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Generalized robustness of entanglement

Michael Steiner
Naval Research Laboratory, Washington, DC 20375-5320

~Received 11 February 2003; published 30 May 2003!

The robustness of entanglement results of Vidal and Tarrach@Phys. Rev. A59, 141 ~1999!# considered the
problem whereby an entangled state is mixed with a separable state so that the overall state becomes nonen-
tangled. In general, it is known that there are also cases when entangled states are mixed with other entangled
states and where the sum is separable. In this paper, we treat a more general case where entangled states can
be mixed with any states so that the resulting mixture is unentangled. It is found that entangled pure states for
this generalized case have the same robustness as the restricted case of Vidal and Tarrach.
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I. INTRODUCTION

The robustness of entanglement in Ref.@1# examines how
much mixing can take place between an entangled star
and another staterM , so that the convex combination of th
two states is separable. Such work has significance to
robust entangled states are in the presence of interac
mechanisms that could disentangle the state. This wor
also of interest in the characterization of the state spac
terms of entangled and separable states, and the decom
tion is an important result in quantum information theory.

In Ref. @1# the authors restrictedrM to be separable. This
is a reasonable restriction as long as the states that are b
mixed are separable. Another possibility is that a given
tangled state would not only interact with separable sta
but could also interact with other entangled states. It
known that the mixing of entangled states can also resu
the convex combination being separable. Hence the
tangled states thought to be robust for the cases where i
action is only with separable states might not be robust w
allowed to interact with arbitary states. This would requ
the presence of entangled states in the interaction med
that are stable at least within the interaction time. The deg
and scale for which entangled states exist are yet to
known and are current areas of research in mesoscopic p
ics. What is known is that the processes of entanglement
decoherence are continually at work and it becomes m
difficult to maintain entanglement with the scale of the e
tangled state. In general, it is known that microscopic
tangled states are found, which are very stable, for exam
electron sharing in atomic bonding and two-particle e
tangled photon states generated by parametric down con
sion. Additionally, it is known that certain larger entangl
systems can exist. Examples of multiparticle superpositi
that are given in Ref.@2# include phonons in solids, supe
fluids, and superconducting quantum interference device
is also known that Bose-Einstein condensates are exam
of large scale superpositions and the relation to entanglem
is explored in Ref.@3#. Hence, it is known that entangle
states exist on the microscopic level and under certain c
ditions on the mesoscopic level.

Therefore, the restriction thatrM be separable is lifted, so
thatrM can be an arbitary density matrix. As it is known@4#
that the relative volume of the state space is dominated
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entangled states as the dimension of the composite Hil
space grows, one might initially expect that entangled sta
would not be as robust when entangled states are allowe
interact with arbitrary states versus only separable states.
merical simulations in Ref.@4# indicate that the probability
of finding a nonentangled state decreases exponentially
the size of the Hilbert space of the composite system. G
metrically, the separable states become sandwiched betw
two hyperplanes@5#. However, as we will see, the robustne
of entanglement of pure entangled states does not cha
when rM can be an arbitrary state, compared to the c
whenrM is separable. That is, we find the same express
for the robustness of entanglement for the two cases.

II. GENERALIZED ROBUSTNESS OF ENTANGLEMENT

Consider two systems of particlesp1 ,p2 with composite
states represented by density matricesr, rM that operate on
the Hilbert spaceCn

^ Cn, N5n2. For a given entangled stat
r, Vidal and Tarrach@1# considered the problem of findin
the largestaP@0,1# for which there exists arMPS and that

ar1~12a!rMPS,

whereS denotes the set of separable states. The robust
of entanglement@1# was defined asRs(r),1/a21, wherea
is largest. Define the optimala for a givenr asOs(r). Note
from the definition that for anya.Os(r), the matrix ar
1(12a)rM is necessarily entangled for allrMPS. For the
case wherer is a pure state~i.e., rank 1!, r5cc8 and withc
having a Schmidt decompositionc5( i ãi u i & ^ u i &, ãi>0, it
was shown in Ref.@1# that

Rs~r!5S (
i

ãi D 2

21. ~1!

For the case of generalized robustness of entanglem
we defineOg(r) as the largest value ofa for which there
existsrMPDM(N) with

ar1~12a!rMPS, ~2!

where DM(N) is the set ofN by N density matrices. Note
that sinceS,DM(N), then

Og~r!>Os~r!. ~3!
©2003 The American Physical Society05-1
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The generalized robustness of entanglement is define
Rg(r),1/Og(r)21.

Several of the results in Ref.@1# can be extended to th
generalized robustness of entanglement case. The proo
these extensions are straightforward and are shown in
Appendix. We state these results here.

Theorem 1. Rg(r) is convex, i.e.,Rg„tr11(12t)r2…

<tRg(r1)1(12t)Rg(r2).
Theorem 2. Rg(r)5Rg(ULrUL), whereUL is a local uni-

tary transformation of the formUL5U1^ U2 .
Corollary. Let r5cc8, r act on Cn

^ Cn and c
5( i 51

n ãig i
A

^ g i
B is a Schmidt decomposition ofc, whereg i

A

is an orthonormal basis for subsystemA andg i
B is an ortho-

normal basis for subsystemB. Then if r̃5c̃c̃8, c̃
5( i 51

n ãi u i & ^ u i &, where$u1&,u2&,...,un&% is the natural basis
of Cn, then the robustness is the same, i.e.,Rg( r̃)5Rg(r).

Proof. DefineU1 by the mapc i
A→u i & and similarly define

U2 for subsystemB. Since change of orthogonal basis ma
pings are unitary, one can apply Theorem 2 and the re
follows. j

Lemma 1. Let r be a pure state acting onCn
^ Cn. The

eigenvalues ofrpt consist of up ton(n21)/2 negative ei-
genvalues, whererpt denotes the partial transpose@6# of r. If
r5cc8, c5( i 51

n ãi u i & ^ u i &, then these eigenvalues a
given by$2ãr ãs%, r ,s. The corresponding eigenvectors a
ẽf (r ,s)5(1/&)(ur &us&2us&ur &), r ,s, where f ( i , j )5( j 2 i )
1n( i 21)2 i ( i 21)/2, i , j .

Proof. The proof is given in Ref.@1#, Eqs. ~B17! and
~B18!.

A main result is that for pure states, the generalized
bustness of entanglement is the same as the Vidal and
rach robustness of entanglement.

Theorem 3. Let r be a pure state. ThenOg(r)5Os(r)
51/@11Rs(r)#.

Proof. Consider the eigenvectorsẽi from Lemma 1. If
Og(r)5t, then there exists arMPDM(N), with

ẽi8@ trpt1~12t !rM
pt#ẽi>0, i 51, . . . ,n~n21!/2, ~4!

where x8 denotes the conjugate transpose ofx. It will be
shown thatt<Os(r), otherwise at least one term in Eq.~4!
will be negative for everyrM . To this end, letẽf ( i , j )8 @ trpt

1(12t)rM
pt#ẽf ( i , j )>0 for j . i . Then

t<@11 ãi ã j /~ ẽf ~ i , j !8 rM
ptẽf ~ i , j !!#

21, j . i . ~5!
as

of
he

-
lt

-
ar-

Let hi , j5ẽf ( i , j )8 rM
ptẽf i , j

/ãi ã j . Since Eq.~5! is true for all

j . i ,

t<min
j . i

S 11
1

hi , j
D 21

. ~6!

For a givenrM , Eq. ~6! must be satisfied iftr1(12t)rM is
separable. The largestt for which there exists arM
PDM(N) and wheretr1(12t)rM is separable is uppe
bounded by the maximum of the right-hand side~rhs! of Eq.
~6!. That is,

Og~r!<max
rM

min
j . i

S 11
1

hi , j
D 21

or

Og~r!<S 11
1

maxrM
minj . i hi , j

D 21

. ~7!

We will now consider the max-min problem

T,max
rM

min
j . i

hi , j . ~8!

Let rM5( il ieiei8 be a spectral decomposition ofrM , iei i
51, ei8ej50, iÞ j , and wherei•i denotes the L2 norm. De
note the functionc( i , j )5m, wherem is the indice where the
vector u i & ^ u j & is equal to one,u i &,u j &PCn. For example, if
n52, u1& ^ u2&5(0100)8, hence c(1,2)52. Clearly, then
c( i , j )5n( i 21)1 j .

Now rewrite the eigenvectors of rM as ei
5( r ,sei ,c(r ,s)ur & ^ us&. Now

eiei85S (
r ,s

ei ,c~r ,s!ur & ^ us& D S (
i ,u

ei ,c~ t,u!ut& ^ uu& D 8
,

rM5(
i

l i(
r ,s

(
t,u

ei ,c~r ,s!ei ,c~ t,u!
* ur &^tu ^ us&^uu,

where* denotes conjugate. The second partial transpose@7#
of rM is

rM
pt5(

i
l i(

r ,s
(
t,u

ei ,c~r ,s!ei ,c~ t,u!
* ur &^tu ^ uu&^su. ~9!

From Lemma 1, we haveẽf ( j ,k)8 51/&(^ j u ^ ^ku2^ j u ^ ^ku),
so that
ẽf ~ j ,k!8 rM
ptẽf ~ j ,k!5

1

2 (
i

l i(
r ,s

(
t,u

ei ,c~r ,s!ei ,c~ t,u!
* ~^ j ur &^tu j & ^ ^kuu&^suk&2^ j ur &^tuk& ^ ^kuu&^su j &2^kur &^tu j & ^ ^ j uu&^suk&

1^kur &^tuk& ^ ^ j uu&^su j &!

5
1

2 (
i

l i@ei ,c~ j ,k!ei ,c~ j ,k!
* 2ei ,c~ j , j !ei ,c~k,k!

* 2ei ,c~k,k!ei ,c~ j , j !* 1ei ,c~k, j !ei ,c~k, j !* #

5
1

2 (
i

l i@ uei ,c~ j ,k!u21uei ,c~k, j !u222 Re~ei ,c~ j , j !ei ,c~k,k!
* !#,

054305-2
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where Re(x) denotes the real part ofx. Define
gf ( j ,k)

( i ) ,uei ,c( j ,k)u21uei ,c(k, j )u222 Re(ei,c(j,j)ei,c(k,k)* ), and the
above becomesẽf ( j ,k)8 rM

ptẽf ( j ,k)5
1
2 ( il igf ( j ,k)

( i ) . Consider the
matrix

A5S l1g1
~1!

2ã1ã2

l2g1
~2!

2ã1ã2

¯

lNg1
~1!

2ã1ã2

l1g2
~1!

2ã1ã3

l2g2
~2!

2ã1ã3

¯

lNg2
~N!

2ã1ã3

] � ]

l1gf ~n21,n!
~1!

2ãn21ãn

l2gf ~n21,n!
~2!

2ãn21ãn

¯

lNgf ~n21,n!
~N!

2ãn21ãn

D .

~10!

Then Eq.~8! is identically

T5max
rM

min
i

(
j

Ai j . ~11!

Before the final step in the proof, consider

(
j 51

n~n21!/2

gj
~ i !5(

j ,k
gf ~ j ,k!

~ i ! 5(
j ,k

uei ,c~ j ,k!u21uei ,c~k, j !u2

2ei ,c~ j , j !ei ,c~k,k!
* 2ei ,c~k,k!ei ,c~ j , j !*

5(
j Þk

uei ,c~ j ,k!u22ei ,c~ j , j !ei ,c~k,k!
*

5S (
j Þk

uei ,c~ j ,k!u21(
j

uei ,c~ j , j !u2D
2S (

j
uei ,c~ j , j !u21(

j Þk
ei ,c~ j , j !ei ,c~k,k!

* D
512S (

j
uei ,c~ j , j !u21(

j Þk
ei ,c~ j , j !ei ,c~k,k!

* D
512U(

j
ei ,c~ j , j !U2

<1. ~12!

Now, Eq. ~11! can be written as

T5max
rM

min
j ,k

(
i

l igf ~ j ,k!
~ i !

2ã j ãk
. ~13!

Let a j ,k5( il igf ( j ,k)
( i ) . Then Eq. ~13! becomes T

5maxrM
minj,k (aj,k/2ãjãk) . Summing overa j ,k with j ,k

we have

(
j ,k

a j ,k5(
j ,k

(
i

l igf
~ i !~ j ,k!

5(
i

l i(
j ,k

gf ~ j ,k!
~ i ! <(

i
l i @ from Eq. ~12!#

51.
05430
HenceT in Eq. ~13! can be upper bounded by

T<max
rM

min
i

d ib i , where b f ~ j ,k!5
1

2ã j ãk
, j ,k

d f ~ j ,k!5a j ,k , j ,k, (
i

d i<1

or

T<max
d i<1

min
i

d ib i , where b f ~ j ,k!5
1

2ã j ãk
, j ,k

and rewritten as

T<maxy, y<d ib i (
i

d i<1. ~14!

Consider the candidate solution to Eq.~14! of d i5d i
(1)

5K/b i , whereK is a constant. Since( id i
(2)<1, it follows

that K<1/(( j ,k2ã j ãk). Note that the denominator is equ
to (( i ãi)

221, which is equal toRs(r) from Eq. ~1!. Hence

K< 1/Rs~r! . ~15!

For this choice ofd i
(1) , the rhs of Eq.~14! is maximized

whenK is on the boundary in Eq.~15!, i.e.,K51/Rs(r) and
for which ( id i

(1)51. Thend i
(1)51/Rs(r)b i , and

max>max5 1/Rs~r! ,

y<d ib i , y<d i
~1!b i ,

(
i

d i<1, (
i

d i
~1!51.

We will now show that no other larger solutions to Eq.~14!
exist. Suppose that such a solutiony2 exists and letd i

5d i
(2) be the associated parameters in Eq.~14!. Since y2

.1/Rs(r), there must exist ade.0 wherebyy251/Rs(r)
1de . From Eq. ~14! it follows that y2<d i

(2)b i ; i ,
1/Rs(r) 1de<d i

(2)b i ; i , d i
(1)b i1de<d i

(2)b i ; i , 0
,de<(d i

(2)2d i
(1))b i ; i , from which it follows that

d i
(2).d i

(1) ; i . Summing both sides( id i
(2).( id i

(1) ,
which implies( id i

(2).1. This contradicts the assumption
Eq. ~14! that( id i

(2).1. HenceT< 1/Rs(r) , and so we have
upper bounded the rhs of Eq.~7! to arrive atOg(r)< 1/„1
1Rs(r)… . Since from Eq. ~3! we know that Og(r)
>Os(r), the result follows. j

An interesting question is whether or not an optimalrM in
Eq. ~2! ~optimal in the sense of maximizingOg) is necessar-
ily separable. We already know that such separable staterM
can be constructed via the construction given in Ref.@1#. It is
shown by counterexample that one can also constructrM
that are entangled. To construct the counterexample, cons
an entangled pure stater with a5Og(r). Assume thatr is in
the simplified formr5cc8, with c5( i ãi u i & ^ u i &, where
ãi>0 are the Schmidt coefficients ofc andui& is in the natu-
5-3
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ral basis. LetG52ar/(12a) and note that all the elemen
in G satisfy Gi , j<0, whereGi , j represents thei th column
and j th row of G. Let G(2) be the matrixG except with the
diagonal elements removed. NowG(2) is generally not posi-
tive definite, so we will replace the diagonal elements w
values from the Gersgoren disks~@8#, p. 344!; that is,Gi ,i

(2)

52(kGi ,k . This will guarantee thatG(2) is positive
semidefinite. Now,ar1(12a)G(2) is clearly a diagonal
matrix. It can also be seen that the diagonal elements
positive and can be verified, the sum of the diagonal e
ments is 1 andG(2) is typically entangled. Hencear1(1
2a)G(2) is separable and there exist entangled matricesrM
that optimize the generalized robustness of entanglem
Additionally, note that if there are two optimal solutions f
rM in Eq. ~2!, call themrM1

andrM2
, then it is easily proven

that any convex combination, i.e.,trM1
1(12t)rM2

, 0<t

<1, also is an optimal solution forrM in Eq. ~2!. Since we
have seen that both entangled and nonentangled solu
exist, this further implies that there can be an infinite num
of solutions forrM .

III. CONCLUSIONS

Vidal and Tarrach considered robustness by conside
how much one can mix a state with an arbitrary separa
state such that the combination is separable. This result
been extended by allowing any state to mix with the st
such that the combination is separable. It was found that
state is just as robust as before. This is somewhat a surpr
result since the volume of state space becomes dominate
the entangled states in large dimension, as seen in Ref.@4#.
The author initially expected that the robustness as meas
by Rg(r) would decrease as compared toRs(r). However, it
was found that there is no degradation. This result shows
the entangled states that are generally robust~in terms of this
definition! when only nonentangled states are present wo
be expected to robust in similar situations where there
other entangled states present that can mix with the sta
cause disentanglement. Extensions to this work would b
determine the generalized robustness of entanglemen
mixed states.
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Note added in proof.After this work was submitted, the
author learned of two recent relevant works@9,10#. The main
result on the generalized robustness of entanglement for
states found in this paper was also found independently b
Harrow and M. Nielsen and derived in a rather nice comp
manner@9#. The authors also extend the notion of state
bustness for the application of quantum logic gate robu
ness. In@10#, F. Verstraete and H. Verschelde examined
problem of the maximal achievable fidelity optimized ov
all local operations and classical communication~LOCC! op-
erations. They found an interesting equivalence between
latter problem and the generalized robustness of entan
ment for the case of two qubits. They also developed a
lution for the case of two qubits in a mixed state, whi
reduces to the solution in this paper when the two qubits
pure.

APPENDIX

Proofs of Theorem 1 and 2. These proofs follow from Ref.
@1# with minor modification.

Theorem 1. Rg(r) is convex, i.e.,R„pr11(12p)r2…

<pR(r1)1(12p)R(r2).
Proof. Define t,pR(r1)1(12p)R(r2) and r,pr1

1(12p)r2 . From the definition of robustness, there exis
rM ,1,DM(N) and rM ,2,DM(N), where DM(N) repre-
sents the set ofN by N density matrices, such tha
r15@11Rg(r1)#rs,12Rg(r1)rM ,1 , r25@11Rg(r2)#rs,2
2Rg(r1)rM ,2 , and for whichrs,1 ,rs,2PS. Now, note that
the matrix rs as defined by rs, @1/(11t)# $p@1
1Rg(r1)#rs,11(12p)@11Rg(r2)#rs,2% is separable. It can
be shown that

r5~11t !rs2trM ,3 ,

where rM ,3,1/t@pRg(r1)rs,11(12p)Rg(r2)rs,2#. Hence
Rg(r)<t. j

Theorem 2. Rg(r)5Rg(ULrUL), whereUL is a local uni-
tary transformation of the formUL5U1^ U2 .

Proof. By definition, there exists a decompositionr5@1
1Rg(r)#rs2Rg(r)rM with rsPS. Then ULrUL

†5@1
1Rg(r)#ULrsUL

†2Rg(r)ULrMUL
† . Since ULrUL

†PS,
thenRg(ULrUL

†)<Rg(r). On the other hand, if one consid
ers r2,ULrUL

† , there exists by definition a decompositio
r25@11Rg(r2)#rs,22Rg(r2)rM ,2 . Multiplying both
sides by UL

† and UL gives r5@11Rg(r2)#UL
†rs,2UL

2Rg(r2)UL
†rM ,2UL , which impliesRg(r)<Rg(r2). j
.
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