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Reversible transformations from pure to mixed states and the unique measure of information
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Transformations from pure to mixed states are usually associated with information loss and irreversibility.
Here, a protocol is demonstrated allowing one to make these transformations reversible. The pure states are
diluted with a random noise source. Using this protocol one can study optimal transformations between states,
and from this derive the unique measure of information. This is compared with irreversible transformations
where one does not have access to noise. The ideas presented here shed some light on attempts to understand
entanglement manipulations and the inevitable irreversibility encountered there where one finds that mixed
states can contain “bound entanglement.”
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[. INTRODUCTION derived the functionl as the unique one, which does not
increase under some class of operations. The motivation
There are two opposing pictures offormation In the  came from considering information as a resource in distrib-
first picture, a source produces a large amount of informatiomted systemg¢3]. The main aim of the present paper is to
if it has large entropy. Thus information can be associateghresent the full rigorous version of that derivation. In the
with entropy. This is because the receiver is being informegrocess, we give a protocol for reversible transformations
only if he is “surprised.” In such an approach the informa- between states using a random source of noise. We also dis-
tion has a subjective meaning: something that is known byuss these results in the context of the issue of reversibility
the sender, but is not known by receiver. The receiver treatand entanglement theory.
the message as the information, if she did not know it. It is quantum information theoryQIT) that provides us
One can consider a different approach to information—arwith a suitable perspective to attack the problem. Indeed, one
objective one where a system represents information if it iof the central themes of QIT is the ideaagtimal transitions
in pure state(zero entropy. The state is itself the informa- between states under a restricted class of operatiditss
tion. This view is more natural in the context of thermody- originates from attempts to describe entanglement of quan-
namics. There, “knowledge is power” in the sense that onetum states. Although it was difficult to say what exactly en-
can draw work from a single heat bath by use of systems imanglement was, it was clear that it could not increase under
known pure statefl]. On the other hand, the heat bath is the class of operations made uplofal operations and clas-
represented by a maximally entropic state, hence it is the lesscal communicatiofLOCC) [4,5]. These operations allow
informative one. The pure state represents informatiorone to use any amount of separable states for free, but do not
needed to order the energy of the heat bath. allow one to create entangled states. One can take the con-
There can be many candidates for functions to measureerse point of view: one starts with a given class of opera-
information. However, Shannon recognized that there is aions(LOCC operations and treat the states that are not free
unique function that shares some natural properties to deas containing a resource, which can be called entanglement
scribe information. Shannon derived his unique measurécf. Ref.[6]). The basic question of entanglement theory is:
based on the subjective picture of information. Therefore higan stateg be transformed intar by LOCC? What is the
information function(Shannon entropyincreases as the dis- optimal rate of such a transition?
persion of the probability distribution increases. The same is In entanglement theory, this allowed one to define a num-
true for the generalization of Shannon's entropy to the quanber of measures of entanglement, since essentially, any func-
tum case which is the von Neumann’'s entrof{e) tion that does not increase under LOCC is a measure. How-
=—TroInp. ever, thus far, no one has found a unique measure. The
One can consider a measure of objective information, tha¢ssential difficulty(as will become cleargiis that operations
has the converse tendency: namelyslog,d—H where under LOCC are not reversible. However, if one has a re-
log, d is the maximal entropy of the systefine., the system stricted class of operations for which transitions are revers-

hasd state$. In the quantum case it would be lod—S(@).  ible, then we will see that the rate of transitions gives one a
Such a function was naturally interpreted as the informatiorunique measure. This is similar to pure bipartite state en-
contents of the state as introduced by Brillouin. tanglement where we have reversibility, and there is unique

One can ask the question: can this function be derivedneasure of entanglemeg@ntropy of subsystenj7,8].
independently of the notion of entropy, so that it is not justa In the present work, we consider a restricted class of op-
subtraction of two known terms, but rather has an autonoerations we shall call noisy operatio$O) [9] and use this
mous meaning? to develop a unigue measure for information. Essentially, we

It turns out that there it is such a possibility and it is consider operations where one is allowed to use random
offered by quantum information theory: in R¢2] we have noise as a free resource. Perhaps counter intuitively, random-
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ness allows one to make the transformations reversible: thigon problem. On the extreme end, one allows all operations,
number of pure states and noise which is needed to form thend adding any ancilla. Then any state can be created for
state, is the same as the amount that can be obtained from tfree, so that there is no resources to be manipulated, and the
state. The usual interpretation of mixed states is that theitheory becomes trivial.
creation involves irreversibly destroying information. Here  As one knows, any operation can be composed out of a
we see that if one has access to noise as a resource, thenitary operation, adding an ancilla in some state, and re-
there is no irreversibility. moving an ancilla. Suppose that we want to make the theory
This has interesting consequences concerning entangleentrivial, while keeping all unitaries in our class of allow-
ment theory, since there, the irreversibility is often associatedble operations. The only way is then to restrict the state of
with the fact that one is dealing with mixed states. Here, wehe free ancilla, or somehow restrict removing ancillas. In the
see that transitions into mixed states need not involve irrepresent work, we consider only restrictions to the free an-
versibility. In fact, the axiomatic structure of the paradigm cilla. While one could instead consider restrictions on re-
presented here involving mixed states is very similar to puremoving ancillas, we believe that this would give identical
state entanglement manipulation. This shows thatriori, results[13].
mixed-state entanglement manipulation need not involve ir- Thus we will restrict to choosing states that can be added
reversibility, leaving open the question of why entanglemenfor free by means of ancillas. Remarkably, the choice of
manipulation involves inevitable irreversibilities. which ancillas to allow is forced on us. It turns out that the
Other restricted classes of operations may lead one to findnly choice that does not make the theory trivial is that the
uniqgue measures for other quantities. Here, we consider thieee ancilla must be in maximally mixed state. Essentially,
optimal transitions between states by means of NO. In theve will see in Sec. VII that if one allows any other ancilla,
asymptotic limit of many identical copies, we will obtain that then all transition rates become infinite. This fixes the class
there is only one function that does not increase under NOof operations we will call NO. The class NO is therefore very
We will establish that the optimal ratio of conversion be-natural, as it is the only one that gives nontrivial transition
tween a state of a N qubit system and a state of a N’ rates.
qubit system is equal tl— S(@)/N’ — S(o). The transitions In entanglement theory, an entangled state of Schmidt
are reversible, even though mixed states are involved. Firank 2 represents the same resource whether it acts on a
nally we will consider operations without free noisy ancillas. Hilbert spaceC2® C? or on a larger spac€?® CY. This is
Then the mixed states have to be created from pure states bgcause embedding a state into a larger Hilbert space is
partial trace, which introduces irreversibility. We discuss theequivalent to adding local ancillas in a pure state. In our
implications of our results on understanding entanglementase, a state acting on a Hilbert spa2is not the same
transformations, especially bound entanglement. resource as the one acting @f. This is because adding
The work is organized as follows. In Sec. Il we introduceancilla in a pure state is adding a new resource.
the class of noisy operations. Then in Sec. Ill we show how
one can transform a given state into another state, under NO,
provided certain conditions are met. In Sec. IV we go to the
asymptotic regime, and show that these transition rates are
optimal. This will allow us to find the unique measure of In this section we will present a protocol to transform
information in Sec. V. In Sec. VI we discuss the case ofsingle copies of states into each other by diluting them with
transitions without access to noise, and give the transitiomoise. We will show that the transition from a single copy of
rates in this case. We discuss this in terms of understanding to a single copy of state is possible if and only if the
the source of irreversibility in transitions, and relate it to |atter is more mixedthan the former. This is provided the
attempts to understand entanglement in Sec. VII. We conHilbert space is the same for both states, i.e., they occupy the
clude with some open questions in Sec. VIIL. same number of qubits. We will also consider the transitions
between systems of different number of qubits. One then has
to add maximally mixed ancillas to one of the systdimisto
Il. NOISY OPERATIONS both), so that the number of qubits become equal. Then we

Perhaps the most important restricted class of operation@n apply the above criterion. The term “more mixed#]
that has been considered in quantum information theory i§as the following meaning: for statgsand’ on the Hil-
LOCC, which was introduced in the context of understand-bert space{=C¢, we say thato is more mixed tharp’
ing entanglement in shared systems. One is then interested (@ > ") if their eigenvalues in decreasing order satisfy
guestions as how many maximally entangled states can E!‘:ﬁ\ﬁzﬁl)\ﬁ, for all k<sdim™X. (In the same way, one
particular state be transformed irfice., therate of distilling can say that some probability distribution is more mixed than
singled. However, analyzing LOCC operations proved ratheranother ong.If the state is more mixed, its eigendistribution
difficult. Therefore, to facilitate the investigation of entangle-is more spread. The order introduced by the relation”*
ment, a larger class of operations was analyzed—the sdias a largest element—the maximally mixed state. It is easy
called PPT operation§10—-12, which are superoperators to see that it is more mixed than any other state.
that preserve the positivity of partial transpose. Let us now prove the main result of this section.

One can also consider other restricted classes of oper&roposition 1. For statep and o of dlevel systems the
tions, and consider various versions of the state transformdransition ¢— o by NO is possible if and only > o

Ill. OPTIMAL TRANSITIONS UNDER NOISY
OPERATIONS: SINGLE-COPY CASE
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Proof. “ =" follows from the fact[15] thato>g iff there ~ andq; the eigenvalues ofr. We will consider stateo ® 7y
exists a bistochastic mal6] that mapse into o. Since (wherery is an added maximally mixed state of dimension
noisy operationgfor equal input and output dimensigrewe  N) and construct some permutation of eigenvalues of the
bistochastic, thep — o implies o> 9. To prove “=" we latter density matrix. After such permutation, and removing
cannot use the result of R¢f5], because we do not know if the ancilla, the state will approaehfor larged. For simplic-
the existing map can be taken to be noisy operations. Instedty we will assume that there are only two permutations
we will construct the map explicitly. Let us then assume thatand o,, so thatq;= ap, iyt (1- a)pgz(i).

o> . First we can always rotafg unitarily, so that it com- The statep ® 7y consists of blocks, of dimensiomg
mutes witho. Thus we can assume without loss of general-

ity that the states commute. We can now use the[fadtthat 1

if probability distribution{q;} is more mixed thagp;}, then ﬁ(}’l’ ceesDlseeesDds . ,pd)_ @)

the former can be obtained from the latter via a mixture of
permutations, i.e.,

N N

We will divide each block into two groups of entrids; first
_2 ) entries and the redti,=N—N; entries. Now we will apply
4= j @iPoyi» permutationo; to the first entries of each block. Similarly,
we apply it to the second set of entries, and so on, in the first
whereX;a;=1, while o are permutations of indices of the group. The second group is subjected to permutatioin a
probability distribution. Let them; be the eigenvalues @f similar way. The resulting density matrix is

1
ﬁ(}’al(l) s sPo (1Poy(1ys o+ sPoy(1) - Pa(N)s + + - sPo (NP ay(Nys « « - ,Paz(N))_ 3

Ny Na Ny No

Now we trace out the ancilla. This means that we sum allThe rate of given protocol of asymptoti&g— o transition is

elements of each block, and instead of the block, take thgiven by the asymptotic ratio lipim,/n). The optimal tran-

resulting number. The obtained eigendistribution is given bysition rate denoted bRR(¢ — o) is given by supremum over
rates attainable by protocols that satisfy the asymptotic accu-

~ Ny N, racy condition(7).
A= Po) T 1 Posti)- (4)
A. Conversion from mixed to pure states
Choosing largeN and suitableN,, N, one can approach We will now consider the optimal rate for transition to the
and 1— « with arbitrarily high accuracy. This ends the proof one qubit pure state, i.e., o — 7. We will show that ifo is
of the proposition. a state ofd-level system then
R(e—m)=1(0), (8)

IV. OPTIMAL TRANSITIONS UNDER NOISY

OPERATIONS: ASYMPTOTIC REGIME wherel =N—S(p) with N=log,d being the amount of qu-
bits occupied by the stai. In other words, the transforma-
tion from pure states to mixed states is reversible, in the
sense that the number of pure states which is needed, or
which can be obtained, is the same. The proof could be just
o ) ) use of Schumacher compressi8], however, with a dif-
Usually it is not possible to obtain a perfect state™ from  ferent interpretatior(similar to that in Ref[19]). We will
e®" even if an arbitrarily large amount of copies can beg|sp show that conversely, the amount of copies in state

Here we will consider asymptotic transitions of type

Q®n*>0_®mn. (5)

used. Itis, however, possible to obtain the siatethat will  that can be obtained under NO per input pure qubit is also
asymptotically converge to®™, equal tol. The proofs will be similar to the reasoning of
Nielsen in Ref.[20] where he derived asymptotic rates of

" —ay=a®m. (6) pure-state entanglement manipulations from single copies

based on majorization.
Thus we allow for inaccuracy, provided it vanishes in the We will use law of large numberd8,21], which implies
limit of large n. The fidelity can be measured by the tracethat there exists a subset of eigenvalues8f' called the

norm, i.e., one requires that typical setT with useful properties. More precisely, given
€,6>0, there exists large enough and the sef of eigen-
lon—a®™|—0 for n—oo. (7)  values such that
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One could think that we obtain the pure qubits exactly.

ZT pi=1—e¢, (9 However, we used Proposition 1, where the transition is not
bie exact, though arbitrarily precise.
2 N(SH)<p <2 M) for peT. (10) Yet we have not transformeg®" but Otyp- We now take

instead ofg,,,, the stateo®" and apply the same action,

These are thus the eigenvalues that carry almost the wholhich transformedg, into the required amount of pure
weight and they are more or less uniform. One can considequbits (called the actionA). It is now easy to see that

two statesgyy, and @aryp, given by A(0®") is close to a final state of pure qubits, ;. Indeed,
we have
1 s 1 s
yp=g 2 Pl ayp=7—5 2 PiliXil, IA(@®") = moull =[A(@®M — Aleypll<[e®"~ eyl <e,
pieT pi¢T (11) (17)

where the second last inequality comes from the fact that
completely positive trace-preserving maps are contractions
on Hermitian operators in trace norms, i|e\,(A)|<| Al for

where |i) are eigenvectors corresponding @, and c
=2p TPi is a normalization constant. Clea®y”" is a mix-

ture of those states Hermitian A [22].
on_ 1 12 Now we should show that the converse is possible, i.e., to
@""=Cuypt(1~C)atyp- 12 create a state ®" it is sufficient to start with logd—S pure

qubits per output copy of. However, the proof is similar to

the above. The only difference is that we now use the other

loyp—0®"<2e. (13) part of Eq.(10). Namely, we note thap,, is more mixed
than the state with eigenvalues

Sincec=1- ¢ one finds thap,,, is close top®",

Thus it suffices to use,,, instead ofg“". Let us first show

that one can conveg;,, into approximatelyn(N—S) cop- 1
ies of pure qubits. To this end, note that the eigenvalues of —5 . 50,...07,
; D D' —— (18
Otyp Satisfy ——— &-p'
N = Pi_ }2,n(5+ 5 (14 whereD’ is given by
cC cC
, 1
Thus g,y is less mixed than the statg,,, with eigenvalues Di=l7—| (19
- 27n(Sf 5)
1 1 ¢
D ,B,O,...,O, ) - .
\ e (15  Again, due to Prcl>p_osmon 1 we can tugy, into the latter
D state. Changin@®’ into a suitable power of Zso that it is
whereD is given by smaller thanD’ of the above equation hence passing from
Otyp is still possiblg one gets that the latter state is a tensor
1 product of log D’ qubits in maximally mixed states and ap-
D= PN (16)  proximatelyn(log, d—S) qubits in pure states.
Z on(s+9) Thus starting witm(log, d—9) qubits in a pure state, one
¢ has to add logD’ qubits in the maximally mixed state, and

pass to the statg,,, which can be made arbitrarily close to

(the eigenvectors 0p,,; are irrelevant, as we can perform 0" by choosing smalk.

any unitary transformation for freeBoth of the states act on
ad" dimensional space, so that we can apply our Proposition
1. Thus it is possible to go fron@, t0 @, Via noisy
operations. If we choos® to be larger than in Eq(16),
namely, so that it is a power of 2, the transition is still pos-  We will now show that the obtained rates are optimal. We
sible. The smallest such satisfies logD=[n(St+8)|<n(S  will follow Ref. [7] invoking standard thermodynamical rea-
+6)+1. Then the state,, represents exactly the tensor soning concerning Carnot efficiendgf. Ref. [8]). Essen-
product of logD qubits in maximally mixed state and tially, we will show thatl = N—S cannot increase under NO
nlog, d—log, D=n(log,d—S—48)—1 qubits in pure states. maps, and then show that if our transitions are not optimal,
Thus one can remove the mixed qubits, and keep the olsne could increaseunder NO. We will use the reversibility
tained pure qubits. Call the obtained statg,;. The rate of  of our protocol, and also the asymptotic continuity property
the transition is the number of obtained pure qubits dividedbf von Neumann entropy.

B. Optimality of log, d—S transition rates and optimal
mixed-mixed transition rates

by n. For largen this tends to logd—S— 4. Sinced can be We will prove optimality by contradiction. Suppose that
chosen arbitrarily small, we obtain the optimal asymptoticfor the transition to pure qubiig— 7 one can obtain a better
rate equal to logd—S. rate tharR(¢ — 7) =N—S (whereN=log, d, ¢ acts onCY).
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Then one can run the following transition way by just distilling pure states and then creating another
mixed state. This gives that the optimal ratio of conversion
T—Q—, (20 between state of a N qubit system and state of a N’

and obtain a rate of such transition which is more than 1. Inqublt system is equal to

other words, employing<<m(N—S) pure qubits, according N ;L

to the assumption, one geatspairs in statep. Then one can R(e—0)=N-S()N"=S(0). (24
apply the protocol of the preceding section to theairs of

o, to obtainm(N—S) pure qubits. Thus one would be able V. INFORMATION MONOTONES AND THE UNIQUE

to increasethe number of pure qubits fromto m. Repeating MEASURE OF INFORMATION
the procedure one can obtain an arbitrary number of pure
qubits. Here we will derive the unique measure of information

Now, we have to show that this is impossible. This fol- with virtually no assumptions. The derivation will be mostly
lows from the fact thatN—S cannot increase under NO operational. We will actually assume two properties. The first
maps. Indeed, unitary maps do not change the quantity. Pagill concern the intuition of what information is—namely,
tial trace of one qubit decreasésby 1, and can increase noisy operations should not increase it. Indeed, information,
entropy at most by 1. Finally, adding a system in maximallywhatever it is, should not be increased by unitary operations,
mixed state, increasé$ by 1, but also increases entropy by by adding a qubit in maximally mixed statsupposed to be
1. Now, form pure qubitsN—S=m, while for n qubits we  informationles$ and discarding qubitrather obvious re-
haveN—S=n<m, thus the functiorN—S must increase. quirement. Thus we postulate the following.

This is yet not the full proof, as we have made an implicit ~ Postulate 1. Ishould be monotonic under noisy opera-
assumption, that the final qubits are exactly pure states. lfons.
fact it is not true, as all our conversions are only asymptoti- We will actually see in the following section that this
cally true. However, the von Neumann entropy is asymptotipostulate is rigid, in the sense that if instead of noisy opera-
cally continuous, namely, fdd qubit state ando we have  tions, we had chosen operations with a free resource other
[23] than maximally mixed states, the theory would be trivial, and

all rates would be infinite.

S(e)~S(a)|<Nlle—al+0(1). (2D The second assumption will not be connected with the
expected properties of information. Rather it will display the
properties any function used in the asymptotic regifmeit
of many copiesshould possess.

Postulate 2. lis asymptotically continuous.

By asymptotically continuous, one means that for the
state oy, and o of N qubits, such thafjoy— on||—0 for
N—-c. One would then require

In our case we take ==7°" and o,, being the actual final
state. We know then th&(¢) =0 and thaf|o,,,— ¢|| tends to
zero asm goes to infinity. ThugS(o,)|/m—0 for largem.
Thus thedensityof the functionl tends to 1 for the state,, .
This density is also 1 for the initial state®". Thus we can
write that in our process,,=m,—o(m,); on the other
handl;,=n. We will show that for largen (which also im-
plies thatm, is large 1;,<l,,. Indeed that latter inequality

is equivalent to the following set of equivalent inequalities: [f(en) = f(on)]| 0. (25
m,—o(m,)>n, We then say thattis asymptotically continuou§ he motiva-
tion for this is that in the asymptotic regime, one identifies
m, o(m,) the states that asymptotically converge to each other. Thus
o oL (22)  the only relevant functions of states are those that also some-
how identify those states. Of course in the asymptotic limit,
m o(m,) the inter_esting_ functi0n§_ become_infinite, so that one has to
—n( 1- —n> 1 pass to intensive quantities and divide by the number of cop-
n My ies to obtairdensities The relevant functions would be those

The quantity inside the bracket tends to 1, while in our pro-Whose densities converge on convergent sequences. Note

tocol m, /n goes to a number greater than 1. Thus the in_that this not merely a technical requirement. Rather this fol-

equality holds, which is impossible. Therefore our assump!OWS from the basic assumption of the asympotic regime—

tion that our rate is not optimal is incorrect. In a similar way Fhat similar states shou!d be identified._ T_he _Iatter gssumption
one can show that one cannot obtain a better rate than = "ccessan, and phy_s,lcally natural—it is simply impossible
to obtain exact transitions.
1 Let us now prove that there is a unique function that sat-
R(m—p)= T (23 isfies these two postulates.
The proof can be obtained from Ref24,25. According

while going from pure states to mixed ones. to [25] the following inequality is true:

Clearly since the transitions from mixed to pure states are .
reversible and optimal, one can use these protocols to go f“(e)
. . . . R(o—o)< m—
from one mixed state to another in a reversible and optimal f

(o)’ 29
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whereR denotes the rate of transition under any given classnd therefore, not all states can be obtained for free. We thus
of operations, anflis an asymptotically continuous function assume that our operations include unitary transformations,
nonincreasing under the class. The symbaitands foregu-  and partial trace, and will try to play with third component—
larization. The regularization of functiorf(¢) is M*(¢)  adding ancillas.

=lim,_.(1n)M(g®"). Suppose that instead of maximally mixed stateswe
Choosing asr the one qubit pure state and exchanging chose any other stagg, as a free resource. This means that
the roles ofg and o we obtain we can use arbitrarily many copies of this state. Fro§f
we can producevithout use of noispure states by Schuma-
“(p) cher compressiof18,19 (in this paper we have not de-
R(Q_)W)\fx(—ﬂ-)’ (27) scribed this—we always used nois&hus we have pure
states for free. From pure states we can produce noise by
() entangling two qubits in a maximally entangled state and
R(m—p)< = rejecting one qubit. The remaining one will be in a maxi-
(e) mally mixed state. This is not very efficient: we spend two

qubits in a pure state to get one qubit of noise. However,

pure states are for free, hence this method is sufficiently

good in our situation. Now we have both noise and pure
(28)  states for free, hence via the protocol described in the pre-
ceding section, we can create any state. The theory becomes
trivial—all states are for free; all rates are infinite. Thus if we
allow adding systems for free at all, we can only add ones in
. - ; ; . maximally mixed state. We thus see that Postulate 1 is rather
obtain thatf™=1. In this sensd is the unique measure of rigid, in the sense that changing it to a class of operations

mformqﬂon. . . . which allows any other ancilla, will result in a trivial theory.
It is interesting to see how other measures of information

are removed in the asymptotic limit. Suppose that we con-
sider measures of information that only satisfying the first
postulate. Since we see that everything is very similar to the ) o
problem of pure-state entanglement, one is not surprised that NOteé that we have a kind of reversibility: the amount of
all monotones under NO are so called Shur concave fund®Ure qubits that can be drawn from a given state is equal to
tions of the density matrix. In particular there is a set ofth® amount we need to create the state. Let us consider an-
information measure®r “monotones” which is enough to  Other situation, where we count everythirigo free re-
determine if a transition is possible. These are the so calle§OUrce. We then see that there is basic irreversibility: tran-
Ky Fank norms, i.e., sums of the firgtlargest eigenvalues. Sition from almost any statep to any other state is

By definition of the “more mixed” condition, we have irreversible. For example, one can dravpure qublt§ from

> iff for all k norms,||e||¢<||o]|. Thus the process o, but to createp, one.needs many more pure qub|ts. There
.o is possible iff in the process no monotone increases. '€ Wo reasons for this. The first reason is trivial—to et

One might get the feeling that there is some contradictioffluPits in statec one needd qubits anyway. This is 1 qubit
here. Namely, in asymptotic transitions, the only restrictionP®" output qubits, which is already more thieAN—S(@).
for the rate is the monotonie Thus there are allowed tran- NOW, however, even more pure qubits are needed. Namely,
sitions for which other monotones increase. Indeed, we salf'€ Output state has nonzero entropy. However, the only way
that 0®"— o®™ is possible, though it is clear that some of of producing entropy o_ut of pure states is rather wasteful:
the monotones will increase. The solution is that, in fact weP"€ entangles two qubits, and removes one of ti@snal-
are not talking about exact transitions. Thus in the actuai®@dy described in the preceding sectiondeed, previously,
transition, the final state obeys the nonincreasing of mono€ had a free source of entropy—maximally mixed states,
tones. For that state, all monotones are not greater than f§°W We have only pure states to our disposal, and we count
the initial state. The monotones are, however, not asymptotF—hem- , . . )
cally continuous, and they see differences between that ac- Interestingly, in the classical world there is no way to
tual state, and the required stat€™. The only monotone produce entropy at all. Therefore in classical statistical me-

that does not see the differencd i herefore only this func- €hanics, one has to assume mixed state from the very begin-
tion survives in the asymptotic limit. ning. Quantum mechanics allows one to produce mixed

states out of pure ones. This may lead one to prefer Bayes
concept of probability.

Proposition 2. NS pure qubits are necessary and suffi-

One could think that the way we have obtained the infor-cient to producep if one does not have access to noise
mation measure is not fully operational, as we assumed, That this is sufficient can be seen by noting thatan be
somewhat arbitrarily that the free resource is the maximallycreated bypurificationof ¢, ,. We thus consider a pure state
mixed state. Here we will show that this is the only reason-of two systemsA andB. SubsystenA hasN qubits, and its
able choice, if we want to allow ancillas at all, and if the state isg,,,. The state of subsysted (the purification is
theory is to be nontrivial, i.e., the transition rates are finite,alsog,,, but we do not need it to be aqubit system, but

Denoting 1f”(7r) =a we obtain

R(Q—>7T)Safoo(9)$ m

However, we have explicit protocols which show thr{to
—a)=| and 1R(7w— p)=<I. Thus up to the constamt we

VI. REVERSIBILITY AND IRREVERSIBILITY

The choice of free resource is unique

062104-6



REVERSIBLE TRANSFORMATIONS FROM PURE TO. .. PHYSICAL REVIEW 8V, 062104 (2003

rather want it to use the smallest possible amount of qubitscomes and it will yield a resuk=0, ... n telling us how

The latter is equal t& qubits. ThudN+ S qubits in pure state many zeros there are. This projects us onto a state that has
are needed to prepagg,, (preparation is discarding the sys- dy=(}) basis vectors, all with equal coefficients. That is, it is
tem B). That this number of qubits are necessary simplyproportional to the identity. The probability of finding a par-
stems from the fact that we start from an initially pure state ticular outcomek is p,=(3)a?b?"% and since it does not,

so to get a mixed state we must trace out part of the initialn general, span the entire Hilbert space, it can be unitarily
system, and the “garbage” that gets traced out must have atansformed to yield ,=n—log, d, pure states.

leastS qubits (since the number of qubits of garbage cannot  Each proces® —{py.py} after whichl, pure states are

be less than its entropy, and the garbage must have erropyextracted fronp, with probability p, provides
since the system is initially puréWe must also have at least

N qubits left over to form the state. So, in general, to create

the N qubit statep we needN+ S pure qubits, but we can N0=E plk—H{pP}H (31
draw onlyN— S qubits. The “information of preparation” is K

much greater than "information of distillation.” During the

transition total pure states. The Shannon entrdg{p}) of distribu-
tion {p,} equals the cost of the erasure of information which
Y— 00— (299  allows us to work with an ensemble pf’s [26]. Thus we
needl.,=H({p}) bits of erasure to pay for the next part of
we lose 5 pure qubits. the scheme, in which they draw,p,l, pure states. This

Proposition 3. To produce the mixed-mixed transitign quantity, which is of order logn is negligible in the largen
— o, without access to noisAN+AS qubits are necessary limit. We can divide the above equation Ioyto obtain the
and sufficient whereAN=N(o)—N(g) and AS=S(0) amount of extractable pure states per qubit.
—S(0).

To see that these resources are necessary, we note that a No/n=1-S(p), (32
general protocol involves an initial stages | ) (|, where

|) is some initial pure state. One then performs unitaries tQvhere the erasure cost has been neglected since it is of order
give a stateg’, and then one traces out the garbage  |og, n/n. This completes our proof of the proposition.

leave the stater. We can then use the triangle inequality This allows one to think of states in the following way:
) the mixed state consists &f— S bits of information andS
|S(0)—S(9)|<S(e")=S(e) (30 bhits of noise. Thus to produce it one nedds S qubits in

) ) pure states, to account for information, arél @ubits to pro-
to see that the number of garbage bits traced\{@) satis-  gyce noise. Indeed, one bit of noise costs two pure qubits—
fies N(g)=S(g)=AS [if S(g)=S(o) then trivially S(g)  since noise is produced by rejecting part of entangled sys-
=AS]. So, we need a minimum M (o) +AS pure qubitsto  tem.
createc, but we already hat(p) bits to start with, so the It is interesting that one needs to add a free resource
minimum amount of additional qubits neededAidl + AS. (noisa in order to achieve efficient transitions from pure to

The protocol that realizes this bound is to reversibly distill mixed states which are much less “useful” than mixed-to-
¢ into N(e)—S(e) pure qubits and() bits of noise ina  pure transitions. Indeed, the latter is a task that can be asso-
manner that we shall shortly describe. We then add in agjated with such actions as cooling, error correction, increas-
additionalAN—AS pure qubits. However, we also neA®  ing signal, etc. This useful task can be performethoutthe
bits of noise, which costs2S pure stategthis is the only  help of an additional resource at the optimal rate. Only the
part of the protocol which is irreversibleWe then creater converse direction, which is not usefiwho wants to have
reversibly as described in the preceding section, using thgixed states instead of pure ongs@eds noise, and is much
AN+ AS additional qubits. less efficient without noise.

The distillation procedure can be realized using a scheme There are other cases where reversibility needs noise. For
similar to quantum data compressidi8] and to the concen- example, according to the Shannon second theorem, one can
tration of entanglement scheme of RE8] (here, however, simulate one use of noiseless channel iy Gises of a noisy
the procedure is applied to the entire sfalhe protocol is  channel of capacitf. However, one cannot do the converse,
essentially a projective measurement onto blocks propotte., simulate noisy channels by a noiseless one, without shar-
tional to the identity. On average, the size of the Hilberting random correlated daf27]. Again, the useful task does
space that the state is projected onto will be of s$¢e),  not need any additional resource, while the useless task
and so, the state can then be unitarily rotated to leav@eeds one. This is clear, if one realizes that in both situations
N(e)—S(e) pure states. We will explicitly give the protocol we deal with dilution of some valuable resource into noise.
for n qubits, i.e.N(¢) =1 but the extension to higher dimen- Similarly in thermodynamics, the thermodynamical system
sional states is straightforward. with difference of temperature can be thought as being “pure

We can write the state in the eigenbasis which we label agnergy” (such as mechanical enejggliluted into “pure
O0and 1, i.e.p=al0)+b|1). We have have copies, i.e., we heat.” To draw work out of it one does not need any addi-
operate on the state®", and then we measure how many tional resource. However, to create the system of heat baths
zeros this state has. This is a measurement witlil out-  efficiently, one needs a heat reservoir at the beginning. Oth-
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erwise, one has to spend work to produce heat, exactly as weowever, it is known that for a number of mixed states, the

needed to spend pure states to produce noise. distillable entanglement is not equal to the entanglement cost

[28]. One has irreversibility. It has generally been assumed

VIl. DISCUSSION: COMPARISON WITH that this is because one is making transformations between
ENTANGLEMENT TRANSFORMATIONS pure stategin this case, singleisand the mixed statp,g.

. : . . One therefore expects some information loss. However, as
The paradigm discussed in this paper may be useful to .
e have seen here, one can make transformations between

understand the problems of entanglement theory. As on ) . .
P g 34 ure and mixed states completely reversible, provided one

knows there is a basic irreversibility in entanglement trans? . dindeed. in th di f |
formations. We deal there with bipartite systems, shared b{@S access to noise. And indeed, in the paradigm of entangle-

distant parties. One is interested in how many pure singletdent theory, there is no reason why two distant parties could
are needed to form a stapa (the entanglement cosand ~ NOt s_hare some mmal noisy resource. There is no speclgl
also, how many singlets can be obtained from the gthe  Priori reason for irreversibility in entanglement theory. It is
distillable entanglemeit If pag is pure, then the entangle- therefore interesting to compare the situation discussed here
ment cost is equal to the distillable entanglement in the limitwith that of entanglement theory. This comparison is sum-
of many copies op g [8]. The tranformations are reversible. merized in the following table, and described below.

Paradigm Class of operations Free resource Expensive resource Reversible
Information NO Maximally mixed states Pure states Yes
Pure-state entanglement LOCC Separable states Singlets Yes
Mixed-state entanglement LOCC Separable states Singlets No
Thermodynamics Adiabatic processes Hexst| Work Yes

TOE [30,3]] LOCC + PPT states PPT states Singlets (M
PPT[32] PPT operations PPT states Singlets In some cases

Instead of NO, in entanglement theory we have theramixed-state entanglement and the paradigh®f pure en-
LOCC, which means thatl) arbitrarylocal unitary opera- tanglement, andll) the present NO one?
tions can be performed?) any local ancilla can be added, In both (I) and(ll) we have the following common point.
(3) any local partial trace can be performed, at®) qubits  We define states that can be added for free, and then the class
can be communicated between distant parties only via af operations. Then in both cases it turns out that the free
dephasing channellhe role of noise is played by separable states remain the only nontrivial set of states closed under
states—all the states that can be produced for free within théine class of operations. Now in mixed-state entanglement we
allowed class of operations are free resources. The role ahay have another basic element-bound entangled ones. One
pure states is played by pure entangled states. cannot obtain them from separable states, but also one can-
One could imagine that like with “local information not obtain any pure entanglement from them. Thus the set of
theory,” in entanglement theory, any state is a reversiblestates closed under the class of operations is greater than it
mixture of two phases: pure entanglement and a separableould seem from the construction of the paradigm. Thus in
noisy phase. One should be able to draw the same amount situations(l) and(ll) we have only two elements: useful and
pure entanglement from a given state as is needed to producseless. In paradigrtil) the useful element is information,
it. Creation of mixed states would be reversibliédution of  the useless one being noise. In paradighh the useful ele-
pure entanglement into mixed, separable states. ment is entanglement, the useless one being separability.
In this simple picture we would have only two kinds of Here, entanglemeritself is divided into at least two phases:
basic elements in entanglement theory: pure entangled sybound and pure. From bound entanglement we cannot make
tems and disentangled systems. One is useful, the other mire states, so we call it useless as well. Thus we can have
useless. A state that is neither pure entangled nor diserstates that have entanglement, but are useless. This is differ-
tangled, consists of those two basic elements. This is in paent from(l) and(ll), but similar to thermodynamics: we have
allel to the paradigm presented in this paper, where the useftihere two forms of energy, useful and useless. In R&f]
elements were pure states, the useless maximally mixede have asked a question—is it possible that mixed-state
ones. entanglement is like thermodynamics. There would be three
As noted, such a situation exists for pure states, where weasic elements: separable states entanglemept bound
can reversibly concentrate and dilute entanglement. Howentanglement, and pure entanglement; similarly as in ther-
ever, such a situation does not exist with mixed states iimodynamics there are states without energy, with disordered
entanglement theory. What is the basic difference betweeanergy(single heat bath and with ordered energynechani-
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cal energy. All three kinds could be reversibly mixed. mation measuré=N-—S cannot decrease under NO, and is

In Ref. [31] it was shown that such a picture can betherefore the unique asymptotically continuous measure of
treated as a sort of “first-order approximation” rather thaninformation. It would be extremely interesting to explore
full description of asymptotic bipartite entanglement. Relatedbther restricted classes of operations in addition to NO, to
questions were studied in Rdf32] where reversibility for see whether there are other nontrivial theories. Exploring the
some states holds, if the so-called PPT superoparators acennection between this, and the LOCC paradigm of en-
allowed[10]. The relation between the latter result and thetanglement theory, would be extremely useful in understand-
“thermodynamic” approach of Ref[31] goes beyond the ing entanglement in distributed quantum systems. Perhaps
scope of this paper and is explained in R&fl] itself. ideas along the lines of Reff31] may prove fruitful.
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