)

SinceF? is a complex sum of two electromagnetic invariants_l_herefore the vanishing a§2+ 72 at a point also means

F2=S+iP=1(E2—B?)+iE-B, (13) that the electrorr_lagnetic field at t_his point is pure radiation:

the energy density and the Poynting vector form a null four-

u, is a true relativistic four-vector, vector. One may say that on vortex lines, the energy of the
electromagnetic field moves locally with the speed of light.

84, P-P3,S We would like to emphasize that the velocity of the energy

u,= 2P (149 flow of the electromagnetic field is not correlated with the
( ) vectoru, . Even the geometric properties of the Poynting

This vector has the same denominatop to a factor of 2 Vector and the space part af, are different. Sinces is a

that scales both the numerator and the denomipaeithe Scalar andP is a pseudoscalar, the vectey is a pseudovec-
vector w* defined by Eq.(10) since T T7=4(S2+P?) tor. In the simplest case of a constant electromagnetic field,
' T " the Poynting vector i€X B, while the vectoru, vanishes

However, in general, the numerators of vectars andu, identically. There d " i ist a phusical tit
are different. They do become equal when the electromag- entically. There does not seem (o exist a physical quantity
hose flow can be identified with,. In this respect, the

netic field obeys the Maxwell equations. The proof is

straightforward but rather tedious and will not be presente&ituaﬂon is quite di_fferent from nonrelativist_ic wave mech_an-
here ics where the gradient of the phase determines the velocity of

In our formulation, the square of the RS vector plays the'® Probability flow.
role of the wave functions. Vortex lines are to be found at
the intersection of th&=0 andP=0 surfaces. As in the ll. SIMPLE EXAMPLES OF VORTEX LINES
case of the Schiinger wave function, at all points whelré
does not vanish, the vectar, is by constructiona pure
gradient:

The analogy between the phase of wave function and the
phase of the electromagnetic field is not exact. Unlike the
Schralinger wave function, the electromagnetic field does

U, (X)=d,9(X). (15) not _have to vanisidenticallyalong the Iines Wh_ere the_phase
is singular. It is only necessary that the field is null, i.e., the
Therefore, one may recover the phaseé=dfy the following ~ two invariantsS and vanish. Still, we believe that the lines
line integral: along which the field is null deserve the name of vortex
lines.
x The time evolution of the vortex lines embedded in the
P(x)= L défu,(é). (16 solutions of the Maxwell equations is quite similar to the
° evolution of such lines embedded in the solutions of the
Since the RS vector is univalued, the phases obtained b§chralinger equation. The simplest examples of solutions
Choosing different paths Connecting the pomnndxo may with vortex lines can again be found among the polynomial
differ only by a multiple of 27. In other words, the vorticity ~ functions. Such functions may be viewed as long-wavelength
associated with,, (or with w,, in the Rainich construction ~€xpansions and were found to be very useful in the study of
must be quantized, vortex solutions of the Schdinger equatiori15,16 and the
Helmholtz equatior4,25]. Alternatively, these polynomial
" B solutions may be viewed as local approximations to the full
é défu,(§)=2mn. a7 solution, valid close to the vortex lines under study. In this
case, one may imagine that in the exact solution the polyno-
The phase defined by E(L6) is determined up to a global mial is multiplied by some slowly varying envelope that
phasegq: the value ofp(x) at the lower limitx, of the  makes the full solution localized. We shall give at the end of
integral. The value ofpy cannot be obtained from the this section an example of such a solution.
energy-momentum tensor. As an illustration of a typical behavior of electromagnetic

Under duality rotationg9) when ¢ varies from 0 to 2r, vortex lines, we present very simple examples of the electro-
the vectorE’ at each space-time point draws an ellipse in themagnetic field. The following four fields satisfy the Maxwell
E-B plane. The same ellipse is drawn by the vedBr equations and possess the vortex structures very similar to
These ellipses become circles on each vortex line, since thehose found in Schidinger wave mechanid45,16]:
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FIG. 1. Time evolution of a vortex line in the form of a rotating FIG. 2. Time evolution of two vortex lines that &t a suddenly
and expanding ring. All figures in this paper were produced with theappear as a straight line and then separate and fly away. The same
use of MATHEMATICA [26]. solution for negative times would show a reversed process: the
convergence of two vortex line and their annihilatiort at—a.

F@=(y+it,z—a+i(a+t),x+it), (19a _ _
each value ot as parametric functions o In each case,
FO=(y+t,a—i(z+att),x+it), (19h) ?cw)(ca)?a are two branches that differ by the sign of the square
F(°)=(2x+y—a+i(z+y+t),z—y+t+i(y—a),—t+(it),) x(z,t)=[(a—2z)(a+t)
190
+ a2+ 2at+3t22t>— (a—z)?]/(2t),
F@=(z2+t?—iat,a’—i(2zt+a’+ax),a(y—t)),
(199 y(zt)=[(a+t)(a-2)
where a is a parameter that sets the scale for the vortex + Va?+2at+3t*2t*— (a—2)°)/(20),
configuration. In the first three cases, the electromagnetic (213
fields are linear functions of the coordinates and in the last
case the field is quadratic. In the first case, the two invariants x(z,t)=a(a+z)/t—a,
are
z,t)=—t+ Jt?—a’\Ja’—2at+ 2t>+ 2az— 2zt+ 7%/,
S=x2+y?+(z—a)’—a’—2at—3t?, (20a y(z) v v (21b)
P=2az+2t(x+y+z—a)—2a’. (20D X(z,t)=t+[t?= Jt*—8t%(z—a)z— 16(z—a)?Z?]/
The equationsS=0 andP=0 describe a sphere centered at [4(z—a)],

the point (0,0a) with the time-dependent radius
JaZ+ 2at+ 3t and a moving plane, respectively. The inter-  Y(Z1)=(a=2)/2

section of these two surfaces is a moving ring shown in Fig. 2— [T @120 o — 7.2

1. The radius of the sphere decreases for negative values of =\ -8t(z2-a)z- 16(z-a)"2')/(82),

until t=—a/3 and then starts increasing. The rate of change (219
of the radius exceeddy a factor of\/3) the speed of light

showing once again that various characteristic features of x(z,t)=t+ Jt?—a?Ja’+ (t*+z%)?/a?,
relativistic fields(such as their zeros or maximnaay travel

with superluminal speeds without violating causality. In this y(z,t)=—a—[t3+zt(2a+z)]/a%. (21d

simple example, no change of the topology of vortex line

takes place. However, in the three remaining cases, the td-he plots of functiong21h) and(21d show vortex creations

pology changes according to the same universal patterns asd annihilationgFigs. 2 and Band for functiong21c) one

those found in Schidinger wave mechanics. This universal obtains vortex reconnection$ig. 4). Vortex annihilations

behavior of vortex lines is reminiscent of the catastropheoccur att= —a and vortex creations occur &t a. Note that

theory[27,2§. according to formulag21b) and(21d), at these moments the
The graphical representation of the motion of the vortexvortex velocity @x/dt,dy/dt) becomes infinite.

lines in all four cases is straightforward, since the equations It is also possible to construct localized, finite-energy so-

S§=0 andP=0 can be solved analytically givingandy for lutions of the Maxwell equation with vortices. We shall give
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FIG. 3. Time evolution of two vortex lines that &t a suddenly
appear along a parabola in tlge=a plane(shown as a line in the
first frame that first opens up very fast into two symmetric wings
that later slowly separate.

just one simple example of such a solution constructed from F!G: 5. Time evolution in the-y plane of two pairs of straight

the following localized solution of the wave equation: vortex lines parallel to the axis. The evolution is indicated by the
' arrows. Pairs of vortex lines are created at the points denoted by

Z(r,t)z(y,x,—t—ir)[(t+i7')2—r2]*2. (22) crosses and annihilated at the points denoted by circles.

With each vector solution of the wave equation, one maySince the numerator does not contain the variabtee vor-
associate a solution of the Maxwell equations treating thdeX lines embedded in this localized solution are straight
solution of the wave equation as a complex counterpart ofines parallel to the axis. Two pairs of such lines are created
the Hertz potential. Namely, one may check that the RS vecatt=— 7/3 at the points £ 27/3,0) in thexy plane. The four

tor F(r,t) constructed according to the following prescrip- Vortex lines moveFig. 5 until they annihilate in pairs att
tion [29]: =17/3 at the points (G:27/3). The speed of each vortex line

at the moment of creation and annihilationinginite, show-
F(r,t)=VX[id,Z(r,t)+VXZ(r,1)] (23 ing very vividly that also for localized solutions of the Max-

well equations, the motion of vortex lines may be superlu-

indeed satisfies the Maxwell equations. The square of th&inal without any limitations. Arbitrarily high speed of

vectorF has the form vortex lines associated with solutions of the relativistic scalar
wave equation has already been noted in Refd.5|.

q2(t2+ 2x2+2y?— %) +i(3x2—3y?+ 4t71)
32 [(t+i7)2—r2]6 S IV. VORTEX LINES IN SUPERPOSITIONS OF PLANE
WAVES AND IN GAUSSIAN BEAMS

Solutions of the Maxwell equations exhibiting vortex
structures may also be obtained with the use of standard
building blocks—the monochromatic plane waves. A single
plane wave is described by a null field, since both invariants
vanish. Therefore, velocity14) vanishes—a single plane

wave has no vortex structure. Also, the sum of two plane

P P waves does not have any vortex structure; even though it has
a nonvanishing velocity field. However, for three plane
waves we may have various kinds of vortex structures. As an
example, we choose three circularly polarized monochro-
matic waves of the same frequency, handedness, and ampli-

P > tude, moving in three mutually orthogonal directions. The
RS vector in this caséup to a constant amplitugdnas the
form

17

FIG. 4. Time evolution of two vortex lines that a0 are F(r,t)=(r:n+iﬁ)e*i("f'r)+(ﬁ+iT)e’i(t’ﬁ”)
mutually perpendicular and nonintersecting. At the titrea(y2 o .
—1)¥2 the vortex lines cross and undergo a reconnection. +(T+imye 't-nn, (25
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wherei, m, andn are three orthogonal unit vectors, the = . IS . . .
coordinates are measured in units of the inverse wave vector,
and time is measured in units of inverse angular frequency. * * * * * *
The square of this vector vanishes at the points satisfying the - " "0 " " "
equation N N « N « .
i (+m)r . gi(men)ry gi(h+D)r_ g (26) " " " 5 . . .
_ ) _ _ * * * * * *
It is convenient to choose the coordinate system in such a - " " " " n
way that the three basis vectors have the form : :
15 % -10 x -5 % * 5 X 10 »x 15
1 1 u u u u u u
= = 2 -
/6 6 _ \ﬁ * * * > * * *
3 ] u u u u ]
A 1 A 1 - 0
=1 - R ’ * * %100 * * *
1 n n n n n n
1 1 I
— — 3 * * *  _15 * * *
\/§ \/§ ] u u u u n

@ FIG. 6. Positions of vortex lines in they plane (measured in
because then all the vortex lines are parallel tozthgis. The units of the inverse wave vecjdior the three plane waves moving
position of the vortex lines in they plane is determined by in orthogonal directions. Points marked with different symbols cor-
Eq. (26). For choice(27) of unit vectors, this equation has respond to vortices with opposite circulation.
the form (apart from an overall phase-factor X2 x

+22)/\/§]) 1+ e i(BX+YN2+2it | o=i(Bx-y)V2+2it — () (32)

1+e—i(v‘§x+y)/v‘7+ e—i(\@x—y)/\@: 0. (28)

Thus, in this case the lattice of vortex lines is not stationary
but it is moving as a whole with the speed ¥8/3c in the x
2 direction.
x;m=7r\[§(m+ n), Ym.=m/2(x%+m-n), (29 The most interesting case, of course, is a superposition
not of a few but of a continuum of plane waves, forming a
wherem andn are arbitrary integers. The lattice of vortex colhma@ted beam. We _shaII concentrate Oﬂ_the Lagu_er_r e
Gaussian beams, in view of their applicability to realistic

lines is shown in Fig. 6. This example shows that vortex =" g e Refl30]). W h
lines associated with the phase of the RS vector do not neé—'tuat'ons(C ., for example, Ref|30]). We use the represen-

essarily move; they can also be stationary. tation of thesc_a beams in thfa vector theory_as.m Refb-34 .
When one of the polarizations of the three waves, say th ut we combine the electric- and magnetic-field vectors into

last one in Eq(25), is opposite, the position of vortex lines is the cqmplex RS vec_to(4). This \'/ectlor for the Laguerre-
determined by a time-dependent equation Gaussian beams of circular polarization can be written in the

form

The solutions of this equation are

ei(i+ﬁw)-r—2it+ei(r§1—ﬁ)»r+eid—ﬁ)-r:0' (30)
(@t —KD (e il -
In this case, it is convenient to choose the orthonormal unit Fixy.zt)=e (ku,iku,i(autiayu)).  (33)
vectors in the form

The square of this vector is equal to

1 1
= = 2
J6 6 \ﬁ _
L L 3 [F(x.y.z)]?=—e 2 (5, +ig)ul®. (34
= =1, m=| -=|, Aa=| O
V2 2 . N
_i Note, that the vectoF given by Eq.(33) is not just the
1 1 3 analytic signal but the full RS vector as defined by E4).
\/5 \/§ whose real part is the electric field and the imaginary part is

(31) the magnetic induction. The slowly varying complex enve-
lope functionu=u(x,y,z) is an arbitrary linear superposi-
The position of vortex lines in thry plane is determined by tion of the functionsu,(p,¢,2) defined agwe use the no-
the equation tation of Ref.[34])
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W ~ ikp2z lines defined in terms of the RS vector run along #rexis
Unm(p>®,2)=Crm—— exd — p%lex 5 oo and their vorticity has the strength+ 1. At first, these re-
w(2) 2(z°+zg) sults seem to be in disagreement with the detailed analysis of
iy ml, 5~ 2 angular momentum of the Laguerre-Gauss beams by Allen,
X(\2p) Ln"(2p%) Padgett, and Babiker given in R€f33], since they have
x elmégi(2n+|m|+ 1)arctant/zg) (35) shown that the additional unit of angular momentum is to be

added tom or subtracted fronm depending on théright or
where C,, is the normalization constant,w(z) left) polarizationof the beam. However, we have broken this

=W, th(z/zR) is thez-dependent radius of the beafnls symmetry by consif:iering the RS _vectléranq not its com-
the radial coordinate divided by(z), L™ is the generalized P'€X conjugate. Thigarbitrary choice has fixed théposi-

Laguerre polynomial, andze=mw,/\ is the Rayleigh tive) sign of the polarization. With this proviso, our defini-

length. The functions, . describe the beam with the projec- tion of vortex lines in terms of the RS vector leads to the

tion of the orbital angular momentum on the propagationsame results as the analysis of angular momentum. Each

axis defined bym. They may be written in the form componenu,, has only one vortex line assogigted with the
total angular momentum. However, superpositions of several
Unm(P,¢,Z)=(XiiY)‘m‘fnm(P,Z), (36) U,m components, depending on their composition, may have
additional vortex lines.
where the upper sign corresponds to the positive values of The presence of vortex lines in the Laguerre-Gaussian

This leads to the following formula: beams is due to the definite angular momentum in the direc-

. il o me1 1 tion of propagation. The same vortex lines appear also in

(Oxtidy) (xEiy) M pm= (xxiy) ™= 2p™ [ of ym/ Ip electromagnetic multipole fields. In this case, the RS vector
+(AF D) /p]. 37) can be written in the fornh35]

Velocity (12) can be obtained by differentiating the phase of

—a—iot H v
the function @,+idy)u but the expression is quite cumber- F(xy,zt)=e " (k+ V) jy(kn)(rX V)Y (D).

some. However, it is clear from E@37) that the function (38)
(dx+iay)u for positive and for negative values of carries
m+ 1 units of angular momentum in tredirection. Vortex  For the dipole field J=1M=1),
|
. 3+ 4k?r2—2k4r 4+ (2k?r2—3)cog 2kr) — 6kr sin(2kr
[F(x,y,z,t)]zze’z"”t(XJriy)z[ ( Jcos2k) N} (39)

2kbr8

Thus, the dipole field foM =1 exhibits one vortex line momentum becomes locally a null four-vector.
along thez axis (the direction of the angular-momentum  Finally, we would like to mention that, in principle, one
quantization with unit vorticity. Higher multipoles will ex-  should be able to construct a hydrodynamic form of electro-
hibit vortex lines carrying more units of vorticity, depending dynamics, analogous to the Madelung formulation of wave
on the value of the component of the angular momentum. mechanics. The set of hydrodynamic variables for the elec-
tromagnetic field would comprise the components of the
V. CONCLUSIONS energy-momentum tens¢nly five of them are independent,
cf., for example, Ref[18]) and the velocity vectou,, that
The study presented in this paper fully unifies the descripcarries the information about the phase of the RS vector. The
tion of vortex lines in electromagnetism and in Salinger  quantization conditio(17) effectively reduces the informa-
wave mechanics. In both cases, there is a single complegon contained iru,, to just one scalar function giving finally
function of space and time whose phase generically has sirjx independent functions. However, we have not found a
gularities along one-dimensional curves in three-dimensionadjmpleset of equations for these hydrodynamiclike variables

space—the vortex lines. The velocity four-vectgy associ-  that would be equivalent to Maxwell theory.
ated with the phase of the electromagnetic field plays the

same role as the velocity of the probability fluid in wave

mechgnlcs._ The circulation around e_ach vortex I_me is quan- ACKNOWLEDGMENTS

tized in units of 2r. There are two important differences.

First, the gradient of the electromagnetic phase does not have We would like to thank Mark Dennis for very fruitful
any obvious dynamical interpretation. Second, the electrocomments and for making his Ph.D. thesis available to us.
magnetic field does not vanish identically on vortex lines butThis research was supported by the KBN Grant No. 5PO3B
only the two relativistic invariants vanish and the energy14920.

062114-7



I. BIALYNICKI-BIRULA AND Z. BIALYNICKA-BIRULA PHYSICAL REVIEW A 67, 062114 (2003

[1] P.A.M. Dirac, Proc. R. Soc. London, Ser.183 60 (1931J. [28] I. Bialynicki-Birula, in Nonlinear Dynamics, Chaotic and

[2] E. Madelung, Z. Phys40, 322 (1926. Complex Systemedited by E. Infeld, R. Zelazny, and A.

[3] T. Takabayasi, Prog. Theor. Phys.143(1952); 9, 187(1953. Galkowski(Cambridge University Press, Cambridge, 1997

[4] J.F. Nye and M.V. Berry, Proc. R. Soc. London, Ser326, [19] E.C. Kemble, The Fundamental Principles of Quantum Me-
165 (1974. chanics(Dover, New York, 1958 p. 71.

[5] M.V. Berry, in Physics of Defectd es Houches Lecture Series [20] G.Y. Rainich, Trans. Am. Math. So@7, 106 (1925.
XXXV, edited by R. Balian, M. Klenan, and J.-P. Poirier [21] C.W. Misner and J.A. Wheeler, Ann. PhyeN.Y.) 2, 525
(North-Holland, Amsterdam, 1981p. 453. (1957.

[6] J.F. NyeNatural Focusing and Fine Structure of Light: Caus- [22] L. Witten, in Gravitation: Ar_‘l Introductionk to Current Re-
tics and Wave DislocationgInstitute of Physics, Bristol, search ?d'ted by L. Witten(Wiley, New York, 1.96.3'
1999. [23] C.W. Misner, K. Thorn, and J.A. Wheeldgravitation (Free-

man, San Francisco, 1973
7] M.V. Berry, Proc. SPIE4403 1 (2001). ' e . .
%8% M.R Denﬁis Ph.D. thesis Un(iversji)ty of Bristol, 2001 [24] R. Penrose and W. RindleEpinors and Space-Tim&am-
T BN ' ' ' bridge University Press, Cambridge, 198€ol. I, Sec. 5.3.
[9] M.R. Dennis, Opt. Commur213 201 (2002.

. . ) . [25] M.V. Berry and M.R. Dennis, J. Phys. 34, 8877(2000.
[10] L\)/I SE SV(\)/S:??ETnd M .V.AVastne(tjsov, Z:)%%Lr\(jsls ;?LIOptIC’SEd'ted [26] S. Wolfram,Mathematica(Cambridge University Press, Cam-
y E. Wo sevier, Amsterdam, ol. . bridge, 1999.
[11] H. Weber,Die partiellen Differential-Gleichungen der Math- [27] 3 F. Nye, J. Opt. Soc. Am. A5, 1132(1998.

ematischen Physik nach Riemann's VorlesungEriedrich 28] M.v. Berry, J. Mod. Opt45, 1845(1998.

Vieweg und Sohn, Braunschweig, 190p. 348. [29] I. Bialynicki-Birula, Phys. Rev. Lett80, 5247(1998.

[12] L. Silberstein, Ann. Phys(Leipzig) 22, 579 (1907); 24, 783  [30] K.-P. Marzlin, W. Zhang, and E.M. Wright, Phys. Rev. Lett.
(19079. 79, 4728(1997).

[13] I. Bialynicki-Birula, Acta Phys. Pol. /86, 97 (1994). [31] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woer-

[14] The history of the Riemann-Silberstein vector and its connec- dman, Phys. Rev. 45, 8185(1992.
tion with the photon wave function is described in a review [32] L. Allen, V.E. Lembessis, and M. Babiker, Phys. Rev53

paper: |. Bialynicki-Birula, inProgress in Opticsedited by E. R2937(1996.

Wolf (Elsevier, Amsterdam, 1996Vol. XXXVI. [33] L. Allen, M.J. Padgett, and M. Babiker, irogress in Optics
[15] I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. l8va, Phys. edited by E. Wolf(Elsevier, Amsterdam, 1999Vol. XXXIX.

Rev. A61, 032110(2000. [34] Y.Y. Schechner, R. Piestun, and J. Shamir, Phys. Rev4,E
[16] I. Bialynicki-Birula, T. Mloduchowski, T. Radozycki, and C. R50(1996.

Sliwa, Acta Phys. Pol. A Suppll00Q, 29 (200)). [35] I. Bialynicki-Birula and Z. Bialynicka-BirulaQuantum Elec-
[17] T. Takabayasi, Prog. Theor. Phyisl, 283 (1955. trodynamics(Pergamon, Oxford, 1975

062114-8



