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Polarizability and the resonance scattering of light: Damping sign issues
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In the theory of molecular light scattering and nonlinear optics, excited state damping is a significant
consideration at frequencies near to resonance. Despite attempts to resolve a long-standing controversy over
the propriety of such methods, there remains a dispute over the correct sign for the damping ofantiresonant
terms. Most established theory of Raman and associated light scattering employs a constant-sign rule at odds
with a variable sign commonly used in nonlinear optics. However, by focusing on the polarizability it is
demonstrated that arguments for the constant-sign convention vindicate standard Raman theory; flaws in the
counterpropositions undermine the case for variable signing. It is also shown that a polarizability sum rule is
valid only with constant-sign damping.
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I. INTRODUCTION

In the theory of molecular light scattering and nonline
optics, the issue of damping the frequency response in lin
and nonlinear electronic polarizabilities is a significant co
sideration primarily when operating at frequencies near
resonance. This condition generally applies to any opt
process when there exist states of the matter differing
energy from the initial state by an amount approaching
energy of one or more of the photons involved. Techni
difficulties arise because at any exact resonance the re
directly delivered by time-dependent perturbation theory
hibit divergences;ad hoc phenomenological methods a
usually employed to secure well-behaved results associ
with proper lineshape. Attempts have recently been mad
resolve a long-standing controversy over the propriety
such methods employed to account for resonance dam
@1–4#. As references cited in these works reveal, despite u
nimity over the implementation of damping for positive fr
quency resonances in the polarizability—and in other qu
tum mechanical expressions for nonlinear optical respons
there remains a dispute over the correct sign for the dam
of antiresonantterms. In particular, most of the establish
theory of Raman and associated light scattering@5,6# is as-
sociated with a~constant-sign! rule that is at odds with the
~variable-sign! rule commonly used in nonlinear optic
However, the impression that resolution of this issue requ
a rewriting of conventional Raman theory@7# is incorrect.
This paper aims to clarify the outstanding issues.

In the following we first present consistent and comp
ling arguments for the constant-sign convention—results
vindicate standard Raman theory. The two approaches
introduced and contrasted in Sec. II, then in Sec. III it
shown that flaws in the counterpropositions undermine
case for variable signing. In Sec. IV, focusing on the el
tronic polarizability~Rayleigh scattering! for simplicity, we
present a sum rule that is manifestly valid only wi
constant-sign damping. In the final section it is emphasi
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that the principles validated by this analysis operate w
equal force not only to Rayleigh and Raman scattering,
across the whole field of nonlinear optics and electro-opt
It is made clear that experimental verification of the corr
formalism is not an easily tractable option; the signing co
troversy is principally significant for its exposure of fund
mental issues.

II. TWO APPROACHES TO PHENOMENOLOGICAL
DAMPING

The term ‘‘damping’’ alludes to the classical concept of
resonant response tempered by dissipation—here, coup
into decay channels for the molecular excited states. In
implementation of phenomenological damping, energy
nominators in quantum mechanical expressions for mole
lar polarizability and other optical response tensors are m
fied to incorporate imaginary corrections, whose magnitu
\g r represent damping consistent with an exponential de
factor exp(2grt) for each excited stateur&. Close to reso-
nance, damping accordingly delivers a physically broaden
Lorentzian lineshape to the optical response. Generally, e
\g r is several orders of magnitude smaller than the mole
lar energies, and available intramolecular and intermolec
decay channels determine the precise values. In solid-s
systems, local field effects generate additional, hetero
neous line broadening; other forms of phenomenolog
damping can also appear in connection with modeling a s
‘‘adiabatic’’ switching on of the interaction fromt52` with
a growth factor exp(Gt). In the following, we focus on mo-
lecular state damping, assuming that the interaction proce
from a suitably prepared initial state of the system.

Take the specific case of Rayleigh scattering by a sys
of molecules, for which theory is developed in terms of
molecular electronic polarizability. This case serves the p
pose not only for its simplicity; through a Born
Oppenheimer development based on Placzek’s orig
theory@8#, vibrational Raman scattering is also representa
in terms of variations in the electronic polarizability. Fro
calculations based on either tradition the scattering amplit
is cast in components of the polarizability tensorass. For
©2003 The American Physical Society01-1
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generality here, and with a view to the theory to be dev
oped in Sec. III, we employ superscripts to designate
electronic polarizability for a molecule in an arbitrary initi
stateus&. Introducing a signing parameters to highlight the
issues we address, the components of this tensor are exp
ible as follows:

a i j
ss~s!5(

r
F ^sum i ur &^r um j us&
Er2Es2\v2 i\g rs

1
^sum j ur &^r um i us&

Er2Es1\v2 is\g rs
G , ~1!

where the circular frequency of the input radiation~implicit
on the left! is v, g rs5g r2gs and other symbols have the
usual meaning. For the constant-sign conventions511,
while under the variable-sign conventions521. Note that
the terms ‘‘constant sign convention’’~CSC! and ‘‘variable
sign convention’’~VSC! signify a similarity or difference of
sign for the damping correction in the two energy denom
nators. Constancy or variability is manifested in the sign
i\g r with respect to the energyEr . The CSC approach sig
nifies consistent modification of the energyẼr5Er2 i\g r ;
there is a unique relationship between a particular ene
level Er and its corresponding damping constantg r @9#. On
the other hand, with VSC@10–12#, the sign of the damping
factor follows the sign of the radiation frequency. It is n
table that, whatever the sign ofs, the result of Eq.~1! is
never a real quantity. This is neither a surprise nor a probl
in quantum mechanics the tensor is not a measurable. H
ever, the complex character of the tensor serves as an ale
the fact that there are limitations to the conditions that can
imposed upon it, or expressions such as signal amplitude
which it is linearly cast.
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III. PROBLEMS WITH VARIABLE SIGNING

In earlier work the inconsistency of VSC with the fund
mental principles of time-reversal symmetry has been th
oughly enunciated@1,3,9#. In the following we resolve fur-
ther issues connected with applications of the molecu
polarizability, and processes in general involving static el
tric fields. It is evident that VSC logically requires that fo
any electro-optical~or magneto-optical! process, interactions
with which static fields are associated should carry no dam
ing. This follows from the premise that the damping fact
follows the sign of the radiation frequency.1 However, from a
quantum field viewpoint, static perturbations must indu
damping. In the multipolar gauge all electromagnetic int
actions are mediated through the exchange of virtual pho
@13#, and a static field is no different from a time-varyin
field, except that, while causality is of course satisfied,
plicit retardation features disappear in the limit of zero fr
quency. The damping associated with any molecular exc
state is not frequency dependent; it has a characteristic m
nitude, regardless of the frequency of the perturbation w
which it is associated.

Next we correct an argument in defense of VSC, based
the case of an electric dipole induced by a static electric fi
F @4#. The argument concerns the correct form of polarizab
ity to use in the defining formula for the induced mome
expressed as follows:

ma5aab
ss Fb , ~2!

where the salient polarizability is given by Eq.~1! with v
50 ~here we generalize to the static polarizability of a m
ecule in any state, not necessarily the ground state!:
a i j
ss~s!5(

r
F ^sum i ur &^r um j us&

Er2Es2 i\g rs
1

^sum j ur &^r um i us&
Er2Es2 is\g rs

G

[(
r

2~Er2Es!Re@^sum i ur &^r um j us&#1~2 i\g rs!@s^sum i ur &^r um j us&1^sum j ur &^r um i us&#

~Er2Es2 i\g rs!~Er2Es2 is\g rs!
. ~3!
ct

g,

l

-

Care must be taken with Eq.~2!, expressed on the right
hand side, using the usual Einstein summation c
vention for repeated indices. To be clear, each term in
given expression forma ~one hanging indexa, applicable to
any of three Cartesian directions! correctly features the
subscript indexa once only, as befits a hanging inde
each also features a repeated subscriptb, a dummy index
whose repetition signifies implied summation over all Car
sian directions, as in a scalar product. No physical inferen
can be drawn from interchanginga andb; in the context of
-
e

-
es

Eq. ~2! where it is used, the result of doing so is in fa
meaningless.

It is also to be noted that in the case for VSC dampin
then withs521, we have

1In the susceptibilityx(2v1 , f v0 ,v0) associated with a signa
frequencyv15(11 f )v0 , VSC gives a discontinuity atf 50. Here
positivef denotes sum-frequency generation; negativef, difference-
frequency generation;f 50, a linear electro-optical effect. No dis
continuity arises with CSC.
1-2
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a i j
ss~s521!52(

r

~Er2Es!Re@^sum i ur &^r um j us&#2\g rsIm@^sum i ur &^r um j us&#

~Er2Es2 i\g rs!~Er2Es1 i\g rs!
, ~4!
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with imaginary contributions from the Dirac brackets, whi
denote transition moments; some ensuing difficulties h
been identified in Ref.@4#. However, in the case we endors
s511 and

a i j
ss~s511!52(

r

Re@^sum i ur &^r um j us&#

~Er2Es2 i\g rs!
, ~5!

revealing that any imaginary parts of the transition mom
product disappear. Moreover, if the molecular states invol
are degenerate, such that the numerator of each term in
polarizability ~1! is complex, it is always possible to find a
alternative basis where the transition dipole moments
real. Any measurable result is independent of the basis u
It is clear that for a spherical atom, a static electric field in
particular direction, sayx, induces a dipole moment in th
same direction; this statement is independent of the sig
the damping, involving only the numerators of the polar
ability.

IV. POLARIZABILITY SUM RULE

The electronic polarizability tensor satisfies a particu
sum rule

(
s

a i j
ss50, ~6!

signifying the character of the polarizability operator
traceless in the Hilbert space. By interchange of the dum
state labelsr and s ~where it is legitimate to interchang
because both are summed! the polarizability as given in ex
pression~1! can be seen to satisfy the summation rule wh
the damping factors are null, or more generally whens5
11 CSC. Specifically, the sum given by Eq.~6! is

(
s

a i j
ss~s!5(

sr
F ^sum i ur &^r um j us&
Ers2\v2 i\g rs

1
^sum j ur &^r um i us&

Ers1\v2 is\g rs
G .
~7!

By interchanging the dummy variablesr↔s in the second
term it follows that

(
s

a i j
ss5~s21!(

sr
^sum i ur &^r um j us&

3
i\g rs

~Ers2\v2 i\g rs!~Esr1\v2 is\gsr!
.

~8!

If s521 VSC, then
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a i j
ss52(

sr
^sum i ur &^r um j us&

i\g rs

~~Ers2\v!21~\g rs!
2!

and the sum rule~6! is violated. However, Eq.~6! retains
validity with s511; the only rule consistent with the sum
rule is constant-sign damping.

V. THE PROVINCE OF LEGITIMACY FOR
PHENOMENOLOGICAL DAMPING

The principles validated by the analysis in Secs. III a
IV operate with equal force across the whole of nonline
optics and electro-optics, Rayleigh scattering only be
used as a simple and well-known example. However, i
clear that experimental verification of one or other approa
to the inclusion of phenomenological damping is not an e
option.

In considering possible avenues for possible experime
verification ~of either damping convention! it is to be borne
in mind that, for any linear, nonlinear optical or electr
optical process, differences between predictions of the
theories are apparent only through ‘‘anti resonant’’ terms.
connection with the Rayleigh and Raman scattering, and
most nonlinear optical processes, such terms cannot do
nate the optical response; they become, at most, margin
significant in the regions very far removed from resonan
Optimally one might look for a system with optical prope
ties dominated by one very low-lying excited state, well b
low the energy of photons involved. From lengthy b
straightforward calculations it emerges that the order of m
nitude of fractional rate corrections lies in the region
g2/Emol

2 . Even then, only if all other electronic states we
very significantly higher in energy than the photons involv
could an antiresonant feature be considered amenable to
perimental identification. No such truly two-level system
exist; always higher energy states play a part in the sum
tion over states entailed in the polarizability. Moreove
whereas attempts to determine an absolute damping
might be expedited in a system with large damping co
stants, these parameters are largest for molecules with a
density of vibrational levels—and any vibrational structu
would certainly obscure the sought features through its r
in the sum over states. In practice it could only be in atom
species with comparatively small damping constants that
could attempt the necessary measurements.

In connection with other optical processes, where the
lowedness of a signal is consistent with only one sign ru
experimental verification might more realistically be soug
Indeed there are certain processes where the two conven
lead to very significant different results; for example, t
constant-signing rule is necessary to uphold the principle
linear electro-optical response cannot occur in any isotro
liquid @14#. Much of the recent interest and attention to the
1-3
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issues resulted from previous analysis of this effect, wh
strikingly exposes differences between proponents of se
classical and quantum electrodynamical methods to acc
modate damping@14,15#.

A pragmatic solution to the whole controversy might be
neglect damping in antiresonant terms and only include i
potentially resonant terms—where it does have signific
impact and there is agreement over the correct sign. Ind
recent work by Agarwal and Boyd@16# has concluded that i
is only close to resonance that such damping has legitim
A proper perspective on the subject comes with recollec
that phenomenological damping is at best only an appr
mate device designed to model a Lorentzian lineshape,
that, whereas there is always a leading order or perturba
y

C

n

d
er

he

05580
h
i-
-

n
t
d,

y.
n
i-
nd
on

theory contributing to the signal, other higher orders ex
and also contribute marginally to observations. Ultimate
the signing controversy we have addressed is significant
marily for its exposure of fundamental issues.
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