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Entanglement versus relaxation and decoherence in a quantum algorithm for quantum chaos
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We study analytically and numerically the behavior of the concurrence~a measure of the entanglement of
formation! of a pair of qubits in a quantum computer operating an efficient algorithm for quantum chaos. Our
results show that in an ideal algorithm the entanglement decays exponentially with the diffusive relaxation rate
induced by classical chaos. This decay reaches a residual level which drops exponentially with increasing
number of qubitsnq . Decoherence destroys the residual entanglement with a rate exponential innq .
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The enormous interest in quantum information and co
putation @1# has generated serious efforts at characteriz
and understanding quantum entanglement, which is con
ered to be the ultimate origin of quantum power~see the
recent review@2#!. A quantitative measure of the entangl
ment of formation, namely, the concurrenceC, was intro-
duced and shown to be able to characterize an arbitrary
of two qubits @3,4#. Being closely related to the von Neu
mann entropyS of the reduced density matrixr of two
qubits,1 this quantity was recently found to have interesti
applications to quantum phase transitions in interacting s
systems@5#. In parallel, the properties of entanglement we
investigated in a quantum model of coupled tops, wher
was shown that there exists a typical value of entanglem
which is determined by the chaotic behavior of the dynam
of the model@6# and that the growth rate of entanglement
initially decoupled tops is increased by the underlying cl
sical chaos@7#. Along the same lines, it was recently show
that, contrary to intuition, even a heat bath may create
tanglement between two qubits@8#.

All these studies@5–8# clearly demonstrated how rich en
tanglement properties can be in interacting quantum syste
However, in the context of quantum computation it is mu
more crucial to analyze the evolution of entanglement i
specific algorithm performing an operational task. Indeed
is expected that the entanglement is very sensitive to n
and decoherence@9–11#, and the understanding of its beha
ior in an operating algorithm can lead to better strategie
the control of decoherence and imperfection effects. As fa
we know, such direct investigations have not been perform
until now. Therefore, in this paper we study the behavior
the concurrence in an efficient algorithm for the quant
sawtooth map which was proposed recently in@12#. The al-
gorithm for this model has a number of important adva
tages: allnq qubits are used in an optimal way and no anc

*URL: http://www.quantware.ups-tlse.fr
1Given a density matrixr for a pair of two-level systems, the

concurrenceC is defined as min$0,l12l22l32l4%, where thel i

are the eigenvalues, in decreasing value order, of the Herm

matrix AArr̃Ar, with r̃5(sy^ sy)r* (sy^ sy). The von Neu-

mann entropyS of r monotonically increases from 0 to 1 whenC
goes from 0 to 1@3,4#.
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lae are required, one map iteration in the Hilbert space
size N52nq is performed inO(nq

2) quantum gates, and th
algorithm is based on the quantum Fourier transform wh
is one of the main elements of various quantum algorith
@1#. This allows us, to simulate complex dynamics in t
regime of quantum chaos with a small number of qub
Since the entanglement can be efficiently measured exp
mentally~see, e.g.,@13#!, the experimental observation of th
concurrence behavior discussed here can be realized
NMR @14,15# or ion-trap@16# based quantum computers wit
about 6–10 qubits and a few hundreds of gates.

Contrary to the situation discussed in@6,7#, our results
show that in the exact quantum algorithm the underly
classical chaos leads to an exponential decrease of the
currenceC down to some residual levelC̄ which character-
izes the global system coherence. On the other hand,
presence of noise in the quantum gates leads to destru
of this coherence with a rateG growing exponentially with
increasing number of qubitsnq . This shows that entangle
ment can be very sensitive to decoherence.

The dynamics of the classical sawtooth map@17,18# is
given by

n̄5n2k
dV~u!

du
, ū5u1Tn̄ mod 2p, ~1!

whereV(u)52u2/2, 2p<u,p, and the overbars denot
the variables after one iteration. After rescalingy5Tn and
x5u, it is clear that the dynamics depends only on the
rameterK5kT. Due to the discontinuity in the derivative o
V(u), the Kolmogorov-Arnold-Moser theorem cannot be a
plied to the map~1! and its dynamics becomes chaotic a
diffusive for arbitrarily small values of the chaos parame
K.0 @17#. For K!1 the diffusion is governed by a non
trivial cantori regime which was worked out in@17#. In this
case the rescaled diffusion rateD0(K)5(Dy)2/t
'1.2p2K2.5/3 is much smaller than the quasilinear diffusio
rate corresponding to the random phase approximationDql
5p2K2/3 ~the latter becomes valid only atK@1). The dif-
fusion rate inn is D5D0(K)/T2.

The quantum sawtooth map@12,19–22# is the quantized
version of the classical map, to which it corresponds in
limit k→`, T→0, and K5kT5const. One step in the
quantum map is given by the unitary operatorÛ acting on
the wave functionc(u):

n
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c~u!5Ûc~u!5eiku2/2e2 iTn̂2/2c~u!, ~2!

wheren̂52 i ]/]u ~we set\51); whennq qubits are used
for the discretization, so that the total number of levels
N52nq, we assume periodic boundary conditions on a to
in the phase representation@c(u12p)5c(u)# and in the
momentum representation@c(n1N)5c(n)#, as discussed
in @12,23#. As a result, the phaseu takes onlyN52nq dis-
crete equidistant values in the interval2p<u,p, and so
does the momentum (n50,1, . . . ,N21, i.e.,n1N is iden-
tified with n). The sawtooth map approximately describ
the dynamics in the stadium billiard@19#, the phenomenon o
dynamical localization of which is similar to the Anderso
localization in disordered potentials and cantori induced
calization @20–22#. Thus this simple map describes a ric
and complex dynamics and represents an interesting te
ground for efficient quantum computation. It is especia
important to understand how this complex quantum dyna
ics will be affected by imperfections in realistic quantu
computers.

The numerical simulation of the map~2! is based on the
quantum algorithm described in@12# and is implemented on
the basis of a quantum computer language developed in@24#
which is well adapted for the experimental operation
quantum gates via classical computer software. In this w
the dynamics of up to 20 qubits can be easily simulated o
laptop.

To investigate the behavior of the concurrence in
quantum map~2! we computeC for the two most significant
qubits which determine the first two binary digitsa1,2 in the
expansion of the momentumn: the reduced density matrixr
for this qubit pair is obtained by tracing out all othernq22
less significant qubits@the digits ai with 3< i<nq in the

FIG. 1. ~Color online! Dependence of the concurrenceC on the
dimensionless timet ~the number of map iterations! for the map~2!
at K50.5, L54, andnq58,12,16~curves from top to bottom, re

spectively!. The smooth curves show the fitC(t)5A exp(2gt)1C̄

of the relaxation to the asymptotic valueC̄ obtained in a larger time
interval (t<104). The inset showsC(t) on a larger time scale. The
initial state is (u00&1u11&)uf&/A2 whereuf& is the uniform super-
position of all but the two most significant qubits. Here and bel
the logarithms are decimal and all axis units are dimensionless~see
text!.
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expansion ofn5(a1a2a3•••ai•••anq
)]. After that C is

computed fromr as described in@3,4#. In this way we obtain
the concurrence valueC on a global scale of the whole sys
tem which is decomposed into four equal parts withN/4
quantum states in each of them. In addition, we fixT
52pL/N in the regime of quantum resonance so thatL
gives the integer number of classical phase space cells
bedded in the quantum torus of sizeN @12,23# ~the classical
dynamics is periodic inn with period 2p/T). In the follow-
ing we also takeL to be a multiple of four to have an intege
number of classical cells in the 4 parts of the partition in t
momentumn.

Typical examples of the dependence ofC on the number
of map iterationst are shown in Fig. 1. According to thes
dataC(t) decays exponentially down to a residual valueC̄
and, in the limit of largeN, the decay rateg becomes inde-
pendent ofN. It is natural to compare this rate with the ra
of classical relaxation. Indeed, due to underlying class
chaos, the probability distributionf n5ucnu2 over n is de-
scribed by the Fokker-Planck equation] f n /]t
5D]2f n /]n2/2, which gives the relaxation to equipartitio
with the rate

gc52p2D/N25D0~K !/2L2. ~3!

The comparison between this classical valuegc and the rate
of concurrence decayg is given in Fig. 2. It clearly shows
that the decay rate ofC(t) is given by the classical rate:g
5gc . It is important to stress that this relation remains va
also in the nontrivial cantori regime (K!1) and that the
quantum decay reproduces all oscillations of the class
diffusion ~see inset in Fig. 2!.

The properties of the residual value of the concurrenceC̄
are analyzed in Fig. 3. We will argue in the following th

FIG. 2. ~Color online! Dependence of the rescaled rate of t

concurrence decayg̃52gL2 on the chaos parameterK for nq

519, L516 ~triangles down!, nq518, L58 ~circles!, and nq

517,L54 ~triangles up!. The solid curve gives the values of th
diffusion rateD0(K) taken from Figs. 2 and 3 of@17#, showing that
g is determined by the classical relaxation rate~3!. The inset shows

data on a larger scale withR5g̃/Dql ~symbols! and R
5D0(K)/Dql ~curve from@17#!.
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they can be understood in terms of the system conductang

@25,26#; in view of this we expressC̄ vs g52gc /D
5ND0(K)/L2 where, up to a constant factor,D51/N is the
level spacing and 2gc5D0(K)/L2 is the Thouless energ
~see@27# for a recent review!. In spite of strong fluctuations
the data presented in Fig. 3 can be described by the gl
average dependenceC̄;1/Ag}1/AN. Indeed, forK50.5,L
54 the system size varies by three orders of magnitude,
the fit gives an algebraic decay with powera50.5660.02
being close to 1/2. We attribute the presence of strong fl
tuations to the fact that the valueC̄ is averaged only ove
time but there is no averaging over parameters. Thus, f
the point of view of disordered systems@27#, C̄ represents
only one value for one realization of disorder.

We propose the following explanation of the results p
sented in Figs. 1–3. For a stateuc& like that in Fig. 1, we can
write uc&5(a1a2

ua1a2&ufa1a2
& wherea1,250 or 1. Then the

value of the concurrenceC is proportional to the difference
of two scalar products, C;uQ142Q23u, where Q14

52Az^f00uf11& z2 and Q2352Az^f01uf10& z2. From this rela-
tion and the fact that the initial state is symmetrically distr
uted with respect to the transformationn→N2n, it follows
that C is proportional to the differenceuW111W002W01
2W10u, whereWa1a2

is the total probability inside the par

(a1a2). In the classical limit this probability difference re
laxes to zero with the classical relaxation rategc , and that is
why g5gc in agreement with the data of Fig. 2.

The residual valueC̄ is determined by the quantum fluc
tuations of the previous difference of scalar products. In fa
due to the discretization of the map~2!, the symmetryn
→N2n is broken, anduf00& becomes different fromuf11&.
Therefore in the scalar productQ14 ~andQ23) the N/4 terms
have random signs and thusQ14}1/AN ~each term is of the
order of 1/N). In this estimate we assumed a summation o

FIG. 3. ~Color online! Dependence of the residual value of th

concurrenceC̄ on the system conductanceg5ND0(K)/L2 for a
broad range of parameters: half filled circles show dependenc
L54,8,12,16,20 forK50.5 andnq514,15,16; diamonds and tri
angles show the variation withK for nq514, L516; nq515, L
58; andnq516, L54. The filled circles connected by the dash
curve show the dependence onN for K50.5,L54. The solid line
marks the slope 1/Ag.
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all N wave function components. However, for finite valu
of the conductanceg only the states inside the Thouless e
ergy interval 2gc have a significant scalar overlap@27,28#,
and thus we can make a conjecture thatN should be replaced
by the effective number of components, which is of the ord
of Neff;gc /D;g. According to this,C̄;1/Ag in agreement
with the data of Fig. 3.

The existence of a residual level of concurrence for
ideal quantum algorithm reflects the fact that the global
havior of the whole system remains coherent. In fact,
Poincare´ theorem guarantees that for very large times
concurrence will have a revival close to the initial valu
~however, this will happen on an exponentially large tim
scale!. The situation becomes qualitatively different in th
presence of external decoherence represented by noisy g
In our numerical simulations, noisy gates are modeled
unitary rotations by an angle randomly fluctuating in the
terval (2e/2,e/2) around the perfect rotation angle. Th
presence of this external decoherence leads to a decrea
the residual value ofC as illustrated in Fig. 4: the constan
level is replaced by an exponential decay which givesC̄
}exp(2Gt).

In order to obtain the dependence ofG on the parameters
we extracted it from the fit of the averaged ratio ofC under
a noisy evolution to its value in the ideal one. An example
this ratio and the corresponding fit is shown in Fig. 4.
suppress fluctuations we averaged over 20 realizations o
noisy evolution. Moreover, the fit was restricted to the p
teau regime, where the exact concurrence is fluctua
around its residual value~the initial diffusive relaxation was
excluded from the fit!.

The results forG obtained in this way are presented
Fig. 5. Quite naturally, we find thatG}e2, as was also seen
in other simulations of quantum algorithms with noisy ga

on

FIG. 4. ~Color online! Effects of decoherence on the residu
concurrence: the two lower curves show the dependenceC(t) for
an ideal algorithm~top! and an algorithm with noisy gates at nois
amplitudee50.003~bottom!. The timet is dimensionless~it is the
number of map steps!. In the latter case the average is done over
noise realizations. The curve in the upper part shows the ratio
C(t) at e50.003 to its value in an ideal algorithm; this ratio
averaged over a 100-kick moving window to reduce fluctuatio
The dashed straight line shows a fit of the ratio to an exponen
decay proportional toe2Gt. Herenq512, K50.5, L54.
3-3
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~e.g.,@29#!. This scaling becomes better and better for large
values whereG is larger. However, more surprisingly, the
is an exponential growth ofG with the number of qubitsnq

(G}AN). This result is very different from those obtained
@12,29#, where the time scale for fidelity and the decoheren
rate for tunneling oscillations varied polynomially withnq .
We see two possible reasons for the exponential sensit
of the residual concurrence to decoherence. First, in our

FIG. 5. ~Color online! Dependence of the decoherence induc
decay rateG of the residual concurrence one2AN for K50.5, L
54. Here the noise amplitudee changes from 0.001 to 0.01~10
equidistant values! for 7<nq<15. The data points~circles! are con-
nected by lines for fixed values ofe. The color intensity change
gradually from one chain to another to mark the variation ofe @low
~high! intensity corresponds to small~large! values of e]. The
straight line shows the averaged behaviorG50.58e2AN.
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G is computed over a very large time interval, for which t
quantum dynamics has already reached its asymptotic be
ior ~plateau for the residual concurrence!; it is known that at
very large times the eigenstates are exponentially sensitiv
imperfections due to the chaotic structure of the wave fu
tions ~see the results and discussion in@30#!. Another pos-
sible reason can be related to the fact that the residual v
of the concurrence on the plateau is on its own exponenti
small, and maybe this is the reason why it becomes so
sitive to decoherence. Further investigation of the decoh
ence effects for the concurrence is required to understan
a better way this exponential sensitivity ofC.

In our studies we restricted ourselves to the investigat
of entanglement only between two qubits. The problem
characterizing the entanglement of a larger number of qu
represents an interesting challenge but at the same time
much more complicated@2#. However, even the relatively
simple case of two qubits shows nontrivial links betwe
concurrence and such interesting physical phenomena
quantum phase transitions@5# and statistical relaxation.

In summary, our studies show that the decay of conc
rence in an operating quantum computer is determined by
underlying relaxation rate of the classical dynamics. W
show that the residual level of entanglement in an ideal
gorithm scales as the inverse square root of the conduct
of the system. This residual entanglement is destroyed
decoherence, whose effective rate grows exponentially w
the number of qubits.

This work was supported in part by the EC Contracts N
RTN QTRANS and No. IST-FET EDIQIP and the NSA an
ARDA under ARO Contract No. DAAD19-01-1-0553.
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