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Comments on the locality in density-functional theory
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The ‘‘locality hypothesis’’ in density-functional theory~DFT!, implying that the functional derivative is
equivalent to a multiplicative local function, forms the basis of models of Kohn-Sham type. This has been
generally accepted by the community since the advent of the model, and has later been formally proved for a
large class of functionals. The hypothesis has recently been questioned by Nesbet@Phys. Rev. A58, R12~1998!
and Phys. Rev. A65, 010502~2001!#, who claims that it fails for the kinetic-energy functional for a system
with more than two noninteracting electrons with a nondegenerate ground state. This conclusion has been
questioned by Ga´l @Phys. Rev. A62, 044501~2000!# and by Holas and March@Phys. Rev. A64, 016501
~2001!#. We claim that the arguments of Nesbet are incorrect, since the orbital functional used for the kinetic
energy is not a unique functional of the total density in the domain of unnormalized orbitals. We have
demonstrated that with a proper definition of the kinetic energy, which is a unique density functional also in the
unnormalized region, the derivative can be represented by a single local multiplicative function for all
v-representable densities. Therefore, we consider the controversy connected with the issue raised by Nesbet as
resolved. We believe that the proof of the differentiability given here can be extended to larger groups of DFT
functionals, and works along these lines are in progress

DOI: 10.1103/PhysRevA.67.056501 PACS number~s!: 31.15.Ew, 31.15.Pf, 02.30.Sa
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I. INTRODUCTION

There has for some time been a dispute in the litera
about the so-called‘‘locality hypothesis’’ of the density-
functional theory~DFT!, implying that the density-functiona
derivative is generally representable as a local multiplica
potential function. This hypothesis forms the foundation
DFT models of Kohn-Sham type@1,2#. Nesbet has in severa
papers argued that this hypothesis leads to inconsistencie
compact systems with more than two electrons@3,4#. This
result has been questioned by Ga´l and by Holas and March
@5,6#. Nesbet has recently responded to that criticism@7#, and
we shall here make a Comment on the issue.

In standard DFT a density functionalE@r# is set up for
the energy, which is minimized under the constraint that
densityr(r) is normalized to the number of electrons. Th
requires that the functional is differentiable with respect
the density at the minimum. If the minimization is bein
performed inside the normalization domain,Gâteauxdiffer-
entiablity @9# is sufficient. If, on the other hand, the Eule
Lagrange~EL! procedure is being used, then the function
has to be defined also outside the normalization domain
the functional has to beFréchet @9# differentiable.

As Nesbet works with unnormalized wave functions, w
shall here consider the Fre´chet differentiability. Nesbet ar
gues that the density functional is not Fre´chet differentiable
even for systems of noninteracting electrons with more t
two electrons. We shall show here that such a deriva
exists regardless of the number of electrons.

A density functional,F@r#, defined on a subsetM of a
Banach spaceE with the normuu•uu, is Fréchet differentiable
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at a densityr0PM , if there exists acontinuous and linear
operator L(•) such that@9#

F@r01dr#2F@r0#5L~dr!1o~r0 ,dr! ~1!

for all rPE andr01drPM , and whereo(r0,0)50 and

lim
uudruu→0

o~r0 ,dr!

uudruu
50. ~2!

The functionL is then termed as theFréchet derivativeat the
densityr0. Fréchet differentiability implies that the differen
tial is to the leading order~in the sense above! of the form

dF@r0 ,dr#5F@r01dr#2F@r0#5E drv~@r0#;r!dr~r!,

~3!

where v(@r0#;r) is a single valued, bounded function ofr
that depends only onr0. This function is conventionally re-
ferred to as thefunctional derivative

S dF@r#

dr~r! D
r5r0

5v~@r0#;r!. ~4!

We shall assume here that the densityr0 is a ground-state
density, corresponding to a Hamiltonian with an external p
tential v, i.e., av-representable density. The modified de
sity r5r01dr on the other hand, is allowed to be in a mu
larger space (rPL1ùL3 @14#!, which includes also unnor
malized densities.

A formal proof of the ~Gâteaux! differentiability for a
large class of density functionals has been given by Engli
and Englisch@10,11#, based upon the works of Levy an
Lieb @12–14#. The reader is also referred to a recent comp
hensive review by van Leeuwen@8#.
©2003 The American Physical Society01-1
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COMMENTS PHYSICAL REVIEW A 67, 056501 ~2003!
The results of Nesbet are in conflict with well-establish
results in DFT. We have found that the main reason for
unexpected and erroneous result of Nesbet is that the ex
sion he uses for the kinetic energy is not a well-defined d
sity functional, when the condition of orbital normalization
relaxed. We shall demonstrate that with a proper definition
the kinetic-energy functional in the extended domain,
functional is Fre´chet differentiable for any number of nonin
teracting electrons. This, we believe, will resolve the pres
controversy concerning the locality of density-functional d
rivatives.

II. NONINTERACTING ELECTRONS

A. General N-electron wave function

We consider a system ofN noninteracting electrons, mov-
ing in an external potentialv(r), with the Hamiltonian~in
Hartree atomic units, i.e.,m5e5\54pe051)

Ĥ5T̂1V̂5(
i 51

N

2
1

2
¹ i

21(
i 51

N

v~r i !. ~5!

The kinetic-energy functional is defined by means of
constrained search@12–16#

T@r#5 min
C→r

^CuT̂uC&, ~6!

where C(r1 ,r2 , . . . ,rN) is an N-representable wave func
tion, i.e., antisymmetrized and normalized. We shall also
quire that the kinetic energy is finite@8,14#. In the following
we shall relax the normalization constraint but still use de
nition ~6!. The electron density is the diagonal of the firs
order density matrix

r~r!5NE dr2E dr3•••E drNuC~r,r2, . . . ,rN!u2. ~7!

~The integration will include a sum over the spin coord
nates.! This definition will be used also for unnormalize
wave functions. The energy functional for the system is

E@r#5T@r#1V@r#, ~8!

where

V@r#5^CuVuC&5E drv~r!r~r!

represents the interaction with the external field.
According to the Hohenberg-Kohn theorem@1#, the infi-

mum ~which can be shown to be a minimum@10,14#! of the
energy functional with respect to the density under the c
straint of the density normalized toN, *drr(r)5N, is the
exact ground-state energyE0 of the system, and the minimiz
ing density is the exact ground-state densityr0,

E05 inf
r→N

$T@r#1V@r#%5T@r0#1V@r0#. ~9!
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Originally, this theorem was shown for densities that arev
representablewith a nondegenerate ground state, i.e., cor
sponding to a nondegenerate ground state of a Hamilto
with a local external potential,v(r). Later the theorem has
been extended to essentially all densities (rPL1ùL3)
@8,10–15#. Provided that the kinetic-energy functional is Fr´-
chet differentiable, the minimization leads to the Euler eq
tion

S dT@r#

dr~r! D
r5r0

1v~r!2m50, ~10!

where m is the Lagrange multiplier for the normalizatio
constraint.

We assume here that the ground state isnondegenerate.
The ground-state wave function,C0, obviously minimizes
the kinetic energy of noninteracting electrons at the grou
state densityr0,

T@r0#5 min
C→r0

^CuT̂uC&

5^C0uT̂uC0&

5^C0uĤ2V̂uC0&5E drS E0

N
2v~r! D r0~r!.

~11!

According to the Hohenberg-Kohn theorem, this is a fun
tional of the density forv-representable densities. In order
find out if this functional is Fre´chet differentiable at such a
density, we have to find the variation of the functional in t
neighborhood of this density~i.e., all densities$r5r01dr
PL1ùL3uudruu,«%). This includes densities not only ou
side the space ofv-representable densities but also outs
the normalization domain. Therefore, we shall have a clo
look on the differential.

We return to definition~6!, and want to find the variation
of this quantity due to a small change of the ground-st
density,r5r01dr,

T@r01dr#5 min
C→r01dr

^CuT̂uC&. ~12!

We extend the definition by relaxing the normalization co
straint on the wave function. This implies that the diagon
element ofT̂ is no longer the expectation value, but this
quite legitimate. For instance, normalizing the expressio
by dividing it by the norm of the wave function, would no
change the main result. We also use definition~7! of the
density for unnormalized wave functions. Integration of t
density then leads to

E drr~r!5N^CuC&, ~13!

which shows that normalizing the density toN, automatically
implies that the wave function is normalized to unity.
1-2



ve

tie
c-

r-

g
ions
for

of
or-

-

r-

ul-

en-

er-
l-

ose
n
.,

ch
e

the
r-
ion-
e

ve
t’s
sid-

ater
be
ure
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We now write the wave function in Eq.~12! as C5C0
1dC with C0 being the normalized ground-state wa
function. To begin with, we do not assume thatdC has to be
‘‘small.’’ We then have generally

^CuT̂uC&5^CuĤ2V̂uC&5^CuĤuC&2E drv~r! r~r!

~14!

and

^CuĤuC&5^C0uĤuC0&1^dCuĤuC0&1^C0uĤudC&

1^dCuĤudC&

5E0^CuC&1^dCuĤ2E0udC&. ~15!

Using Eq.~13!, the diagonal element ofT̂ becomes

^CuT̂uC&5^CuĤ2V̂uC&

5E drS E0

N
2v~r! D r~r!1^dCuĤ2E0udC&

~16!

and the functional~12!

T@r#5E drS E0

N
2v~r! D r~r!1 inf

C→r
^dCuĤ2E0udC&.

~17!

The differential then becomes, using Eq.~11!,

dT@r0#5T@r01dr#2T@r0#5E drS E0

N
2v~r! D dr~r!

1 inf
C1dC→r01dr

^dCuĤ2E0udC&. ~18!

The condition for Fre´chet differentiability is then that the
relation

inf
C01dC→r01dr

^dCuĤv2E0udC&/uudruu→0

as uudruu→0 ~19!

holds for all densities on the neighborhood ofdr0. This is
plausible since the numerator is quadratic indC, while dr
has a linear part. But first it has to be shown that all densi
in the neighborhood ofr0 can be generated by wave fun
tions wheredC is small.

The density belongs to the groupL1ùL3, and the corre-
sponding norms are

uudruu15E drudr~r!u and uudruu35F E drudr~r!u3G1/3

.

~20!

The norm for the wave function is chosen to beuuCuu
5A^CuC&. We consider now all densities in the neighbo
05650
s

hood of r0 , uudruu,«, and all wave functions generatin
these densities. Generally, there are several wave funct
that generate a certain density, and we keep the function
which uudCuu is the smallest. We now scaledC by a factor
of l (0,l,1), which means thatuudCuu→luudCuu and to
first orderuudruu→luudruu. By makingl sufficiently small,
it then follows that all densities in a small neighborhood
r0 can be generated by wave functions in a small neighb
hood ofC0.

Since each density in the neighborhood ofr0 can be gen-
erated by wave functions for whichdC is small, it follows
that condition ~19! is fulfilled and the extended kinetic
energy functional ~6! is Fréchet differentiable at any
v-representable density,r0, corresponding to a nondegene
ate ground state. The functional derivative

S dT@r#

dr~r! D
r5r0

5
E0

N
2v~r! ~21!

is equivalent to a single local multiplicative function. The
value of the constant in the derivative is the Lagrange m
tiplier in the EL procedure~10!. It depends on the way the
functional is extended into the domain of unnormalized d
sities and has no physical significance.

Instead of using the EL procedure, it is possible to p
form the minimization entirely inside the domain of norma
ized densities, i.e., restricting the density variations to th
fulfilling the condition *drdr(r)50. In that case, one ca
only deduce the derivative up to an additive constant, i.e

S dT@r#

dr~r! D
r5r0

52v~r!1const. ~22!

This is consistent with the results of Englisch and Englis
@10,11# and of van Leeuwen@8#. As mentioned, in that cas
the derivative is of the Gaˆteaux type.

It is expected that the method used here to investigate
differentiablity of the kinetic-energy functional for noninte
acting electrons can also be used for more general funct
als for interacting electrons, and work along these lines ar
now in progress@17#.

B. Single determinant

The treatment above holds for any antisymmetric wa
function. In order to make the comparison with Nesbe
treatment more transparent, we shall illustrate this by con
ering the special case of a system of two electrons~without
spin! with the determinantal wave function

F~r1 ,r2!51/A2@f1~r1!f2~r2!2f1~r2!f2~r1!#. ~23!

The treatment could easily be generalized to a single Sl
determinant ofN electrons. The orbitals are assumed to
orthogonal but in order to be able to apply the EL proced
we shall, as before, relax the normalization constraint.

The density~7! now becomes
1-3
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COMMENTS PHYSICAL REVIEW A 67, 056501 ~2003!
r~r!5uf1~r!u2^f2uf2&1uf2~r!u2 ^f1uf1&;

E drr~r!52^f1uf1&^f2uf2&, ~24!

and the diagonal element of the kinetic-energy operator

^FuT̂uF&5E E dr1dr2F* ~r1 ,r2!~ t̂11 t̂2! F~r1 ,r2!

5^f1u t̂ uf1&^f2uf2&1^f2u t̂ uf2&^f1uf1&.

~25!

Note that the integration over the ‘‘passive’’ electron orbita
leads to normalization integrals, which are different fro
unity, when the orbitals are not normalized. If these integr
are left out, as Nesbet does, it is necessary to apply i
vidual Lagrange multipliers for each orbital in the minimiz
tion process to preserve the normalization and to preven
wave function from ‘‘collapsing’’ into a single orbital. By
maintaining the normalization integrals, this is n
needed—a single Lagrange multiplier is sufficient, in t
same way as in the general case discussed in the prece
section. Density normalization then automatically impli
wave-function normalization, as follows from Eqs.~13! and
~24!.

The expression in Eq.~25! is a functional of the density
only in the v-representability domain. In order to demo
strate the Fre´chet differentiability, we have, as before, to g
outside this domain and study the behavior in the neighb
hood of the ground-state density, also outside the norma
tion domain. The kinetic-energy functional is then defined
the constrained-search procedure~6!

Ts@r#5 min
F→r

^FuT̂uF&, ~26!

this time with the function (F) restricted to a single deter
minant, which need not be normalized. From the result of
preceding section we know that in the neighborhood of
ground-state density the minimizing wave function is clo
to the ground-state function. Furthermore, we know that
differential of the kinetic energy in this neighborhood d
pends on leading order only on the density modification a
not on the wave function that generates this density. T
implies thatin the neighborhood of the ground-state dens
expression (25) besides being an orbital functional is als
density functional

^FuT̂uF&5Ts@f1 ,f2#

5Ts@r#

5^f1u t̂ uf1&^f2uf2&1^f2u t̂ uf2&^f1uf1&.

~27!

We consider now density variations due to the modifi
tions df1 anddf2 of the orbitalsf1 andf2, respectively.
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Here, the normalization constraint is lifted but the orthog
nality requirement is maintained. This leads to the dens
change

dr~r!5dr1~r!1dr2~r!, ~28!

where

dr1~r!5df1* ~r!f1~r!^f2uf2&1uf2~r!u2^df1uf1&1c.c.,
~29!

leaving out the quadratic terms.dr2(r) is obtained from this
expression by the exchange (1↔2). This gives

E drdr1~r!52^df1uf1&^f2uf2&1c.c.,

E drdr2~r!52^df2uf2&^f1uf1&1c.c. ~30!

The corresponding change in expression~27! is

dTs5^df1u t̂ uf1&^f2uf2&1^f2u t̂ uf2&^df1uf1&1c.c.

1~1↔2!, ~31!

which using the orbital equation

@ t̂1v~r!#f i~r!5« if i~r! ~32!

for the ground state, becomes

dTs5^df1u«12v~r!uf1&^f2uf2&1^f2u«22v~r!uf2&

3^df1uf1&1c.c.1~1↔2!

5~«11«2! ^df1uf1& ^f2uf2&1c.c.2E drv~r!dr1~r!

1~1↔2!

5E dr~E0/22v~r!!~dr1~r!1dr2~r!! ~33!

with E05«11«2. This confirms the fact that to leading orde
this depends only on the density, and no minimization in E
~26! is needed in the neighborhood of the ground-state d
sity. The result also confirms that the functional is Fre´chet
differentiable at the ground-state density and that the fu
tional derivative can be represented by asingle local multi-
plicative function,

S dTs@r#

dr~r! D
r5r0

5S dTs@r#

dr1~r! D
r5r0

5S dTs@r#

dr2~r! D
r5r0

5E0/22v~r!. ~34!
1-4
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COMMENTS PHYSICAL REVIEW A 67, 056501 ~2003!
As before, we could confine the variations to those that p
serve the density normalization, and we would retrieve re
~22!.

We can now confirm our results by means of thechain
rule, which is used by Nesbet to illustrate the breakdown
the locality hypothesis. We evaluate first the orbital deriv
tive, considering expression~27! as anorbital functional,

dTs@f1 ,f2#

df1*
5 t̂ uf1&^f2uf2&1^f2u t̂ uf2&f1

5@~E02v~r!!^f2uf2&2^f2uv~r!uf2&#f1~r!.

~35!

Here,the orbitals are regarded as independent.
Next, we evaluate the orbital derivative from the sam

expression, considering it as adensity functional. In order to
do so, we have todisregard that fact that the orbital might b
interconnected, otherwise the result will become meanin
less,

dTs@f1 ,f2#

df i* ~r!
5E dr8

dTs@r#

dr~r8!

dr~r8!

df i* ~r!
. ~36!

With the expression for density~24! this yields

dTs@f1 ,f2#

df1* ~r!
5E dr8

dTs@r#

dr~r8!
@d~r2r8!^f2uf2&

1uf2~r8!u2#f1~r!

5FdTs@r#

dr~r!
^f2uf2&1 K f2UdTs@r#

dr Uf2L Gf i~r!.

~37!

Identification with orbital derivative~35! then leads immedi-
ately to

dTs@r#

dr~r!
5E0/22v~r!, ~38!

which is identical to our previous result~34!. The same resul
is obtained if we consider the derivative with respect to
second orbital.

We have here demonstrated that it is possible to eval
the orbital derivative from a density functional, using t
chain rule, and that knowledge about the orbital derivat
can be used to deduce the density derivative.A prerequisite
is here that the expression used is simultaneously an orb
and a density functional. The last point is crucial, becauseit
is prisicely at this point that the approach of Nesbet fails, as
we shall demonstrate below. Although, his expression i
density functional at the ground-state density, this isnot the
case in the neighborhood, which is needed in order to de
the density derivative.
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III. COMMENTS ON THE TREATMENT OF NESBET

We shall now comment in more detail on the treatment
Nesbet@3,7# and start by reproducing his main results, r
stricting ourselves for simplicity again to two electrons wi
no spin. Nesbet defines the kinetic-energy functional
Ts@r#5^FuT̂uF& without the constraint search~26!. As be-
fore, F is here a single Slater determinant of spin orbit
f i , which are orthogonal but not necessarily normaliz
Nesbet emphasizes the importance of going outside the
main of normalized orbitals in applying the EL procedur
but nevertheless leaves out the normalization integrals
uses instead of~25! the expression

Ts5^f1u t̂ uf1&1^f2u t̂ uf2& ~39!

throughout the domain. Similarly, instead of the density e
pression~24!, he applies

r~r!5uf1~r!u21uf2~r!u2 ~40!

also in the extended domain. It can be shown thatleaving out
the normalization integrals in Eqs.~24! and ~25! causes the
kinetic energy, seen as a functional of the total density, to
multivalued outside the domain of normalized orbitals.

Making the same orbital modifications as in the preced
section, keeping the orbitals orthogonal but relaxing the n
malization condition, leads to

dr1~r!5df1* ~r!f1~r!1c.c., dr2~r!5df2* ~r!f2~r!1c.c.,
~41!

which for the ground state becomes

dTs5^df1u«12v~r!uf1&1^df2u«22v~r!uf2&1c.c.
~42!

or

dTs5E dr@«12v~r!#dr1~r!1E dr@«22v~r!#dr2~r!.

~43!

This should be compared with our equation~33!, wheredTs
depends only on thetotal densityr(r)5r1(r)1r2(r). Nes-
bet’s procedure leads—in contrast to our result~34!—to an
orbital dependenceof the derivative

dTs

dr1
5«12v~r!Þ

dTs

dr2
5«22v~r! «1Þ«2 , ~44!

corresponding to Eq.~12! in Nesbet’s paper@7#.
We can also see the effect of the omission of the norm

ization integrals on the application of the chain rule~36!,
which with expression~40! for the density simplifies to

dTs@f1 ,f2#

df i* ~r!
5

dTs@r#

dr~r!

dr~r!

df i* ~r!
5

dTs@r#

dr~r!
f i~r!. ~45!

When this is compared with the orbital derivative
1-5
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COMMENTS PHYSICAL REVIEW A 67, 056501 ~2003!
dTs@f1 ,f2#

df i* ~r!
5 t̂f i~r!5@« i2v~r!#f i~r!, ~46!

we retrieve the orbital-dependent derivative~44!, which evi-
dently cannot be represented by a single local function
only as alinear operator.

The reason for the strange result of Nesbet is thatthe
quantity Ts is not a density functional in the neighborhood
the ground-state density. It can easily be shown that thi
quantity, regarded as a functional of the total density~40!,
becomesmultivaluedoutside the domain of normalized o
bitals. Then it cannot be a density functional, which by de
nition has to be unique in the entire domain. The multiv
uedness is a consequence of the omission of
normalization integrals.

From the fact that Nesbet finds functional derivatives t
have an apparent orbital dependence, he draws the co
sion that they can be interpreted asGâteaux derivatives. This
conclusion is not correct either, simply because his kine
energy expression is not a density functional.

IV. CONCLUSIONS

We have shown that for a system of noninteracting el
trons, the kinetic-energy functional is Fre´chet differentiable
at the ground-state density, if the normalization constrain
relaxed, and that the functional derivative at this density
be represented by a single local multiplicative function. T
is in conflict with the result of Nesbet, who, using differe
expressions for the kinetic energy and the density in the
normalized domain, finds that the derivative has an orb
dependence and can only be represented by a linear ope
According to Nesbet, this demonstrates a failure of the loc
ity hypothesis.
05650
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We claim—in accordance with the previous commen
tors @5,6#—that the results of Nesbet are erroneous. In o
opinion, the main reason for the failure of the procedure u
by Nesbet is that the density functionals are extended
the domain of unnormalized densities in an incorrect w
which leads to multivaluedness. This effect, however, sho
up only in the Fre´chet derivative. Inside the normalizatio
domain, where it is sufficient to work with the Gaˆteaux de-
rivative, all results agree.

Note added in proof.Since this manuscript was submitte
we have studied the differentiability of density functiona
further @18#. We have found that defining the Gaˆteaux differ-
entiability as often used in the DFT literature@8#, requiring
the differential to be linear and continuous, the differen
between the Gaˆteaux and Fre´chet differentiabilities is quite
subtle and hardly of any practical importance. We have a
found that large classes of density functionals are under g
eral circumstances Gaˆteaux differentiable in this sense
which is sufficient for DFT purposes. Strict Fre´chet differen-
tiability does not seem to be needed here. This does
change the main outcome of this Comment, though, that
kinetic-energy functional is differentiable for noninteractin
electrons, regardless of the number of electrons—in cont
to the claims of Nesbet.
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