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Reversible transformations from pure to mixed states and the unique measure of information

Michał Horodecki,1 Paweł Horodecki,1 and Jonathan Oppenheim1,2

1Institute of Theoretical Physics and Astrophysics, University of Gdan´sk, Poland
2Racah Institute of Theoretical Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

~Received 6 December 2002; published 20 June 2003!

Transformations from pure to mixed states are usually associated with information loss and irreversibility.
Here, a protocol is demonstrated allowing one to make these transformations reversible. The pure states are
diluted with a random noise source. Using this protocol one can study optimal transformations between states,
and from this derive the unique measure of information. This is compared with irreversible transformations
where one does not have access to noise. The ideas presented here shed some light on attempts to understand
entanglement manipulations and the inevitable irreversibility encountered there where one finds that mixed
states can contain ‘‘bound entanglement.’’
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I. INTRODUCTION

There are two opposing pictures ofinformation. In the
first picture, a source produces a large amount of informa
if it has large entropy. Thus information can be associa
with entropy. This is because the receiver is being inform
only if he is ‘‘surprised.’’ In such an approach the inform
tion has a subjective meaning: something that is known
the sender, but is not known by receiver. The receiver tre
the message as the information, if she did not know it.

One can consider a different approach to information—
objective one where a system represents information if i
in pure state~zero entropy!. The state is itself the informa
tion. This view is more natural in the context of thermod
namics. There, ‘‘knowledge is power’’ in the sense that o
can draw work from a single heat bath by use of system
known pure states@1#. On the other hand, the heat bath
represented by a maximally entropic state, hence it is the
informative one. The pure state represents informat
needed to order the energy of the heat bath.

There can be many candidates for functions to meas
information. However, Shannon recognized that there i
unique function that shares some natural properties to
scribe information. Shannon derived his unique meas
based on the subjective picture of information. Therefore
information function~Shannon entropy! increases as the dis
persion of the probability distribution increases. The sam
true for the generalization of Shannon’s entropy to the qu
tum case which is the von Neumann’s entropyS(%)
52Tr% ln %.

One can consider a measure of objective information,
has the converse tendency: namely,I 5 log2 d2H where
log2 d is the maximal entropy of the system~i.e., the system
hasd states!. In the quantum case it would be log2 d2S(%).
Such a function was naturally interpreted as the informat
contents of the state as introduced by Brillouin.

One can ask the question: can this function be deri
independently of the notion of entropy, so that it is not jus
subtraction of two known terms, but rather has an auto
mous meaning?

It turns out that there it is such a possibility and it
offered by quantum information theory: in Ref.@2# we have
1050-2947/2003/67~6!/062104~9!/$20.00 67 0621
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derived the functionI as the unique one, which does n
increase under some class of operations. The motiva
came from considering information as a resource in dist
uted systems@3#. The main aim of the present paper is
present the full rigorous version of that derivation. In t
process, we give a protocol for reversible transformatio
between states using a random source of noise. We also
cuss these results in the context of the issue of reversib
and entanglement theory.

It is quantum information theory~QIT! that provides us
with a suitable perspective to attack the problem. Indeed,
of the central themes of QIT is the idea ofoptimal transitions
between states under a restricted class of operations. This
originates from attempts to describe entanglement of qu
tum states. Although it was difficult to say what exactly e
tanglement was, it was clear that it could not increase un
the class of operations made up oflocal operations and clas-
sical communication~LOCC! @4,5#. These operations allow
one to use any amount of separable states for free, but do
allow one to create entangled states. One can take the
verse point of view: one starts with a given class of ope
tions ~LOCC operations!, and treat the states that are not fr
as containing a resource, which can be called entanglem
~cf. Ref. @6#!. The basic question of entanglement theory
can state% be transformed intos by LOCC? What is the
optimal rate of such a transition?

In entanglement theory, this allowed one to define a nu
ber of measures of entanglement, since essentially, any f
tion that does not increase under LOCC is a measure. H
ever, thus far, no one has found a unique measure.
essential difficulty~as will become clearer! is that operations
under LOCC are not reversible. However, if one has a
stricted class of operations for which transitions are reve
ible, then we will see that the rate of transitions gives on
unique measure. This is similar to pure bipartite state
tanglement where we have reversibility, and there is uniq
measure of entanglement~entropy of subsystem! @7,8#.

In the present work, we consider a restricted class of
erations we shall call noisy operations~NO! @9# and use this
to develop a unique measure for information. Essentially,
consider operations where one is allowed to use rand
noise as a free resource. Perhaps counter intuitively, rand
©2003 The American Physical Society04-1
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ness allows one to make the transformations reversible:
number of pure states and noise which is needed to form
state, is the same as the amount that can be obtained from
state. The usual interpretation of mixed states is that t
creation involves irreversibly destroying information. He
we see that if one has access to noise as a resource,
there is no irreversibility.

This has interesting consequences concerning entan
ment theory, since there, the irreversibility is often associa
with the fact that one is dealing with mixed states. Here,
see that transitions into mixed states need not involve i
versibility. In fact, the axiomatic structure of the paradig
presented here involving mixed states is very similar to pu
state entanglement manipulation. This shows thata priori,
mixed-state entanglement manipulation need not involve
reversibility, leaving open the question of why entanglem
manipulation involves inevitable irreversibilities.

Other restricted classes of operations may lead one to
unique measures for other quantities. Here, we consider
optimal transitions between states by means of NO. In
asymptotic limit of many identical copies, we will obtain th
there is only one function that does not increase under N
We will establish that the optimal ratio of conversion b
tween a state% of a N qubit system and a states of a N8
qubit system is equal toN2S(%)/N82S(s). The transitions
are reversible, even though mixed states are involved.
nally we will consider operations without free noisy ancilla
Then the mixed states have to be created from pure state
partial trace, which introduces irreversibility. We discuss
implications of our results on understanding entanglem
transformations, especially bound entanglement.

The work is organized as follows. In Sec. II we introdu
the class of noisy operations. Then in Sec. III we show h
one can transform a given state into another state, under
provided certain conditions are met. In Sec. IV we go to
asymptotic regime, and show that these transition rates
optimal. This will allow us to find the unique measure
information in Sec. V. In Sec. VI we discuss the case
transitions without access to noise, and give the transi
rates in this case. We discuss this in terms of understan
the source of irreversibility in transitions, and relate it
attempts to understand entanglement in Sec. VII. We c
clude with some open questions in Sec. VIII.

II. NOISY OPERATIONS

Perhaps the most important restricted class of operat
that has been considered in quantum information theor
LOCC, which was introduced in the context of understan
ing entanglement in shared systems. One is then interest
questions as how many maximally entangled states ca
particular state be transformed into~i.e., therate of distilling
singlet!. However, analyzing LOCC operations proved rath
difficult. Therefore, to facilitate the investigation of entang
ment, a larger class of operations was analyzed—the
called PPT operations@10–12#, which are superoperator
that preserve the positivity of partial transpose.

One can also consider other restricted classes of op
tions, and consider various versions of the state transfor
06210
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tion problem. On the extreme end, one allows all operatio
and adding any ancilla. Then any state can be created
free, so that there is no resources to be manipulated, and
theory becomes trivial.

As one knows, any operation can be composed out o
unitary operation, adding an ancilla in some state, and
moving an ancilla. Suppose that we want to make the the
nontrivial, while keeping all unitaries in our class of allow
able operations. The only way is then to restrict the state
the free ancilla, or somehow restrict removing ancillas. In
present work, we consider only restrictions to the free
cilla. While one could instead consider restrictions on
moving ancillas, we believe that this would give identic
results@13#.

Thus we will restrict to choosing states that can be ad
for free by means of ancillas. Remarkably, the choice
which ancillas to allow is forced on us. It turns out that t
only choice that does not make the theory trivial is that
free ancilla must be in maximally mixed state. Essentia
we will see in Sec. VII that if one allows any other ancill
then all transition rates become infinite. This fixes the cl
of operations we will call NO. The class NO is therefore ve
natural, as it is the only one that gives nontrivial transiti
rates.

In entanglement theory, an entangled state of Schm
rank 2 represents the same resource whether it acts
Hilbert spaceC2

^ C2 or on a larger spaceCd
^ Cd. This is

because embedding a state into a larger Hilbert spac
equivalent to adding local ancillas in a pure state. In o
case, a state acting on a Hilbert spaceC2 is not the same
resource as the one acting onCd. This is because adding
ancilla in a pure state is adding a new resource.

III. OPTIMAL TRANSITIONS UNDER NOISY
OPERATIONS: SINGLE-COPY CASE

In this section we will present a protocol to transfor
single copies of states into each other by diluting them w
noise. We will show that the transition from a single copy
% to a single copy of states is possible if and only if the
latter is more mixedthan the former. This is provided th
Hilbert space is the same for both states, i.e., they occupy
same number of qubits. We will also consider the transitio
between systems of different number of qubits. One then
to add maximally mixed ancillas to one of the systems~or to
both!, so that the number of qubits become equal. Then
can apply the above criterion. The term ‘‘more mixed’’@14#
has the following meaning: for states% and%8 on the Hil-
bert spaceH5Cd, we say that% is more mixed than%8
(%s%8) if their eigenvalues in decreasing order satis
( i 51

k lk<( i 51
k lk8 , for all k<dimH. ~In the same way, one

can say that some probability distribution is more mixed th
another one.! If the state is more mixed, its eigendistributio
is more spread. The order introduced by the relation ‘‘s ’’
has a largest element—the maximally mixed state. It is e
to see that it is more mixed than any other state.

Let us now prove the main result of this sectio
Proposition 1. For states% and s of d-level systems the
transition %→s by NO is possible if and only if%ss.
4-2
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Proof. ‘‘ ⇒ ’’ follows from the fact@15# thatss% iff there
exists a bistochastic map@16# that maps% into s. Since
noisy operations~for equal input and output dimensions! are
bistochastic, then%→s implies ss%. To prove ‘‘⇐ ’’ we
cannot use the result of Ref.@15#, because we do not know i
the existing map can be taken to be noisy operations. Ins
we will construct the map explicitly. Let us then assume t
ss%. First we can always rotate% unitarily, so that it com-
mutes withs. Thus we can assume without loss of gener
ity that the states commute. We can now use the fact@17# that
if probability distribution$qi% is more mixed than$pi%, then
the former can be obtained from the latter via a mixture
permutations, i.e.,

qi5(
j

a j ps j ( i )
, ~1!

where( ja j51, while s j are permutations of indices of th
probability distribution. Let thenpi be the eigenvalues of%
a
th
b

of

be

he
ce
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and qi the eigenvalues ofs. We will consider state% ^ tN
~wheretN is an added maximally mixed state of dimensi
N) and construct some permutation of eigenvalues of
latter density matrix. After such permutation, and removi
the ancilla, the state will approachs for larged. For simplic-
ity we will assume that there are only two permutationss1
ands2 , so thatqi5aps1( i )1(12a)ps2( i ) .

The state% ^ tN consists of blocks, of dimensionsN,

. ~2!

We will divide each block into two groups of entries:N1 first
entries and the restN25N2N1 entries. Now we will apply
permutations1 to the first entries of each block. Similarly
we apply it to the second set of entries, and so on, in the
group. The second group is subjected to permutations2 in a
similar way. The resulting density matrix is
. ~3!
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Now we trace out the ancilla. This means that we sum
elements of each block, and instead of the block, take
resulting number. The obtained eigendistribution is given

q̃i5
N1

N
ps1( i )1

N2

N
ps2( i ) . ~4!

Choosing largeN and suitableN1 , N2 one can approacha
and 12a with arbitrarily high accuracy. This ends the pro
of the proposition.

IV. OPTIMAL TRANSITIONS UNDER NOISY
OPERATIONS: ASYMPTOTIC REGIME

Here we will consider asymptotic transitions of type

% ^ n→s ^ mn. ~5!

Usually it is not possible to obtain a perfect states ^ mn from
% ^ n even if an arbitrarily large amount of copies can
used. It is, however, possible to obtain the statesn that will
asymptotically converge tos ^ mn,

% ^ n→sn's ^ mn. ~6!

Thus we allow for inaccuracy, provided it vanishes in t
limit of large n. The fidelity can be measured by the tra
norm, i.e., one requires that

isn2s ^ mni→0 for n→`. ~7!
ll
e
y

The rate of given protocol of asymptotic%→s transition is
given by the asymptotic ratio limn(mn /n). The optimal tran-
sition rate denoted byR(%→s) is given by supremum ove
rates attainable by protocols that satisfy the asymptotic ac
racy condition~7!.

A. Conversion from mixed to pure states

We will now consider the optimal rate for transition to th
one qubit pure statep, i.e.,%→p. We will show that if% is
a state ofd-level system then

R~%→p!5I ~% !, ~8!

whereI 5N2S(%) with N5 log2 d being the amount of qu-
bits occupied by the state%. In other words, the transforma
tion from pure states to mixed states is reversible, in
sense that the number of pure states which is needed
which can be obtained, is the same. The proof could be
use of Schumacher compression@18#, however, with a dif-
ferent interpretation~similar to that in Ref.@19#!. We will
also show that conversely, the amount of copies in stat%
that can be obtained under NO per input pure qubit is a
equal to I. The proofs will be similar to the reasoning o
Nielsen in Ref.@20# where he derived asymptotic rates
pure-state entanglement manipulations from single cop
based on majorization.

We will use law of large numbers@18,21#, which implies
that there exists a subset of eigenvalues of% ^ n called the
typical setT with useful properties. More precisely, give
e,d.0, there exists large enoughn, and the setT of eigen-
values such that
4-3
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(
piPT

pi>12e, ~9!

22n(S1d)<pi<22n(S2d) for piPT . ~10!

These are thus the eigenvalues that carry almost the w
weight and they are more or less uniform. One can cons
two states% typ and%atyp , given by

% typ5
1

c (
piPT

pi u i &^ i u, %atyp5
1

12c (
pi¹T

pi u i &^ i u ,

~11!

where u i & are eigenvectors corresponding topi , and c
5(piPTpi is a normalization constant. Clearly% ^ n is a mix-
ture of those states

% ^ n5c% typ1~12c!%atyp . ~12!

Sincec>12e one finds that% typ is close to% ^ n,

i% typ2% ^ ni<2e. ~13!

Thus it suffices to use% typ instead of% ^ n. Let us first show
that one can convert% typ into approximatelyn(N2S) cop-
ies of pure qubits. To this end, note that the eigenvalue
% typ satisfy

l i[
pi

c
>

1

c
22n(S1d). ~14!

Thus% typ is less mixed than the state%out with eigenvalues

~15!

whereD is given by

D5 d 1

1

c
22n(S1d) e ~16!

~the eigenvectors of%out are irrelevant, as we can perform
any unitary transformation for free!. Both of the states act on
a dn dimensional space, so that we can apply our Proposi
1. Thus it is possible to go from% typ to %out via noisy
operations. If we chooseD to be larger than in Eq.~16!,
namely, so that it is a power of 2, the transition is still po
sible. The smallest suchD satisfies log2 D5dn(S1d)e<n(S
1d)11. Then the state%out represents exactly the tens
product of log2 D qubits in maximally mixed state an
n log2 d2log2 D>n(log2 d2S2d)21 qubits in pure states
Thus one can remove the mixed qubits, and keep the
tained pure qubits. Call the obtained statepout . The rate of
the transition is the number of obtained pure qubits divid
by n. For largen this tends to log2 d2S2d. Sinced can be
chosen arbitrarily small, we obtain the optimal asympto
rate equal to log2 d2S.
06210
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One could think that we obtain the pure qubits exac
However, we used Proposition 1, where the transition is
exact, though arbitrarily precise.

Yet we have not transformed% ^ n but % typ . We now take
instead of% typ , the state% ^ n and apply the same action
which transformed% typ into the required amount of pur
qubits ~called the actionL). It is now easy to see tha
L(% ^ n) is close to a final state of pure qubitspout . Indeed,
we have

iL~% ^ n!2pouti5iL~% ^ n!2L~% typ!i<i% ^ n2% typi<e,
~17!

where the second last inequality comes from the fact t
completely positive trace-preserving maps are contracti
on Hermitian operators in trace norms, i.e.,iL(A)i<iAi for
HermitianA @22#.

Now we should show that the converse is possible, i.e.
create a state% ^ n it is sufficient to start with log2 d2S pure
qubits per output copy of%. However, the proof is similar to
the above. The only difference is that we now use the ot
part of Eq.~10!. Namely, we note that% typ is more mixed
than the state with eigenvalues

~18!

whereD8 is given by

D85 b 1

1

c
22n(S2d) c. ~19!

Again, due to Proposition 1 we can turn% typ into the latter
state. ChangingD8 into a suitable power of 2~so that it is
smaller thanD8 of the above equation hence passing fro
% typ is still possible! one gets that the latter state is a tens
product of log2 D8 qubits in maximally mixed states and ap
proximatelyn(log2 d2S) qubits in pure states.

Thus starting withn(log2 d2S) qubits in a pure state, on
has to add log2 D8 qubits in the maximally mixed state, an
pass to the state% typ which can be made arbitrarily close t
% ^ n by choosing smalle.

B. Optimality of log 2 dÀS transition rates and optimal
mixed-mixed transition rates

We will now show that the obtained rates are optimal. W
will follow Ref. @7# invoking standard thermodynamical re
soning concerning Carnot efficiency~cf. Ref. @8#!. Essen-
tially, we will show thatI 5N2S cannot increase under NO
maps, and then show that if our transitions are not optim
one could increaseI under NO. We will use the reversibility
of our protocol, and also the asymptotic continuity prope
of von Neumann entropy.

We will prove optimality by contradiction. Suppose th
for the transition to pure qubits%→p one can obtain a bette
rate thanR(%→p)5N2S ~whereN5 log2 d, % acts onCd).
4-4
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Then one can run the following transition

p→%→p, ~20!

and obtain a rate of such transition which is more than 1
other words, employingn,m(N2S) pure qubits, according
to the assumption, one getsm pairs in state%. Then one can
apply the protocol of the preceding section to them pairs of
%, to obtainm(N2S) pure qubits. Thus one would be ab
to increasethe number of pure qubits fromn to m. Repeating
the procedure one can obtain an arbitrary number of p
qubits.

Now, we have to show that this is impossible. This fo
lows from the fact thatN2S cannot increase under NO
maps. Indeed, unitary maps do not change the quantity.
tial trace of one qubit decreasesN by 1, and can increas
entropy at most by 1. Finally, adding a system in maxima
mixed state, increasesN by 1, but also increases entropy b
1. Now, for m pure qubits,N2S5m, while for n qubits we
haveN2S5n,m, thus the functionN2S must increase.

This is yet not the full proof, as we have made an impli
assumption, that the final qubits are exactly pure states
fact it is not true, as all our conversions are only asympt
cally true. However, the von Neumann entropy is asympt
cally continuous, namely, forN qubit states% ands we have
@23#

uS~% !2S~s!u<Ni%2si1O~1!. ~21!

In our case we take%5p ^ m and sm being the actual fina
state. We know then thatS(%)50 and thatism2%i tends to
zero asm goes to infinity. ThusuS(sm)u/m→0 for largem.
Thus thedensityof the functionI tends to 1 for the statesm .
This density is also 1 for the initial statep ^ n. Thus we can
write that in our processI out5mn2o(mn); on the other
handI in5n. We will show that for largen ~which also im-
plies thatmn is large! I in,I out . Indeed that latter inequality
is equivalent to the following set of equivalent inequalitie

mn2o~mn!.n,

mn

n
2

o~mn!

n
.1, ~22!

mn

n S 12
o~mn!

mn
D.1.

The quantity inside the bracket tends to 1, while in our p
tocol mn /n goes to a number greater than 1. Thus the
equality holds, which is impossible. Therefore our assum
tion that our rate is not optimal is incorrect. In a similar w
one can show that one cannot obtain a better rate than

R~p→% !5
1

I
~23!

while going from pure states to mixed ones.
Clearly since the transitions from mixed to pure states

reversible and optimal, one can use these protocols to
from one mixed state to another in a reversible and opti
06210
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way by just distilling pure states and then creating anot
mixed state. This gives that the optimal ratio of convers
between state% of a N qubit system and states of a N8
qubit system is equal to

R~%→s!5N2S~% !N82S~s!. ~24!

V. INFORMATION MONOTONES AND THE UNIQUE
MEASURE OF INFORMATION

Here we will derive the unique measure of informationI,
with virtually no assumptions. The derivation will be most
operational. We will actually assume two properties. The fi
will concern the intuition of what information is—namely
noisy operations should not increase it. Indeed, informati
whatever it is, should not be increased by unitary operatio
by adding a qubit in maximally mixed state~supposed to be
informationless! and discarding qubit~rather obvious re-
quirement!. Thus we postulate the following.

Postulate 1. Ishould be monotonic under noisy oper
tions.

We will actually see in the following section that th
postulate is rigid, in the sense that if instead of noisy ope
tions, we had chosen operations with a free resource o
than maximally mixed states, the theory would be trivial, a
all rates would be infinite.

The second assumption will not be connected with
expected properties of information. Rather it will display t
properties any function used in the asymptotic regime~limit
of many copies! should possess.

Postulate 2. Iis asymptotically continuous.
By asymptotically continuous, one means that for t

state%N and sN of N qubits, such thati%N2sNi→0 for
N→`. One would then require

u f ~%N!2 f ~sN!u→0. ~25!

We then say thatf is asymptotically continuous. The motiva-
tion for this is that in the asymptotic regime, one identifi
the states that asymptotically converge to each other. T
the only relevant functions of states are those that also so
how identify those states. Of course in the asymptotic lim
the interesting functions become infinite, so that one ha
pass to intensive quantities and divide by the number of c
ies to obtaindensities. The relevant functions would be thos
whose densities converge on convergent sequences.
that this not merely a technical requirement. Rather this
lows from the basic assumption of the asymptotic regime
that similar states should be identified. The latter assump
is necessary, and physically natural—it is simply impossi
to obtain exact transitions.

Let us now prove that there is a unique function that s
isfies these two postulates.

The proof can be obtained from Refs.@24,25#. According
to @25# the following inequality is true:

R~%→s!<
f `~% !

f `~s!
, ~26!
4-5
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whereR denotes the rate of transition under any given cl
of operations, andf is an asymptotically continuous functio
nonincreasing under the class. The symbol` stands forregu-
larization. The regularization of functionf (%) is M`(%)
5 limn→`(1/n)M (% ^ n).

Choosing ass the one qubit pure statep and exchanging
the roles of% ands we obtain

R~%→p!<
f `~% !

f `~p!
, ~27!

R~p→% !<
f `~p!

f `~% !
.

Denoting 1/f `(p)5a we obtain

R~%→p!<a f`~% !<
1

R~p→% !
. ~28!

However, we have explicit protocols which show thatR(%
→p)>I and 1/R(p→%)<I . Thus up to the constanta we
obtain thatf `5I . In this senseI is the uniquemeasure of
information.

It is interesting to see how other measures of informat
are removed in the asymptotic limit. Suppose that we c
sider measures of information that only satisfying the fi
postulate. Since we see that everything is very similar to
problem of pure-state entanglement, one is not surprised
all monotones under NO are so called Shur concave fu
tions of the density matrix. In particular there is a set
information measures~or ‘‘monotones’’! which is enough to
determine if a transition is possible. These are the so ca
Ky Fan k norms, i.e., sums of the firstk largest eigenvalues
By definition of the ‘‘more mixed’’ condition, we have%
ss iff for all k norms,uu%uuk<uusuuk . Thus the processs
→% is possible iff in the process no monotone increases

One might get the feeling that there is some contradict
here. Namely, in asymptotic transitions, the only restrict
for the rate is the monotoneI. Thus there are allowed tran
sitions for which other monotones increase. Indeed, we
that % ^ n→s ^ m is possible, though it is clear that some
the monotones will increase. The solution is that, in fact
are not talking about exact transitions. Thus in the act
transition, the final state obeys the nonincreasing of mo
tones. For that state, all monotones are not greater than
the initial state. The monotones are, however, not asymp
cally continuous, and they see differences between that
tual state, and the required states ^ m. The only monotone
that does not see the difference isI. Therefore only this func-
tion survives in the asymptotic limit.

The choice of free resource is unique

One could think that the way we have obtained the inf
mation measure is not fully operational, as we assum
somewhat arbitrarily that the free resource is the maxim
mixed state. Here we will show that this is the only reaso
able choice, if we want to allow ancillas at all, and if th
theory is to be nontrivial, i.e., the transition rates are fin
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and therefore, not all states can be obtained for free. We
assume that our operations include unitary transformatio
and partial trace, and will try to play with third component—
adding ancillas.

Suppose that instead of maximally mixed statest, we
chose any other state%0 as a free resource. This means th
we can use arbitrarily many copies of this state. From%0

^ n

we can producewithout use of noisepure states by Schuma
cher compression@18,19# ~in this paper we have not de
scribed this—we always used noise!. Thus we have pure
states for free. From pure states we can produce noise
entangling two qubits in a maximally entangled state a
rejecting one qubit. The remaining one will be in a max
mally mixed state. This is not very efficient: we spend tw
qubits in a pure state to get one qubit of noise. Howev
pure states are for free, hence this method is sufficie
good in our situation. Now we have both noise and pu
states for free, hence via the protocol described in the p
ceding section, we can create any state. The theory beco
trivial—all states are for free; all rates are infinite. Thus if w
allow adding systems for free at all, we can only add ones
maximally mixed state. We thus see that Postulate 1 is ra
rigid, in the sense that changing it to a class of operati
which allows any other ancilla, will result in a trivial theory

VI. REVERSIBILITY AND IRREVERSIBILITY

Note that we have a kind of reversibility: the amount
pure qubits that can be drawn from a given state is equa
the amount we need to create the state. Let us conside
other situation, where we count everything~no free re-
source!. We then see that there is basic irreversibility: tra
sition from almost any state% to any other state is
irreversible. For example, one can drawI pure qubits from
%, but to create%, one needs many more pure qubits. The
are two reasons for this. The first reason is trivial—to geN
qubits in state% one needsN qubits anyway. This is 1 qubi
per output qubits, which is already more thanI 5N2S(%).
Now, however, even more pure qubits are needed. Nam
the output state has nonzero entropy. However, the only
of producing entropy out of pure states is rather waste
one entangles two qubits, and removes one of them~as al-
ready described in the preceding section!. Indeed, previously,
we had a free source of entropy—maximally mixed stat
now we have only pure states to our disposal, and we co
them.

Interestingly, in the classical world there is no way
produce entropy at all. Therefore in classical statistical m
chanics, one has to assume mixed state from the very be
ning. Quantum mechanics allows one to produce mix
states out of pure ones. This may lead one to prefer Ba
concept of probability.

Proposition 2. N1S pure qubits are necessary and suf
cient to produce% if one does not have access to noise.

That this is sufficient can be seen by noting that% can be
created bypurificationof % typ . We thus consider a pure sta
of two systemsA andB. SubsystemA hasN qubits, and its
state is% typ . The state of subsystemB ~the purification! is
also% typ , but we do not need it to be anN qubit system, but
4-6
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REVERSIBLE TRANSFORMATIONS FROM PURE TO . . . PHYSICAL REVIEW A67, 062104 ~2003!
rather want it to use the smallest possible amount of qub
The latter is equal toSqubits. ThusN1S qubits in pure state
are needed to prepare% typ ~preparation is discarding the sy
tem B). That this number of qubits are necessary sim
stems from the fact that we start from an initially pure sta
so to get a mixed state we must trace out part of the in
system, and the ‘‘garbage’’ that gets traced out must hav
leastS qubits~since the number of qubits of garbage cann
be less than its entropy, and the garbage must have entroS
since the system is initially pure!. We must also have at leas
N qubits left over to form the state. So, in general, to cre
the N qubit state% we needN1S pure qubits, but we can
draw onlyN2S qubits. The ‘‘information of preparation’’ is
much greater than ’’information of distillation.’’ During the
transition

c→%→c ~29!

we lose 2S pure qubits.
Proposition 3. To produce the mixed-mixed transition%

→s, without access to noise, DN1DS qubits are necessar
and sufficient whereDN[N(s)2N(%) and DS[S(s)
2S(%).

To see that these resources are necessary, we note
general protocol involves an initial state% ^ uc&^cu, where
uc& is some initial pure state. One then performs unitaries
give a state%8, and then one traces out the garbageg to
leave the states. We can then use the triangle inequality

uS~s!2S~g!u<S~%8!5S~% ! ~30!

to see that the number of garbage bits traced outN(g) satis-
fies N(g)>S(g)>DS @if S(g)>S(s) then trivially S(g)
>DS]. So, we need a minimum ofN(s)1DS pure qubits to
creates, but we already hadN(r) bits to start with, so the
minimum amount of additional qubits needed isDN1DS.

The protocol that realizes this bound is to reversibly dis
% into N(%)2S(%) pure qubits andS(%) bits of noise in a
manner that we shall shortly describe. We then add in
additionalDN2DS pure qubits. However, we also needDS
bits of noise, which costs 2DS pure states~this is the only
part of the protocol which is irreversible!. We then creates
reversibly as described in the preceding section, using
DN1DS additional qubits.

The distillation procedure can be realized using a sche
similar to quantum data compression@18# and to the concen
tration of entanglement scheme of Ref.@8# ~here, however,
the procedure is applied to the entire state!. The protocol is
essentially a projective measurement onto blocks prop
tional to the identity. On average, the size of the Hilb
space that the state is projected onto will be of sizeS(%),
and so, the state can then be unitarily rotated to le
N(%)2S(%) pure states. We will explicitly give the protoco
for n qubits, i.e.,N(%)51 but the extension to higher dimen
sional states is straightforward.

We can write the state in the eigenbasis which we labe
0 and 1, i.e.,%5au0&1bu1&. We have haven copies, i.e., we
operate on the state% ^ n, and then we measure how man
zeros this state has. This is a measurement withn11 out-
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comes and it will yield a resultk50, . . . ,n telling us how
many zeros there are. This projects us onto a state that
dk5(k

n) basis vectors, all with equal coefficients. That is, it
proportional to the identity. The probability of finding a pa
ticular outcomek is pk5(k

n)a2kb2(n2k) and since it does not
in general, span the entire Hilbert space, it can be unita
transformed to yieldI k5n2 log2 dk pure states.

Each process%→$pk ,rk% after which I k pure states are
extracted fromrk with probability pk , provides

No5(
k

pkI k2H~$p%! ~31!

total pure states. The Shannon entropyH($p%) of distribu-
tion $pk% equals the cost of the erasure of information whi
allows us to work with an ensemble ofrk’s @26#. Thus we
needI er5H($p%) bits of erasure to pay for the next part o
the scheme, in which they draw(kpkI k pure states. This
quantity, which is of order log2 n is negligible in the largen
limit. We can divide the above equation byn to obtain the
amount of extractable pure states per qubit.

No /n512S~% !, ~32!

where the erasure cost has been neglected since it is of o
log2 n/n. This completes our proof of the proposition.

This allows one to think of states in the following wa
the mixed state consists ofN2S bits of information andS
bits of noise. Thus to produce it one needsN2S qubits in
pure states, to account for information, and 2S qubits to pro-
duce noise. Indeed, one bit of noise costs two pure qubit
since noise is produced by rejecting part of entangled s
tem.

It is interesting that one needs to add a free resou
~noise! in order to achieve efficient transitions from pure
mixed states which are much less ‘‘useful’’ than mixed-t
pure transitions. Indeed, the latter is a task that can be a
ciated with such actions as cooling, error correction, incre
ing signal, etc. This useful task can be performedwithout the
help of an additional resource at the optimal rate. Only
converse direction, which is not useful~who wants to have
mixed states instead of pure ones?! needs noise, and is muc
less efficient without noise.

There are other cases where reversibility needs noise.
example, according to the Shannon second theorem, one
simulate one use of noiseless channel by 1/C uses of a noisy
channel of capacityC. However, one cannot do the convers
i.e., simulate noisy channels by a noiseless one, without s
ing random correlated data@27#. Again, the useful task doe
not need any additional resource, while the useless
needs one. This is clear, if one realizes that in both situati
we deal with dilution of some valuable resource into noi
Similarly in thermodynamics, the thermodynamical syste
with difference of temperature can be thought as being ‘‘p
energy’’ ~such as mechanical energy! diluted into ‘‘pure
heat.’’ To draw work out of it one does not need any ad
tional resource. However, to create the system of heat b
efficiently, one needs a heat reservoir at the beginning. O
4-7
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erwise, one has to spend work to produce heat, exactly a
needed to spend pure states to produce noise.

VII. DISCUSSION: COMPARISON WITH
ENTANGLEMENT TRANSFORMATIONS

The paradigm discussed in this paper may be usefu
understand the problems of entanglement theory. As
knows there is a basic irreversibility in entanglement tra
formations. We deal there with bipartite systems, shared
distant parties. One is interested in how many pure sing
are needed to form a staterAB ~the entanglement cost, and
also, how many singlets can be obtained from the state~the
distillable entanglement!. If rAB is pure, then the entangle
ment cost is equal to the distillable entanglement in the li
of many copies ofrAB @8#. The tranformations are reversibl
er
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However, it is known that for a number of mixed states, t
distillable entanglement is not equal to the entanglement
@28#. One has irreversibility. It has generally been assum
that this is because one is making transformations betw
pure states~in this case, singlets!, and the mixed staterAB .
One therefore expects some information loss. However
we have seen here, one can make transformations betw
pure and mixed states completely reversible, provided
has access to noise. And indeed, in the paradigm of entan
ment theory, there is no reason why two distant parties co
not share some initial noisy resource. There is no specia
priori reason for irreversibility in entanglement theory. It
therefore interesting to compare the situation discussed
with that of entanglement theory. This comparison is su
merized in the following table, and described below.
sible

ses
Paradigm Class of operations Free resource Expensive resource Rever

Information NO Maximally mixed states Pure states Yes
Pure-state entanglement LOCC Separable states Singlets Yes
Mixed-state entanglement LOCC Separable states Singlets No
Thermodynamics Adiabatic processes Heat@29# Work Yes
TOE @30,31# LOCC 1 PPT states PPT states Singlets No~?!
PPT@32# PPT operations PPT states Singlets In some ca
.
class
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red
Instead of NO, in entanglement theory we have th
LOCC, which means that~1! arbitrary local unitary opera-
tions can be performed,~2! any local ancilla can be added
~3! any local partial trace can be performed, and~4! qubits
can be communicated between distant parties only vi
dephasing channel. The role of noise is played by separab
states—all the states that can be produced for free within
allowed class of operations are free resources. The rol
pure states is played by pure entangled states.

One could imagine that like with ‘‘local information
theory,’’ in entanglement theory, any state is a reversi
mixture of two phases: pure entanglement and a separ
noisy phase. One should be able to draw the same amou
pure entanglement from a given state as is needed to pro
it. Creation of mixed states would be reversibledilution of
pure entanglement into mixed, separable states.

In this simple picture we would have only two kinds
basic elements in entanglement theory: pure entangled
tems and disentangled systems. One is useful, the oth
useless. A state that is neither pure entangled nor di
tangled, consists of those two basic elements. This is in
allel to the paradigm presented in this paper, where the us
elements were pure states, the useless maximally m
ones.

As noted, such a situation exists for pure states, where
can reversibly concentrate and dilute entanglement. H
ever, such a situation does not exist with mixed states
entanglement theory. What is the basic difference betw
e
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mixed-state entanglement and the paradigms~I! of pure en-
tanglement, and~II ! the present NO one?

In both ~I! and~II ! we have the following common point
We define states that can be added for free, and then the
of operations. Then in both cases it turns out that the f
states remain the only nontrivial set of states closed un
the class of operations. Now in mixed-state entanglement
may have another basic element-bound entangled ones.
cannot obtain them from separable states, but also one
not obtain any pure entanglement from them. Thus the se
states closed under the class of operations is greater th
would seem from the construction of the paradigm. Thus
situations~I! and~II ! we have only two elements: useful an
useless. In paradigm~II ! the useful element is information
the useless one being noise. In paradigm~II ! the useful ele-
ment is entanglement, the useless one being separab
Here, entanglementitself is divided into at least two phases
bound and pure. From bound entanglement we cannot m
pure states, so we call it useless as well. Thus we can h
states that have entanglement, but are useless. This is d
ent from~I! and~II !, but similar to thermodynamics: we hav
there two forms of energy, useful and useless. In Ref.@31#
we have asked a question—is it possible that mixed-s
entanglement is like thermodynamics. There would be th
basic elements: separable states~no entanglement!, bound
entanglement, and pure entanglement; similarly as in th
modynamics there are states without energy, with disorde
energy~single heat bath!, and with ordered energy~mechani-
4-8
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cal energy!. All three kinds could be reversibly mixed.
In Ref. @31# it was shown that such a picture can

treated as a sort of ‘‘first-order approximation’’ rather th
full description of asymptotic bipartite entanglement. Rela
questions were studied in Ref.@32# where reversibility for
some states holds, if the so-called PPT superoparators
allowed @10#. The relation between the latter result and t
‘‘thermodynamic’’ approach of Ref.@31# goes beyond the
scope of this paper and is explained in Ref.@31# itself.

VIII. CONCLUSION

Contrary to what might be imagined, we have shown t
mixed states do not necessarily impose irreversibility. O
can reversibly transform pure states into mixed ones, p
vided one has access to random noise. This defines a cla
operations~NO! which can then be used to explore the tra
sition rates between various states. It is found that the in
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mation measureI 5N2S cannot decrease under NO, and
therefore the unique asymptotically continuous measure
information. It would be extremely interesting to explo
other restricted classes of operations in addition to NO
see whether there are other nontrivial theories. Exploring
connection between this, and the LOCC paradigm of
tanglement theory, would be extremely useful in understa
ing entanglement in distributed quantum systems. Perh
ideas along the lines of Ref.@31# may prove fruitful.
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