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We show that in the presence of finite catalysts, any pure bipartite entangled state can be converted into any
other, to unlimited accuracy, without the use of any communication, quantum or classical. We call this process
embezzling entanglememécause it involves removing a small amount of entanglement from the catalyst in a
physically unnoticeable way.
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The interconvertibility of entangled quantum states is an It should be noted that the embezzlement protocol does
important question in quantum-information theory, both formore than creating the illusion that entanglement has been
its own sake and because of its connections to quantum errarcreased without communication. Such an illusion is pos-
correction[1], quantum cryptographj2], and quantum com- sible for every initial state. because the Von Neumann en-
munication complexity3]. In 1999, Nielsen and Hardy sup- tropy fails to be continuous in the limit of infinite-
plied a powerful tool for studying this problem, in the form dimensional systemgConsider, for example, the fact that
of a simple characterization of the bipartite pure states conthe statey1—=¢|0)a|0)g+ V(e/n)Z{_4|j)alj)s Will have fi-
vertible into each other using only local operations and clasdelity \/1— ¢ with the classical stati),|0)5, while its en-
sical communicatiolLOCC) [4,5]. Building on that work,  tanglement will be approximately logn bits) Rather, the
complete characterizations of the corresponding probabilistiembezzlement procedure that is presented here shows how
[6] and approximatg7] conversion problems soon followed. for every specific stateo one can transformu into u® ¢
In addition, Jonathan and Plenio discovered the existence Qﬁpproximately. This is a more specific task, which is only
catalysts:states that are recovered once a transformation igossible if we use a proper initial state Indeed, following
complete but whose presence allows successful LOCC prahe optimal protocol described in RéfZ], it is easy to see
tocols that would not otherwise have been posdiBle that with a maximally entangled state |u)

In thi§ paper, we exhibit a family of bipartite catalysts =(1/\/ﬁ)2?:1|i>A|i>B, it is impossible to perform any non-
{{s(n))}n=1 such that, for any:>0 and any bipartite state rivial embezzlement.

l¢ag), the transformation The indexn indicates the Schmidt rank of the specific
|x(n)), and for eacm the embezzling state is defined by
| (M) 1()) ®| @ pB) @ .
PR p—— AT} 2)
M == - )
can be accomplished with fidelity better than-&, for all VC(n) j=1 \/J— AE

sufficiently largen without any communication, quantum or o ]

classical. In other words, it is possible émbezzle copy of ~ WhereC(n):=Xj_,(1/j) is chosen so tha(n)) is normal-

l@as) from |(n)), thereby removing a small amount of ized. Now suppose, we would like to embezzle the state

entanglement from the original state, while causing only ad®as)=2{~1a;li)ali)g from [u(n)), where|¢ag) is written

arbitrarily small disturbance to it. This embezzlement pro- according to its Schmidt decomposition such thataglam-

tocol only requires the two parties and B to rearrange the plitudes are positive reals. This problem is equivalent to cre-

coefficients of thew(n) state such that it resembles the de-ating the stat¢w(n))=={"" w;|j)alj)g, which is defined as

sired u(n)® ¢ag. (An analogy to this phenomenon is illus- the state with the same Schmidt basis and coefficients as

trated in Fig. 1. Because the set of statge(n)} can be used |x(n))®|eap) but with the coefficientss; in decreasing or-

to embezzle any target stageto within an arbitrarily high ~ der. Thus|w(n)) can be converted intgu(n))®|pag) €x-

fidelity 1— & that depends only on the Schmidt rankgond  actly by local unitary operations alone. The embezzlement

the sizen, we call the set ainiversal embezzling familjt  protocol will simply consist of performing these local unitar-

follows trivially that this family can also be used as a catalysties because we will show thtu(n)|w(n))| goes to 1 as

to “convert” any now superfluousjag to ¢ag With arbi-  goes to infinity.

trarily small error. The first step in the proof will be to show that the first
Schmidt coefficients ofw(n)) are smaller than the corre-
sponding ones dfu(n)). To see this, observe that these first

* Also at UC Berkeley and HP Labs, Palo Alto; electronic addressnN Schmidt coefficients of|w(n)) are all of the form

vandam@cs.berkeley.edu a;/\jC(n), where I=i<m and 1=<j=<n. For a fixedt and
"Electronic address: patrick@cs.caltech.edu i, we letN! be the number of such coefficients/+/jC(n)
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[ tion |£)—|&)®|pap). Suppose the optimal LOCC protocol
A yields the stateopg. In Ref. [7], it was shown that this
/1IN optimal o5 Will be a pure state with Schmidt basis matching
1\ that of |£)®|¢ag). Since the entanglement cannot be in-
\ creased by an LOCC protoc@(o ) <S(&,). Therefore, if
\ Trloa— £a® 04| = 8, the Fannes’ inequalit{] implies that,
for 6<1/e,
/ \ /
y \ \ [
/ \ \ / S(en)<|S(£a® @a) = S(aa)| < d(log(m) +log(n)) + 7( 5(),)
5
\
where z(6)= — 6log § andm is the rank ofg,, and hence
FIG. 1. Anillustration of the “embezzlement effect.” By a well- S(ea) — 7(9) 6)
chosen rearrangement, we can create the suggestion that the six log(m) +log(n)

pieces of the rightmost figure, with area size 59, can also be used to

cover the triangle on the left with its surface of 60 units. A similar For our protocol, however, a straightforward calculation re-
phenomenon is described in this paper for the entanglement of geals that

distributed quantum state. It is shown, how we can reorder the

amplitudes of an embezzling statesuch that we get a very close nm
approximation of an enlarged state® ¢, which appears to have _

significantly more entanglement than the origipal 0= Tr|w(n)A 'U“(n)A| E ('MJ w1)+ 2 w

that are strictly greater thantC(n). By the constraint 1 _ 2logm) @
<j<a?t, it follows thatN!< ot and, since&&" ;a’=1, we ~ log(n)

can conclude thaIImle|<t. This upper bound on the num-

ber of w; coefficients that are strictly bigger thanyiC(n) where we used the fact thatj=w; for 1<j<n andu;=
combined with the ordering,=w,=- - - = w,, proves that for j>n combined with the bound of E@4). Clearly, for a
w;<1/ fi jC(n) for all 1<j=<n. Consequently, the fidelity fixed ¢ag this & saturates Eq6) to within a constant factor

betweenl,u(n)) and|w(n)) can be bounded from below by for largen.
We have shown that it possible to embezzle entanglement

n n without any communication whatsoever and that the set
[((n)]w(n))]= > = > wjz' (3)  {|u(n))} can be used to embezzle any bipartite pure state.
=1 4] C(n =1 Furthermore, we have shown that the universal family
. , ) {|u(n))} is nearly optimal, almost saturating the limit on
Our next task is to show that this sum is close to 1 forgmpezzlement imposed by the continuity of the Von Neu-
large n. Let [¢(n)):=|u(n))®[®™), where [®T™)  onn entropy.
=(1Nm)E4]i)ali)g is the maximally entangled state of  The embezzlement phenomenon has a number of conse-
rank m. Then w(d),>#(d) and it follows thatS]_ 07  quences for the study of quantum information. For example,
>E”,1B where (8;) is the vector of Schmidt coefficients it implies that thetrumping relationon bipartite entangled
of |¢(n)> in decreasing order. This last sum is easy to evalustates[10] is not stable to arbitrarily small perturbations. In
ate, however, other words, in the presence of unrestricted catalysts, all
states are effectively reachable from all others without com-
n (n/m}- m 1 log(m) munication. Similarly, a standard proof technique in quantum
> =2 > = = 1-1 . (49 communication complexity reduces distributed function
=1 =1 = cimm og(n) evaluations to related state transformatipt®. The amount
of communication for the distributed problem is related to
the amount of communication required to perform the corre-
sponding state transformation. Our results imply that this
technique will fail on attempts to study the probabilistic
communication complexity of functions, when an unlimited
amount of initial entanglement is allowed.

Thus, for any fidelity - £<1, the requiremeni>m(®*) on
|u(n)) suffices. If we view the statpag) as a string of
logm pairs of qubits then|u(n)) need only consist of
(1/e)log m pairs of qubits, which is only linear in the number
of qubits of | pag).

The embezzlement protocol we present here requires a
solutely no communication and uses the same set of catalysts We would like to thank Sumit Daftuar for helpful conver-
for every input. Is it possible that by tailoring the catalyst to sations. This work was supported in part by the National
the target state as well as making use of local operations arfécience Foundation under Grant No. EIA-0086038 and the
classical communication that we could find more effectiveDefense Advanced Research Projects Agei&RPA) and
embezzlement schemes? Not significantly. lretbe the  Air Force Laboratory, Air Force Materiel Command, USAF,
Schmidt rank of the cataly$€) and consider the transforma- under Grant No. F30602-01-2-0524.
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