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Effect of an external field on decoherence
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“Decoherence of quantum superpositions through coupling to engineered reservoirs” is the topic of a recent
paper by Myattet al. [Nature403, 269 (2000] which has attracted much interest because of its relevance to
current research in fundamental quantum theory, quantum computation, teleportation, entanglement, and the
guantum-classical interface. However, the preponderance of theoretical work on decoherence does not consider
the effect of anexternal field Here, we present an analysis of such an effect in the case of the random
S-correlated force discussed by Myatt al.
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“Decoherence of quantum superpositions through couresponding to two widely separated Gaussian wave packets.
pling to engineered reservoirdl] is the topic of a recent The corresponding wave function has the form
paper that has attracted much interest because of its rel-
evance to current research in fundamental quantum theory, 1
guantum computation, teleportation, entanglement, and the/(x,0)= 2\1/4 —d2/802\ 1/2
L i ; (8moo)"(1+e )
guantum-classical interface. As Schleich remarks in an ac-

companying “News and Views” paper, this is a pioneering d\?2 d\?
experiment that engineers decoheref2g However, the X— 5) X+§
preponderance of theoretical work on decoherg¢Bgg does X\ exp| ————| +exp| ————— ,
not consider the effect of aexternal field Here, we present 40° 40°

an analysis of such an effect in the case of the random 1)

o-correlated force discussed in REL].

Myatt et al. [1] used a linear Paul trap to confine single whered is the separation and? is the variance of each
Be ions in a harmonic potential and then prepared varioupacket. It is clear that the spatial probability distribution
superposition states. Next, they induced decoherence by co®(x,0) for this superposition of two states consists of the
pling the single ion to a reservoir which they controlled in sum of the probability distributions for the individual states
various ways. Such a reservoir gives rise to an external forcplus an interference term. In the absence of dissipaficsi,
f(t) in the equation of motion of the system, in contrast toone proceeds by calculating(x,t) from which P(x,t)
the usual intrinsic fluctuation force(t) that arises from in-  readily follows. However, when dissipation is present it is
teraction with an ambient thermal dissipative environmennhecessary to use a density-matrix approghwhich, when
[4], which, of course, will always be present, evenTat combined with the use of quantum probability functions,
=0. Thus, the question arises as to not only what is thdeads to an expression f&(x,t) of the form
dependence of the characteristic decoherence decayrtjme
on the separationl of the superposition components, the P(x,1)=P1(x,t) + Po(x,t) + Py (x,t)cog f(1)],  (2)

temperaturdl, and the dissipative decay rajgall of which . .
come into play wherf(t)=0, the focus of most theoretical whereP; andP, correspond to the time-dependent probabil-

work], but also what is the dependence on the parameters &y di;tribut_ions for the separate wave packets and_the third
the engineered reservoirs that give rise (). The existing term is an interference term. The latter is characterized by a

experimentd 1] focused on the dependence of on d and cosine factor(which varies in time according to a known
demonstrated that,~d~2. This is a familiar result pre- function f(t) [4_]) that is multiplie_d b_y an ampl_itude factor
dicted by the plethora of papers dealing with th@)=0 P,(x,t), which is found to decay in time. The disappearance

situation but it does not give information on the dependenc®’ the interference term, that is, the decoherence, is measured

of 4 on the parameters of the externally superimposed res? defining an attenuation coefficieaft), which is the ratio

ervoir. More details on the experimental results were giverP! the factor multiplying the oscillatory term to twice the

by Turchetteet al. [5] and these authors also reviewed the 9€0Metric mean of the first two terms, i.e.,

theory of the damping of a harmonic oscillator in a dissipa-

tive reservoir. Whereas the latter gives rise to a fluctuation a(t)= Pi(x,0) _

force on the oscillator which is related to the dissipation via 2[P1(x,t)Py(x,t)]*?

the fluctuation-dissipation theorem, an externally engineered

situation requires an additional analysis, as is made clear ie should mention that, in the literature, one finds various

Ref.[6]. measures of decoherence, based on decay of diagonal and
Much of the discussion of decohereri&4] has been in  off-diagonal density-matrix elements or probability distribu-

terms of a particle moving in one dimension that is placed irtions in phase space, momentum space, or coordinate space

an initial superposition stat@ Schralinger “cat” state cor-  [9] but we consider the latter to be the most desirable be-
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cause it is closest to experiment. Thus, returning to (Bg.
what we have foun@4] is thata(t) depends crucially on the a(z)= — .
spreading of the wave packets corresponding to the indi- -mZ-izu(z)+K
vidual states.

For f(t)=0, this spreading arises from the possible in-
trinsic spreading associated with the uncertainty principle, o
thermal spreading and spreading due to dissipatiedfects. w(z)= f dtu(t)e?'=my(z) (10
Explicitly, for a free particle described by a single wave 0
packet, the width after a timeis w(t), given by[4]

(€)

In addition,

is the Fourier transform of the memory function and it char-

[X(ty) X(ty +1)]2 acterizes the reservojd,10]. The fact thata(z) does not
2_ #Jrso(t), (4)  depend onf(t) follows simply by taking the Fourier trans-
442 form of Eq. (7) which enables the solution to be written in
Fourier transform language as

wa(t) =0

where ¢ is the initial width andsy(t) is the mean-square

displacement{(discussed in more detail belopwFor the at- X(0)=a(o)[F(w)+T()], (11
tenuation coefficient in the case offiee particle, we have ) o )
the formula[4] where superposed tildes indicate Fourier transforms.
Because of the linearity of the oscillator, it is clear that the
2 motion of the driven oscillator will be a superposition of a
So(t)d . . . .
a(t)=exp, — ———1. (5)  driven mean motion and a motion about the mean that is
8o 2wWA(t) identical with the motion about the equilibrium st§63. The

starting point of our calculation is the correlation
In addition, the characteristic time for decay to oceyrsay,
is defined as usual4,7,8 as the time at whicha(t)
=exp(—1).
We now turn to the case whefét) # 0 and we generalize
from the case of a free particle to that of ascillator poten-

1
5 (XX X()X(D)

tial, corresponding to the experiment described in REF. % (o b
For f(t)#0, there is an additional spreading of the wave :—J dolm{a(w+i0")}cothz——cosw(t—t')+Cy,
packets, which we will now calculate. Afterwards, we will mJo 2kT
turn to the role it plays in the calculation eft). (12

Let x(t) be the dynamical variable corresponding to the o
coordinate of the wave function of the superposition state otvhereC, andCy are the contribution due t#(t) andf(t),
the oscillator of Myattet al. [1]. As shown in Ref[10], in respectlvely. It fgllows that the ‘mean-square d|spl_acement
the presence of an external forb@) in addition to the fluc-  (which characterizes the spreading of the wave padket
tuation forceF(t), the steady-state motion can be described = o
by means of a generalized quantum Langevin equation S(H)=([x(t) =x(0)]%)=2{C(0) —C()}

2h (= ) hw
= ?f dolm{a(w+i0")}coth ——=(1—coswt)+sq,
0

mx+ ft dt’ u(t=t)x(t) +Kx=F(t)+f(t), (6 a

(13)

where . (t) is the memory functionk is the oscillator force

where C(t) is given by Eq.(12) andsy is the contribution
constant K=mw3), where w, is the oscillator frequency, (V) s g y Ea.(12) d

due to the “driven motion.”

and F(t) is a fluctuating operator force with meﬁﬁ(t)) Here, we have used the fact that singe(t))=0 and
=0. The steady-state solution of E@) can be written as  gjnce there is no correlation betweéiit) and f(t), it is
. clear that
X(t):f_ dt’G(t—t")[F(t")+f(t")]=xs(t) +xq4(1), s(t)=s(t) +54(1), (14)
(7

wheres, denotes the contributions due Edt). Sincesy(t)

has been calculated in detail, in R@&], which considers
entanglement between the system and the environment at the
initial time t=0, we will henceforth concentrate ag. Con-

sider that the external force is applied tat0. It follows

1 (= _
G(t)= ﬁf,ﬁ dwa(w+i0")e i, ®) from Eq. (7) that

where x4(t) is the stationary solution anxy is due to the
driven motion. Also,G(t), the Green function, is given by

t
Xg(t)=] dt'G(t—t")f(t"). 15
with «a(z) the familiar response function alt) Jo ( ) 19
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Sincexy(0)=0, it follows that

2 t t
sd(t)=<xd(t)>=fodt' fodt”G(t—t’)G(t—t”)g(t’—t”),
(16)

where
g(t'—t")=(f(t")f(t")). 17

Further progress clearly depends on the naturgfbut,
keeping in mind the existing experimerjtk,5], let us con-
sider a randond-correlated force so that

g(t' —t")=ga(t "),

whereg is time independent. Hence, substituting ELp) in
Eq. (16), we obtain

(18

t
Sd=gf dt’G2(t"). (19
0
In the case of the oscillator potential of Myait al. [1], we
find that in the case of Ohmic coupling/(w)= y=consi

G(t)=e- smwlt,

where

w%zwg—(y/Z)z. (21)

Thus, substituting Eq.20) in Eqg. (19), it follows that

g

2 2

Sqg=
Am°yws

S{(1—e ") 20i—e "(y?sifw;t
g

+ yw,Sin 2w4t)}. (22

In the absence of dissipationy{~0) (which approximates
the experiment of Myatét al), Egs.(21) and(22) give

(23

Sin 2w0t
Sq— —

9 t
2m2w§ 2wt

Again, for y—0 and T—0 (absence of dissipation and

for negligibly low temperaturgsit readily follows that

sy(t)d? ]

e B e

where o is the initial width of the individual wave packets.

Thus, the dependence od? in the numerator always
emerges, regardless of the value f3f. We also note the
absence of a term analogous to the second term in4g.
corresponding to the fact that, whét) =0, the width of
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d2
a(t)~exp{ — —2] if sq> 02, (25
8o

and

(1) s & if sy<o? (26)
a ~expy ————= IT Sy<<o”.
o2 802 ¢

Thus, in the former case, the result &(t) is independent of
Sq, I.€., independent of the external fort@). In the latter
case, using Eq23), we see that

p[ t ( sin 2w0t)]
a(t)y=exp ——| 1— ,
7o

2(1)0t
160*m?w}

To= d2g

(27)
where
(28)

For small times (2,t<<1) after the initial timet=0, we see
that

t (2wqt)? gd® | .
a(t)—exp[—T—0 6 =ex _24m204t if wot<<l,

(29

in which case the decay rate of decoherence is independent
of wg, corresponding to free particle behavior. However,
whent further increases there is a change in the time behav-
ior until at the end of the first cycle atat=27, we see

from Eq. (27) that
t
a(t)=exp[ - —) .
70

In fact, as we go into the next and subsequent cycles, the
Sin(2wgt)/2wgt term becomes more and more negligible so
that Eq.(30) becomes more and more accurate as we go
beyond the first cycle.

It should also be noted that E(1L8) also corresponds to a
white-noise spectrum. However, it is very different in nature
than the white-noise spectrum associated with the fluctuation
force F(t). A randomc-number field feeds energy into the
quantum particldand, in fact, for a particle with negligibly
weak coupling to a heat bath and for either a zero or oscil-
lator potential, it may be shown that the energy of the par-
ticle increases linearly in time On the other hand, in the
case of a fluctuation force, we are necessarily dealing with a
heat bath; in other words, we have a dynamical system in
which the particle also loses energy due to the emission of
bath excitations. Thus, for example, in the case where the

(30

the oscillator wave function is constant in time whereas thatvhite-noise spectrum is associated with an equilibrium tem-

of the free particle continually increases.
It is clear from Eq.(24) that the relative magnitudes e
and the initial variancer? play a crucial role. In particular,

peratureg/ 10]

(F(t"F(t")y=2myTs(t' —t"), (3D
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for the case of constant and in the classical limit. More- rameter spacdsuch as dependence dny, and various
over, the rate of work being done by the fluctuation fofee, choices off(t) as well as on the potentialboth further

say, is given by Ref{11] experiments and theoretical work will be needed. Some re-
cent work has made inroads into this multidimensional pa-
Pe=kTy. (32 rameter space. First, for the problem considered above, we

find that a nonrandom external force does not cause decoher-

Thus, the rate of work being done by the fluctuation force ISance. Second, in the absence of an external field, the quan-

proportional to the dissipation. This is a manifestation of thetum superposition of staté§chralinger cat statehas been

general principle that, at equilibrium, the energy lost by 4axamined for the case of an oscillator potential at high tem-

particle due o dissipation is compensated by the energy repieratur(:_[12] and also for the case of a free particle subject to
ceived from the fluctuation force. Thus, there is a crucial

difference between the effects 6t) and F(t) so that, in the effects of the zero-point oscillations of the electromag-

particular, an external field that has a white-noise spectrurrqetIC field[13].

cannot be approximated by a weakly-coupled thermal reser-
voir and, as a result, one must use the analysis given above. We are pleased to thank Professor G. W. Ford for many
Finally, it is clear that in order to explore the larger pa- enlightening discussions.
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