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Comments on the locality in density-functional theory
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The “locality hypothesis” in density-functional theorfDFT), implying that the functional derivative is
equivalent to a multiplicative local function, forms the basis of models of Kohn-Sham type. This has been
generally accepted by the community since the advent of the model, and has later been formally proved for a
large class of functionals. The hypothesis has recently been questioned by [WstsetRev. A8, R12(1998
and Phys. Rev. &5, 010502(2001)], who claims that it fails for the kinetic-energy functional for a system
with more than two noninteracting electrons with a nondegenerate ground state. This conclusion has been
questioned by Ga[Phys. Rev. A62, 044501(2000] and by Holas and MarcfPhys. Rev. A64, 016501
(2001)]. We claim that the arguments of Nesbet are incorrect, since the orbital functional used for the kinetic
energy is not a unique functional of the total density in the domain of unnormalized orbitals. We have
demonstrated that with a proper definition of the kinetic energy, which is a unique density functional also in the
unnormalized region, the derivative can be represented by a single local multiplicative function for all
v-representable densities. Therefore, we consider the controversy connected with the issue raised by Nesbet as
resolved. We believe that the proof of the differentiability given here can be extended to larger groups of DFT
functionals, and works along these lines are in progress
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[. INTRODUCTION at a densitypge M, if there exists acontinuous and linear
operator L(-) such thaf9]

There has for some time been a dispute in the literature
about the so-calledlocality hypothesis” of the density- Flpo+ dp]l—F[pol=L(Sp)+0(po,5p) 1)
functional theory(DFT), implying that the density-functional
derivative is generally representable as a local multiplicativ
potential function. This hypothesis forms the foundation of 0(po,dp)

DFT models of Kohn-Sham tygéd.,,2]. Nesbet has in several im ————=0. 2
papers argued that this hypothesis leads to inconsistencies for II5pll—0 19l

compact systems with more than two electr¢@8g4]. This
result has been questioned byl@ad by Holas and March
[5,6]. Nesbet has recently responded to that critidiiand
we shall here make a Comment on the issue.

In standard DFT a density function&| p] is set up for
the energy, which is minimized under the constraint that the oF[po,dp]=F[po+ dp]— F[po]=f drv([polir)ép(r),
densityp(r) is normalized to the number of electrons. This 3
requires that the functional is differentiable with respect to
the density at the minimum. If the minimization is being wherev([po];r) is a single valued, bounded function of
performed inside the normalization domaateauxdiffer-  that depends only op,. This function is conventionally re-
entiablity [9] is sufficient. If, on the other hand, the Euler- ferred to as théunctional derivative
Lagrange(EL) procedure is being used, then the functional
has to be defined also outside the normalization domain and ( SFLp]
the functional has to bEréchet[9] differentiable. op(r)

As Nesbet works with unnormalized wave functions, we
shall here consider the Faleet differentiability. Nesbet ar- We shall assume here that the dengityis a ground-state
gues that the density functional is not Enet differentiable  density, corresponding to a Hamiltonian with an external po-
even for systems of noninteracting electrons with more thanential v, i.e., av-representable density. The modified den-
two electrons. We shall show here that such a derivativaity p=p,+ dp on the other hand, is allowed to be in a much

éor all pe E andpy+ dp e M, and whereo(py,0)=0 and

The functionL is then termed as theréchet derivativeat the
densityp,. Frechet differentiability implies that the differen-
tial is to the leading ordefin the sense aboyef the form

=v([polir). 4

pP=pPq

exists regardless of the number of electrons. larger space de L*NL3 [14]), which includes also unnor-
A density functional,F[p], defined on a subséfl of a  malized densities.
Banach spack with the norm||-||, is Frechet differentiable A formal proof of the (Gaeaux differentiability for a

large class of density functionals has been given by Englisch

and Englisch[10,11], based upon the works of Levy and
*Email address: ingvar.lindgren@fy.chalmers.se Lieb [12—-14. The reader is also referred to a recent compre-
TEmail address: f3asos@fy.chalmers.se hensive review by van Leeuwég8].
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The results of Nesbet are in conflict with well-establishedOriginally, this theorem was shown for densities that are
results in DFT. We have found that the main reason for thaepresentablavith a nondegenerate ground state, i.e., corre-
unexpected and erroneous result of Nesbet is that the expregponding to a hondegenerate ground state of a Hamiltonian
sion he uses for the kinetic energy is not a well-defined denwith a local external potential(r). Later the theorem has
sity functional, when the condition of orbital normalization is been extended to essentially all densitiegse(*NL?3)
relaxed. We shall demonstrate that with a proper definition of8,10—15. Provided that the kinetic-energy functional is Fre
the kinetic-energy functional in the extended domain, thechet differentiable, the minimization leads to the Euler equa-
functional is Frehet differentiable for any number of nonin- tion
teracting electrons. This, we believe, will resolve the present
controversy concerning the locality of density-functional de- 6T p]
rivatives. ( sp(r) )p_p

+ov(r)— =0, (10

Il. NONINTERACTING ELECTRONS where u is the Lagrange multiplier for the normalization

A. General N-electron wave function constraint.

We assume here that the ground stateasdegenerate
The ground-state wave functio/,, obviously minimizes
the kinetic energy of noninteracting electrons at the ground-
state densityg,

We consider a system &f noninteracting electronsnov-
ing in an external potentiat(r), with the Hamiltonian(in
Hartree atomic units, i.em=e=#=4mey=1)

ey 1 A
=THV=2, = ZVH 2 o(r). (5) Tlpo]= min (W[T|w)
-1 2 = Y pg
The kinetic-energy functional is defined by means of the =(Wo|T|Wo)

constrained seardi2—-14

o E,
=<‘1’0|H_V|‘I’o>=f dr(ﬁ—v(r))po(r).

Tlp]= min(¥|T|¥), ®)
bt (11)
where W(rqy,r,, ... ry) is an N-representable wave func-

tion, i.e., ant|symmetr|zed and normalized. We shall also reAccordmg to the Hohenberg-Kohn theorem, this is a func-
quire that the kinetic energy is finif@,14. In the following tional of the density fov-representable densities. In order to
we shall relax the normalization constraint but still use defl—lclnd out If this functhnal s F’reljet_ differentiable at suqh a
. o . .~ density, we have to find the variation of the functional in the
nition (6). The electron density is the diagonal of the first- ~ . . - -, -
order density matrix neighborhood of this dgnslt@.e., all denS.It.IGQp—po-l- op
eL'NL3||8p||<e}). This includes densities not only out-
side the space af-representable densities but also outside
p(r)sz drzf drs-..f ary| W (r,ry, ..o 002 (D) the normalization domain. Therefore, we shall have a closer
look on the differential.
We return to definition6), and want to find the variation
of this quantity due to a small change of the ground-state
density,p=pg+ p,

(The integration will include a sum over the spin coordi-
nates) This definition will be used also for unnormalized
wave functions. The energy functional for the system is

E[p]=T[p]+Vp], ®) Tlpo+ 5p]=w ming (V| T|W). (12)
—potdp

where We extend the definition by relaxing the normalization con-
straint on the wave function. This implies that the diagonal
V[P]=<‘1’|V|‘1’>=J dro(r)p(r) element ofT is no longer the expectation value, but this is
quite legitimate. For instance, normalizing the expression it
represents the interaction with the external field. by dividing it by the norm of the wave function, would not
According to the Hohenberg-Kohn theordt, the infi- chan_ge the main re_sult. We also use definiti@n pf the
mum (which can be shown to be a minimuih0,14)) of the density for unnormalized wave functions. Integration of the
energy functional with respect to the density under the condensity then leads to
straint of the density normalized td, fdrp(r)=N, is the
gxact gr()_unq-state ener@y of the system, apd the minimiz- f drp(r)=N(¥|¥), (13
ing density is the exact ground-state dengigy

Eo= inf {T[p]+V[p}=T[pol+ V[ pol. (9)  which shows that normalizing the densityNoautomatically
p—N implies that the wave function is normalized to unity.
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We now write the wave function in Eq12) as¥ =¥,
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hood of pg, ||8p||<e, and all wave functions generating

+6¥ with V¥, being the normalized ground-state wavethese densities. Generally, there are several wave functions

function. To begin with, we do not assume tldalt has to be
“small.” We then have generally

(W IT1w) = (A=) = A1) - [ aro) pn

(14
and
(WIH[W)=(Wo|H[Wo)+(SW|H|Wo)+(Wo|H| V)
+(5W|H|5¥)
=Eo(W[W)+(8V|H—Eq|5W). (15)

Using Eq.(13), the diagonal element &f becomes

(V[T|®)=(¥|H-V|¥)

zf dr(%—v(r))p(r)+(5\lf|l:|—Eo|5\If)
(16)

and the functional(12)

T[p]=j dr(E—v(r))p(rH— inf (S |F—Eq| 5P).
N v
(17

The differential then becomes, using Efl),

Eo
OT[po]l=Tlpo+ dp]—Tlpo]= f dr(ﬁ—v(r)) Sp(r)

+ inf (SP|H—Ey|oW).

W+ 6V —pg+ dp

(18)

The condition for Frehet differentiability is then that the

relation
inf  (8W|H,—Eo|s¥)/||5p||—0
Vo+ 6V —po+dp

as || dp||—0 (19

holds for all densities on the neighborhood &f,. This is
plausible since the numerator is quadraticod, while Sp

has a linear part. But first it has to be shown that all densitiefunction.
in the neighborhood op, can be generated by wave func-

tions wheredWV is small.
The density belongs to the groigN L3, and the corre-
sponding norms are

1/3
laplle= [ o500l and 13plla=| [ arlap(n?
(20

The norm for the wave function is chosen to He’||

=\(¥|¥). We consider now all densities in the neighbor-

that generate a certain density, and we keep the function for
which || 8¥|| is the smallest. We now scal®&¥ by a factor

of A (0<A<1), which means thdts¥||—\||o¥|| and to

first order|| dp||—\|| dp||. By making\ sufficiently small,

it then follows that all densities in a small neighborhood of
po can be generated by wave functions in a small neighbor-
hood of .

Since each density in the neighborhoodpgfcan be gen-
erated by wave functions for whic¥ is small, it follows
that condition (19) is fulfilled and the extended kinetic-
energy functional (6) is Frechet differentiable at any
v-representable density,, corresponding to a nondegener-
ate ground state. The functional derivative

<5T[p]> _B 21)
pP=pPg

Sp(r) N v

is equivalent to a single local multiplicative functiofihe
value of the constant in the derivative is the Lagrange mul-
tiplier in the EL procedurd10). It depends on the way the
functional is extended into the domain of unnormalized den-
sities and has no physical significance.

Instead of using the EL procedure, it is possible to per-
form the minimization entirely inside the domain of normal-
ized densities, i.e., restricting the density variations to those
fulfilling the condition fdrdp(r)=0. In that case, one can
only deduce the derivative up to an additive constant, i.e.,

(22

5T[p]) o
(5p(r) p:po— v(r)+const.

This is consistent with the results of Englisch and Englisch
[10,11] and of van Leeuwef8]. As mentioned, in that case
the derivative is of the Gaaux type.

It is expected that the method used here to investigate the
differentiablity of the kinetic-energy functional for noninter-
acting electrons can also be used for more general function-
als forinteracting electronsand work along these lines are
now in progres$17].

B. Single determinant

The treatment above holds for any antisymmetric wave
In order to make the comparison with Nesbet's
treatment more transparent, we shall illustrate this by consid-
ering the special case of a system of two electrgvishout
spin) with the determinantal wave function

D(ry,r0)=1N2[ p1(r1) da(ra) — ha(r2) ha(r1)]. (23)

The treatment could easily be generalized to a single Slater
determinant ofN electrons. The orbitals are assumed to be
orthogonal but in order to be able to apply the EL procedure
we shall, as before, relax the normalization constraint.

The density(7) now becomes
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p(N=|d1(1)|(pa| d2) + | Da(1)|? { D1| P1); Here, the normalization constraint is lifted but the orthogo-
nality requirement is maintained. This leads to the density
change
J drp(r)=2(¢1|p1){ P2l P2, (24
op(r)=6p4(r)+ 6pa(r), (28)
and the diagonal element of the kinetic-energy operator where
<(I)|'T'|(I)>= f J drldrz®*(r1,r2)(fl+f2) D(rq,ry) opa(r)= 6¢1‘(r)¢>1(r)(¢2|¢2)+|¢2(r)|2(5¢1|¢1>+c.c.,

(29)
=(Dalt| o) bl $2) +(aft] d2)(bal b1). leaving out the quadratic termép,(r) is obtained from this
(250 expression by the exchange«:2). This gives

Note that the integration over the “passive” electron orbitals

leads to normalization integrals, which are different from f drép1(r)=2(6¢1|h1)(bol o) +c.C.,

unity, when the orbitals are not normalized. If these integrals

are left out, as Nesbet does, it is necessary to apply indi-

vidual Lagrange multipliers for each orbital in the minimiza- f dr8p,(1r)=2(8¢p,| h2){ p1| 1) +c.C. (30)
tion process to preserve the normalization and to prevent the

wave function from “collapsing” into a single orbital. By
maintaining the normalization integrals, this is no
needed—a single Lagrange multiplier is sufficient, in the - .

same way as in the general case discussed in the preceding 0Ts=(8¢1|t|p1){ B2l o) + (P2l t| #2)( 51| p1) +c.C.
section. Density normalization then automatically implies +(152) 31)
wave-function normalization, as follows from Eq4.3) and ’
(24).

The expression in Eq25) is a functional of the density
only in the v-representability domain. In order to demon- -
strate the Frehet differentiability, we have, as before, to go [t+o(r)]i(r)=eidi(r) (32)
outside this domain and study the behavior in the neighbor-
hood of the ground-state density, also outside the normalizd" the ground state, becomes
tion domain. The kinetic-energy functional is then defined by
the constrained-search proced(@e 8Ts=(8¢1le1—v(n)|d1){ P2l P2)+(balea—v(r)| b2)

X( 81| 1) +c.cH (12)

tThe corresponding change in expressian) is

which using the orbital equation

Tdpl= min(®|T|D), (26)
®—p

=(e1+87) (61| h1) (P2 P2)+C.C— f dro(r)op4(r)

this time with the function @) restricted to a single deter-

minant, which need not be normalized. From the result of the +(1<2)
preceding section we know that in the neighborhood of the
ground-state density the minimizing wave function is close =J' dr(Eg/2—v(r))(Sp1(r)+ Spa(r)) (33

to the ground-state function. Furthermore, we know that the
differential of the kinetic energy in this neighborhood de- . _ . , .
pends on leading order only on the density modification an hlitshollzeo_ezé: ‘Z%‘l TQ':’ t?l%ngggssi:heaga;tntgigitr?irlr?iigltri]c?n%dg
not on the wave function that generates this density. This(26) i Fr)weeded inythe nei hborh)god of the around-state de?w.-
implies thatin the neighborhood of the ground-state density,s.t The result also comgrms that the f ngt'onal i
expression (25) besides being an orbital functional is also & Y- . u ! funct !
: . differentiable at the ground-state density and that the func-
density functional ) o ; .
tional derivative can be represented bgiagle local multi-

<q)|:|_|q)>__|_s[¢ 5] plicative function,

- 1:%2
=TJdp] (5Ts[p]) :(5Ts[p])

p=p pP=p

R R op(r) opa(r)
=(P1|t|p1)( P2l h2) + (Palt| B2)( 1| D1).

(27) _ ( oT s[P])
Sp2(r) ) _,
We consider now density variations due to the modifica-
tions 8¢, and 8¢, of the orbitals¢, and ¢,, respectively. =Eq/2—v(r). (34
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As before, we could confine the variations to those that pre- [ll. COMMENTS ON THE TREATMENT OF NESBET
serve the density normalization, and we would retrieve result . .
22). We shall now comment in more detail on the treatment of

Nesbet[3,7] and start by reproducing his main results, re-

rule, which is used by Nesbet to illustrate the breakdown Ofstrlctlng ourselves for simplicity again to two electrons with

the locality hypothesis. We evaluate first the orbital deriva-"° SPIN- Nesbet defines the kinetic-energy functional by

tive, considering expressiai27) as anorbital functional Tdp]=(®P[T|®) withoutthe constraint searc26). As be-
fore, @ is here a single Slater determinant of spin orbitals

¢i, which are orthogonal but not necessarily normalized.
6Td ¢1, 2] :f|¢ W bo| o)+ (b |f|¢ Vb Nesbet emphasizes the importance of going outside the do-
S} VAT SRS main of normalized orbitals in applying the EL procedure,
but nevertheless leaves out the normalization integrals and
=[(Eo—v(N){ b2l d2) —(olv(r)|p2)1¢1(r).  uses instead of25) the expression

35 n "
(%9 To=(palt ) + (BT ) (39

throughout the domain. Similarly, instead of the density ex-
epression(24), he applies

We can now confirm our results by means of tiain

Here,the orbitals are regarded as independent
Next, we evaluate the orbital derivative from the sam
expression, considering it asdensity functionalln order to

FiO so, we have tdisregard that fact tha? the orbital might.be p(N)=]b1(1)|2+]| da()|2 (40)
interconnected otherwise the result will become meaning-
less, also in the extended domain. It can be shown bsaving out
the normalization integrals in Eq$24) and (25) causes the
ST b1, b5] S5Tdp] Sp(r) kinetic energy, seen as a functional of the total density, to be
f:f M—— (36)  multivalued outside the domain of normalized orbitals.
5¢i (1) op(r') 8¢y (r) Making the same orbital modifications as in the preceding
section, keeping the orbitals orthogonal but relaxing the nor-
With the expression for densit24) this yields malization condition, leads to
oTd b1, 62] ,0Td p] , Spa(r)=8¢1(r)ps(r)+c.c., pa(r)=e3(r)da(r)+c.c.,
= e 81 ) (ol o) (41
o1 (r) op(r’)
which for the ground state becomes
+[ar)[21pa(r) 56 o050 "
OT=(d¢pqle1—v(r)| 1) +{dPyle,—v(r)|p,)+C.C.
ML PR PR P LA PR e o S B
5'0('..) 2 2 2 5p 2 I .
or
(37)
Identification with orbital derivativé35) then leads immedi- 5Ts:f dr[81—v(r)]5pl(r)+f drle;—v(r)]opo(r).
ately to (43
oTdp] This should be compared with our equati®3), where 5T,
Sp(n) Eo/2—v(r), (38  depends only on theotal densityp(r)=p;(r)+ p,(r). Nes-

bet's procedure leads—in contrast to our reg@#)—to an

L . . orbital dependencef the derivative
which is identical to our previous resiig4). The same result P

is obtained if we consider the derivative with respect to the ST
second orbital. o
We have here demonstrated that it is possible to evaluate P1
B oy lone, 410 e corespording o E12 in Nesbets papef]
can be us;ed to deduce the density derivativg@rerequisite | We can also see the effect. of _the ormission O-f the normal-
ization integrals on the application of the chain r¢gs),

is here that the expression used is simultaneously an orbita[, . : : .
and a density functionallhe last point is crucial, becaugie hich with expressiori40) for the density simplifies to
is prisicely at this point that the approach of Nesbet fadls

oTs
=g1—v(N#* =—=¢g,—v(r) g1#¢&y, (44)
2

STdbs. 5] 8TIp] dp(r) 5Tdp]

we shall demonstrate below. Although, his expression is a - - #i(r). (45
density functional at the ground-state density, thisdsthe S (r) op(r) s¢p*(r)  6p(r)

case in the neighborhood, which is needed in order to define

the density derivative. When this is compared with the orbital derivative
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ST b1, byl - We claim—in accordance with the previous commenta-
" =to(r)=[g;—v(r)]¢i(r), (46)  tors[5,6]—that the results of Nesbet are erroneous. In our
87 (1) opinion, the main reason for the failure of the procedure used

by Nesbet is that the density functionals are extended into
Hwe domain of unnormalized densities in an incorrect way,
only as alinear operator which leads to multivaluedness. This effect, however, shows

The reason for the strange result of Nesbet is that UP only in the Frehet derivative. Inside the normalization

quantity T, is not a density functional in the neighborhood of domain, where it is sufficient to work with the @aux de-
the ground-state densityt can easily be shown that this vative, all results agree. _ _ _
quantity, regarded as a functional of the total dengi), Note added in proofSince this manuscript was submitted,
becomesmultivaluedoutside the domain of normalized or- We have studied the differentiability of density functionals
bitals. Then it cannot be a density functional, which by defi-further[18]. We have found that defining the’@aux differ-
nition has to be unique in the entire domain. The multival-entiability as often used in the DFT literatuj&], requiring
uedness is a consequence of the omission of théhe differential to be linear and continuous, the difference
normalization integrals. between the Gaaux and Frehet differentiabilities is quite
From the fact that Nesbet finds functional derivatives thasubtle and hardly of any practical importance. We have also
have an apparent orbital dependence, he draws the conclfpund that large classes of density functionals are under gen-
sion that they can be interpreted@ateaux derivativesThis  eral circumstances @aux differentiable in this sense,
conclusion is not correct either, simply because his kineticwhich is sufficient for DFT purposes. Strict Eteet differen-

we retrieve the orbital-dependent derivativ&), which evi-
dently cannot be represented by a single local function an

energy expression is not a density functional. tiability does not seem to be needed here. This does not
change the main outcome of this Comment, though, that the
IV. CONCLUSIONS kinetic-energy functional is differentiable for noninteracting

) ) electrons, regardless of the number of electrons—in contrast
We have shown that for a system of noninteracting electg the claims of Nesbet.

trons, the kinetic-energy functional is eteet differentiable

at the ground-state density, if the normalization constraint is

relaxed, and that the functional derivr_ﬂiye a}t this de_nsity can ACKNOWLEDGMENTS
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