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Generalized robustness of entanglement

Michael Steiner
Naval Research Laboratory, Washington, DC 20375-5320
(Received 11 February 2003; published 30 May 2003

The robustness of entanglement results of Vidal and Taff@blgs. Rev. A59, 141 (1999 ] considered the
problem whereby an entangled state is mixed with a separable state so that the overall state becomes nonen-
tangled. In general, it is known that there are also cases when entangled states are mixed with other entangled
states and where the sum is separable. In this paper, we treat a more general case where entangled states can
be mixed with any states so that the resulting mixture is unentangled. It is found that entangled pure states for
this generalized case have the same robustness as the restricted case of Vidal and Tarrach.
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[. INTRODUCTION entangled states as the dimension of the composite Hilbert
space grows, one might initially expect that entangled states
The robustness of entanglement in Héfl. examines how would not be as robust when entangled states are allowed to
much mixing can take place between an entangled gtate interact with arbitrary states versus only separable states. Nu-
and another statg,,, so that the convex combination of the merical simulations in Refl4] indicate that the probability
two states is separable. Such work has significance to ho@f finding a nonentangled state decreases exponentially with
robust entangled states are in the presence of interactidhe size of the Hilbert space of the composite system. Geo-
mechanisms that could disentangle the state. This work igetrically, the separable states become sandwiched between
also of interest in the characterization of the state space ifwo hyperplane$5]. However, as we will see, the robustness
terms of entangled and separable states, and the decompogi-entanglement of pure entangled states does not change
tion is an important result in quantum information theory. When py can be an arbitrary state, compared to the case
In Ref.[1] the authors restrictegh, to be separable. This whenp), is separable. That is, we find the same expression
is a reasonable restriction as long as the states that are beif@f the robustness of entanglement for the two cases.
mixed are separable. Another possibility is that a given en-
tangled state would not only interact with separable states,|l. GENERALIZED ROBUSTNESS OF ENTANGLEMENT
but could also interact with other entangled states. It is ) ) ) _
known that the mixing of entangled states can also result in Consider two systems of particlgg ,p, with composite
the convex combination being separable. Hence the erptates represented by densn%/ matripepy that operate on
tangled states thought to be robust for the cases where intdf€ Hilbert space”®C", N=n“. For a given entangled state
action is only with separable states might not be robust whef: Vidal and Tarract{1] considered the problem of finding
allowed to interact with arbitary states. This would requireth® largesg e [0,1] for which there exists @y € S and that
the presence of entangled states in the interaction medium
that are stable at least within the interaction time. The degree

and scale for which entangled states exist are yet 10 bgare s denotes the set of separable states. The robustness
known and are current areas of research in mesoscopic phy entanglemenl] was defined a&(p)2 1/a— 1, wherea

ics. What is known is that the processes of entanglement ar largest. Define the optimalfor a gsivenp as® (’p)_ Note
decoherence are continually at work and it becomes MOrE Jm the definition that for ana>0y(p), the Smatrixap
difficult to maintain entanglement with the scale of the en-+(1_a)p is necessarily entangledsfor ,ﬁﬂw c S. For the
tangled state. In general, it is known that microscopic et e wher'\éz is a pure staté.e., rank 1, p= i)’ aﬁd with
tangled states are found, which are very stable, for exampl%aving a Schmidt decompbéitiofF E,-5-|i>®|i> 2=0. it
electron sharing in atomic bonding and two-particle en- "o - Ref[1] that = R
tangled photon states generated by parametric down conver-
sion. Additionally, it is known that certain larger entangled R(p)= E A
systems can exist. Examples of multiparticle superpositions s\P ~
that are given in Ref{2] include phonons in solids, super-

fluids, and superconducting quantum interference devices. It For the case of generalized robustness of entanglement,
is also known that Bose-Einstein condensates are exampleg defineOy(p) as the largest value d for which there

of large scale superpositions and the relation to entanglemeskistsp,, e DM(N) with

apt(l—a)pyes,

2
-1 1)

is explored in Ref[3]. Hence, it is known that entangled ap+(l-a)pyes 2
states exist on the microscopic level and under certain con- '
ditions on the mesoscopic level. where DM(N) is the set ofN by N density matrices. Note

Therefore, the restriction that, be separable is lifted, so that sinceSC DM(N), then
thatp), can be an arbitary density matrix. As it is knoyh
that the relative volume of the state space is dominated by Oy(p)=04(p). ()]
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The generallzed robustness of entanglement is defined ast h; ;=% ])pMef 1aa; .

g(P) 1/09(9) 1.

Several of the results in Refl] can be extended to the
generalized robustness of entanglement case. The proofs of
these extensions are straightforward and are shown in the

Appendix. We state these results here.

Theorem 1 Ry(p) is convex, i.e.,Ry(tpi+(1—1t)p,)
<tRy(p1) + (1= 1)Rg(p2).

Theorem 2Ry(p) =Ry(U pU, ), whereU_ is a local uni-
tary transformation of the ford, =U,®U,.

Corollary. Let p=u¢¢', p act on C"®C" and
=3" & y/'® y2 is a Schmidt decomposition of, wherey!*
is an orthonormal basis for subsysténand y? is an ortho-
normal basis for subsystenB. Then if p=4y', ¥
=31 & li)®|i), where{|1),|2),...,|n)} is the natural basis
of C", then the robustness is the same, R(p) =Ry(p).

Proof. DefineU ; by the mapy; —>||) and similarly define

U, for subsystenB Since change of orthogonal basis map-
pings are unitary, one can apply Theorem 2 and the resu

follows. |
Lemma 1 Let p be a pure state acting di'®C". The

eigenvalues opP! consist of up ton(n—1)/2 negative ei-

genvalues, whergP! denotes the partial transpd€d of p. If

p=yy, Yy=3I_jali)sli),

given by{ —3,3g}, r<s. The corresponding eigenvectors are =1, €/ g

Br(r,9=(IV2)(Ir)[s)=[s)|r)), r<s, wheref(i,j)=(j—i)
+n(i—1)—i(i—1)/2,i<]j.

Proof. The proof is given in Ref[1], Egs. (B17) and
(B198).

A main result is that for pure states, the generalized ro-
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Since Eq.(5) is true for all
j>i,
1 -1

1+ —

t<min
hi,j

j>i

(6)

For a givenpy , EQ.(6) must be satisfied ifp+ (1—t)py is
separable. The largest for which there exists apy,

e DM(N) and wheretp+(1—t)py is separable is upper
bounded by the maximum of the right-hand sides) of Eq.
(6). That is,

1 -1

1+-—
hi,j

Og(p)gmaxmin
pm 1=1

or

-1
( max, min;~.; hi,j) ’ (7)

U\/e will now consider the max-min problem

Oy(p)=| 1+

T=maxminh,; ;
pm 1>

®

then these eigenvalues are Let py=23;\;eje/ be a spectral decomposition pf,, |le|

=0,i#j, and wherd|-| denotes the L2 norm. De-
note the functiore(i,j) =m, wheremis the indice where the
vector|i)®|j) is equal to oneli),|j) e C". For example, if
n=2, |1)®|2)=(0100), hencec(1,2)=2. Clearly, then
c(i,j)=n(i—1)+]j.
Now rewrite the eigenvectors

ofpy as g

bustness of entanglement is the same as the Vidal and Ta=X, (& . ¢|r)®[s). Now

rach robustness of entanglement.
Theorem 3 Let p be a pure state. The@y(p)=O4(p)
=1[1+Ry(p)].
Proof. Consider the eigenvectoi& from Lemma 1. If
Oq4(p) =t, then there exists ay € DM(N), with
B [tpP'+(1-t)phT8=0, i=1,...n(n—1)/2, (4)
where x’ denotes the conjugate transposexofit will be
shown that<Og(p), otherwise at least one term in E((4)
will be negatlve for everypy, . To this end, Ietéf(I J)[tp
+(1—t)pM]ef(, j)=0 for j>i. Then
t<[1+ &3/ i) ]~ i

(5

1
~ e _
Bl aoPhri0=5 2 N

r,s tu

+(K[r)(tlky@(jlu)(s]))

eel = Z ei,c(r,s)|r>®|s>

(% & c(tult)®|u) ,,

PM:Z )\iz % €ic(r,9)€ |t @[s)(ul,

where* denotes conjugate. The second partial transpoke
of py is

p&t:z: M% % €i,c(r,9)€ c(t,ul (L®[UNS]. (9)

From Lemma 1, we hav&; ,,=1V2((j|® (k|- (jl®(k]),
so that

€ c(r,98 et (1T @ K[U)(s]k) = ([ r)(t[k) @ (k[u)(s|j) = (K[ r)(t[[} @ (j|u)(s[k)

_ * * * *
=35 2. Nil€i e k€ cijk  €ic )8 clkk) ~ Eirckk) € c(j.i) T € ctk) € ek j)]

= EEi Nilleieol2 18 el =

2 R ¢(j )€ (k) ]
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where ReX) denotes the real part ofx. Define

gf(J k)ﬁlel c(j, k)| +|el C(kj)l -2 Re@‘u () c(kk)) and the
above becomes;; ,,phEr (=3 i )\,gf()] o - Consider the
matrix

A 9(1) 29(2) o 7\N9(11)
2a;a, 2aa, 2aa,
105" 29y Angy"
A= 25.15.3 25.15.3

23,33

(1) (2) (N)
NOin-1m  NoOi(n-1m ANDf(n—1n)

2an_ja, 23,438, 28n-48,
(10)
Then Eq.(8) is identically
T=maxmin X, A; . (12)
i J

PM

Before the final step in the proof, consider

n(n—1)/2

> g
=1

E gf(J k) — 2 |e| ,c(j,k) | +|e| c(k])|

* *
T €ic(j.)8i ek, k) T Gilekk) (i)

_ 2
—j;k |ei|c(j,k)| -

*
€ic(j,) 8 c(k,k)

:(E & o102+ 2 |ei,c(J,J>|2>
J#k J

—(2 |ei,C(J\J)|2+§k ei,cu,i)ei*,c(k,m)
—<2 |ei,c(J,J>|2+§k ei,cu,J)ei*,c(k,k))

J

2
=1- 2 e,’C(H) =1. (12)
Now, Eqg.(11) can be written as
eI
T= maxminE # (13
T 2334
pm i<k ! 19k
Let aj,kZEng?()j,k)- Then Eq. (13) becomes 7

=max, min; (¢ /283) . Summing overa; , with j<k
we have

> aj K= Z gt (k)

1<k 1<k

IZ A, g(fi()j,k)gzi: A

1<k

[from Eg. (12)]

=1.
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Hence7 in Eg. (13) can be upper bounded by

: 1 :
T< r;ls‘lxmim 6iBi, where By = 25'51 , <k
5f(j’k)=aj’k, J<k,2l 5|$1
or
: 1 :
7= ;Tigm?m 5B, where By = 255 , <k
and rewritten as
T=maxy, y=é&B > 6=<1. (14)
I

Consider the candidate solution to E(L4) of &=s&"
=K/B;, whereK is a constant. Sinc&;s?’<1, it follows
thatK<1/(EJ<k2a,ak) Note that the denommator is equal
to (23;)2— 1, which is equal tRs(p) from Eq.(1). Hence

K=< 1/R4(p). (19

For this choice ofs(Y, the rhs of Eq.(14) is maximized
whenK is on the boundary in Eq15), i.e.,K=1/R(p) and
for which =;6Y=1. ThensY=1/R(p) B, and

max=max= 1/Ry(p) ,

y=é&8, y=é&Ya,

> 6=<1, X oM=1

We will now show that no other larger solutions to E4)
exist. Suppose that such a solutign exists and lets,
=6 be the associated parameters in Etd). Sincey,
>1/R¢(p), there must exist &.>0 wherebyy,=1/Ry(p)
+68,. From Eq. (14) it follows that y,<&28; V i,
1/Ry(p) +8e=<8PB, ¥V i, sVB+68.<82B Y i, 0
<8.=<(8P—6M)p; V i, from which it follows that
8@>s1 v i, Summing both sidess;6?>3;s",
which implies=;5%> 1. This contradicts the assumption in
Eq.(14) that3; 5> 1. HenceZ= 1/Ry(p) , and so we have
upper bounded the rhs of E() to arrive atOy(p)=< 1/(1
+Rs(p)). Since from Eq.(3) we know that Ogy(p)
=Oq(p), the result follows. |
An interesting question is whether or not an optimglin
Eq. (2) (optimal in the sense of maximizin@,) is necessar-
ily separable. We already know that such separable spgtes
can be constructed via the construction given in REf.It is
shown by counterexample that one can also consisyct

that are entangled. To construct the counterexample, consider

an entangled pure stagewith a= Ogy(p). Assume thap is in
the simplified formp= ¢y, with ¢y=33]i)®|i), where

3;=0 are the Schmidt coefficients gfand|i) is in the natu-
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ral basis. LelG= —ap/(1—a) and note that all the elements  Note added in proofAfter this work was submitted, the

in G satisfy G; ;<0, whereG; ; represents théth column  author learned of two recent relevant wofRs10]. The main
andjth row of G. Let G(® be the matrixG except with the  result on the generalized robustness of entanglement for pure
diagonal elements removed. Na®/? is generally not posi- states found in this paper was also found independently by A.
tive definite, so we will replace the diagonal elements withHarrow and M. Nielsen and derived in a rather nice compact
values from the Gersgoren disk8], p. 344; that iS!Gi(,Zi) manner[9]. The autho_rs a_LIso extend the notipn of state ro-
=—3,G; . This will guarantee thatG® is positive bustness for the application of quantum logic gate robust-
semidefinite. Now,ap+(1—a)G® is clearly a diagonal €SS In[10], F. Verstraete and H. Verschelde examined the
matrix. It can also be seen that the diagonal elements afgroblem of the maximal achievable fidelity optimized over
positive and can be verified, the sum of the diagonal ele@!l local operations and classical communicaib®CC) op-
ments is 1 ands® is typically entangled. Hencap+ (1 erations. They found an interesting equivalence between this
—a)G® is separable and there exist entangled matriges latter problem and the generalized robustness of entangle-

that optimize the generalized robustness of entanglemerf?€Nt for the case of two qubits. They also developed a so-

Additionally, note that if there are two optimal solutions for ution for the case .Of two quitS in a mixed state, WhiCh
pu in Eq. (2), call thempy, andpy, , then it is easily proven reduces to the solution in this paper when the two qubits are
L 1 21

L ; ure.
that any convex combination, I.etpM1+(l—t)pM2, 0=t

<1, also is an optimal solution fg#,, in Eq. (2). Since we APPENDIX
have seen that both entangled and nonentangled solutions
exist, this further implies that there can be an infinite number Proofs of Theorem 1 and Zhese proofs follow from Ref.
of solutions forpy, . [1] with minor modification.
Theorem 1 Ry(p) is convex, i.e.,R(pp1+(1—p)py)
Ill. CONCLUSIONS <pR(p1) + (1= pP)R(p2).

. _ ~_ Proof. Define t2pR(p;)+(1—p)R(p,) and pZpp;
Vidal and Tarrach considered robustness by considering. 1-p)p,. From the definition of robustness, there exists

how much one can mix a state with an arbitrary separabl%M LCDM(N) and py ,CDM(N), where DMN) repre-
state such that the combination is separable. This result hagnts the set ofN by N dens’ity matrices. such that

been extended by allowing any state to mix with the state _ _ —

such that the combination is separable. It was found that th’élR [(i)gsg(fl);ﬁfilfo%ﬁfc)ﬁy’l’p zpezs.[%\lj;vljg%pét)e]qagt
state is just as robust as before. This is somewhat a surprising ° n?atr’iv;{ ’p as definedSVl,b;' p 2 [1/(1'“)] (o[l
result since the volume of state space becomes dominated byg (p)]p 1+?1— D) 1+Ry(p)]p z}sis separable. It can
the entangled states in large dimension, as seen in[Ref. . dhown that g s

The author initially expected that the robustness as measure

by Ry(p) would decrease as comparedig{p). However, it p=(1+1)ps—tpy 3,

was found that there is no degradation. This result shows that ’

the entangled states that are generally rokingerms of this  \where pm 3= L[ PRy(p1)psi+(1—P)Ry(p2)ps2l. Hence
definition) when only nonentangled states are present woulqlqg(p)gt_ ]
be expected to robust in similar situations where there are " Theorem 2Ry(p) =Ry(U_pU,), whereU,_is a local uni-
other entangled states present that can mix with the state t@ry transformation of the forrt, =U,;®U,.

cause disentanglement. Extensions to this work would be to pyoof By definition, there exists a decompositipr:[ 1
determine the generalized robustness of entanglement for Ry(p)1ps—Ry(p)pm With peeS. Then U pU[=[1

mixed states. +Ry(p)1ULpsU{ ~Ry(p)ULpwU] .  Since U pUfes,
then Rg(ULpUDSRg(p). On the other hand, if one consid-
erszéULpU[, there exists by definition a decomposition

The author acknowledges helpful discussions with Rpz2=[1+ Rg(gz)]Ps,z— Ry(p2)pm2-  Multiplying . both
Lockhart, M. Rubin, and A. Pittenger and the Office of Navalsides by U/ and U_ gives p=[1+Ry(p,)]U psUL
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