
ls

rmany

PHYSICAL REVIEW A 67, 062102 ~2003!
Surface-impedance approach solves problems with the thermal Casimir force between real meta

B. Geyer,* G. L. Klimchitskaya,† and V. M. Mostepanenko‡

Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Augustusplatz 10/11, 04109 Leipzig, Ge
~Received 22 February 2003; published 17 June 2003!

The surface-impedance approach to the description of the thermal Casimir effect in the case of real metals
is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the
dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where
a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electro-
magnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or
thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to
consider the electromagnetic oscillations inside the metal but taking the realistic material properties into
account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas
for the Casimir free energy and force between two metal plates is presented within the impedance approach. It
is shown that they are free of the contradictions with thermodynamics that are specific to the usual Lifshitz
formula for dielectrics in combination with the Drude model. We demonstrate that in the impedance approach
the zero-frequency contribution is uniquely fixed by the form of impedance function and does not need any of
the ad hocprescriptions intensively discussed in the recent literature. As an example, the computations of the
Casimir free energy between two gold plates~or the Casimir force acting between a plate and a sphere! are
performed at different separations and temperatures specific for the regions of the anomalous skin effect and
infrared optics. The results are in good agreement with those obtained by the use of the tabulated optical data
for the complex refraction index and plasma model. It is argued that the surface impedance approach lays a
reliable theoretical framework for the future measurements of the thermal Casimir force.
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I. INTRODUCTION

Considerable attention has been focused recently on
Casimir effect@1# which is a rare manifestation of the zer
point oscillations of the electromagnetic field at macrosco
scales. The Casimir force arises as response to the chan
the spectrum of zero-point oscillations when material bou
aries are present. It acts between the boundaries of t
bodies and depends on the parameters of their mater
their geometry~including surface roughness!, and on the
temperature~for a detailed information see the monograp
and reviews@2–6#!. Recently, many precision measureme
of the Casimir force between metal boundaries have b
performed@7–14#. Their results were used for constrainin
hypothetical forces predicted by unified gauge theories
fundamental interactions@15–17# and in nanotechnologica
applications@18,19#.

With respect to the present state of the art, the theore
description of the Casimir force calls for a careful account
all material properties and other relevant factors. Surp
ingly, it was found that the calculations of the temperatu
effect on the Casimir force between real metals of finite c
ductivity run into serious troubles, which have been the s
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ject of much controversy@20–33#. The key contradiction is
on whether the term of the Lifshitz formula@34,35# related to
the zero Matsubara frequency for theperpendicularpolar-
ized modes of an electromagnetic field contributes to
physical quantities and, if so, how much would its contrib
tion be. At the moment there are five distinct approaches
the resolution of this problem in the recent literature.

~a! According to the first approach, proposed in Ref.@20#
and supported in Refs.@26,27#, in the case of real metals th
term of the Lifshitz formula with zero Matsubara frequen
should be calculated by using the Drude dielectric functi
As a result, the perpendicular polarized modes do not c
tribute to this term.

~b! In the other approach@28# a special modification of
the zero-frequency term of the Lifshitz formula, suppl
mented by the Drude model, was proposed leading to a n
zero contribution of the perpendicular polarized modes. T
modification was done by analogy with the prescription
Ref. @36# for an ideal metal but it does not coincide with i

~c! In the framework of the approaches of Refs.@23–25#
the modification of the zero-frequency term of the Lifsh
formula was made identical to that for an ideal metal@36#.
As a consequence, the contribution of the perpendicular
larized modes to the zero-frequency term in Refs.@23–25# is
nonzero and coincides with that for an ideal metal.

~d! According to Refs.@21,22,29# the contribution of the
perpendicular polarized modes with zero Matsubara
quency is nonzero and should be calculated by substitu
the free-electron plasma dielectric function into the unmo
fied Lifshitz formula.

~e! Finally, according to the approach of Refs.@30,31#, the
description of the thermal Casimir force can be obtained

-
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GEYER, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A67, 062102 ~2003!
using the Leontovich surface impedance boundary condi
~recently this approach was applied also in Ref.@32#!. In
doing so, the perpendicular polarized modes give a nonz
contribution to the zero-frequency term of the Lifshitz fo
mula prescribed by the form of the impedance.

As to the contribution of the modes with aparallel polar-
ization to the zero-frequency term, there is consensus
tween all these approaches that for real metals it is non
and the same as for ideal metals. Note also that some o
viewpoints varied with the time in the framework of th
above approaches~a!–~e!. For example, in Refs.@23,24# ap-
proach ~c! was considered as an universal prescripti
whereas in Ref.@32# it is restricted by the range of onl
cryogenic temperatures, and in Ref.@25# by the case of suf-
ficiently large separation distances and by the presenc
thin covering metallic films. Approach~b!, proposed in Ref.
@28# to resolve the contradictions arising for the Drude mo
in combination with the Lifshitz formula, was considere
later in Ref.@31# as unnecessary as the Drude model its
turned out to be irrelevant for the description of the therm
Casimir force between real metals. It should be particula
emphasized that approaches~a! and~c! were proved to be in
contradiction with thermodynamics@31,33# since they vio-
late the Nernst heat theorem. A detailed comparison of all
approaches can be found in Refs.@28,31#.

The present paper aims to work out quite clearly that
surface impedance approach provides an answer to al
complicated problems with the retarded Casimir force
tween real metals at both zero and nonzero temperatures
demonstrate that the main reason why the Drude mode
combination with the Lifshitz theory had failed to descri
the thermal Casimir force is the inadequacy of the stand
concept of a fluctuating electromagnetic field depending o
on frequency inside a lossy real metal. Rather than consi
ing fluctuations inside a metal, the surface impedance
proach suggests that the effective boundary conditions
into consideration in a noncontradictory way the involv
reflection properties from the surface of a real conductor
this case no additional prescriptions are needed, and the
ues of the zero-frequency contributions for both parallel a
perpendicular modes follow immediately from the expli
form of the impedance function.

On this basis, we present a derivation of the formula
the Casimir free energy and force in a configuration of t
parallel plates in the surface impedance approach~in Ref.
@30# it was presented without proof by the use of a presc
tion changing the integration over continuous frequencies
the summation over the discrete Matsubara frequencies!. The
necessity of this derivation results from the fundamental r
played by the concept of the surface impedance in the the
of the Casimir effect between real metals. The relations
between this formula and the Lifshitz formula for the fr
energy is found~the new formula is obtained by exchangin
the reflection coefficients, which appear in the Lifshitz fo
mula, for those derived in the surface impedance approa!.
Our derivation starts from the free energy of the oscillat
and suggests also other means to derive the usual Lifs
formula for the thermal Casimir force between dielectri
The obtained formula is applied to compute the Casimir f
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energy and force at different temperatures and separation
tances between the test bodies. To do this, one has to us
impedance functions describing the regions of infrared
tics, anomalous or normal skin effect depending on the va
of the characteristic frequency giving the main contributi
to the Casimir force. It is shown that no contradictions w
thermodynamics arise, and no artificial prescriptions for
zero-frequency term are needed~we also demonstrate tha
the predictions of large temperature corrections to the
simir force at small separations and cryogenic temperatu
made in Ref.@32#, are in error since the impedance of th
anomalous skin effect was used in Ref.@32# outside its range
of application!.

The paper is organized as follows. In Sec. II we demo
strate the inadequacy of the concept of a fluctuating elec
magnetic field inside lossy real metals and remind the ba
facts from the theory of surface impedance. Section III
devoted to the derivation of the electromagnetic oscillat
spectrum between two parallel plates starting from the
pedance boundary condition. In Sec. IV the formula for t
Casimir free energy is derived in the surface impedance
proach. The proposed simple derivation of the usual Lifsh
formula for the thermal Casimir force between dielectrics
also given here. Section V contains the calculations of
Casimir energy and force at zero temperature using the
pedance approach. The results are compared with the p
ously known ones, obtained by the use of the usual Lifsh
formula and the tabulated optical data, and are found to b
agreement. In Sec. VI the computations at nonzero temp
ture are performed in the impedance approach at diffe
separation distances between the test bodies. They dem
strate good agreement in transition regions between the
ferent analytical expressions for the impedance. In Sec.
the reader finds conclusions and a discussion on the rela
ship between the proposed impedance approach to the
simir effect and the theory of the van der Waals forces va
at small separation distances between the test bodies.

II. THE CONCEPT OF A FLUCTUATING
ELECTROMAGNETIC FIELD

AND THE SURFACE IMPEDANCE

It is well known that the concept of a fluctuating electr
magnetic field works well for the description of zero-poi
oscillations within media with a frequency-dependent diel
tric permittivity where no real electric current arises. We w
now look at a conductor in an external electric field, whi
varies with some frequencyv satisfying the conditions

l !dn~v!, l !
vF

v
, ~1!

where l is the mean free path of a conduction electro
dn(v)5c/A2psv is the penetration depth of the field in
side a metal,s is the conductivity, andvF is the Fermi ve-
locity. Equations~1! determine the domain of the norma
skin effect @37#. In this frequency region the external fiel
leads to the initiation of a real current of the conducti
electrons.
2-2
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The normal skin effect is characterized by the volum
relaxation described by the temperature-dependent relaxa
frequencyg(T). As a result, the mean free path of the co
duction electrons is also temperature dependent,l 5 l (T)
5vF /g(T), and increases with a decrease in temperat
The interaction of the conduction electrons with the elem
tary excitations of the crystal lattice~phonons! leads to the
occurrence of electric resistance and heating of the me
The dielectric permittivity of a metal in the domain of th
normal skin effect can be modeled by the Drude function

«~v!512
vp

2

v@v1 ig~T!#
, ~2!

wherevp is the plasma frequency of the free electron plas
model (vp is temperature independent!. Remind that the
Drude dielectric function~2! was used in approaches~a!–~c!
~see the Introduction! in combination with the Lifshitz for-
mula to describe the thermal Casimir force between real m
als for the frequencies both inside and outside the region~1!.
This has led to difficulties including the violation of Nernst
heat theorem~see the Introduction!.

The physical reason for these difficulties becomes q
clear when one observes that the usual alternating ele
field with frequencies characteristic for the normal skin
fect inevitably leads to heating of a metal as it penetra
through the skin layer. By contrast, the thermal photons
thermal equilibrium with a metal plate or, much less, t
virtual photons~giving rise to the Casimir effect! cannot,
under any circumstances, lead to the initiation of a real c
rent and heating of the metal~of course, this is strictly pro-
hibited by thermodynamics!. Hence the standard concept of
fluctuating electromagnetic field penetrating inside a me
described by the Drude dielectric function fails to model v
tual and thermal photons in the frequency region~1!. As a
consequence, the Lifshitz formula cannot be applied in co
bination with the Drude dielectric function~2! to describe the
thermal Casimir force even in the domain of the normal s
effect.

These arguments are supported also by considering
other frequency regions. At higher frequencies or largel
~lower temperatures! for most of the metals the anomalou
skin effect holds, which is characterized by the inequaliti

da~v!! l , da~v!!
vF

v
, ~3!

where the skin depth is given by@37#

da~v!5S 4pc2\3

ve2SF
D 1/3

, ~4!

andSF is the total area of the Fermi surface@in fact, within
the inequalities~3! ‘‘much less’’ can be replaced by ‘‘less’
thereby preserving Eq.~4! with a good precision#. In the
frequency region of Eqs.~3! the volume relaxation is no
significant, but the connection between the electric field a
current becomes nonlocal. Because of this, a metal canno
described by any dielectric function depending only on
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frequency. As with the normal skin effect, this leads to t
inapplicability of the standard concept of a fluctuating fie
spreading inside a medium described by«(v) and to the
impossibility to calculate the Casimir force on this theore
cal basis. If one would like to preserve the role of a fluc
ating field within the domain of the anomalous skin effe
some nonlocal generalization of this concept is requir
@Note that for some metals, especially for alloys, instead
Eq. ~3!, inequalitiesvF /v! l !d hold, specifying the so-
called relaxation domain@38,39#; here the space dispersion
also essential.#

On further rise of the frequency, the following inequalitie
hold:

vF

v
!d r! l , ~5!

whered r5c/vp , which determines the domain of infrare
optics ~note that condition\v!«F is also supported where
«F5\vp is the Fermi energy!. In this domain the volume
relaxation does not play any role and the space dispersio
absent. Under conditions~5!, metals can be described in th
framework of the free-electron plasma model with
frequency-dependent dielectric permittivity

«~v!512
vp

2

v2
. ~6!

According to the plasma model, the conductivity is pu
imaginary and hence there is not any real current or hea
due to an electric field penetrating the metal. Because of t
the standard concept of a fluctuating electromagnetic field
a model for the virtual and thermal photons, works well
the domain of infrared optics. Note that the plasma mo
dielectric permittivity in combination with the Lifshitz for-
mula was used to calculate the thermal Casimir force@see
approach~d! from the Introduction#. This approach did not
meet any difficulties or contradictions with the basic pri
ciples of thermodynamics and has led to physically reas
able results. The domain of infrared optics is followed by t
domain of ultraviolet frequencies where metals beco
transparent.

As is evident from the foregoing, the standard concep
a fluctuating electromagnetic field, penetrating a metal
scribed by the dielectric permittivity depending only on fr
quency, cannot be used as an adequate model for the vi
and thermal photons of some frequencies. There is a
quency region~the domain of the normal skin effect! where
this model is in conflict with the basic properties of the v
tual and thermal photons at equilibrium which, among oth
things, cannot lead to heating of a metal. In addition, in
region of the anomalous skin effect and relaxation domai
metal cannot be described by the dielectric permittivity d
pending only on frequency. Because of this, another theo
ical basis is preferred to find the thermal Casimir force b
tween real metals different from that used in the case
dielectrics. Here we show that this basis is given by
concept of the surface impedance introduced by Leontov
@35,40#.
2-3



a
rm
e
im

ag
e

e

s
l

o

m
ic
a

hu

b
r

ny
a
e

u
im

uc
e

tz

nc
ef

hat
is

lled

in-
n

he
kin

the
s-
uen-

re-
e
-

ma-
em-
ality

der
ls
ion
een
nt

the
ted.
he

ed

be
y
-
be-
in
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The fundamental difference of the surface impedance
proach from the usual approaches is that it does not pe
one to consider the electromagnetic fluctuations insid
metal. Instead, the appropriate boundary conditions are
posed taking into account the properties of real metal

Et5Z~v!@Bt3n#, ~7!

whereZ(v) is the surface impedance of the conductor,Et
and Bt are the tangential components of electric and m
netic fields, andn is the unit normal vector to the surfac
~pointing inside the metal!. The boundary condition~7! can
be used to determine the electromagnetic field outsid
metal. Note, that impedanceZ(v) and condition~7! suggest
a more universal description than that by means of«. They
still hold under inequalities~3!, where a description in term
of the dielectric permittivity«(v) is impossible. For an idea
metal we haveZ[0 and for real nonmagnetic metalsuZu
!1 holds@40#.

The calculation of the surface impedance over the wh
frequency axis is based on the kinetic theory@35# and is
rather cumbersome. However, in the domains of the nor
and the anomalous skin effect, and also for infrared opt
simple asymptotic expressions follow, which are of gre
help to compute the Casimir force between real metals. T
in the domain of the normal skin effect, given by Eq.~1!, the
surface impedance is@35#

Zn~v!5~12 i !A v

8ps
. ~8!

In the domain of the anomalous skin effect, determined
Eq. ~3!, the impedance depends on the shape of the Fe
surface@41#. For a polycrystalline metal, composed of ma
single crystal grains of different orientations, one obtains
approximately spherical Fermi surface and the impedanc
@41#

Za~v!5
2~12 iA3!

3A3

vda~v!

c
, ~9!

whereda(v) was defined in Eq.~4!.
In the domain of infrared optics@see Eq.~5!# the imped-

ance is given by@35#

Zr~v!52 i
v

Avp
22v2

. ~10!

Now one can impose the impedance boundary condition~7!
on the surface of metal plates, find the oscillation spectr
in the space between the plates, and calculate the Cas
free-energy density and force without consideration of a fl
tuating electromagnetic field inside the metal. This was p
formed at zero temperature in Ref.@42# ~see also Ref.@3#!.
Another approach, being similar in spirit, was used atT50
in Ref. @43# where the reflection coefficients in the Lifshi
formula were expressed in terms ofZ(v).

Now, the question arises what expression for impeda
~8!, ~9!, or ~10! should be used to calculate the Casimir
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fect. To answer this question, it is good to bear in mind t
the main contribution to the Casimir free energy and force
given by the frequency region centered around the so-ca
characteristic frequencyvc5c/(2a), wherea is the space
separation between the two bodies, parallel plates for
stance. The value ofvc may belong to the frequency regio
given by Eqs.~1!, ~3!, or ~5!, with the result that functions
~8!, ~9!, or ~10!, respectively, should be used, defining t
impedance in the domains of the normal or anomalous s
effect and infrared optics.

By way of example, for most of the metals~Au, for in-
stance! at room temperature the application region~1! of the
normal skin effect with impedance~8! extends up to the fre-
quencies of order 1012 rad/s. The application region~3! of
the anomalous skin effect atT5300 K is very narrow and
extends up to around (6 –7)31013 rad/s. It should be
stressed, however, that with the decrease of temperature
application region of the normal skin effect practically di
appears and the anomalous skin effect extends to all freq
cies lesser than 1012 rad/s. The reason is thatl increases and
dn(v) decreases with the decrease of temperature. As a
sult, the first inequality in Eq.~1! breaks down, whereas th
first inequality in Eq.~3! is satisfied also at smaller frequen
cies. Finally, the impedance of the infrared optics~10! is
applicable up to the frequencies of order 0.1vp ~for Au, for
instance,vp51.3731016 rad/s). It should be particularly
emphasized that the transition frequency between the ano
lous skin effect and infrared optics does not depend on t
perature, because all the parameters in the second inequ
of Eq. ~3! are temperature independent~at temperatures
much smaller than the Fermi temperature, which is of or
105 K). In Secs. V and VI we will discuss with more detai
which impedance function should be used for the calculat
of the Casimir force at different separation distances betw
the test bodies~also the transition regions between differe
impedance functions will be considered!.

III. ELECTROMAGNETIC OSCILLATION SPECTRUM
BETWEEN TWO PLATES IN THE SURFACE

IMPEDANCE APPROACH

Here the derivation of the photon eigenfrequencies in
framework of the surface impedance approach is presen
They are needed to derive the Lifshitz-type formula for t
free energy in the case of real metals.

We consider the configuration of two parallel uncharg
metal plates, separated by a distancea, at temperatureT in
thermal equilibrium. Let their nearest boundary planes
described by equationsz56a/2. We impose the boundar
condition~7! on planesz56a/2 and determine the eigenfre
quencies of the electromagnetic field in the free space
tween the plates. The solutions of the Maxwell equations
vacuum can be found in the forms

Ea~ t,r!5ep~k' ,z!exp~ ik'•r'2 ivt !,

Ba~ t,r!5gp~k' ,z!exp~ ik'•r'2 ivt !. ~11!
2-4
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Herer5(x,y,z)5(r' ,z), a5$p,k' ,v%, k'5(k1 ,k2) is the
wave vector in plane (x,y), v is a frequency, and indexp
5i ,' labels the two independent polarization statesi
stands for the electric field parallel to the plane formed byk'

and thez axis, and' stands for the electric field perpendic
lar to this plane!. From the Maxwell equations the oscillator
equations for the functionsep , gp follow,

ep9~k' ,z!2q2~k' ,v!ep~k' ,z!50,

gp9~k' ,z!2q2~k' ,v!gp~k' ,z!50, ~12!

where q2(k' ,v)[q2[k'
2 2v2/c2; the prime denotes the

derivative with respect toz, and also the first-order equation

ep,38 ~k' ,z!1 ik1ep,1~k' ,z!1 ik2ep,2~k' ,z!50,

gp,38 ~k' ,z!1 ik1gp,1~k' ,z!1 ik2gp,2~k' ,z!50 ~13!

~lower indices 1,2,3 after a comma stand for the projecti
of vectorsep , gp onto axesx,y,z, respectively!.

Substituting Eqs.~11! into the boundary condition~7!,
using the Maxwell equations to express the magnetic fi
and taking the direction of the normal into accou
@n5(0,0,1) at the planez5a/2, and n5(0,0,21) at
z52a/2], we find at boundariesz56a/2, respectively,

ep,1S k' ,6
a

2D56
iZc

v F ik1ep,3S k' ,6
a

2D2ep,18 S k' ,6
a

2D G ,
ep,2S k' ,6

a

2D56
iZc

v F ik2ep,3S k' ,6
a

2D2ep,28 S k' ,6
a

2D G .
~14!

The same boundary conditions forgp can be obtained also.
Now, let us consider separately the cases of parallel

perpendicular polarizations beginning with the parallel o
Without loss of generality, we temporarily assume thatk2
50. In this caseei ,2(k' ,z)[0, and the solution of Eq.~12!
has the form

ei ,1~k' ,z!5Bsinhqz, ei ,3~k' ,z!5B coshqz, ~15!

whereA andB do not depend onz. From Eq.~13! it follows
Aq1 ik1B50. For the sake of convenience, we choose

A52
ik1

q
e2aq/2, B5e2aq/2. ~16!

Substituting Eqs.~15! and~16! into the impedance boundar
condition ~14!, one obtains the dispersion equation for t
spectrum of the electromagnetic oscillations between pla

D i
(1)~v,k'![e2aq/2S sinh

aq

2
2

iZv

cq
cosh

aq

2 D50.

~17!

Equations~12! and ~13! also have the solutions

ei ,1~k' ,z!5e2aq/2coshqz, ei ,2~k' ,z!50,
06210
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ei ,3~k' ,z!52
ik1

q
e2aq/2 sinhqz. ~18!

After substitution of Eq.~18! into Eq. ~14! a further disper-
sion equation for the modes with parallel polarization is o
tained:

D i
(2)~v,k'![e2aq/2S cosh

aq

2
2

iZv

cq
sinh

aq

2 D50.

~19!

It is obvious that in Eqs.~17! and ~19! k'5(k1 ,k2) can be
now considered as arbitrary.

Exactly the same procedure is applicable to the case of
perpendicular polarization. Once again, assuming tem
rarily k250, we obtain the solutions of Eqs.~12! and~13! in
the form

e',1~k' ,z!5e',3~k' ,z!50 ~20!

and

e',2~k' ,z!5e2aq/2sinhqz

or

e',2~k' ,z!5e2aq/2coshqz. ~21!

Substituting these solutions into Eq.~14!, we arrive at two
dispersion equations for the determination of the electrom
netic eigenfrequencies with perpendicular polarization

D'
(1)~v,k'![e2aq/2S sinh

aq

2
1

iZcq

v
cosh

aq

2 D50,

D'
(2)~v,k'![e2aq/2S cosh

aq

2
1

iZcq

v
sinh

aq

2 D50.

~22!

Let us denote the solutions of the transcendental equat
~17! and ~19! by vk' ,n

i , and the solutions of the transcen

dental equations~22! by vk' ,n
' . Multiplying Eqs. ~17! and

~19!, we can finally findvk' ,n
i from the equation

D i~v,k'![D i
(1)~v,k'!D i

(2)~v,k'!

5
1

2
e2aq~12h2!

3S sinhaq2
2ih

12h2
coshaqD 50, ~23!

whereh5h(v)5Zv/(cq).
In perfect analogy to this, by multiplication of Eqs.~22!,

one can find the equation for the determination ofvk' ,n
' :
2-5
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D'~v,k'![D'
(1)~v,k'!D'

(2)~v,k'!

5
1

2
e2aq~12k2!

3S sinhaq1
2ik

12k2
coshaqD 50, ~24!

wherek5k(v)5Zcq/v.
Note that we have obtained the conditions for the de

mination of the electromagnetic oscillation spectrum by
use of equations forep . Exactly the same spectrum is ob
tained if the equations forgp are used.

IV. CASIMIR FREE ENERGY IN THE SURFACE
IMPEDANCE APPROACH

Now we are in a position to present a rigorous derivat
of Lifshitz-type formulas for the Casimir free energy an
force for the configuration of two plates at temperatureT in
thermal equilibrium in the surface impedance approach.
shown below, these formulas are well adapted for the ca
lation of the Casimir effect between real metals and are
subject to the disadvantages of the approaches~a!–~d! dis-
cussed in the Introduction.

First we consider the case of real eigenfrequenciesvk' ,n
i ,

vk' ,n
' ~this is fulfilled for the pure imaginary impedance!.

The total free energy of the electromagnetic oscillations
given by the sum of the free energies of separate oscilla
over all possible values of their quantum numbers,

F5(
a

F\va

2
1kBT ln~12e2\va /kBT!G , ~25!

wherekB is the Boltzmann constant. Identically, Eq.~25! can
be rewritten as

F5kBT(
a

lnS 2 sinh
\va

2kBTD . ~26!

It is clear that atT→0, the value ofF from Eqs.~25! and
~26! coincides with the sum of the zero-point energies, wh
is the traditional starting point in theoretical investigations
the Casimir effect at zero temperature.

Applying this to the electromagnetic oscillations betwe
metal plates, wherea5$p,k' ,n%, we obtain

F5kBTE
0

`k'dk'

2p (
n

F lnS 2 sinh
\vk' ,n

i

2kBT
D

1 lnS 2 sinh
\vk' ,n

'

2kBT
D G . ~27!

According to the calculations of Sec. III, the eigenfreque
cies of the electromagnetic field between plates with para
and perpendicular polarizations are determined by Eqs.~23!
and ~24!, respectively.
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The expression in the right-hand side of Eq.~27! is evi-
dently infinite. Before performing a renormalization, let
equivalently represent the sum over the eigenfrequen

vk' ,n
i ,' by the use of the argument theorem, as is usually d

in the derivation of the Lifshitz formula at zero temperatu
by the method of surface modes@6,44,45#. Then Eq.~27! can
be rewritten as

F5kBTE
0

`k'dk'

2p

1

2p i RC1

lnS 2 sinh
\v

2kBTDd@ ln D i~v,k'!

1 ln D'~v,k'!#. ~28!

Here, the closed contourC1 is bypassed counterclockwise.
consists of two arcs, one having an infinitely small radius«
and the other having an infinitely large radiusR, and two
straight linesL1 ,L2 inclined at angles645 degrees to the
real axis@see Fig. 1~a!#. The quantitiesD i ,'(v,k'), having
their roots at the photon eigenfrequencies, are defined in
~23! and ~24!. Note that, unlike the usual derivation of th
Lifshitz formula at nonzero temperature@2#, the function un-
der the integral in Eq.~28! has branch points rather tha
poles at the imaginary frequenciesv l5 i j l , where

FIG. 1. Integration pathsC1 ~a! and C2 ~b! in the plane of
complex frequency. The Matsubara frequencies arej l and the pho-
ton eigenfrequencies arevn .
2-6
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j l5
2pkBTl

\
, l 50,61,62, . . . ~29!

are the Matsubara frequencies. The contourC1 in Fig. 1~a! is
chosen so as to avoid all these branch points and to enc
all the photon eigenfrequencies.

The integral in Eq.~28! can be calculated as follows:

I i ,'[
1

2p i RC1

lnS 2 sinh
\v

2kBTDd ln D i ,'~v,k'!

5
1

2p i F EL2

lnS 2 sinh
\v

2kBTDd ln D i ,'~v,k'!

1E
CR

lnS 2 sinh
\v

2kBTDd ln D i ,'~v,k'!

1E
L1

lnS 2 sinh
\v

2kBTDd ln D i ,'~v,k'!

1E
C«

lnS 2 sinh
\v

2kBTDd ln D i ,'~v,k'!G . ~30!

The integral along the arc of infinitely large radiusCR van-
ishes, which follows from Eqs.~23! and~24! under the natu-
ral conditions

lim
v→`

Z~v!5const, lim
v→`

dZ~v!

dv
50. ~31!

Integrating by parts in the right-hand side of Eq.~30!, one
obtains

I i ,'5
1

2p i F lnS 2 sinh
\v

2kBTD ln D i ,'~v,k'!U
2 i«

A

2
\

kBTEL2

coth
\v

2kBT
ln D i ,'~v,k'!dv

1 lnS 2 sinh
\v

2kBTD ln D i ,'~v,k'!U
B

i«

2
\

kBTEL1

coth
\v

2kBT
ln D i ,'~v,k'!dv

1 lnS 2 sinh
\v

2kBTD ln D i ,'~v,k'!U
i«

2 i«

2
\

kBTEC«

coth
\v

2kBT
ln D i ,'~v,k'!dv, ~32!

where contoursL1,2 and pointsA,B are shown in Fig. 1~a!. It
is evident that all terms, besides the integrals, cancel e
other or are equal to zero~at pointsA,B). The integral along
L1 can be calculated by the application of the Cauchy th
rem to the closed contourC2 @see Fig. 1~b!#, inside which the
function under consideration is analytic,
06210
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2E
L1

coth
\v

2kBT
ln D i ,'~v,k'!dv

52E
i`

i«

coth
\v

2kBT
ln D i ,'~v,k'!dv. ~33!

Here we assume that the integral alongCR vanishes. Path
( i`; i«) contains semicircles of radius« about the singular
points i j l ~poles! of the function coth(\v/2kBT). The analo-
gous formula for the integral along lineL2 is

2E
L2

coth
\v

2kBT
ln D i ,'~v,k'!dv

52E
2 i«

2 i`

coth
\v

2kBT
ln D i ,'~v,k'!dv. ~34!

Substituting Eqs.~33!, ~34! into Eq. ~32!, one arrives at

I i ,'52
\

2p ikBTEi`

2 i`

coth
\v

2kBT
ln D i ,'~v,k'!dv.

~35!

The integration in Eq.~35!, involving poles at the pointsi j l ,
leads to

I i ,'5
i\

2pkBT È
2`

cot
\j

2kBT
ln D i ,'~j,k'!dj

2p (
l 52`

`

resFcoth
\v

2kBT
ln D i ,'~v,k'!; i j l G , ~36!

where functionsD i ,'(j,k') are obtained fromD i ,'(v,k')
by the substitutionv5 i j. In the case of real eigenfrequen
cies, which is under consideration now,D i ,' are even func-
tions of v ~and j). As a consequence, the seemingly pu
imaginary integral in the right-hand side of Eq.~36! van-
ishes. After the calculation of the residues, and using
evenness of functionsD i ,'(v,k'), the result is

I i ,'5( 8
l 50

`

ln D i ,'~j l ,k'!, ~37!

where the prime on the summation sign means that the t
for l 50 has to be multiplied by 1/2.

Substituting the values~37! of the integrals~30! into Eq.
~28!, we find the equivalent but more simple expression
the Casimir free energy,

F5
kBT

2p E
0

`

k'dk'( 8
l 50

`

@ ln D i~j l ,k'!1 ln D'~j l ,k'!#.

~38!

Expression~38! is still infinite. To remove the diver-
gences, we subtract from the right-hand side of Eq.~38! the
free energy in the case of infinitely separated interacting b
ies (a→`). Then the physical, renormalized, free ener
2-7
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vanishes for infinitely remote plates. From Eqs.~23! and
~24!, after the substitutionv→ i j l in the limit a→`, it fol-
lows

D i
`~j l ,k'!5

1

4
~11h l

2!S 11
2h l

11h l
2D ,

D'
`~j l ,k'!5

1

4
~11k l

2!S 11
2k l

11k l
2D . ~39!

The renormalization prescription is equivalent to the cha
of D i ,'(j l ,k') in Eq. ~38! for

D i ,'
R ~j l ,k'![

D i ,'~j l ,k'!

D i ,'
` ~j l ,k'!

512r i ,'
2 ~j l ,k'!e22aql,

~40!

where quantitiesr i ,'(j l ,k') have the meaning of the reflec
tion coefficients and are given by

r i
2~j l ,k'!5S 12h l

11h l
D 2

5S cql2Zlj l

cql1Zlj l
D 2

,

r'
2 ~j l ,k'!5S 12k l

11k l
D 2

5S j l2Zlcql

j l1Zlcql
D 2

. ~41!

Here Zl[Z( i j l) and ql
25k'

2 1j l
2/c2. The reflection coeffi-

cients ~41! are in accordance with Ref.@40#, where the re-
flection of a plane electromagnetic wave incident fro
vacuum onto the plane surface of the metal was describe
terms of the surface impedance.

In such a manner the final renormalized expression for
Casimir free energy in the surface impedance approac
given by

FR5
kBT

2p E
0

`

k' dk'(
l 50

`

8 $ ln@12r i
2~j l ,k'!e22aql#

1 ln@12r'
2 ~j l ,k'!e22aql#%. ~42!

where the reflection coefficients are given by Eq.~41!.
The Casimir force, acting between plates, is obtain

from Eq. ~42!,

F52
]FR

]a

52
kBT

p E
0

`

k'dk'( 8
l 50

`

ql$@r i
22~j l ,k'!

3e2aql21#211@r'
22~j l ,k'!e2aql21#21%. ~43!

The above derivation was performed under the assump
that the photon eigenfrequencies are real. This is, howe
not the case for arbitrary complex impedance. If the pho
eigenfrequencies are complex, the free energy is not give
Eq. ~26! ~which is already clear from the complexity of th
right-hand side of this equation!. For arbitrary complex im-
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pedance, the correct expression for the free energy shoul
determined from the solution of an auxiliary electrodynam
problem @46#. It turns out that the Casimir free energy an
force are the functionals of the impedance even when
impedance has a nonzero real part taking absorption
account. The solution of the auxiliary electrodynamic pro
lem leads to the conclusion@46# that the correct free energ
is obtained from Eqs.~38!–~42! by analytic continuation to
arbitrary complex impedance, i.e., to arbitrary oscillati
spectra. The qualitative reason for the validity of this sta
ment is that the free energy depends only on the behavio
Z(v) at the imaginary frequency axis, whereZ(v) is always
real @see, e.g., Eqs.~8!–~10!#. Note that in the case of com
plex eigenfrequencies, exactly Eqs.~42! and ~43! should be
used written in terms of summations from zero to infini
Although for real eigenfrequencies the summations ovel
from 2` to ` can be equivalently used, it is not so fo
complex va as the dispersion functionsD i ,' cease to be
even any more@46#.

It is necessary to stress that the above derivation of
free energy in the impedance approach can be simply m
fied in order to present the new derivation of the usual L
shitz formula describing the thermal Casimir force betwe
dielectrics. In fact, nothing should be changed in the pres
tation of this section, except for the explicit expressions
the dispersion functionsD i ,' in Eq. ~38! and thus of the
reflection coefficientsr i ,' in Eqs.~42! and~43!. The disper-
sion functions should be determined not according to Sec
but from the consideration of a fluctuating electromagne
field both inside and outside the dielectric plates with t
usual boundary conditions at the interfaces@2,6,44,45#. As a
result, the Lifshitz reflection coefficients take forms

r i ,L
2 ~j l ,k'!5S « lql2kl

« lql1kl
D 2

,

r',L
2 ~j l ,k'!5S ql2kl

ql1kl
D 2

, ~44!

where« l[«( i j l), «(v) is the dielectric permittivity of the
plate material, andkl

2[k'
2 1« lj l

2/c2. Then the Lifshitz ex-
pressions for the Casimir free energy and force between
electrics are given by Eqs.~42! and ~43!, where the substi-
tution r i ,r'→r i ,L ,r',L is made. In such a manner, we ha
performed also a new derivation of the usual Lifshitz fo
mula between dielectric plates starting from the free ene
of an oscillator. Conversely, the free energy and force in
framework of the impedance approach are obtained from
Lifshitz formula if the Fresnel-type reflection coefficien
r i ,L ,r',L are changed for those obtained by the use of
impedance boundary condition.

It should be stressed, however, that the reflection coe
cients~44! differ essentially from the impedance coefficien
~41!. To take an example, it is not possible to obtain coe
cients Eq.~41! from ~44! even if both descriptions in term
of «(v) and Z(v) are applicable and the impedance is e
pressed in terms of the dielectric permittivity by means
relationZ(v)51/A«(v) ~which holds, e.g., in the region o
infrared optics!. This underlines the fundamental role of th
2-8
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impedance boundary condition as an alternative to the c
sideration of a fluctuating field inside a medium described
«(v) in the case of real metals.

We conclude this section by remarking that the obtain
expression~42! for the free energy gives the possibility als
to find the thermal Casimir force in configuration of a sphe
~spherical lens! above a plate made of real metals in t
surface impedance approach

F~a!52pRFR~a!, ~45!

where R is the sphere radius. The approximate express
~45! is obtained by the application of the proximity forc
theorem@6# and has an accuracy around a fraction of 1%
configurations used in precision experiments on the meas
ment of the Casimir force@7–12,14,18#. Thus, the imped-
ance approach provides the theoretical basis for the mea
ments of the thermal Casimir force between real metals to
performed in the near future.

V. CALCULATION OF THE CASIMIR ENERGY
IN THE SURFACE IMPEDANCE APPROACH

First, we apply the obtained general formulas at zero te
perature. In this case, Eq.~42! for the free energy transform
to the double integral representing the Casimir energy
tween plates@or, according to Eq.~45!, the Casimir force
acting between a sphere and a plate#

E~a!5
\

4p2E0

`

k'dk'E
0

`

dj$ ln@12r i
2~j,k'!e22aq#

1 ln@12r'
2 ~j,k'!e22aq#%, ~46!

where the reflection coefficients in terms of the impeda
are given by Eq.~41! with the substitution

ql→q5Ak'
2 1

j2

c2
, Zl→Z~ i j!, j l→j. ~47!

Let us calculate quantity~46! obtained in the impedanc
approach and compare the results with the available
found by the traditional computations using the Lifshitz fo
mula. For the purpose of numerical computations, it is c
venient to rearrange Eq.~46! to the form@30#

E~a!5
\c

32p2a3E0

`

dzE
z

`

ydyH 2 ln~12e2y!

1 lnF11
Xi~z,y!

ey21
G1 lnF11

X'~z,y!

ey21
G J , ~48!

where the dimensionless variablesz,y are defined as

z5
j

vc
5

2aj

c
, y52qa, ~49!

and quantitiesXi ,'(z,y) are given by
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Xi~z,y!5
4zyZ

~y1zZ!2
,

X'~z,y!5
4zyZ

~z1yZ!2
, Z[ZS i

cz

2aD . ~50!

The first contribution in the right-hand side of Eq.~48! de-
scribes the case of an ideal metal,

E(0)~a!5
\c

16p2a3E0

`

dzE
z

`

ydyln~12e2y!52
p2\c

720a3
,

~51!

the others are the corrections due to the finite conductivi
As was stressed in Sec. II, with the decrease of temp

ture the range of application of the normal skin effect~1!
reduces to zero, and atT50 only the anomalous skin effec
and infrared optics occur with the frequency regions giv
by Eqs.~3! and~5!, respectively. The transition frequencyV
between the two effects can be obtained from equations

da~V!5
vF

V
5d r5

c

vp
, ~52!

where, according to Eq.~4!, da(V)5Ca /V1/3. All computa-
tions given below are performed for Au withvp51.37
31016 rad/s @47# and vF51.43106 m/s ~see, e.g., Ref.
@48#!. Then from Eq.~52! we obtain the values of bothCa
58.831024 m rad1/3/s1/3 and V56.3631013 rad/s. If to
considerV as the characteristic frequency giving the ma
contribution to the Casimir effect (V5vc5c/2atr), the tran-
sition separation distance between the two effects turns
to be equal toatr52.36mm. Then it follows that at distance
lp,a!atr52.36mm the impedance of the infrared optic
determines the value of the Casimir energy and for
whereas ata@atr52.36mm the impedance of the anoma
lous skin effect is applicable (lp5137 nm is the plasma
wavelength for Au!. Direct calculations by Eqs.~48! and~50!
show that the main contribution to the Casimir energy
given by the narrow frequency interval around the charac
istic frequencyvc . Thus, the interval (0.1vc ,10vc) contrib-
utes 94% of the total energy in the wide separation regi
What is even more important, the remainder does not dep
on the form of the impedance function outside interv
(0.1vc,10vc), to within the error of about 0.5%. From this
follows that at each separation distance between the pl
one should, first, determine the characteristic frequencyvc
and, second, fix the proper impedance function. Therea
the chosen impedance function can be used at all frequen
when performing the integration in Eq.~48!. At zero tem-
perature this prescription is optional. AtTÞ0, however, it
takes on great significance~see Sec. VI!.

In Fig. 2 the correction factor to the Casimir energ
E(a)/E(0)(a) is plotted, which is computed by Eqs.~48!,
~50!, and ~51! as a function of the separation distance. T
solid line is obtained with the impedance of the infrar
optics ~10!, and the dotted line is obtained with the impe
ance of the anomalous skin effect~9!. Both lines are plotted
2-9
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at all separationsa.lp to make sure that each impedan
function is applicable within its own frequency region and
follow their applicability at the transition separations arou
atr . It must be emphasized that the solid line coincides w
the correction factor to the Casimir energy computed on
basis of the usual Lifshitz formula in combination with th
dielectric function of the plasma model~this was demon-
strated in detail in Ref.@30#!. Thus, both the impedance ap
proach and the Lifshitz formula combined with the plasm
model lead to one and the same result for the Casimir en
at separationsa.lp .

As is seen from Fig. 2, atlp,a!2.36mm, the pointed
line computed with the impedance of the anomalous s
effect ~which is inapplicable in this region! significantly un-
derestimates the correction factor due to the finite conduc
ity. For example, ata50.15mm the values of the correctio
factors, given by the solid and dotted lines, are 0.623
0.851, respectively, i.e., the error introduced by the use of
impedance of the anomalous skin effect is almost 37%. A
separationa50.5 mm this error is more than 9%, and de
creases with increasing separation. Notice that the comp
tions on the basis of the usual Lifshitz formula and opti
tabulated data for the complex refraction index@which are
used to obtain«( i j) through the dispersion relation# also
practically coincide with those given by the surface impe
ance in the region of the infrared optics~solid line in Fig. 2!.
Thus, at the separations of 0.2mm, 0.5mm, and 3mm, the
correction factor obtained by the tabulated data and Lifs
formula is equal to 0.69, 0.85, and 0.97, respectively@45,47#,
whereas in the impedance approach it takes the values 0
0.849, and 0.972.

At larger separations (a@atr52.36mm) the impedance
function of the anomalous skin effect should be used to co
pute the Casimir energy~dotted line in Fig. 2!. As is seen
from that figure, at these separations the impedance of
infrared optics overestimates the role of the finite conduc
ity corrections to the Casimir energy. This overestimation
however, to within a fraction of 1%. In the transition regio
a52 –2.5mm the results given by both impedance functio
are in agreement, bringing the discrepancies of about

FIG. 2. Correction factor to the Casimir energy between two
plates at zero temperature computed by the use of the impedan
infrared optics~solid line! and of anomalous skin effect~dotted
line! versus surface separation.
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only. This leads us to the conclusion that at zero tempera
both impedance functions work well in their respective a
plication regions. In the transition region each of them can
applied, and the results are in agreement within an erro
1%. It is seen also that ‘‘much less’’ or ‘‘much larger’’ in th
above inequalities, in fact, means two or three times l
~larger!.

As regards the region of infrared optics, the Lifshitz fo
mula in combination with the plasma model or optical tab
lated data for the complex refraction index leads to the sa
results as the impedance approach. It gives rather good
sults even in the region of the anomalous skin effect, whe
strictly speaking, the description in terms of« is not appli-
cable~see Sec. II!. The feasibility of the Lifshitz formula is
explained by the fact that at zero temperature the normal
effect is practically absent and the problems connected w
the heating of a metal due to the real electric current are
relevant. As a result, both the impedance approach and
usual Lifshitz formula are applicable. At nonzero tempe
ture, however, the surface impedance approach acquir
new meaning and solves the problems formulated in the
troduction~see the following section!.

VI. CALCULATION OF THE CASIMIR FREE ENERGY
IN THE SURFACE IMPEDANCE APPROACH

Here we calculate the Casimir free energy for the confi
ration of two parallel plates made of Au at temperatureT at
thermal equilibrium. The starting point is Eq.~42!, where the
reflection coefficients are expressed in terms of the surf
impedance by Eq.~41!. Introducing the dimensionless var
ables by analogy with Eq.~49!, we transform Eq.~42! to a
form convenient for numerical computations:

FR5FR~a,T!

5
kBT

8pa2 ( 8
l 50

` E
z l

`

ydyH 2 ln~12e2y!

1 lnF11
Xi~z l ,y!

ey21
G1 lnF11

X'~z l ,y!

ey21
G J , ~53!

whereXi,X' are given by Eq.~50! with the changez→z l ,
Z→Zl5Z( icz l /2a). Notice that the first contribution in the
right-hand side of Eq.~53! presents the Casimir free energ
for the ideal metal@6#

F R
I ~a,T!5

kBT

4pa2 ( 8
l 50

` E
z l

`

ydyln~12e2y!

5E(0)~a!H 11
45

p3 (
l 51

` F S T

Te f f
D 3 1

l 3
cothS p l

Te f f

T D
1pS T

Te f f
D 2 1

l 2
sinh22S p l

Te f f

T D G2S T

Te f f
D 4J ,

~54!

of
2-10
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whereE(0)(a) is defined in Eq.~51! and the effective tem-
peraturekBTe f f5\vc5\c/(2a).

First of all, let us demonstrate that in the impedance
proach there is no problem with the contribution of the ze
Matsubara frequency which was the subject of much rec
controversy~see the Introduction!. We start from the lowes
characteristic frequencies where the impedance of the no
skin effect, given by Eq.~8!, is applicable. Substituting i
into Eq. ~41! and puttingj l50, one obtains

r i
2~0,k'!5r'

2 ~0,k'!51, ~55!

i.e., the same result as for an ideal metal; namely, this
comes clear since quantitiesXi ,', defined in Eq.~50! and
given for the impedance of the normal skin effect as

Xi~0,y!5X'~0,y!50, ~56!

when inserted into Eq.~53! obviously lead to the same zero
frequency contribution as it holds for an ideal metal.
should be stressed that all functionsr i ,'

2 (j,k') and
Xi ,'(z,y) are continuous functions of two variables inclu
ing the point ~0,0!. Thus, the case of an ideal metal
achieved as a limiting case of a real metal with increase
the conductivity when the real metal is described in
framework of the impedance approach. Note that this is
the case when the real metal is described by the Drude
electric function~2! and the Lifshitz formula for dielectrics is
used to calculate the Casimir free energy@approach~a! from
the Introduction#. In fact, if doing so it follows from Eq.~44!

r i ,L
2 ~0,k'!51, r',L

2 ~0,k'!50, ~57!

and there is a break of continuity between the propertie
real metals and of ideal metal@28#.

At higher characteristic frequencies the anomalous s
effect holds with an impedance function as from Eqs.~4! and
~9!. If we extend this function to all frequencies~to zero
Matsubara frequency in that case!, we ensure that both Eqs
~55! and ~56! are valid once again. As a result, in both r
gions of the normal and the anomalous skin effect the th
mal corrections to the Casimir free energy and force for r
metals are very close to those for an ideal metal. As
would expect, at large separations~characteristic for the
anomalous and especially for the normal skin effect! all met-
als behave like an ideal one@this is, however, not the case i
the framework of the approach~a!#.

If the characteristic frequencies increase further, the in
red optics with an impedance function of Eq.~10! takes
place. The extension of it to zero Matsubara frequency le
to

r i
2~0,k'!51, r'

2 ~0,k'!5S vp2ck'

vp1ck'
D 2

. ~58!

In this case there occurs a dependence of the perpendi
reflection coefficient at zero frequency on the properties
the real metal through the value of the plasma frequen
This is reasonable, because the real properties of a meta
most pronounced at small separations characteristic for
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infrared optics. In the limitvp→`, the result for an ideal
metal is reproduced from Eq.~58!.

Before performing the computations, it must be emph
sized that the surface impedance approach is in per
agreement with thermodynamics. In the impedance
proach, the entropy, defined as

S~a,T!52
]FR~a,T!

]T
, ~59!

is positive and equal to zero at zero temperature in ac
dance with the Nernst heat theorem@note that this is not the
case in the approaches~a! and~c!#. The validity of the Nernst
heat theorem in the impedance approach can be dem
strated in the regions of both the infrared optics and
anomalous skin effect~as noted above, the region of th
normal skin effect dies out with decreasing temperature!. Ac-
cording to the results of Ref.@30#, in the region of infrared
optics the Lifshitz formula combined with the plasma mod
leads to exactly the same perturbation results for the Cas
free energy and force as the impedance approach. AT
!Te f f the free energy is given by@31#

FR~a,T!5E~a!2
\cz~3!

16pa3 F S 112
d r

a D S T

Te f f
D 3

2
p3

45z~3! S 114
d r

a D S T

Te f f
D 4G , ~60!

where E(a) is the Casimir energy atT50 defined in Eq.
~46!. After the substitution in Eq.~59!, this leads to the
simple expression for the Casimir entropy

S~a,T!5
3kBz~3!

8pa2 S T

Te f f
D 2H 12

4p3

135z~3!

T

Te f f

12
d r

a F12
8p3

135z~3!

T

Te f f
G J , ~61!

which is positive and equal to zero at zero temperature.
The impedance approach in the region of the anomal

skin effect was used recently in Ref.@32#. The asymptotic of
the entropy at very low temperatures, obtained in Ref.@32#,
demonstrates that it is positive and has zero value at z
temperature in accordance with the requirements of ther
dynamics.

By the way of an example, here we perform the numeri
computations of the relative thermal correction to the C
simir free energy defined as@FR(a,T)2E(a)#/E(a). This
quantity has also the meaning of the relative thermal corr
tion to the Casimir force in the configuration of a sphe
~spherical lens! above a plate used in precision experime
on the Casimir effect. If the characteristic frequencyvc be-
longs to the region of the normal skin effect, the resu
practically coincide with those obtained for an ideal me
@30#, and the free energy is given by Eq.~54!. If the charac-
teristic frequency belongs to the regions of the anomal
skin effect or infrared optics, the computational results
the relative thermal correction are obtained by Eqs.~48!, ~53!
2-11
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and are presented in Fig. 3. The solid lines are compu
with the impedance of the infrared optics~10!, and the dotted
lines are computed with the impedance of the anomal
skin effect~9!. All computations are performed for Au at tw
temperaturesT5300 K andT570 K with numerical param-
eters as listed in Sec. V. Both pairs of lines are plotted at
separationsa.lp for a better visualization of the applicatio
range of each impedance function.

Note that at separations between the plateslp,a,atr ,
whereatr52.36mm does not depend on the temperature,
impedance of the infrared optics is applicable, and at se
rations a.atr the impedance of the anomalous skin effe
should be used. It is seen from Fig. 3 that at small sep
tions the use of the impedance function of the anomal
skin effect significantly overestimates the value of the th
mal correction. Thus, ata50.15mm the values of the rela
tive thermal corrections given by the dotted and solid lin
are 1.5531022 and 1.8231024, respectively, atT5300 K,
and 4.8531023 and 2.7631026, respectively, atT570 K.
What this means is the thermal correction, predicted by
impedance of the anomalous skin effect in the region of
infrared optics, where this impedance is not applicable, is
times greater atT5300 K and 1757 times greater atT
570 K than the correct values.

At separationsa.atr52.36 mm the dotted lines presen
the correct dependence of the thermal correction on the s
ration distance. The difference between the free ener

FIG. 3. Relative thermal correction to the Casimir free ene
between two Au plates computed by the use of the impedanc
infrared optics~solid lines! and of anomalous skin effect~dotted
lines! versus surface separation at two different temperatures.
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computed by the use of two impedance functions is, ho
ever, to within a fraction of 1%. In the transition region th
results, given by the impedance function of the infrared o
tics and anomalous skin effect, are in agreement with a
ficient accuracy. For example, ata52.5 mm the ratio of the
relative thermal corrections obtained by the use of differ
impedance functions is 1.05 atT5300 K and 2.19 atT
570 K. As a result, the discrepancies in the values of
free energy are about 1.2% (T5300 K) and 0.7% (T
570 K).

Our results for the thermal correction to the Casimir fr
energy are in disagreement with the conclusion of Ref.@32#
about the existence of large thermal corrections at low te
perature made in the framework of the impedance appro
As correctly argued in Ref.@32#, the description of metals
with the impedance in the region of the anomalous skin
fect is more appropriate than with the dielectric permittivi
However, the conclusion about the existence of large ther
corrections at separations 100–500 nm atT<70 K made in
that paper is in error. To obtain this conclusion, the impe
ance function of the anomalous skin effect was applied
Ref. @32# at separations much less thanatr52.36mm, i.e., in
the separation range of the infrared optics. This was
plained by the fact that at temperaturesT<70 K the inequal-
ity l @d r holds, which, from the standpoint of Ref.@32#,
guarantees the applicability of the impedance of the ano
lous skin effect. In actual, this inequality is not sufficient.
fact, one additional inequality,da(v)!vF /v, must be ful-
filled in order that the anomalous skin effect holds@see Eq.
~3! and Ref.@37##. Because of this, the frequencyV @see
definition in Eq.~52!#, considered in Ref.@32# as the charac-
teristic frequency of the anomalous skin effect, is actually
transition frequency to the region of infrared optics. As
result, all computations performed in Ref.@32# correspond to
the dotted line atT570 K of our Fig. 3 at separationsa
,atr52.36mm. According to our computations, in thi
separation range the dotted line atT570 K overestimates the
value of the thermal correction by a factor of 2000, where
the correct results are given by the solid lines obtained by
use of the impedance function of infrared optics. Note t
the characteristic frequencies, corresponding to the sep
tions 100–500 nm, fall into the intervalvc5(0.321.5)
31015 rad/s@V, i.e., belong to the region of the infrare
optics ~see Sec. II!.

At the end of this section, we would like to stress that
the sums, such as Eqs.~42!, ~43!, and ~53!, the form of the
impedance at the characteristic frequencies must be su
tuted and extended to all other frequencies. At zero temp
ture, as was shown in Sec. V, the frequency reg
@0,1vc,10vc#, where the characteristic frequency isvc
5c/(2a), gives most of the contributions to the result. Ca
culations show that at nonzero temperature the Matsub
frequencies fromj0 to jN'10vc give the dominant contri-
bution. For example, ata50.15mm (vc51015 rad/s), T
5300 K the first 41 Matsubara frequencies determine
total result. Herej152.531014 rad/s andj4051016 rad/s.
All nonzero Matsubara frequencies belong to the region
infrared optics. With a decrease of the temperature som
the Matsubara frequencies may fall within the frequency
gion of the anomalous skin effect~at T570 K, for instance,

y
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the first Matsubara frequencyj155.7531013 rad/s,V
56.3631013 rad/s for Au!. At small separations, howeve
the differences in the contributions of several first Matsub
frequencies computed by the use of different impeda
functions are negligible. AtT50 any extension of the im
pedance function outside the above interval leads to appr
mately one and the same value of the Casimir energy~in the
integral one pointj50 is of no significance!. At TÞ0, how-
ever, the contribution of the zero Matsubara frequencyj0
50 becomes dominant at large separations~high tempera-
tures!, and at room temperature, for instance, it determi
the total value of the free energy ata>5 mm.

The basic challenge is whether the actual reflection pr
erties of plate materials at very low, quasistatic, frequenc
are responsible for the Casimir force in the high-tempera
limit. The point is that materials are at hand~e.g., indium tin
oxide!, which are good conductors at quasistatic frequenc
but transparent to visible and near infrared light. To consi
a pair of plates made of indium tin oxide~ITO! at a separa-
tion a55 mm, and the other pair of plates at the same se
ration made of Au, one runs into difficulties. If the actu
low-frequency reflection properties should be substitu
into the zero-frequency term, the impedance of the nor
skin effect from Eq.~8! must be used. As a result, the the
mal Casimir force ata55 mm will be equal for both pairs of
plates~and practically the same as for an ideal metal!. This is
in contradiction with the physical intuition as around t
characteristic frequencyvc5331013 rad/s~computed at the
separation 5mm) ITO is a poor reflector. A better physica
result would be obtained if one extends the characteri
impedance atvc ~of the anomalous skin effect for Au and o
the infrared optics for ITO! to zero Matsubara frequency.
this is done, the zero-frequency term for Au plates will be
same as for an ideal metal in accordance with Eq.~55!. For
ITO plates the zero-frequency term will contain the value
vp

ITO according to Eq.~58!. Taking into account the large
value of the penetration depth for ITO, the magnitude of
Casimir force between the ITO plates will be less than
tween the plates made of Au, as the intuition suggests
fact, the question of whether the values of the Casimir fo
for the above two pairs of plates at separation 5mm are
equal or different, can be answered experimentally using
measurement scheme suggested recently in Ref.@49#. We
expect that the experimental result will be in accordance w
the suggestion of the physical intuition~note that this ex-
ample with two pairs of plates was used with another aim
Ref. @31#!.

VII. CONCLUSIONS AND DISCUSSION

In the foregoing we have presented the surface impeda
approach to the theory of the Casimir effect at both zero
nonzero temperature. In the impedance approach the e
tive boundary condition is imposed taking the real proper
of the metal into account. Previously this approach was c
sidered as nothing more than a useful approximation to
more complete Lifshitz theory using the concept of a fluc
ating electromagnetic field both outside and inside
boundary of the bodies. Our conclusion is that the stand
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concept of a fluctuating field inside a metal, described by
dielectric permittivity depending only on frequency, in th
region where a real current may arise, cannot serve as
adequate model for the zero-point oscillations and ther
photons. It follows from the fact that the vacuum oscillatio
and the thermal photons in equilibrium under no circu
stances can lead to a heating of the metal. If this fac
overlooked, contradictions with the thermodynamics ar
when one substitutes into the Lifshitz formula for the C
simir free energy and force the Drude dielectric functio
which takes into account the volume relaxation and, con
quently, the Joule heating. This situation reflects the n
trivial character of quantum fluctuations in the nonhomog
neous case involving both vacuum and real meta
containing conduction electrons, in different spatial regio
In fact, in such cases the quantized electromagnetic fiel
nonzero temperature may not be represented in term
~quasi!particles@31#. As a result, the concept of a fluctuatin
field becomes not so transparent as in nonlossy dielec
media.

In the light of this conclusion, the surface impedance a
proach takes on fundamental importance as~at present! the
only self-consistent description of the Casimir effect betwe
real metals. It does not need any prescription for the ze
frequency contribution to the Casimir energy and force. In
cases the correct expressions for the values of both reflec
coefficients with two different polarizations at zero fr
quency are deduced from the general theoretical framew
using the explicit form of the impedance function~see Sec.
VI !. Thus, a long discussion in the recent literature conce
ing the most adequate modification of the zero-freque
term of the Lifshitz formula@21,23–28,31–33# can be final-
ized.

The surface impedance approach solves the puzzle
the violation of the Nernst heat theorem and with negat
values of entropy which appears when one substitutes
Drude dielectric function into the usual Lifshitz formula. I
the impedance approach the entropy is in all cases n
negative and takes zero value at zero temperature. Thus
general formulas given by Eqs.~41!–~43!, ~46!, ~48!, and
~53! lay the theoretical basis for the calculation of the th
mal Casimir effect with respect to the needs of future pre
sion experiments. The computations performed in Secs
and VI are in good agreement with the previous results
tained by the use of the optical tabulated data and the pla
model.

The obtained results allow us to remove the doubts t
something is wrong with the Lifshitz formula@32#. In fact,
the above formulas in the framework of the impedance
proach coincide with the Lifshitz formula. The only diffe
ence is that for real metals in the frequency regions, wh
the electromagnetic oscillations initiate a real current
where the space dispersion is essential, one must expres
reflection coefficients not in terms of the dielectric permitti
ity but in terms of the surface impedance. The usual Lifsh
formula, formulated in terms of the dielectric permittivit
preserves, however, major importance not only in appli
tions to dielectrics, but also in the theory of the nonretard
van der Waals forces between metallic surfaces. As was m
2-13
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tioned in Sec. II, the surface impedance approach is ap
cable with the proviso thatvc,0.1vp , i.e., the separation
distances between the test bodies must satisfy the cond
a.5lp /(2p)'lp . In essence, the frequency regionv
.0.1vp is a subject of the optics of real metals near t
plasma frequency@50#. At separationsa,lp between the
test bodies, the temperature effects are negligible. This
region of the ultraviolet transparency where metals can
described on the same basis as dielectrics. The most ade
approach to the theory of the van der Waals forces at
small separations is given by the hydrodynamical descrip
of an inhomogeneous electron gas@51#. This is a more gen-
eral approach if compared with the Lifshitz theory, becaus
does not start with a model description of a metal in terms
the bulk dielectric permittivity. In the local limit, howeve
when the spatial dispersion is absent, the hydrodynam
approach leads to the usual Lifshitz formula at zero temp
ture @51#. As a consequence, the usual Lifshitz formula
well adapted for the calculation of the van der Waals for
between real metals at separationsa,lp if «( i j) is obtained
,

ep
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e

.

.

ov
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by the use of optical tabulated data for the complex refr
tion index~the extension of the available tabulated data in
the region of small frequencies makes almost no effect on
computational results!.

In conclusion, it may be said that the Lifshitz formula
combination with the impedance approach gives a so
foundation for the investigation of thermal effects onto t
Casimir force. This approach does not lead to contradicti
and can be used as the theoretical basis for the need
future experiments.
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