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Effect of an external field on decoherence
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‘‘Decoherence of quantum superpositions through coupling to engineered reservoirs’’ is the topic of a recent
paper by Myattet al. @Nature403, 269 ~2000!# which has attracted much interest because of its relevance to
current research in fundamental quantum theory, quantum computation, teleportation, entanglement, and the
quantum-classical interface. However, the preponderance of theoretical work on decoherence does not consider
the effect of anexternal field. Here, we present an analysis of such an effect in the case of the random
d-correlated force discussed by Myattet al.
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‘‘Decoherence of quantum superpositions through c
pling to engineered reservoirs’’@1# is the topic of a recen
paper that has attracted much interest because of its
evance to current research in fundamental quantum the
quantum computation, teleportation, entanglement, and
quantum-classical interface. As Schleich remarks in an
companying ‘‘News and Views’’ paper, this is a pioneerin
experiment that engineers decoherence@2#. However, the
preponderance of theoretical work on decoherence@3,4# does
not consider the effect of anexternal field. Here, we presen
an analysis of such an effect in the case of the rand
d-correlated force discussed in Ref.@1#.

Myatt et al. @1# used a linear Paul trap to confine sing
Be ions in a harmonic potential and then prepared vari
superposition states. Next, they induced decoherence by
pling the single ion to a reservoir which they controlled
various ways. Such a reservoir gives rise to an external fo
f (t) in the equation of motion of the system, in contrast
the usual intrinsic fluctuation forceF(t) that arises from in-
teraction with an ambient thermal dissipative environm
@4#, which, of course, will always be present, even atT
50. Thus, the question arises as to not only what is
dependence of the characteristic decoherence decay timtd
on the separationd of the superposition components, th
temperatureT, and the dissipative decay rateg @all of which
come into play whenf (t)50, the focus of most theoretica
work#, but also what is the dependence on the paramete
the engineered reservoirs that give rise tof (t). The existing
experiments@1# focused on the dependence oftd on d and
demonstrated thattd;d22. This is a familiar result pre-
dicted by the plethora of papers dealing with thef (t)50
situation but it does not give information on the depende
of td on the parameters of the externally superimposed
ervoir. More details on the experimental results were giv
by Turchetteet al. @5# and these authors also reviewed t
theory of the damping of a harmonic oscillator in a dissip
tive reservoir. Whereas the latter gives rise to a fluctuat
force on the oscillator which is related to the dissipation
the fluctuation-dissipation theorem, an externally enginee
situation requires an additional analysis, as is made clea
Ref. @6#.

Much of the discussion of decoherence@3,4# has been in
terms of a particle moving in one dimension that is placed
an initial superposition state~a Schro¨dinger ‘‘cat’’ state! cor-
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responding to two widely separated Gaussian wave pack
The corresponding wave function has the form

c~x,0!5
1

~8ps2!1/4~11e2d2/8s2
!1/2

3S expH 2

S x2
d

2D 2

4s2
J 1expH 2

S x1
d

2D 2

4s2
J D ,

~1!

where d is the separation ands2 is the variance of each
packet. It is clear that the spatial probability distributio
P(x,0) for this superposition of two states consists of t
sum of the probability distributions for the individual stat
plus an interference term. In the absence of dissipation@7,8#,
one proceeds by calculatingc(x,t) from which P(x,t)
readily follows. However, when dissipation is present it
necessary to use a density-matrix approach@4# which, when
combined with the use of quantum probability function
leads to an expression forP(x,t) of the form

P~x,t !5P1~x,t !1P2~x,t !1PI~x,t !cos@ f ~ t !#, ~2!

whereP1 andP2 correspond to the time-dependent probab
ity distributions for the separate wave packets and the th
term is an interference term. The latter is characterized b
cosine factor„which varies in time according to a know
function f (t) @4#) that is multiplied by an amplitude facto
PI(x,t), which is found to decay in time. The disappearan
of the interference term, that is, the decoherence, is meas
by defining an attenuation coefficienta(t), which is the ratio
of the factor multiplying the oscillatory term to twice th
geometric mean of the first two terms, i.e.,

a~ t !5
PI~x,t !

2@P1~x,t !P2~x,t !#1/2
. ~3!

We should mention that, in the literature, one finds vario
measures of decoherence, based on decay of diagona
off-diagonal density-matrix elements or probability distrib
tions in phase space, momentum space, or coordinate s
@9# but we consider the latter to be the most desirable
©2003 The American Physical Society07-1
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cause it is closest to experiment. Thus, returning to Eq.~3!,
what we have found@4# is thata(t) depends crucially on the
spreading of the wave packets corresponding to the i
vidual states.

For f (t)50, this spreading arises from the possible
trinsic spreading associated with the uncertainty princip
thermal spreading and spreading due to dissipativeg effects.
Explicitly, for a free particle described by a single wa
packet, the width after a timet is w(t), given by@4#

w2~ t !5s22
@x~ t1!,x~ t11t !#2

4s2
1s0~ t !, ~4!

where s is the initial width ands0(t) is the mean-square
displacement~discussed in more detail below!. For the at-
tenuation coefficient in the case of afree particle, we have
the formula@4#

a~ t !5expH 2
s0~ t !d2

8s2w2~ t !
J . ~5!

In addition, the characteristic time for decay to occur,td say,
is defined as usual@4,7,8# as the time at whicha(t)
5exp(21).

We now turn to the case wheref (t)Þ0 and we generalize
from the case of a free particle to that of anoscillator poten-
tial, corresponding to the experiment described in Ref.@1#.
For f (t)Þ0, there is an additional spreading of the wa
packets, which we will now calculate. Afterwards, we w
turn to the role it plays in the calculation ofa(t).

Let x(t) be the dynamical variable corresponding to t
coordinate of the wave function of the superposition state
the oscillator of Myattet al. @1#. As shown in Ref.@10#, in
the presence of an external forcef (t) in addition to the fluc-
tuation forceF(t), the steady-state motion can be describ
by means of a generalized quantum Langevin equation

mẍ1E
2`

t

dt8m~ t2t8!ẋ~ t8!1Kx5F~ t !1 f ~ t !, ~6!

wherem(t) is the memory function,K is the oscillator force
constant (K5mv0

2), wherev0 is the oscillator frequency
and F(t) is a fluctuating operator force with mean^F(t)&
50. The steady-state solution of Eq.~6! can be written as

x~ t !5E
2`

t

dt8G~ t2t8!@F~ t8!1 f ~ t8!#[xs~ t !1xd~ t !,

~7!

wherexs(t) is the stationary solution andxd is due to the
driven motion. Also,G(t), the Green function, is given by

G~ t !5
1

2pE2`

`

dva~v1 i01!e2 ivt, ~8!

with a(z) the familiar response function
06210
i-
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f

d

a~z!5
1

2mz22 izm̃~z!1K
. ~9!

In addition,

m̃~z!5E
0

`

dtm~ t !eizt[mg~z! ~10!

is the Fourier transform of the memory function and it ch
acterizes the reservoir@4,10#. The fact thata(z) does not
depend onf (t) follows simply by taking the Fourier trans
form of Eq. ~7! which enables the solution to be written
Fourier transform language as

x̃~v!5a~v!@ F̃~v!1 f̃ ~v!#, ~11!

where superposed tildes indicate Fourier transforms.
Because of the linearity of the oscillator, it is clear that t

motion of the driven oscillator will be a superposition of
driven mean motion and a motion about the mean tha
identical with the motion about the equilibrium state@6#. The
starting point of our calculation is the correlation

1

2
^x~ t !x~ t8!1x~ t8!x~ t !&

[C~ t2t8![C01Cd

5
\

pE0

`

dvIm$a~v1 i01!%coth
\v

2kT
cosv~ t2t8!1Cd ,

~12!

whereC0 andCd are the contribution due toF(t) and f (t),
respectively. It follows that the mean-square displacem
~which characterizes the spreading of the wave packet! is

s~ t ![^@x~ t !2x~0!#2&52$C~0!2C~ t !%

5
2\

p E
0

`

dvIm$a~v1 i01!%coth
\v

2kT
~12cosvt !1sd ,

~13!

whereC(t) is given by Eq.~12! and sd is the contribution
due to the ‘‘driven motion.’’

Here, we have used the fact that since^F(t)&50 and
since there is no correlation betweenF(t) and f (t), it is
clear that

s~ t !5s0~ t !1sd~ t !, ~14!

wheres0 denotes the contributions due toF(t). Sinces0(t)
has been calculated in detail, in Ref.@4#, which considers
entanglement between the system and the environment a
initial time t50, we will henceforth concentrate onsd . Con-
sider that the external force is applied att50. It follows
from Eq. ~7! that

xd~ t !5E
0

t

dt8G~ t2t8! f ~ t8!. ~15!
7-2
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Sincexd(0)50, it follows that

sd~ t !5^xd
2~ t !&5E

0

t

dt8E
0

t

dt9G~ t2t8!G~ t2t9!g~ t82t9!,

~16!

where

g~ t82t9!5^ f ~ t8! f ~ t9!&. ~17!

Further progress clearly depends on the nature off (t) but,
keeping in mind the existing experiments@1,5#, let us con-
sider a randomd-correlated force so that

g~ t82t9!5gd~ t82t9!, ~18!

whereg is time independent. Hence, substituting Eq.~18! in
Eq. ~16!, we obtain

sd5gE
0

t

dt8G2~ t8!. ~19!

In the case of the oscillator potential of Myattet al. @1#, we
find that in the case of Ohmic coupling@g(v)5g5const#

G~ t !5e2(gt/2)
sinv1t

mv1
, ~20!

where

v1
25v0

22~g/2!2. ~21!

Thus, substituting Eq.~20! in Eq. ~19!, it follows that

sd5
g

4m2gv0
2v1

2 $~12e2gt!2v1
22e2gt~g2sin2v1t

1gv1sin 2v1t !%. ~22!

In the absence of dissipation (g→0) ~which approximates
the experiment of Myattet al.!, Eqs.~21! and ~22! give

sd→
g

2m2v0
2

tH 12
sin 2v0t

2v0t J . ~23!

Again, for g→0 and T→0 ~absence of dissipation an
for negligibly low temperatures!, it readily follows that

a~ t !5expH 2
sd~ t !d2

8s2@s21sd~ t !#
J , ~24!

wheres is the initial width of the individual wave packets
Thus, the dependence ond2 in the numerator always
emerges, regardless of the value ofsd . We also note the
absence of a term analogous to the second term in Eq.~4!,
corresponding to the fact that, whenf (t)50, the width of
the oscillator wave function is constant in time whereas t
of the free particle continually increases.

It is clear from Eq.~24! that the relative magnitudes ofsd
and the initial variances2 play a crucial role. In particular,
06210
t

a~ t !'expH 2
d2

8s2J if sd@s2, ~25!

and

a~ t !'expH 2
sd

s2

d2

8s2J if sd!s2. ~26!

Thus, in the former case, the result fora(t) is independent of
sd , i.e., independent of the external forcef (t). In the latter
case, using Eq.~23!, we see that

a~ t !5expH 2
t

t0
S 12

sin 2v0t

2v0t D J , ~27!

where

t05
16s4m2v0

2

d2g
. ~28!

For small times (2v0t!1) after the initial timet50, we see
that

a~ t !5expH 2
t

t0

~2v0t !2

6 J 5expH 2
gd2

24m2s4
t3J if v0t!1,

~29!

in which case the decay rate of decoherence is indepen
of v0, corresponding to free particle behavior. Howev
whent further increases there is a change in the time beh
ior until at the end of the first cycle at 2v0t52p, we see
from Eq. ~27! that

a~ t !5expH 2
t

t0
J . ~30!

In fact, as we go into the next and subsequent cycles,
sin(2v0t)/2v0t term becomes more and more negligible
that Eq. ~30! becomes more and more accurate as we
beyond the first cycle.

It should also be noted that Eq.~18! also corresponds to a
white-noise spectrum. However, it is very different in natu
than the white-noise spectrum associated with the fluctua
force F(t). A randomc-number field feeds energy into th
quantum particle~and, in fact, for a particle with negligibly
weak coupling to a heat bath and for either a zero or os
lator potential, it may be shown that the energy of the p
ticle increases linearly in time!. On the other hand, in the
case of a fluctuation force, we are necessarily dealing wi
heat bath; in other words, we have a dynamical system
which the particle also loses energy due to the emission
bath excitations. Thus, for example, in the case where
white-noise spectrum is associated with an equilibrium te
perature@10#

^F~ t8!F~ t9!&52mgTd~ t82t9!, ~31!
7-3
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for the case of constantg and in the classical limit. More-
over, the rate of work being done by the fluctuation force,PF
say, is given by Ref.@11#

PF5kTg. ~32!

Thus, the rate of work being done by the fluctuation force
proportional to the dissipation. This is a manifestation of
general principle that, at equilibrium, the energy lost by
particle due to dissipation is compensated by the energy
ceived from the fluctuation force. Thus, there is a cruc
difference between the effects off (t) and F(t) so that, in
particular, an external field that has a white-noise spect
cannot be approximated by a weakly-coupled thermal re
voir and, as a result, one must use the analysis given ab

Finally, it is clear that in order to explore the larger p
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re
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si

.
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rameter space~such as dependence onT,g, and various
choices of f (t) as well as on the potential!, both further
experiments and theoretical work will be needed. Some
cent work has made inroads into this multidimensional
rameter space. First, for the problem considered above,
find that a nonrandom external force does not cause deco
ence. Second, in the absence of an external field, the q
tum superposition of states~Schrödinger cat state! has been
examined for the case of an oscillator potential at high te
perature@12# and also for the case of a free particle subject
the effects of the zero-point oscillations of the electroma
netic field @13#.

We are pleased to thank Professor G. W. Ford for ma
enlightening discussions.
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