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We show that classical-quantum correspondence of center-of-mass motion in two céqatkdd rotors is
enhanced by the entanglement of the center of-mass motion to the internal degree of freedom. The observed
correspondence can be attributed to the decoherence generated from chaotic internal dynamics with a few
degrees of freedom.
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Classical-quantum correspondence in a classically chaotic.m. is separable and becomes trivial; the c.m. of the isolated
system has been one of the most interesting problem in physystem moves in a straight line with a constant velocity. We
ics for a long time[1,2]. In quantum mechanics, the time are interested in the case where the dynamics of the whole
evolution of a wave function follows &near Schralinger  system(macroscopic objetis chaotic; therefore we assume
equation, and so there is no possibility of the exponentiathe existence of the external potential which yields a nonlin-
sensitive dependance of solutions on the initial condition, aar force. WithV.,,, the dynamics of c.m. is coupled to the
trademark of classical chaos. Also, chaotic diffusion is supinternal dynamic$16], and this coupling can induce a deco-
pressed by quantum localizatip8l. It has been revealed that herence effect on the dynamics of center of mass. In this
some crossover timg=In(l/2)/\ (I is a characteristic action case, the minor differences betwednandHg play an im-
and \ is a Lyapunov exponentexists so that classical- portant role, and the correct classical-quantum correspon-
quantum correspondence breaks downtfet, [4]. dence of the center of mass motion will be obtained not from

Recently, the relation between decoherence and thely but fromH.
classical-quantum correspondence has been investigated ex-The decoherence from the internal dynamics of a macro-
tensively[2,5-15. Decoherence breaks the purity of initial scopic particle has been studied by using a master equation
superposition, which should be conserved in the absence §13,14. To obtain the master equation, however, it has been
coupling to environment, and thus only the partial fraction ofassumed that the internal degrees of freedom act like a ther-
whole Hilbert space, namely pointer states, are selected hyal heat bath. In contrast, we investigate the exact quantum
the environmenf6]. The dynamics of the system coupled to mechanical dynamics of a two-particle system, so that the
the environment shows the unique characteristics of the sy®bserved decoherence has purely dynamical origin. We will
tem independent of the coupling strength as long as it is nashow the delocalization of wave functions in momentum
too large or smal[10,11]. In other words, with appropriate space and the coincidence of classical and quantum entropy
coupling to environment, the Lyapunov exponent or entropyproduction rates. In our system, the internal dynamics which
production rates, which are important physical quantitiesserves as an environment consists of a few degrees of free-
characterizing a chaotic system, can be reproduced quantudom. One may suspect that the internal degree of freedom is
mechanically. too small to generate the decoherence. However, we show

Usually the environment which interacts as well as decothat the chaotic internal dynamics with a single degree of
heres the system is assumed to be an external heat bath witkedom is enough to efficiently produce the decoherence in
large degrees of freedom. For a compogethcroscopit  agreement with other observatiofis7,18.
system, however, decoherence can be obtained from its own As a model for the decoherence generated from the cha-
internal dynamics which behaves like a thermal heat batltic internal dynamics, we consider the center-of-mass mo-
effectively[13,14. In this paper, we show that the decoher-tion of the spatially confined twé-kicked rotors. The gov-
ence of the center-of-mags.m) motion of a composed sys- erning Hamiltonian is given by
tem can occur through the entanglement of its own sub-
systems with even a few degrees of freedom due to the 1, .,
chaotic nature of internal dynamics. H= 5 (P1+p2) +U(ryry)

Let us consider a classical object governed by a Hamil-
tonianH,=P2/2M +V(X), whereM is the mass of the clas-
sical object. Since classical objects are composed of many
particles, a complete Hamiltonian will be given by
=Ei[piZIZmi+Vext(xi)]+2i,jvim(xi ,Xj), Where p; and x; wherer, andr, are angle variables with ranger2radians
are momenta and coordinates of the constituents, respeandU(rq,r,) is the interaction potential which confines two
tively. Without the external potential,,;, the dynamics of particles within a distancev. If the confinement widthw

goes to zero, then the system reduces to a uédatked
rotor. Similar systems such as two coupled quantum kicked
*FAX: +82-2-958-3842. Email address: hkpark@ns.kias.re.kr tops[15], two interacting spin§19], and two interacting par-

+k[cogry)+cogry)]Y, 8(t—iT), (1)
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ticles (TIP) in a random potentigl20,21] have been studied. where M=2m, uw=m/2, and K=2k. Here, U(r) corre-
The decoherence effect from internal dynamics, howeversponds to the confining potential with impenetrable walls at
has not been discussed. r=xw. § kicks described by the last term of E@) yield

To investigate the center-of-mass motion, we introducehe interaction between the c.m. motion and the internal de-
canonical transformsR=(r;+r,)/2, r=r;—r,, P=p;  gree of freedom, i.e., the motion of the reduced mass
+p2, and p=(p;—P,)/2. Then, we obtain the following ~ The time evolution of the wave functio® (R,r,t) is
Hamiltonian: given by simple maps. Between each kick occurringt at

P2 p? r , =iT (i is an integex, the c.m. motion and the internal mo-
H=om* Z+U(r)+K cogR)cog 5 zl S(t=iT), (2 tion evolve independently, so that we obtain
|
R,r,NT+07 )= T 'sz T\I’R N-1)T+0" 3
Y(R,r,NT+0")=ex —ioy 7 eXP T ﬂ+ (r)% (R,r,(N=1)T+07). 3

The wave functions just before and after thekick at t down when w is increased. The difference &f; and Ay,

=NT are related by the following mapping: nearly disappears for large, while deviations are observed
for smallw.
The breakdown of quantum localization, i.e., delocaliza-

r tion, is directly visible in the momentum distribution func-
2 tion in Fig. 2, where the probability distribution of the
B center-of-mass momentur® are shown at time stem
XW(R,r,NT+0"). (4) =500 for severati andw. The exponential localization is
changed into a rather broad Gaussian-like profile as we de-
creaseh or increasen. Let us note that the delocalization of
wave functions alone is not enough to prove the occurrence
of decoherence. In fact, the delocalization was also observed

w(R,r,NT+0*):exp{ —iK cos{R)cos(

Combining the two maps given in Eg8) and (4), we nu-
merically calculate the evolution of the wave function
\P(R,r,t) for various#: andw. For most cases, the number of in the study of TIP in a random potent{&0,21]. However, it
basis states used for the motion of coordinBtandr are -

. . " _was not attributed to the decoherence.
16 384 and 256, respectively, while 32 768 and 512 basis are Next, we consider the reduced density matrix for the
used, respectively, for small. The initial condition is cho- center-(;f-mass motion in order to show that the observed
sen to be the ground statie(R,r,0)=1/\wcosr/2w).

Classical evolution is obtained from a four-dimensional
map for R,P,r, and p derived from Hamiltonian(2). We
consider an ensemble of particles which are distributed from
R=0 to R=2# uniformly with P=0, and fromr=—w to
r=w with a probability co§mr/2w)/w with p=+py=
+(7h)/(2w). From this initial condition, the classical evo- g
lution is simulated, and the ensemble average of the normal< |
ized variance of center-of-mass momentut?=2((P?) =
—(P)?)/MK?, is computed. b

As a reference, let us mention the case with a single
5-kicked rotor governed by the HamiltoniaH = P?/2M
+K cosR)Z;4(t—iT), which corresponds to the case with
=0. ForK=5, which is used in this work, the system is
fully chaotic, and the classical kinetic energy increases dif- g
fusively. But the diffusion is suppressed quantum mechani-_ . , . . . . . . .
cally and the classical-quantum correspondence break — o 500
down, which is the well-known dynamical localizati¢8]. Time(n)

Now, we gonS|der tWQS'k'Ckeq rotors. The inset 'r,‘ Fig. 1 FIG. 1. The differences between classical and quantum momen-
shows the differences of classical momentum variances bggp, variances Ag—Aqy, are plotted withM=1, u=0.25, K
tween single and tw@-kicked rotors for variousv. ASwWis =5 T=1, and%=0.07. From top to bottomy=0.0 (i.e., single
decreased, the difference between them vanishes. Meagicked rotoy, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and O(thsed The differ-
while, shown in Fig. 1 are the differences between the clasence between variances of single and two coutédcked rotors
sical and the quantum variances for variowswith % Agge— Ao, for variousw are shown. From top to bottomy
=0.07. One clearly sees that the quantum localization breaks 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.

200

060102-2



RAPID COMMUNICATIONS

DECOHERENCE FROM CHAOQOTIC INTERNAL DYNAMIG . . . PHYSICAL REVIEW A 67, 060102ZR) (2003
4
. . hd
£
=
a
P
FIG. 2. Momentum distribution functionga) #=0.25, w=0.2
and 1.(b) w=0.2, #=0.1, andk =0.25. Other parameters are the
same as in Fig. 1. 0.4
. . . 14 4.2
classical-quantum correspondence is ascribed to the decohe. w/T

ence caused from the interaction with the internal degree of FIG. 4. Quantum diffusion coefficierD, as a function of

freedom. The reduced density matfix(Ry,Ry) is given by (/) with ,=0.25. The solid line corresponds By, (wit)*.
Tr(p) =2 h(Ry.1) " (Ry.1). As a quantitative measure of oher parameters are the same as in Fig. 1.

decoherence, we calculate the linear entrapy Tr(pg

—pg) [6]. Note that for a pure statey=0; while for a  motion. Asw decreases, the noise is reduced and so is the
maximum decoherencs,=1. Figure 3 shows that for large effect of decoherence. Qit al. studied the effect of noise on
w the entropys; rapidly approaches 1, i.e., maximum deco-the singles-kicked rotor, which showed that, for moderate
herence. As we decrease the entropys; shows rather re- noise andh, the diffusion coefficienD 4y, is proportional to
duced values and slowly increases in time. In fact, thehe square of the noise level, more precisd])/qm
energy-level spacing of the internal dynamics described by- ,2(K/#)* (v is a noise strengit{22]. For a very smalf:,
p?/2u+U(r) is proportional to M4 which means the it is obtained thatD,=D¢| (D¢ is a classical diffusion
smallerw, the larger the level spacing. For a given perturbacoefficien). If we directly apply this result to our case, we
tion determined b, it is more difficult to excite the inter- jmmediately obtain the scaling relatich:mqm~(wlﬁ)4K6 for
nal dynamics in the case of large spacing, which leads tenoderate # since we can approximately regark[1
effective decoupling between the c.m. motion and the inter— cos(/2)] as noise amplitude, and se-Kw?. It also im-
nal degree of freedom and eventually leads to the decrease Bﬁes that the decoherence timig~7%2/v?~#2/(K?w?).

decoherence. This is consistent with the previous result tha{gte that the diffusion coefficiend - is given byAi/td
the breakdown of the localization and the classical-quantunynere A(=K2/%) is localization qlength of the single

correspondence is easily obtained for larggi.e., strong s kicked rotor inP [22]. The scaling is confirmed by numeri-

decoherence. cally calculatingD , as a function of w/#) in Fig. 4, where

Due to the chaotic nature of the internal dynamics,; —( 25 andk=5. These results also confirm the above
cosf/2) in the last term of Hamiltoniaf2) can be regarded roposition that the term cag®) in Hamiltonian(2) can be
as an amplitude noise of the kick onto the center—of-masg

1

0.9
08
0.7
0.6 i
05 Hd
0.4
03 fr

3
X %,

02k
0.1

K
KUK,
I

0 l’l 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 Time(n)

Time (n)

FIG. 5. The von Neumann entropies obtained from the reduced
FIG. 3. Linear entropies for various. From bottom to topw density matrixpg with #=0.07. For reference, the 0.5 (depen-
=0.1, 0.2,0.3,0.4, 0.5, 0.6, and 0.7. Other parameters are the sardence ofS;, is represented by the solid line. From bottom to top,
as in Fig. 1. w=0.2, 0.4, 0.6, 0.8, and 1.0.
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treated as noise and thus induces decoherence. tum increases diffusively. As a result, the classical entropy is
Finally, we consider the classical and the quantum entropgiven by S, ~0.5In(n). In Fig. 5, the quantum resultslots
production rates of which coincidence has been the criterishow 0.5 Infl) dependence, consistent with the classical pre-
for the classical-quantum correspondence of chaotic systenuiction.
in the studies of decoheren¢&0]. Quantum mechanically, In summary, we have studied the dynamics of the center-
the von Neumann entropy is given I§;,,=Tr prIn(pgr)]. of-mass motion of two coupled-kicked rotors, and shown
Due to the difficulty in computing the eigenvalues of largethat classical-quantum correspondence is achieved by the de-
matrix, we use a smaller number of basis states than thafoherence induced by the internal dynamics. Neither external
used in the previous simulation; 4096 for the motionRyf  noise nor the outer environment are assumed. The decoher-
and 256 forr. We chooséi =0.07 and can obtain the quan- ence arising from an environment containing only a single
tum evolution up ton=100 with this smaller number of degree of freedontinternal dynamicsshould be attributed
basis. The time evolution of the von Neumann entropy conto the chaotic nature of the internal dynamics. The scaling
sists of two different regimef23] as shown in Fig. 5. After  law of D, strongly suggests that internal degree of freedom
the initial transient, the von Neumann entropy increase®ehaves like a thermal noise source due to the chaotic dy-
logarithmically in time, which exactly corresponds to its namics. We hope that similar results would be observed in
classical counterpaftl2]. Let us consider the phase spaceexperiments using molecules when they are subjected to an
(R,P) for the center-of-mass motion. Classical distributionsexternal nonlinear force depending on the position of the
are uniform inR and Gaussian iR. The variance of momen- constituent atoms.
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