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Universal entanglement transformations without communication
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We show that in the presence of finite catalysts, any pure bipartite entangled state can be converted into any
other, to unlimited accuracy, without the use of any communication, quantum or classical. We call this process
embezzling entanglementbecause it involves removing a small amount of entanglement from the catalyst in a
physically unnoticeable way.
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The interconvertibility of entangled quantum states is
important question in quantum-information theory, both
its own sake and because of its connections to quantum e
correction@1#, quantum cryptography@2#, and quantum com-
munication complexity@3#. In 1999, Nielsen and Hardy sup
plied a powerful tool for studying this problem, in the for
of a simple characterization of the bipartite pure states c
vertible into each other using only local operations and c
sical communication~LOCC! @4,5#. Building on that work,
complete characterizations of the corresponding probabil
@6# and approximate@7# conversion problems soon followed
In addition, Jonathan and Plenio discovered the existenc
catalysts:states that are recovered once a transformatio
complete but whose presence allows successful LOCC
tocols that would not otherwise have been possible@8#.

In this paper, we exhibit a family of bipartite catalys
$um(n)&%n51

` such that, for any«.0 and any bipartite state
uwAB&, the transformation

um~n!&°um~n!& ^ uwAB& ~1!

can be accomplished with fidelity better than 12«, for all
sufficiently largen without any communication, quantum o
classical. In other words, it is possible toembezzlea copy of
uwAB& from um(n)&, thereby removing a small amount o
entanglement from the original state, while causing only
arbitrarily small disturbance« to it. This embezzlement pro
tocol only requires the two partiesA andB to rearrange the
coefficients of them(n) state such that it resembles the d
siredm(n) ^ wAB . ~An analogy to this phenomenon is illus
trated in Fig. 1.! Because the set of states$m(n)% can be used
to embezzle any target statew to within an arbitrarily high
fidelity 12« that depends only on the Schmidt rank ofw and
the sizen, we call the set auniversal embezzling family.It
follows trivially that this family can also be used as a catal
to ‘‘convert’’ any now superfluouscAB to wAB with arbi-
trarily small error.
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It should be noted that the embezzlement protocol d
more than creating the illusion that entanglement has b
increased without communication. Such an illusion is p
sible for every initial statem because the Von Neumann e
tropy fails to be continuous in the limit of infinite
dimensional systems.~Consider, for example, the fact tha
the stateA12«u0&Au0&B1A(«/n)( j 51

n u j &Au j &B will have fi-
delity A12« with the classical stateu0&Au0&B , while its en-
tanglement will be approximately« logn bits.! Rather, the
embezzlement procedure that is presented here shows
for every specific statew one can transformm into m ^ w
~approximately!. This is a more specific task, which is on
possible if we use a proper initial statem. Indeed, following
the optimal protocol described in Ref.@7#, it is easy to see
that with a maximally entangled state um&
5(1/An)( i 51

n u i &Au i &B , it is impossible to perform any non
trivial embezzlement.

The indexn indicates the Schmidt rank of the specifi
um(n)&, and for eachn the embezzling state is defined by

um~n!&ª
1

AC~n!
(
j 51

n
1

Aj
u j &Au j &B , ~2!

whereC(n)ª( j 51
n (1/j ) is chosen so thatum(n)& is normal-

ized. Now suppose, we would like to embezzle the st
uwAB&ª( i 51

m a i u i &Au i &B from um(n)&, whereuwAB& is written
according to its Schmidt decomposition such that alla i am-
plitudes are positive reals. This problem is equivalent to c
ating the stateuv(n)&5( j 51

mn v j u j &Au j &B , which is defined as
the state with the same Schmidt basis and coefficients
um(n)& ^ uwAB& but with the coefficientsv j in decreasing or-
der. Thus,uv(n)& can be converted intoum(n)& ^ uwAB& ex-
actly by local unitary operations alone. The embezzlem
protocol will simply consist of performing these local unita
ies because we will show thatu^m(n)uv(n)&u goes to 1 asn
goes to infinity.

The first step in the proof will be to show that the firstn
Schmidt coefficients ofuv(n)& are smaller than the corre
sponding ones ofum(n)&. To see this, observe that these fir
n Schmidt coefficients ofuv(n)& are all of the form
a i /AjC(n), where 1< i<m and 1< j <n. For a fixedt and
i, we let Ni

t be the number of such coefficientsa i /AjC(n)

:
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that are strictly greater than 1/AtC(n). By the constraint 1
< j ,a i

2t, it follows thatNi
t,a i

2t and, since( i 51
m a i

251, we
can conclude that( i 51

m Ni
t,t. This upper bound on the num

ber of v j coefficients that are strictly bigger than 1/AtC(n)
combined with the orderingv1>v2>•••>vmn proves that
v j<1/AjC(n) for all 1< j <n. Consequently, the fidelity
betweenum(n)& and uv(n)& can be bounded from below b

u^m~n!uv~n!&u5(
j 51

n
v j

AjC~n!
> (

j 51

n

v j
2 . ~3!

Our next task is to show that this sum is close to 1
large n. Let uc(n)&ªum(n)& ^ uFm&, where uFm&
ª(1/Am)( i 51

m u i &Au i &B is the maximally entangled state o
rank m. Then v(d)Asc(d)A and it follows that( j 51

n v j
2

>( j 51
n b j

2 , where (b j ) is the vector of Schmidt coefficient
of uc(n)& in decreasing order. This last sum is easy to eva
ate, however,

(
j 51

n

b j
2> (

j 51

bn/mc
(
i 51

m
1

jC~n!m
> 12

log~m!

log~n!
. ~4!

Thus, for any fidelity 12«,1, the requirementn.m(1/«) on
um(n)& suffices. If we view the stateuwAB& as a string of
logm pairs of qubits thenum(n)& need only consist of
(1/«)logm pairs of qubits, which is only linear in the numbe
of qubits of uwAB&.

The embezzlement protocol we present here requires
solutely no communication and uses the same set of cata
for every input. Is it possible that by tailoring the catalyst
the target state as well as making use of local operations
classical communication that we could find more effect
embezzlement schemes? Not significantly. Letn be the
Schmidt rank of the catalystuj& and consider the transforma

FIG. 1. An illustration of the ‘‘embezzlement effect.’’ By a well
chosen rearrangement, we can create the suggestion that th
pieces of the rightmost figure, with area size 59, can also be use
cover the triangle on the left with its surface of 60 units. A simi
phenomenon is described in this paper for the entanglement
distributed quantum state. It is shown, how we can reorder
amplitudes of an embezzling statem such that we get a very clos
approximation of an enlarged statem ^ w, which appears to have
significantly more entanglement than the originalm.
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tion uj&°uj& ^ uwAB&. Suppose the optimal LOCC protoco
yields the statesAB . In Ref. @7#, it was shown that this
optimalsAB will be a pure state with Schmidt basis matchin
that of uj& ^ uwAB&. Since the entanglement cannot be i
creased by an LOCC protocol,S(sA)<S(jA). Therefore, if
TrusA2jA^ wAu5d, the Fannes’ inequality@9# implies that,
for d,1/e,

S~wA!<uS~jA^ wA!2S~sA!u,d„log~m!1 log~n!…1h~d!,
~5!

whereh(d)52d logd andm is the rank ofwA , and hence

S~wA!2h~d!

log~m!1 log~n!
,d. ~6!

For our protocol, however, a straightforward calculation
veals that

d5Truv~n!A2m~n!Au5(
j 51

n

~m j
22v j

2!1 (
j 5n11

nm

v j
2

<
2 log~m!

log~n!
, ~7!

where we used the fact thatm j>v j for 1< j <n andm j50
for j .n combined with the bound of Eq.~4!. Clearly, for a
fixed wAB this d saturates Eq.~6! to within a constant factor
for largen.

We have shown that it possible to embezzle entanglem
without any communication whatsoever and that the
$um(n)&% can be used to embezzle any bipartite pure st
Furthermore, we have shown that the universal fam
$um(n)&% is nearly optimal, almost saturating the limit o
embezzlement imposed by the continuity of the Von Ne
mann entropy.

The embezzlement phenomenon has a number of co
quences for the study of quantum information. For examp
it implies that thetrumping relationon bipartite entangled
states@10# is not stable to arbitrarily small perturbations.
other words, in the presence of unrestricted catalysts,
states are effectively reachable from all others without co
munication. Similarly, a standard proof technique in quant
communication complexity reduces distributed functi
evaluations to related state transformations@11#. The amount
of communication for the distributed problem is related
the amount of communication required to perform the cor
sponding state transformation. Our results imply that t
technique will fail on attempts to study the probabilist
communication complexity of functions, when an unlimite
amount of initial entanglement is allowed.
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