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Surface-impedance approach solves problems with the thermal Casimir force between real metals
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The surface-impedance approach to the description of the thermal Casimir effect in the case of real metals
is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the
dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where
a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electro-
magnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or
thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to
consider the electromagnetic oscillations inside the metal but taking the realistic material properties into
account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas
for the Casimir free energy and force between two metal plates is presented within the impedance approach. It
is shown that they are free of the contradictions with thermodynamics that are specific to the usual Lifshitz
formula for dielectrics in combination with the Drude model. We demonstrate that in the impedance approach
the zero-frequency contribution is uniquely fixed by the form of impedance function and does not need any of
the ad hocprescriptions intensively discussed in the recent literature. As an example, the computations of the
Casimir free energy between two gold plates the Casimir force acting between a plate and a spraee
performed at different separations and temperatures specific for the regions of the anomalous skin effect and
infrared optics. The results are in good agreement with those obtained by the use of the tabulated optical data
for the complex refraction index and plasma model. It is argued that the surface impedance approach lays a
reliable theoretical framework for the future measurements of the thermal Casimir force.
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[. INTRODUCTION ject of much controversjy20-33. The key contradiction is
on whether the term of the Lifshitz formul84,35 related to
Considerable attention has been focused recently on thihe zero Matsubara frequency for tperpendicularpolar-
Casimir effect 1] which is a rare manifestation of the zero- ized modes of an electromagnetic field contributes to the
point oscillations of the electromagnetic field at macroscopighysical quantities and, if so, how much would its contribu-
scales. The Casimir force arises as response to the changetiain be. At the moment there are five distinct approaches to
the spectrum of zero-point oscillations when material boundihe resolution of this problem in the recent literature.
aries are present. It acts between the boundaries of these (a) According to the first approach, proposed in Heb|
bodies and depends on the parameters of their materialand supported in Ref§26,27), in the case of real metals the
their geometry(including surface roughnessand on the term of the Lifshitz formula with zero Matsubara frequency
temperaturefor a detailed information see the monographsshould be calculated by using the Drude dielectric function.
and reviewg2-6]). Recently, many precision measurementsAs a result, the perpendicular polarized modes do not con-
of the Casimir force between metal boundaries have beetnibute to this term.
performed[7—14]. Their results were used for constraining  (b) In the other approacf28] a special modification of
hypothetical forces predicted by unified gauge theories ofhe zero-frequency term of the Lifshitz formula, supple-
fundamental interactiongl5—17 and in nanotechnological mented by the Drude model, was proposed leading to a non-
applicationg 18,19. zero contribution of the perpendicular polarized modes. This
With respect to the present state of the art, the theoreticahodification was done by analogy with the prescription of
description of the Casimir force calls for a careful account ofRef. [36] for an ideal metal but it does not coincide with it.
all material properties and other relevant factors. Surpris- (c) In the framework of the approaches of R€f23—25
ingly, it was found that the calculations of the temperaturethe modification of the zero-frequency term of the Lifshitz
effect on the Casimir force between real metals of finite conformula was made identical to that for an ideal m¢&g].
ductivity run into serious troubles, which have been the subAs a consequence, the contribution of the perpendicular po-
larized modes to the zero-frequency term in RE28-25 is
nonzero and coincides with that for an ideal metal.
*Email address: geyer@itp.uni-leipzig.de (d) According to Refs[21,22,29 the contribution of the
TOn leave from North-West Polytechnical University, St. Peters-perpendicular polarized modes with zero Matsubara fre-
burg, Russia, and Federal University of PheaiJoa Pessoa, Bra- quency is nonzero and should be calculated by substituting

zil. Email address: galina@fisica.ufpb.br the free-electron plasma dielectric function into the unmodi-
*On leave from Noncommericial Partnership “Scientific Instru- fied Lifshitz formula.

ments,” Moscow, Russia, and Federal University of Azaaloa (e) Finally, according to the approach of Ref30,31], the

Pessoa, Brazil. Email address: mostep@fisica.ufpb.br description of the thermal Casimir force can be obtained by
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using the Leontovich surface impedance boundary conditioenergy and force at different temperatures and separation dis-
(recently this approach was applied also in Ré2]). In  tances between the test bodies. To do this, one has to use the
doing so, the perpendicular polarized modes give a nonzergnpedance functions describing the regions of infrared op-
contribution to the zero-frequency term of the Lifshitz for- tics, anomalous or normal skin effect depending on the value
mula prescribed by the form of the impedance. of the characteristic frequency giving the main contribution
As to the contribution of the modes withparallel polar-  to the Casimir force. It is shown that no contradictions with
ization to the zero-frequency term, there is consensus bdbérmodynamics arise, and no artificial prescriptions for the
tween all these approaches that for real metals it is nonzergfro-frequency term are needede also demonstrate that
and the same as for ideal metals. Note also that some of tH8€ Predictions of large temperature corrections to the Ca-
viewpoints varied with the time in the framework of the SIMir force at small separations and cryogenic temperatures,

above approaches)—(e). For example, in Refg23,24 ap- made in Ref.[_32], are in error si_nce the imp_eda_nce of the
proach (c) was considered as an universal prescription@nomalous skin effect was used in Ref2] outside its range
whereas in Ref[32] it is restricted by the range of only ©f application. ,

cryogenic temperatures, and in REZ5] by the case of suf- The paper is organized as follows. In Sec. Il we demon-
ficiently large separation distances and by the presence Gf'ate the inadequacy of the concept of a fluctuating electro-
thin covering metallic films. Approactb), proposed in Ref. magnetic field inside lossy real metals and remind the basic
[28] to resolve the contradictions arising for the Drude modelfacts from the theory of surface impedance. Section il is
in combination with the Lifshitz formula, was considered devoted to the derivation of the electromagnetic oscillation

later in Ref.[31] as unnecessary as the Drude model itselSPECtrUm between two parallel plates starting from the im-
turned out to be irrelevant for the description of the thermaP€dance boundary condition. In Sec. IV the formula for the
Casimir force between real metals. It should be particularly©@SIMir free energy is derived in the surface impedance ap-
emphasized that approach@s and(c) were proved to be in proach. The proposed S|mpl_e (_jerlvauon of the usual Lifshitz
contradiction with thermodynamid81,33 since they vio- formula for the thermal Casimir force between dielectrics is

late the Nernst heat theorem. A detailed comparison of all th@/SC given here. Section V contains the calculations of the
approaches can be found in Rel28,31. Casimir energy and force at zero temperature using the im-

The present paper aims to work out quite clearly that thdedance approach. The results are compared with the previ-

surface impedance approach provides an answer to all tH¥!Sly known ones, obtained by the use of the usual Lifshitz

complicated problems with the retarded Casimir force peformula and the tabulated optical data, and are found to be in

tween real metals at both zero and nonzero temperatures. V@@reement. In Sec. VI the computations at nonzero tempera-
demonstrate that the main reason why the Drude model ifr¢ aré performed in the impedance approach at different
combination with the Lifshitz theory had failed to describe S€Paration distances between the test bodies. They demon-
the thermal Casimir force is the inadequacy of the standard7@te good agreement in transition regions between the dif-
concept of a fluctuating electromagnetic field depending onbterent analytical expressions for the impedance. In Sec. VIl

on frequency inside a lossy real metal. Rather than considefh€ reader finds conclusions and a discussion on the relation-

ing fluctuations inside a metal, the surface impedance apniP Petween the proposed impedance approach to the Ca-

proach suggests that the effective boundary conditions taksiMir effect and the theory of the van der Waals forces valid
into consideration in a noncontradictory way the involved@t Small separation distances between the test bodies.

reflection properties from the surface of a real conductor. In

this case no additional prescriptions are needed, and the val- Il. THE CONCEPT OF A FLUCTUATING
ues of the zero-frequency contributions for both parallel and ELECTROMAGNETIC FIELD
perpendicular modes follow immediately from the explicit AND THE SURFACE IMPEDANCE

form of the impedance function. . .
On this basis, we present a derivation of the formula for It is v_veII_ known that the concept of alﬂqctuatmg electro—
the Casimir free energy and force in a configuration of two1agnetic f|eI(_j v_vorks vyell ]‘or the description of zero-point
parallel plates in the surface impedance appro@chRef. o;cﬂlaﬂong V.V'th'n media with afrequency-depgndent d|elgc-
[30] it was presented without proof by the use of a prescrip_trlc permittivity where no r_eal electric current arises. We WI||
tion changing the integration over continuous frequencies fof'oW IOOI? at a conductor in an gxte_rnal electric .f!eld, which
the summation over the discrete Matsubara frequenciée varies with some frequenay satisfying the conditions
necessity of this derivation results from the fundamental role
played by the concept of the surface impedance in the theory <6, (w), < ”_F, 1)
of the Casimir effect between real metals. The relationship ]
between this formula and the Lifshitz formula for the free
energy is foundthe new formula is obtained by exchanging where | is the mean free path of a conduction electron,
the reflection coefficients, which appear in the Lifshitz for- 6,(w)=c/J2mow is the penetration depth of the field in-
mula, for those derived in the surface impedance appjoachside a metalg is the conductivity, and is the Fermi ve-
Our derivation starts from the free energy of the oscillatordocity. Equations(1) determine the domain of the normal
and suggests also other means to derive the usual Lifshigkin effect[37]. In this frequency region the external field
formula for the thermal Casimir force between dielectrics.leads to the initiation of a real current of the conduction
The obtained formula is applied to compute the Casimir freeelectrons.
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The normal skin effect is characterized by the volumefrequency. As with the normal skin effect, this leads to the
relaxation described by the temperature-dependent relaxatianapplicability of the standard concept of a fluctuating field
frequencyy(T). As a result, the mean free path of the con-spreading inside a medium described &) and to the
duction electrons is also temperature dependesnt,(T) impossibility to calculate the Casimir force on this theoreti-
=ve/y(T), and increases with a decrease in temperaturecal basis. If one would like to preserve the role of a fluctu-
The interaction of the conduction electrons with the elemenating field within the domain of the anomalous skin effect,
tary excitations of the crystal latticgphonons leads to the some nonlocal generalization of this concept is required.
occurrence of electric resistance and heating of the metalNote that for some metals, especially for alloys, instead of
The dielectric permittivity of a metal in the domain of the Eq. (3), inequalitiesvr/w<I<§ hold, specifying the so-
normal skin effect can be modeled by the Drude function called relaxation domaif88,39; here the space dispersion is

also essentig].
® On further rise of the frequency, the following inequalities

2
p
~wlotiyM]’ @ hola:

e(w)=1

wherew, is the plasma frequency of the free electron plasma
model (w, is temperature independg¢ntRemind that the
Drude dielectric functiori2) was used in approachés—(c)
(see the Introductionin combination with the Lifshitz for- Where 6, =c/w;, which determines the domain of infrared
mula to describe the thermal Casimir force between real mewptics (note that conditiori w<ef is also supported where
als for the frequencies both inside and outside the regipn  er=%w, is the Fermi energy In this domain the volume
This has led to difficulties including the violation of Nernst’'s relaxation does not play any role and the space dispersion is
heat theorengsee the Introduction absent. Under condition®), metals can be described in the
The physical reason for these difficulties becomes quitdramework of the free-electron plasma model with a
clear when one observes that the usual alternating electritequency-dependent dielectric permittivity
field with frequencies characteristic for the normal skin ef-
fect inevitably leads to heating of a metal as it penetrates wg
through the skin layer. By contrast, the thermal photons in g(w)=1- ; 6
thermal equilibrium with a metal plate or, much less, the

virtual photons(giving rise to the Casimir effegtcannot,  according to the plasma model, the conductivity is pure
under any circumstances, lead to the initiation of a real cUrmaginary and hence there is not any real current or heating
rent and heating of the metedf course, this is strictly pro- 4,6 to an electric field penetrating the metal. Because of this,
hibited by thermodynamigsHence the standard concept of & e standard concept of a fluctuating electromagnetic field, as
fluctugtlng electromagnet_lc flelt_d penetrating inside a me_taé model for the virtual and thermal photons, works well in
described by the Drude dielectric function fails to model Vvir- iha qomain of infrared optics. Note that the plasma model
tual and thermal photons in the frequency regi@h As @  giglectric permittivity in combination with the Lifshitz for-
consequence, the Lifshitz formula cannot be applied in comg,,1a was used to calculate the thermal Casimir fojisee
bination with the Drude dielectric functidi2) to describe the approach(d) from the Introductiof This approach did not
thermal Casimir force even in the domain of the normal skinyeet any difficulties or contradictions with the basic prin-

effect. o ciples of thermodynamics and has led to physically reason-
These arguments are supported also by considering thgyje results. The domain of infrared optics is followed by the

other frequency regions. At higher frequencies or larger gomain of ultraviolet frequencies where metals become
(lower temperaturgsfor most of the metals the anomalous transparent.

skin effect holds, which is characterized by the inequalities  ag is evident from the foregoing, the standard concept of
a fluctuating electromagnetic field, penetrating a metal de-
UVE . . . e .
Sa(w)<l,  Sy(w)<—, (3)  scribed by the dielectric permittivity depending only on fre-
@ quency, cannot be used as an adequate model for the virtual
and thermal photons of some frequencies. There is a fre-
quency regior(the domain of the normal skin effgovhere
2,3\ 13 this model is in conflict with the basic properties of the vir-
4mCh (4) tual and thermal photons at equilibrium which, among other
we®Sy ' things, cannot lead to heating of a metal. In addition, in the
region of the anomalous skin effect and relaxation domain a
and Se is the total area of the Fermi surfafia fact, within ~ metal cannot be described by the dielectric permittivity de-
the inequalitieg3) “much less” can be replaced by “less” pending only on frequency. Because of this, another theoret-
thereby preserving Eq4) with a good precisioh In the ical basis is preferred to find the thermal Casimir force be-
frequency region of Eqs(3) the volume relaxation is not tween real metals different from that used in the case of
significant, but the connection between the electric field andlielectrics. Here we show that this basis is given by the
current becomes nonlocal. Because of this, a metal cannot lm®ncept of the surface impedance introduced by Leontovich
described by any dielectric function depending only on thg35,40.

Uk
—<4,<l, 5)
w

where the skin depth is given §@7]

5a(w)=<
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The fundamental difference of the surface impedance apfect. To answer this question, it is good to bear in mind that
proach from the usual approaches is that it does not permthe main contribution to the Casimir free energy and force is
one to consider the electromagnetic fluctuations inside given by the frequency region centered around the so-called
metal. Instead, the appropriate boundary conditions are imeharacteristic frequencyw.=c/(2a), wherea is the space

posed taking into account the properties of real metal separation between the two bodies, parallel plates for in-
stance. The value ab. may belong to the frequency region
Ei=Z(w)[Byxn], (7)) given by Egs.(1), (3), or (5), with the result that functions

(8), (9), or (10), respectively, should be used, defining the
impedance in the domains of the normal or anomalous skin
effect and infrared optics.

where Z(w) is the surface impedance of the conducty,
and B, are the tangential components of electric and mag
netic fields, and is the unit normal vector to the surface By way of example, for most of the metalau, for in-

(pointing inside the metal The boundary conditiofi7) can stance at room temperature the application regidi of the

be used to determine the electromagnetic field outside g,:mal skin effect with impedand®) extends up to the fre-

metal. Note, that impedanag ») and condition(7) suggest ¢ encies of order 2@ rad/s. The application regiof8) of

a more universal description than that by means.oThey 4 anomalous skin effect at=300 K is very narrow and

still hold under inequalitie$3), where a description in terms extends up to around (6-X)10%rad/s. It should be

of the dielectric permittivitye(w) is impossible. _For an ideal stressed, however, that with the decrease of temperature the

metal we haveZ=0 and for real nonmagnetic metdl&|  ppjication region of the normal skin effect practically dis-

<1 holds[40]. ) , appears and the anomalous skin effect extends to all frequen-
The calculation of the surface impedance over the Wholgjeg |esser than 18rad/s. The reason is thatncreases and

frequency axis is based on the kinetic theg8p] and is 5 ) decreases with the decrease of temperature. As a re-

rather cumbersome. However, in the domains of the normal ‘e first inequality in Eq(1) breaks down, whereas the

a_nd the anomalqus skin effect, and also f‘?f infrared opticsgrq inequality in Eq.(3) is satisfied also at smaller frequen-

simple asymptotic expressions follow, which are of greatjag. Finally, the impedance of the infrared optid®) is

help to compute the Casimir force between real metals. Thu% : ;
) . . - pplicable up to the frequencies of order @,1(for Au, for
in the domain of the normal skin effect, given by E), the instance, w,=1.37X 10' rad/s). It should Ee particularly

surface impedance [85] emphasized that the transition frequency between the anoma-
lous skin effect and infrared optics does not depend on tem-

) (8) perature, because all the parameters in the second inequality

8o of Eq. (3) are temperature independetdt temperatures

. . . much smaller than the Fermi temperature, which is of order
In the domain of the anomalous skin effect, determined by105 K). In Secs. V and VI we will discuss with more details

Eq.f(S)é[ihlti: ||£npedanlce detpe”r_1ds onttTe shape 0(]; tr}e I:em%hich impedance function should be used for the calculation
surtac - -or a polycrystafine metal, Composed 0T Mmany ¢ y,o casimir force at different separation distances between

single (_:rystal grains .Of different orientations, one obtains AMhe test bodiegalso the transition regions between different
approximately spherical Fermi surface and the impedance 'ﬁ‘npedance functions will be consideled

w

Zy(w)=(1-1)

[41]
Z ()= 2(1_i\/§) ® 5a( @) (9) Ill. ELECTROMAGNETIC OSCILLATION SPECTRUM
a 3\/§ c BETWEEN TWO PLATES IN THE SURFACE
IMPEDANCE APPROACH

where §,(w) was defined in Eq(4).
In the domain of infrared opticlsee Eq.5)] the imped-
ance is given by35]

Here the derivation of the photon eigenfrequencies in the
framework of the surface impedance approach is presented.
They are needed to derive the Lifshitz-type formula for the
free energy in the case of real metals.

(10 We consider the configuration of two parallel uncharged
p_ @ metal plates, separated by a distaac@t temperaturd in
thermal equilibrium. Let their nearest boundary planes be
described by equations= +a/2. We impose the boundary

Z(w)=—i

Now one can impose the impedance boundary condifion
on the surface of metal plates, find the oscillation SpeCt”_m&ondition(Y) on planeg =+ a/2 and determine the eigenfre-
in the space betyveen the p'at?S' and cal_culate_ the Casimyf o cies of the electromagnetic field in the free space be-
free-energy density and force without consideration of a ﬂuc’[ween the plates. The solutions of the Maxwell equations in
tuating electromagnetic field inside the metal. This was PeTyacuum can be found in the forms
formed at zero temperature in R¢f2] (see also Ref[3]).
Another approach, being similar in spirit, was used at0
in Ref.[43] where the reflection coefficients in the Lifshitz E.(t.1)=ey(k, ,2)expik, -1, —iwt),
formula were expressed in terms Bfw).

Now, the question arises what expression for impedance
(8), (9), or (10) should be used to calculate the Casimir ef- Bo(t,r) =gp(k, ,2)expik, -1, —iwt). (121
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Herer=(x,y,z)=(r, ,z), a={p,k, ,o}, k, =(kq,k,) is the Ky oo

wave vector in planexy),  is a frequency, and indep g3k, ,2)=— a° 49%sinhqgz. (18
=||,L labels the two independent polarization statds (
stands for the electric field parallel to the plane formedkpy
and thez axis, andL stands for the electric field perpendicu-
lar to this plangé From the Maxwell equations the oscillatory

After substitution of Eq(18) into Eq. (14) a further disper-
sion equation for the modes with parallel polarization is ob-

equations for the functions,, g, follow, tained:
ek 2) = (k. w)ep(k, ,2)=0, AP w,k, )=e"292 cosh? e S,inhaz—q =0.
g;;( kL !Z) - qz(kL vw)gp( kl 1Z) :Ov (12) (19)

where g?(k, ,0)=0?=k? — 0?/c?; the prime denotes the It is obvious that in Eqs(17) and (19) k, = (k;,k,) can be

derivative with respect ta, and also the first-order equations now considered as arbitrary.
Exactly the same procedure is applicable to the case of the
ep sk, ,2) +ikiey (k, ,2) +ikyep ok, ,2)=0, perpendicular polarization. Once again, assuming tempo-
rarily k,=0, we obtain the solutions of Eq&l2) and(13) in
Up sk 2) +ikaGpa(K, ,2) +ikagp ok, ,2)=0 (13)  the form

(lower indices 1,2,3 after a comma stan_d for the projections e (k. .2)=e, 4k ,2)=0 (20)
of vectorse,, g, onto axe,y,z, respectively.

Substituting Egs(11) into the boundary conditiori7), nd
using the Maxwell equations to express the magnetic field"
and taking the direction of the normal into account
[n=(0,0,1) at the planez=a/2, and n=(0,0,—-1) at
z=—al2], we find at boundariez= *a/2, respectively,

e, ok, ,z)=e 3%%sinhqz

or
iZc

=+ —
w

a _ a| | a
epyl( k, ,iz |k1ep,3( k. ,iz —ele( k, ,iz”, e, ok, ,Z):efaqlzcoshqz_ (21)

a a Substituting these solutions into E@.4), we arrive at two
ikzepyg( k, ’iz) —e;,z( k, 'ii) } dispersion equations for the determination of the electromag-
netic eigenfrequencies with perpendicular polarization

a iZc
€p2 k, ,iz = iT

14
The same boundary conditions fgy can be obtained also. B . aq iZcq aqg
Now, let us consider separatesl}f/ the cases of parallel and AP ok, )=e aqlz( sinh ==+ ——— coshz"| =0,
perpendicular polarizations beginning with the parallel one.
Without loss of generality, we temporarily assume tkat aq izcq aq
=0. In this caseg) ,(k, ,z)=0, and the solution of Eq12) A(f)(w,kl)zeaq’z( cosh— + — sinh— | =0.
has the form 2 1) 2 )

g 1(k, ,z2)=Bsinhqz, €5k, ,z)=Bcoshqz, (15
Let us denote the solutions of the transcendental equations
WhergA andB do not depend om. From Eq.(13) it follows  (17) and (19) by w‘l‘& n» and the solutions of the transcen-
Aq+ik,B=0. For the sake of convenience, we choose dental equation$22) by wi .. Multiplying Egs. (17) and
|

A ikq a2 g g-ag 18 (19), we can finally findwl‘& n from the equation
=——e , B=e 397
q

- . . Aj(w,k)=AD(w,k ) A (w,k,)
Substituting Egs(15) and(16) into the impedance boundary

condition (14), one obtains the dispersion equation for the _1 o 1— 2
spectrum of the electromagnetic oscillations between plates: - Ee (1=7%%)
B . aq iZo aqg
A (o k,)=e"292 smh7—acosh2— =0. X sinhaq—1 772 coshaq|=0, (23
(17) 7
Equations(12) and (13) also have the solutions where 7= 7(w)=Zw/(cq). o
In perfect analogy to this, by multiplication of EqR2),
ek, ,z)=e 2%coshqz, ek, ,2)=0, one can find the equation for the determinatiomxfg[ n
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A (0,k )=AD 0,k )AP (w,k)) B

= 1ef""q(l— K?)
2

sinhaq+

K2 coshaq|=0, (24

- K

wherek=k(w)=2cd .

Note that we have obtained the conditions for the deter-
mination of the electromagnetic oscillation spectrum by the
use of equations foe,. Exactly the same spectrum is ob-
tained if the equations fag, are used.

IV. CASIMIR FREE ENERGY IN THE SURFACE
IMPEDANCE APPROACH

Now we are in a position to present a rigorous derivation
of Lifshitz-type formulas for the Casimir free energy and
force for the configuration of two plates at temperattiria i B
thermal equilibrium in the surface impedance approach. As 2
shown below, these formulas are well adapted for the calcu-
lation of the Casimir effect between real metals and are not
subject to the disadvantages of the approadhes(d) dis-
cussed in the Introduction. i1 ¢ } L,

First we consider the case of real eigenfrequemikisn ,

“’E n (this is fulfilled for the pure imaginary impedance

The total free energy of the electromagnetic oscillations is
given by the sum of the free energies of separate oscillators (b)
over all possible values of their quantum numbers,

FIG. 1. Integration path€; (a) and C, (b) in the plane of
complex frequency. The Matsubara frequencieséa@nd the pho-
(25)  ton eigenfrequencies ae, .

F=2

a

_ —hwa/kBT)
2 )

The expression in the right-hand side of ER7) is evi-
dently infinite. Before performing a renormalization, let us
equivalently represent the sum over the eigenfrequencies

) wl‘('l » by the use of the argument theorem, as is usually done
L

(26) in the derivation of the Lifshitz formula at zero temperature
by the method of surface modg&44,45. Then Eq.(27) can

It is clear that aff—0, the value ofF from Egs.(25) and  be rewritten as

(26) coincides with the sum of the zero-point energies, which

is the traditional starting point in theoretical investigations of =k, dk, 1

the Casimir effect at zero temperature. F=kg f Cy 5K T)
Applying this to the electromagnetic oscillations between ™ oeml

metal plates, where={p,k, ,n}, we obtain +INA, (0,k)]. (28)

wherekg is the Boltzmann constant. Identically, E§5) can
be rewritten as

hw
F= kBTE In( 2 SthkBT

In (Zsmh dlinAj(w,k,)
C1

ﬁwH
In( 2 sinh n) Here, the closed conto@; is bypassed counterclockwise. It
2kgT consists of two arcs, one having an infinitely small radius

=k, dk,
F= kBTfO P >

n

and the other having an infinitely large radiRs and two

1
+inl 2 sinhﬁwl& n 27) straight linesLq,L, inclined at angles+45 degrees to the
2kgT real axis[see Fig. 1a)]. The quantities\| , (w,k, ), having

their roots at the photon eigenfrequencies, are defined in Egs.
According to the calculations of Sec. Ill, the eigenfrequen-(23) and (24). Note that, unlike the usual derivation of the
cies of the electromagnetic field between plates with paralleLifshitz formula at nonzero temperatur2], the function un-
and perpendicular polarizations are determined by E2%. der the integral in Eq(28) has branch points rather than
and (24), respectively. poles at the imaginary frequencies=i¢,, where
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gl_ ﬁ L

[=0,£1,+x2,... (29

are the Matsubara frequencies. The contouin Fig. 1(a) is

chosen so as to avoid all these branch points and to enclose

all the photon eigenfrequencies.
The integral in Eq{(28) can be calculated as follows:

1 o
I”'J‘Ez_'n'i éc In(Zsmhzk T d|nAH'J_(w,kJ_)

1

hw
oy f In<25|nh2k T)dInAL(w k,)

hw
JrfCRIn<25|nh2k T)dlnAi(a) k)
fl 2 hﬁ dinA k,
+ Lln sin KT Ny (wk)

(30

ho
+JC In(ZsthKBT)dln Ap ok )|

The integral along the arc of infinitely large radiGg van-
ishes, which follows from Eqg23) and(24) under the natu-
ral conditions

dZ(w)

lim do

w—

lim Z(w)=

w—©

const, =0. (31)

Integrating by parts in the right-hand side of E§0), one
obtains

A

1 ho
.= 5 {In(Zsmh K )InAL(w k,)

—ie

—kB—T COth |I'IAHL((1) k )dw
ho ie

+In| 2 sinh——= )InAM(w,kL)
2kgT .

ﬁf hh |A k )d
kB_T I_:LCOt n Hi(“’ L )dw

ho —ie
+In Zsmh2k T)InA”l(w k)
ie
- kB_T COth In A”l(w k )dw, (32

where contours ; , and pointsA,B are shown in Fig. (). It
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how
—J cotho— 1A (w,k)do
L, 2ksT

ie hw
=—fixcoth kaT

Here we assume that the integral alo@g vanishes. Path
(ieo;ie) contains semicircles of radius about the singular
pointsi ¢, (pole9 of the function coth{w/2kgT). The analo-
gous formula for the integral along lins, is

AL (0.k )do. (33

how
—f coth-——= SkaT INA) | (0,k )do

—jow fL
:_L- COchk T INA (oK )do. (34

Substituting Eqs(33), (34) into Eqg.(32), one arrives at

—joo
coth——

.= i f fo InA k,)d
T LT e

(39

The integration in Eq(35), involving poles at the pointis; ,
leads to

i (- A€
= FRgE ). ST 6k

- hw y
_77|=§;w re cothmlnA”'l(w,kl),lg, , (36
where functionsA | (§,k,) are obtained from\| | (w,k,)

by the substitutiorw=i&. In the case of real eigenfrequen-
cies, which is under consideration noty, , are even func-
tions of w (and &¢). As a consequence, the seemingly pure
imaginary integral in the right-hand side of E@®6) van-
ishes. After the calculation of the residues, and using the
evenness of functiond | (w,k, ), the result is

©

L= 20' INApL (& k),

(37

where the prime on the summation sign means that the term
for =0 has to be multiplied by 1/2.

Substituting the value&37) of the integralg30) into Eq.
(28), we find the equivalent but more simple expression for
the Casimir free energy,

keT (= .y
7= zB_wfo kudky 2" [In 460k +In AL (6 k)]

(39)

is evident that all terms, besides the integrals, cancel each

other or are equal to zefat pointsA,B). The integral along

Expression(38) is still infinite. To remove the diver-

L, can be calculated by the application of the Cauchy theogences, we subtract from the right-hand side of B§) the

rem to the closed conto@, [see Fig. 1b)], inside which the
function under consideration is analytic,

free energy in the case of infinitely separated interacting bod-
ies (@a—). Then the physical, renormalized, free energy
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vanishes for infinitely remote plates. From Ed23) and pedance, the correct expression for the free energy should be

(24), after the substitutiom—i¢,; in the limit a— o, it fol- determined from the solution of an auxiliary electrodynamic
lows problem[46]. It turns out that the Casimir free energy and
force are the functionals of the impedance even when the

" 1 5 27, impedance has a nonzero real part taking absorption into
A& k)= Z(1+ n)| 1+ 1+ 2] account. The solution of the auxiliary electrodynamic prob-
K lem leads to the conclusidd6] that the correct free energy

1 » is obtained from EQs(38)—(42) by analytic continuation to
o |
AT(& k)= Z<1+Kf)( L+ )

(39) arbitrary complex impedance, i.e., to arbitrary oscillation
spectra. The qualitative reason for the validity of this state-
ment is that the free energy depends only on the behavior of

The renormalization prescription is equivalent to the change () at the imaginary frequency axis, whetéw) is always

of A, (& k) in Eq. (38) for real[see, e.g., Eq¥8)—(10)]. Note that in the case of com-

plex eigenfrequencies, exactly Edqd42) and(43) should be

Ay (& k) used written in terms of summations from zero to infinity.

A\T:L(gl iki)

Ak
K|

R = —1_,2 —2agq
Aj(&ky) 1=riu(&k)em™, Although for real eigenfrequencies the summations dver

(400 from —= to o can be equivalently used, it is not so for
complex w, as the dispersion functiond , cease to be

where quantities , (£ ,k,) have the meaning of the reflec- even any mor¢46].

tion coefficients and are given by It is necessary to stress that the above derivation of the

) free energy in the impedance approach can be simply modi-

r2(g k. )= 1= 2: ca—Zié fied in order to present the new derivation of the usual Lif-
IRSERLT 1 4+, cq+24) shitz formula describing the thermal Casimir force between
) ) dielectrics. In fact, nothing should be changed in the presen-
(26 K ):(1—K| _ §|—Z|CQ|) 1) tation of this section, except for the explicit expressions of
LS RL 1+ K &+Zccq) - the dispersion functiond , in Eqg. (38) and thus of the

reflection coefficients| , in Eqgs.(42) and(43). The disper-
Here 2,=Z(i¢) and g?=k?+ ¢Z/c?. The reflection coeffi- sjon functions should be determined not according to Sec. Il
cients(41) are in accordance with Ref40], where the re- but from the consideration of a fluctuating electromagnetic
flection of a plane electromagnetic wave incident fromfield both inside and outside the dielectric plates with the
vacuum onto the plane surface of the metal was described imsual boundary conditions at the interfa¢®s,44,43. As a
terms of the surface impedance. result, the Lifshitz reflection coefficients take forms
In such a manner the final renormalized expression for the

Casimir free energy in the surface impedance approach is (2, (& K, )= e —ki |
given by LSBT g+ k)
keT (= - ) 2a q—k\?
= — —2aq 2 —
Fr . fo k, dki|=20 {In[1 ri(é& ke ] r2 (& ,k) el (44)
+In[1-r2(¢ k, )e 22a7), (420 whereg;=¢(i§), e(w) is the dielectric permittivity of the
_ o _ plate material, andk?=k? + ¢,£2/c2. Then the Lifshitz ex-
where the reflection coefficients are given by E&f). _ pressions for the Casimir free energy and force between di-
The Casimir force, acting between plates, is obtaineqgctrics are given by Eq$42) and (43), where the substi-
from Eq. (42), tution ry,r, —ry.,r, . is made. In such a manner, we have

performed also a new derivation of the usual Lifshitz for-

dFr . . :

-=-= mula between dielectric plates starting from the free energy
Ja of an oscillator. Conversely, the free energy and force in the

framework of the impedance approach are obtained from the

kgT = =, _2 Lifshitz formula if the Fresnel-type reflection coefficients
=- 7[0 kj_ko_Z aitlry “(& k) rL.r., are changed for those obtained by the use of the
=0 impedance boundary condition.
Xe2U— 117141 %(& k, )e?a—1]"1. (43 It should be stressed, however, that the reflection coeffi-

cients(44) differ essentially from the impedance coefficients
The above derivation was performed under the assumptiof+l). To take an example, it is not possible to obtain coeffi-
that the photon eigenfrequencies are real. This is, howevegients Eq.(41) from (44) even if both descriptions in terms
not the case for arbitrary complex impedance. If the photorof e(w) andZ(w) are applicable and the impedance is ex-
eigenfrequencies are complex, the free energy is not given bgressed in terms of the dielectric permittivity by means of
Eq. (26) (which is already clear from the complexity of the relationZ(w)=1/\Je(w) (which holds, e.g., in the region of
right-hand side of this equatipnFor arbitrary complex im- infrared opticg. This underlines the fundamental role of the
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impedance boundary condition as an alternative to the con- tyz

sideration of a fluctuating field inside a medium described by xXlz,y)= ,

e(w) in the case of real metals. (y+42)?
We conclude this section by remarking that the obtained

expression(42) for the free energy gives the possibility also n A7z

to find the thermal Casimir force in configuration of a sphere X=(Ly)= m

(spherical lens above a plate made of real metals in the

surface impedance approach The first contribution in the right-hand side of E@8) de-

scribes the case of an ideal metal,

>a (50)

cg)

F(a)=27RFr(a), (45)

2
whC
whereR is the sphere radius. The approximate expression E(®(a)= f gf ydyin(l—e Y)=— 3
(45) is obtained by the application of the proximity force 167 720a
theorem[6] and has an accuracy around a fraction of 1% for (51)

configurations ”59"."‘ precision experiments on th? MeASUrghe others are the corrections due to the finite conductivity.
ment of the Casimir forc¢7-12,14,18 Thus, the imped- As was stressed in Sec. II, with the decrease of tempera-

ance approach provides the theoretical basis for the measuigia the range of application of the normal skin effétt
ments of the thermal Casimir force between real metals to b, -5 to zero. and &t=0 only the anomalous skin effect

performed in the near future. and infrared optics occur with the frequency regions given
by Egs.(3) and(5), respectively. The transition frequengy

V. CALCULATION OF THE CASIMIR ENERGY between the two effects can be obtained from equations
IN THE SURFACE IMPEDANCE APPROACH

First, we apply the obtained general formulas at zero tem- 5,(Q)= UF _
perature. In this case, E(12) for the free energy transforms Q
to the double integral representing the Casimir energy be-
tween plateqdor, according to Eq(45), the Casimir force
acting between a sphere and a plate

c
o= (52

where, according to Eq4), 8,(Q)=C,/QY3. All computa-
tions given below are performed for Au witlw,=1.37
X 10'® rad/s [47] and ve=1.4x10° m/s (see, e. g Ref.
P . [48]). Then from Eq.(52) we obtain the values of bot@,
E(a):_f kidkif dg{In[1-rf(£k, e 2] =8.8x10 * mrad’¥s'® and 0=6.36x10"rad/s. If to
A7? 0 consider() as the characteristic frequency giving the main
2 _2aq contribution to the Casimir effect}= w.=c/2a,,), the tran-
+HIn[1-r7(&k)e =}, (46)  sition separation distance between the two effects turns out
: - . . to be equal ta,=2.36 um. Then it follows that at distances
wher(_a the reflection c_oeff|C|ents in terms of the |mpedancg\ ,<a<a,=2.36 um the impedance of the infrared optics
are given by Eq(41) with the substitution determines the value of the Casimir energy and force,
whereas ab>a;,=2.36 um the impedance of the anoma-
lous skin effect is applicable(=137 nm is the plasma
wavelength for Aj. Direct calculations by Eq$48) and(50)
show that the main contribution to the Casimir energy is
Let us calculate quantity46) obtained in the impedance given by the narrow frequency interval around the character-
approach and compare the results with the available datistic frequencyw,. Thus, the interval (0, ,10w:) contrib-
found by the traditional computations using the Lifshitz for- utes 94% of the total energy in the wide separation region.
mula. For the purpose of numerical computations, it is conWhat is even more important, the remainder does not depend
venient to rearrange E@46) to the form[30] on the form of the impedance function outside interval
(0.1w,10w¢), to within the error of about 0.5%. From this it
he follows that at each separation distance between the plates
E(a)= —J dfj de‘ 2In(1—e™) one should, first, determine the characteristic frequengy
327’ and, second, fix the proper impedance function. Thereafter

&2 _
q—a= ki+§, 2)-2(i§), §—& (47

the chosen impedance function can be used at all frequencies

1
il s X'(g,y)lﬂn L Xy J (48  when performing the integration in E¢48). At zero tem-
e/—1 e/—1 perature this prescription is optional. At#0, however, it
takes on great significan¢eee Sec. Vl
where the dimensionless variablgy are defined as In Fig. 2 the correction factor to the Casimir energy
E(a)/E©(a) is plotted, which is computed by Eqé48),
& 2a¢ 5 49 (50), and(51) as a function of the separation distance. The
g_w_C_T’ y=-aa, (49 solid line is obtained with the impedance of the infrared
optics (10), and the dotted line is obtained with the imped-
and quantitie<| (¢,y) are given by ance of the anomalous skin effg®. Both lines are plotted
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only. This leads us to the conclusion that at zero temperature
both impedance functions work well in their respective ap-
plication regions. In the transition region each of them can be
applied, and the results are in agreement within an error of
1%. It is seen also that “much less” or “much larger” in the
above inequalities, in fact, means two or three times less
(largep.

As regards the region of infrared optics, the Lifshitz for-
mula in combination with the plasma model or optical tabu-
lated data for the complex refraction index leads to the same
results as the impedance approach. It gives rather good re-
sults even in the region of the anomalous skin effect, where,

! 2 3 4 5 strictly speaking, the description in terms ofis not appli-
a (um) cable(see Sec. )l The feasibility of the Lifshitz formula is
_ o explained by the fact that at zero temperature the normal skin

FIG. 2. Correction factor to the Casimir energy betw_een two AUgffact is practically absent and the problems connected with
plates at zero temperature computed by the use of the impedance e heating of a metal due to the real electric current are not
i_nfrared optics(solid line) ar_1d of anomalous skin effe¢totted relevant. As a result, both the impedance approach and the
line) versus surface separation. usual Lifshitz formula are applicable. At nonzero tempera-

at all separations>\, to make sure that each impedance ture, however, the surface impedance approach acquires a
function is applicable within its own frequency region and tonew meaning and solves the problems formulated in the In-
follow their applicability at the transition separations aroundtroduction(see the following section

a,, . It must be emphasized that the solid line coincides with

the correction factor to the Casimir energy computed on the v|. CALCULATION OF THE CASIMIR FREE ENERGY

basis of the usual Lifshitz formula in combination with the IN THE SURFACE IMPEDANCE APPROACH

dielectric function of the plasma modéthis was demon- o ]
strated in detail in Reff30]). Thus, both the impedance ap- Here we calculate the Casimir free energy for the configu-
proach and the Lifshitz formula combined with the plasmaration of two parallel plates made of Au at temperatuirat

model lead to one and the same result for the Casimir energﬂherm‘i‘l equilibrium. The starting point is E@2), where the
at separations>\,,. reflection coefficients are expressed in terms of the surface

As is seen from Fig. 2, at,<a<2.36 um, the pointed impedance by Eq(41). Introducing the dimensionless vari-

line computed with the impedance of the anomalous skirfP!es by analogy with Eq49), we transform Eq(42) to a
effect (which is inapplicable in this regiorsignificantly un-  form convenient for numerical computations:
derestimates the correction factor due to the finite conductiv-
ity. For example, ab=0.15 um the values of the correction
factors, given by the solid and dotted lines, are 0.623 and .
0.851, respectively, i.e., the error introduced by the use of the kgT E

Fr=TFr(a,T)

' fxydy[ 2In(1—e™Y)
4]

impedance of the anomalous skin effect is almost 37%. At a " gwa?ih

separationa=0.5 um this error is more than 9%, and de-

creases with increasing separation. Notice that the computa- x”(g. y) XL(g1,y) }

tions on the basis of the usual Lifshitz formula and optical +Inf1+ ———|+Inf1+ ———|;, (53
tabulated data for the complex refraction indsvhich are e/~1 -

used to obtaine(i &) through the dispersion relatipralso | L ) ]

practically coincide with those given by the surface imped-WhereX!,X™ are given by Eq(50) with the change/— ¢,
ance in the region of the infrared opti®lid line in Fig. 2. £—41=2(ic{)/2a). Notice that the first contribution in the
Thus, at the separations of 0uan, 0.5um, and 3um, the  fight-hand side of Eq(53) presents the Casimir free energy
correction factor obtained by the tabulated data and LifshitZOr the ideal metal6]

formula is equal to 0.69, 0.85, and 0.97, respectiyéb;47,

whereas in the impedance approach it takes the values 0.689, . "

0.849, and 0.972. FraT)=—— 3" ydyin(1-e™)
At larger separationsal>a;, =2.36 um) the impedance 4mai=o Jg

function of the anomalous skin effect should be used to com- -

pute the Casimir energgdotted line in Fig. 2 As is seen =E(°)(a)| 14 45 > ( T )

from that figure, at these separations the impedance of the 73 =1 |\ Tets

31
13
infrared optics overestimates the role of the finite conductiv-
ity corrections to the Casimir energy. This overestimation is, tf

T
cotl-( l _T_”)

T\%21 Te T\4
however, to within a fraction of 1%. In the transition region +7 T ff) |—2 sinh 2( l T) (T ff) ,
a=2-2.5um the results given by both impedance functions € ¢
are in agreement, bringing the discrepancies of about 1% (54
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whereE(©)(a) is defined in Eq(51) and the effective tem- infrared optics. In the limitw,—cc, the result for an ideal
peraturekgTor=h w.=hcl/(2a). metal is reproduced from E@58).

First of all, let us demonstrate that in the impedance ap- Before performing the computations, it must be empha-
proach there is no problem with the contribution of the zerosized that the surface impedance approach is in perfect
Matsubara frequency which was the subject of much recerdagreement with thermodynamics. In the impedance ap-
controversy(see the Introduction We start from the lowest proach, the entropy, defined as
characteristic frequencies where the impedance of the normal
skin effect, given by Eq(8), is applicable. Substituting it S(a,T)=— dFg(a,T) (59
into EqQ. (41) and puttingé;=0, one obtains ' T’

rﬁ(o,ki)zri(o,ki)zl, (55 is positive and equal to zero at zero temperature in accor-

dance with the Nernst heat theor¢note that this is not the

i.e., the same result as for an ideal metal; namely, this becase in the approachés and(c)]. The validity of the Nernst
comes clear since quantitie€, defined in Eq.(50) and  heat theorem in the impedance approach can be demon-

given for the impedance of the normal skin effect as strated in the regions of both the infrared optics and the
| N anomalous skin effectas noted above, the region of the
XI(0y)=X-(0y)=0, (56)  normal skin effect dies out with decreasing temperatuke-

cording to the results of Ref30], in the region of infrared
f ibuti it holds f ideal L optics the Lifshitz formula combined with the plasma model
requency contribution as it holds for an ideal metal. It|o;q (g exactly the same perturbation results for the Casimir

sr‘uiuld be stressed that all functions (£k.) and  free energy and force as the impedance approachT At
Xl--(¢£,y) are continuous functions of two variables includ- <T; the free energy is given big1]

ing the point (0,0). Thus, the case of an ideal metal is

when inserted into Eq53) obviously lead to the same zero-

achieved as a limiting case of a real metal with increase of hel(3) s\ T\3
the conductivity when the real metal is described in the Fr(a,T)=E(a)— 3|1 1+2— )
framework of the impedance approach. Note that this is not 167a a/\ Ters
the case when the real metal is described by the Drude di- 73 S T \4
electric function(2) and the Lifshitz formula for dielectrics is — —( 1+4-—L _) , (60)
used to calculate the Casimir free enefgpproacha) from 450(3) a )\ Tets
the Introduction. In fact, if doing so it follows from Eq(44) where E(a) is the Casimir energy aT=0 defined in Eq.
rfL(0k,)=1, r? (0k,)=0, (57)  (46). After the substitution in Eq(59), this leads to the
simple expression for the Casimir entropy
and there is a break of continuity between the properties of ) 3
real metals and of ideal metg28]. Sa.T)— 3ks{(3) l) [ A T
At higher characteristic frequencies the anomalous skin ' 8mra2 |\ Tess 135(3) Tets
effect holds with an impedance function as from Eg$.and
(9). If we extend this function to all frequencigto zero o 8m® T
Matsubara frequency in that casee ensure that both Egs. +2§ 1- 135(3) Tersl |’ (62)

(55 and (56) are valid once again. As a result, in both re-

gions of the normal and the anomalous skin effect the therwhich is positive and equal to zero at zero temperature.

mal corrections to the Casimir free energy and force for real The impedance approach in the region of the anomalous
metals are very close to those for an ideal metal. As onekin effect was used recently in R¢82]. The asymptotic of
would expect, at large separatiofisharacteristic for the the entropy at very low temperatures, obtained in [R&Z],
anomalous and especially for the normal skin effetitmet-  demonstrates that it is positive and has zero value at zero
als behave like an ideal oifithis is, however, not the case in temperature in accordance with the requirements of thermo-
the framework of the approadh)]. dynamics.

If the characteristic frequencies increase further, the infra- By the way of an example, here we perform the numerical
red optics with an impedance function of E@0O) takes computations of the relative thermal correction to the Ca-
place. The extension of it to zero Matsubara frequency leadsimir free energy defined gsFr(a,T) —E(a)]/E(a). This
to guantity has also the meaning of the relative thermal correc-
tion to the Casimir force in the configuration of a sphere
(spherical lensabove a plate used in precision experiments
on the Casimir effect. If the characteristic frequenay be-
longs to the region of the normal skin effect, the results
In this case there occurs a dependence of the perpendiculpractically coincide with those obtained for an ideal metal
reflection coefficient at zero frequency on the properties of30], and the free energy is given by E&4). If the charac-
the real metal through the value of the plasma frequencyteristic frequency belongs to the regions of the anomalous
This is reasonable, because the real properties of a metal askin effect or infrared optics, the computational results for
most pronounced at small separations characteristic for thie relative thermal correction are obtained by E48), (53)

2
. (59

wp—Ckl
wpt+ck,

rf(0k,)=1, r2(0k,)=
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loglofRE__E computed by the use of two impedance functions is, how-

ever, to within a fraction of 1%. In the transition region the
results, given by the impedance function of the infrared op-
tics and anomalous skin effect, are in agreement with a suf-
ficient accuracy. For example, at=2.5 um the ratio of the
relative thermal corrections obtained by the use of different
impedance functions is 1.05 dt=300 K and 2.19 afT
=70 K. As a result, the discrepancies in the values of the
free energy are about 1.2%T£300 K) and 0.7% T
=70 K).

Our results for the thermal correction to the Casimir free
energy are in disagreement with the conclusion of R&d]
about the existence of large thermal corrections at low tem-
perature made in the framework of the impedance approach.
As correctly argued in Ref.32], the description of metals
with the impedance in the region of the anomalous skin ef-
fect is more appropriate than with the dielectric permittivity.
However, the conclusion about the existence of large thermal
corrections at separations 100—-500 nnT&t70 K made in
that paper is in error. To obtain this conclusion, the imped-
ance function of the anomalous skin effect was applied in
Ref.[32] at separations much less thapn=2.36 um, i.e., in
the separation range of the infrared optics. This was ex-
plained by the fact that at temperatuiies 70 K the inequal-
ity >4, holds, which, from the standpoint of Ref32],
guarantees the applicability of the impedance of the anoma-
lous skin effect. In actual, this inequality is not sufficient. In
fact, one additional inequalityy,(w)<<vg/w, must be ful-

FIG. 3. Relative thermal correction to the Casimir free energyfilled in order that the anomalous skin effect ho[dse Eq.
between two Au plates computed by the use of the impedance df8) and Ref.[37]]. Because of this, the frequendy [see
infrared optics(solid lineg and of anomalous skin effe¢totted  definition in Eq.(52)], considered in Ref.32] as the charac-
lines) versus surface separation at two different temperatures.  teristic frequency of the anomalous skin effect, is actually the

transition frequency to the region of infrared optics. As a
and are presented in Fig. 3. The solid lines are computetkesult, all computations performed in RE82Z] correspond to
with the impedance of the infrared opticH)), and the dotted the dotted line aff=70 K of our Fig. 3 at separations
lines are computed with the impedance of the anomalous<a,,=2.36 um. According to our computations, in this
skin effect(9). All computations are performed for Au at two separation range the dotted lineTat 70 K overestimates the
temperature3 =300 K andT=70 K with numerical param- value of the thermal correction by a factor of 2000, whereas
eters as listed in Sec. V. Both pairs of lines are plotted at althe correct results are given by the solid lines obtained by the
separationg> \ , for a better visualization of the application use of the impedance function of infrared optics. Note that
range of each impedance function. the characteristic frequencies, corresponding to the separa-

Note that at separations between the platgsa<ay,, tions 100-500 nm, fall into the intervab,=(0.3—1.5)
wherea,, = 2.36 um does not depend on the temperature, thex 10" rad/s> (), i.e., belong to the region of the infrared
impedance of the infrared optics is applicable, and at sepasptics(see Sec. )l
rationsa>ay, the impedance of the anomalous skin effect At the end of this section, we would like to stress that in
should be used. It is seen from Fig. 3 that at small separahe sums, such as Eq&l2), (43), and(53), the form of the
tions the use of the impedance function of the anomalougmpedance at the characteristic frequencies must be substi-
skin effect significantly overestimates the value of the thertuted and extended to all other frequencies. At zero tempera-
mal correction. Thus, aa=0.15 um the values of the rela- ture, as was shown in Sec. V, the frequency region
tive thermal corrections given by the dotted and solid lineq 0,1w.,10w.], where the characteristic frequency is.
are 1.55<10 2 and 1.8X 10 *, respectively, a =300 K, =c/(2a), gives most of the contributions to the result. Cal-
and 4.85 10 2 and 2.76<10®, respectively, alf =70 K. culations show that at nonzero temperature the Matsubara
What this means is the thermal correction, predicted by thérequencies fromé, to &y~ 10w, give the dominant contri-
impedance of the anomalous skin effect in the region of thésution. For example, aa=0.15um (w.=10rad/s), T
infrared optics, where this impedance is not applicable, is 85=300 K the first 41 Matsubara frequencies determine the
times greater aff=300 K and 1757 times greater & total result. Here&;=2.5x 10" rad/s andé,y= 10 rad/s.
=70 K than the correct values. All nonzero Matsubara frequencies belong to the region of

At separationsa>a,, =2.36 um the dotted lines present infrared optics. With a decrease of the temperature some of
the correct dependence of the thermal correction on the septhie Matsubara frequencies may fall within the frequency re-
ration distance. The difference between the free energiegion of the anomalous skin effet T=70 K, for instance,
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the first Matsubara frequency;=>5.75x 10" rad/s<Q concept of a fluctuating field inside a metal, described by the
=6.36x 10" rad/s for AY. At small separations, however, dielectric permittivity depending only on frequency, in the
the differences in the contributions of several first Matsubard@egion where a real current may arise, cannot serve as an
frequencies computed by the use of different impedancadequate model for the zero-point oscillations and thermal
functions are negligible. AT=0 any extension of the im- photons. It follows from the fact that the vacuum oscillations
pedance function outside the above interval leads to approxand the thermal photons in equilibrium under no circum-
mately one and the same value of the Casimir enérgthe  stances can lead to a heating of the metal. If this fact is
integral one poing=0 is of no significance At T#0, how-  overlooked, contradictions with the thermodynamics arise
ever, the contribution of the zero Matsubara frequedgy when one substitutes into the Lifshitz formula for the Ca-
=0 becomes dominant at large separatidinigh tempera- simir free energy and force the Drude dielectric function,
tureg, and at room temperature, for instance, it determinesvhich takes into account the volume relaxation and, conse-
the total value of the free energy a&5 um. quently, the Joule heating. This situation reflects the non-

The basic challenge is whether the actual reflection proptrivial character of quantum fluctuations in the nonhomoge-
erties of plate materials at very low, quasistatic, frequencieseous case involving both vacuum and real metals,
are responsible for the Casimir force in the high-temperatureontaining conduction electrons, in different spatial regions.
limit. The point is that materials are at hafelg., indium tin  In fact, in such cases the quantized electromagnetic field at
oxide), which are good conductors at quasistatic frequenciesonzero temperature may not be represented in terms of
but transparent to visible and near infrared light. To conside(quasjparticles[31]. As a result, the concept of a fluctuating
a pair of plates made of indium tin oxidéTO) at a separa- field becomes not so transparent as in nonlossy dielectric
tiona=5 um, and the other pair of plates at the same sepamedia.
ration made of Au, one runs into difficulties. If the actual In the light of this conclusion, the surface impedance ap-
low-frequency reflection properties should be substitutegproach takes on fundamental importance(a@spresentthe
into the zero-frequency term, the impedance of the normabnly self-consistent description of the Casimir effect between
skin effect from Eq.(8) must be used. As a result, the ther- real metals. It does not need any prescription for the zero-
mal Casimir force aa=5 pm will be equal for both pairs of  frequency contribution to the Casimir energy and force. In all
plates(and practically the same as for an ideal mefBhisis  cases the correct expressions for the values of both reflection
in contradiction with the physical intuition as around the coefficients with two different polarizations at zero fre-
characteristic frequency,=3x 10'® rad/s(computed at the quency are deduced from the general theoretical framework
separation Sum) ITO is a poor reflector. A better physical using the explicit form of the impedance functi¢see Sec.
result would be obtained if one extends the characteristi&/|). Thus, a long discussion in the recent literature concern-
impedance ai,, (of the anomalous skin effect for Au and of ing the most adequate modification of the zero-frequency
the infrared optics for ITQto zero Matsubara frequency. If term of the Lifshitz formulg21,23—-28,31—3Bcan be final-
this is done, the zero-frequency term for Au plates will be theized.
same as for an ideal metal in accordance with §). For The surface impedance approach solves the puzzle with
ITO plates the zero-frequency term will contain the value ofthe violation of the Nernst heat theorem and with negative
w'T° according to Eq(58). Taking into account the large values of entropy which appears when one substitutes the
value of the penetration depth for ITO, the magnitude of theDrude dielectric function into the usual Lifshitz formula. In
Casimir force between the ITO plates will be less than bethe impedance approach the entropy is in all cases non-
tween the plates made of Au, as the intuition suggests. Imegative and takes zero value at zero temperature. Thus, the
fact, the question of whether the values of the Casimir forcegeneral formulas given by Eq$41)—(43), (46), (48), and
for the above two pairs of plates at separatiop® are  (53) lay the theoretical basis for the calculation of the ther-
equal or different, can be answered experimentally using thenal Casimir effect with respect to the needs of future preci-
measurement scheme suggested recently in [R€l. We  sion experiments. The computations performed in Secs. V
expect that the experimental result will be in accordance wittand VI are in good agreement with the previous results ob-
the suggestion of the physical intuitidmote that this ex- tained by the use of the optical tabulated data and the plasma
ample with two pairs of plates was used with another aim inmodel.

Ref. [31]). The obtained results allow us to remove the doubts that
something is wrong with the Lifshitz formule82]. In fact,
VIl. CONCLUSIONS AND DISCUSSION the above.formula_s in the framework of the impedanpe ap-
proach coincide with the Lifshitz formula. The only differ-

In the foregoing we have presented the surface impedanance is that for real metals in the frequency regions, where
approach to the theory of the Casimir effect at both zero anthe electromagnetic oscillations initiate a real current or
nonzero temperature. In the impedance approach the effeeshere the space dispersion is essential, one must express the
tive boundary condition is imposed taking the real propertieseflection coefficients not in terms of the dielectric permittiv-
of the metal into account. Previously this approach was conity but in terms of the surface impedance. The usual Lifshitz
sidered as nothing more than a useful approximation to théormula, formulated in terms of the dielectric permittivity,
more complete Lifshitz theory using the concept of a fluctu-preserves, however, major importance not only in applica-
ating electromagnetic field both outside and inside theions to dielectrics, but also in the theory of the nonretarded
boundary of the bodies. Our conclusion is that the standardan der Waals forces between metallic surfaces. As was men-
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tioned in Sec. I, the surface impedance approach is appliby the use of optical tabulated data for the complex refrac-
cable with the proviso thaw <0.lw,, i.e., the separation tion index(the extension of the available tabulated data into
distances between the test bodies must satisfy the conditidhe region of small frequencies makes almost no effect on the
a>5\,/(2m)~\,. In essence, the frequency regiam  computational resulis

>0.1w, is a subject of the optics of real metals near the In conclusion, it may be said that the Lifshitz formula in
plasma frequency50]. At separationsa<<\, between the combination with the impedance approach gives a solid
test bodies, the temperature effects are negligible. This is toundation for the investigation of thermal effects onto the
region of the ultraviolet transparency where metals can b&asimir force. This approach does not lead to contradictions
described on the same basis as dielectrics. The most adequated can be used as the theoretical basis for the needs of
approach to the theory of the van der Waals forces at séuture experiments.

small separations is given by the hydrodynamical description
of an inhomogeneous electron d&d]. This is a more gen-
eral approach if compared with the Lifshitz theory, because it
does not start with a model description of a metal in terms of G.L.K. is greatly indebted to I. E. Dzyaloshinskii for at-
the bulk dielectric permittivity. In the local limit, however, tracting her attention to the fundamental importance of the
when the spatial dispersion is absent, the hydrodynamicaloncept of surface impedance. G.L.K. and V.M.M. are grate-
approach leads to the usual Lifshitz formula at zero temperaful to the Center of Theoretical Studies and the Institute for
ture [51]. As a consequence, the usual Lifshitz formula isTheoretical Physics, Leipzig University for kind hospitality.
well adapted for the calculation of the van der Waals forcesTheir work was supported by the Saxonian Ministry of Sci-
between real metals at separati@ns\ , if £(i£) is obtained ence and Fine ArtsGermany and by CNPqBrazil).
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