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Entanglement versus relaxation and decoherence in a quantum algorithm for quantum chaos
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We study analytically and numerically the behavior of the concurréaceeasure of the entanglement of
formation of a pair of qubits in a quantum computer operating an efficient algorithm for quantum chaos. Our
results show that in an ideal algorithm the entanglement decays exponentially with the diffusive relaxation rate
induced by classical chaos. This decay reaches a residual level which drops exponentially with increasing
number of qubits,. Decoherence destroys the residual entanglement with a rate exponemal in
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The enormous interest in quantum information and comiae are required, one map iteration in the Hilbert space of
putation[1] has generated serious efforts at characterizingize N=2"a is performed inO(né) guantum gates, and the
and understanding quantum entanglement, which is consiglgorithm is based on the quantum Fourier transform which
ered to be the ultimate origin of quantum powgee the is one of the main elements of various quantum algorithms
recent review[2]). A quantitative measure of the entangle-[1]. This allows us, to simulate complex dynamics in the
ment of formation, namely, the concurren€e was intro-  regime of quantum chaos with a small number of qubits.
duced and shown to be able to characterize an arbitrary stafgnce the entanglement can be efficiently measured experi-
of two qubits[3,4]. Being closely related to the von Neu- Mentally(see, e.g[13]), the experimental observation of the
mann entropyS of the reduced density matrig of two  concurrence be_hawor discussed here can be reallze_d on
qubits this quantity was recently found to have interestingNMR [14,15 or ion-trap[16] based quantum computers with
applications to quantum phase transitions in interacting spifPeut 6—10 qubits and a few hundreds of gates.

systemg5]. In parallel, the properties of entanglement were Contrary to the situation discussed [, 7], our results

investigated in a quantum model of coupled tops, where ilShOW. that in the exact quantum algprlthm the underlying
%Iassmal chaos leads to an exponential decrease of the con-

was shown that there exists a typical value of entanglemen ] —
which is determined by the chaotic behavior of the dynamic<UTenceC down to some residual level which character-
of the model[6] and that the growth rate of entanglement of '2€S the gl?baI. sy;terE coherence. On tlhe dotherdhand, t_he
initially decoupled tops is increased by the underlying clasPresence ol noise in the quantum _gates eaads t_o est_ructlon
sical chaog7]. Along the same lines, it was recently shown .Of this _coherence with a “’?“E growing exponentially with

' increasing number of qubits,. This shows that entangle-

that, contrary to intuition, even a heat bath may create en- 1
ment can be very sensitive to decoherence.
tanglement between two qubii8].

All these studie$5-8] clearly demonstrated how rich en- The dynamics of the classical sawtooth midp,1§ is

. s = . iven b
tanglement properties can be in interacting quantum system$. y
However, in the context of quantum computation it is much — dav(e) — —
more crucial to analyze the evolution of entanglement in a n=n-k—p—, 6=06+Tn mod 2m, 1

specific algorithm performing an operational task. Indeed, it
is expected that the entanglement is very sensitive to noisehereV(6)=— 6%/2, — <6<, and the overbars denote
and decoherend®-11], and the understanding of its behav- the variables after one iteration. After rescalipg Tn and
ior in an operating algorithm can lead to better strategies irx= 6, it is clear that the dynamics depends only on the pa-
the control of decoherence and imperfection effects. As far ammeterK =k T. Due to the discontinuity in the derivative of
we know, such direct investigations have not been performed(6), the Kolmogorov-Arnold-Moser theorem cannot be ap-
until now. Therefore, in this paper we study the behavior ofplied to the map(1) and its dynamics becomes chaotic and
the concurrence in an efficient algorithm for the quantumdiffusive for arbitrarily small values of the chaos parameter
sawtooth map which was proposed recentlfig]. The al- K>0 [17]. For K<1 the diffusion is governed by a non-
gorithm for this model has a number of important advan-trivial cantori regime which was worked out jd7]. In this
tages: alln, qubits are used in an optimal way and no ancil-case the rescaled diffusion rateDy(K)=(Ay)?/t
~1.2m°K?%3 is much smaller than the quasilinear diffusion
rate corresponding to the random phase approximédign

*URL: http://www.quantware.ups-tise.fr = 7?K?/3 (the latter becomes valid only &>1). The dif-
!Given a density matrixp for a pair of two-level systems, the fusion rate innis D=D(K)/T2.
concurrenceC is defined as mifO\; —N,—N3— N4}, where the\, The quantum sawtooth mdA2,19-27 is the quantized

are the eigenvalues, in decreasing value order, of the Hermitiagersion of the classical map, to which it corresponds in the
matrix \/\ppyp, with p=(o,®a,)p* (ay®0y). The von Neu- limit k—o, T—0, and K=kT=const. One step in the

mann entropysS of p monotonically increases from 0 to 1 whén  quantum map is given by the unitary operatbracting on
goes from 0 to 13,4]. the wave functiony(6):
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FIG. 1. (Color onling Dependence of the concurrenCeon the FIG. 2. (Color onling Dependence of the rescaled rate of the

dimensionless time(the number of map iterationgor the map(2 s
i > ( B p n p2) concurrence decay=2yL? on the chaos parametét for Ng
atK=0.5,L=4, andny=8,12,16(curves from top to bottom, re- =19,L=16 (triangles dowj, n,=18,L=8 (circles, and n
; ~ ’ : 4 ' : ’ q
spectively. The smooth curves show the @(t)=Aexp(-®)+C  =17| =4 (triangles up. The solid curve gives the values of the
of the relaxation to the asymptotic val@eobtained in a larger time  diffusion rateD,(K) taken from Figs. 2 and 3 ¢f.7], showing that
interval (<10%). The inset show€(t) on a larger time scale. The 1y is determined by the classical relaxation ré8e The inset shows

initial state is (00)+|11))|¢)/\2 where| ¢) is the uniform super- data on a larger scale wittR="y/D,, (symbol$ and R
position of all but the two most significant qubits. Here and below = Do(K)/Dg (curve from[17]).

the logarithms are decimal and all axis units are dimensioritEss
tex. expansion ofn=(ajaaz---a;-- 'anq)]. After that C is
computed fronp as described if3,4]. In this way we obtain

the concurrence valu€ on a global scale of the whole sys-

- ) i tem which is decomposed into four equal parts Wi
wheren=—id/90 (we seth=1); whenng qubits are used quantum states in each of them. In addition, we Tix

for the discretization, so that the total number of levels is— 5| /N in the regime of quantum resonance so that

N= 2", we assume periodic boundary conditions on a torugives the integer number of classical phase space cells em-
in the phase representatipg/(6+27)=¢(6d)] and in the  pedded in the quantum torus of sike 12,23 (the classical
momentum representatidny(n+N)=¢(n)], as discussed gynamics is periodic im with period 27/T). In the follow-

in [12,23. As a result, the phase takes onlyN=2" dis-  jng we also take. to be a multiple of four to have an integer
crete equidistant values in the intervalm=6<, and S0 number of classical cells in the 4 parts of the partition in the
does the momentumE0,1, ... N—1, i.e.,n+N is iden-  momentumn.

tified with n). The sawtooth map appl’OXimately describes Typ|ca| examp|es of the dependence@bn the number

the dynamics in the stadium billiafd9], the phenomenon of of map iterations are shown in Fig. 1. According to these

dynamical localization of which is similar to the Anderson dataC(t) decays exponentially down to a residual vae

'Oﬁ?"zt?t'onz(')” glsotlt_jr(]aredtr?oteptlalls and cgnton_énduced_ Ir?'and, in the limit of largeN, the decay ratey becomes inde-
calization[20-22. Thus this simple map describes a ric endent ofN. It is natural to compare this rate with the rate

and complex dynamics and represents an interesting test classical relaxation. Indeed, due to underlying classical

ground for efficient quantum computation. It is especially h h ili istributiof. = 2 ; _
important to understand how this complex quantum dynams: aos, the probability distributiofi,=|y,|* over n is de

ics will be affected by imperfections in realistic quantum Sc”b‘id b%/ thg F.okker-PIanck .equat|on¢9.fn/a.t.
compuiters. ='Dﬁ f,/on</2, which gives the relaxation to equipartition

The numerical simulation of the mdg) is based on the with the rate
guantum algorithm described ji2] and is implemented on
the basis of a quantum computer language developg2iin
which is well adapted for the experimental operation of
quantum gates via classical computer software. In this way he comparison between this classical vajueand the rate
the dynamics of up to 20 qubits can be easily simulated on &f concurrence decay is given in Fig. 2. It clearly shows
laptop. that the decay rate dZ(t) is given by the classical rate:

To investigate the behavior of the concurrence in the= ¥c. Itis important to stress that this relation remains valid
quantum mayg2) we computeC for the two most significant also in the nontrivial cantori regimeK(<1) and that the
qubits which determine the first two binary digis, in the ~ quantum decay reproduces all oscillations of the classical
expansion of the momentum the reduced density matrix ~ diffusion (see inset in Fig. 2 N
for this qubit pair is obtained by tracing out all othey—2 The properties of the residual value of the concurreBce
less significant qubit§the digits a; with 3<i<ny in the  are analyzed in Fig. 3. We will argue in the following that

W: O W(6) = eik02/2e—iTﬁzl2¢( 9), 2)

Ye=2m?DIN?=Dy(K)/2L2. ®)
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FIG. 3. (Color onling Dependence of the residual value of the G 4. (Color onling Effects of decoherence on the residual
concurrenceC on the system conductange=NDo(K)/L? for a  concurrence: the two lower curves show the depend@(cg for
broad range of parameters: half filled circles show dependence o#n ideal algorithn{top) and an algorithm with noisy gates at noise
L=4,8,12,16,20 folK=0.5 andny=14,15,16; diamonds and tri- amplitudee=0.003(bottom. The timet is dimensionlessit is the
angles show the variation witK for ng=14,L=16; ny=15,L  number of map stepsin the latter case the average is done over 20
=8; andn,=16, L=4. The filled circles connected by the dashed noise realizations. The curve in the upper part shows the ratio of
curve show the dependence binfor K=0.5L=4. The solid line  C(t) at e=0.003 to its value in an ideal algorithm; this ratio is
marks the slope 1@ averaged over a 100-kick moving window to reduce fluctuations.

The dashed straight line shows a fit of the ratio to an exponential

) ; —Tt _ _ _
they can be understood in terms of the system conductgnced€cay proportional te™ . Heren,=12,K=0.5,L=4.

[25,26; in view of this we expressC vs g=2y./A  all N wave function components. However, for finite values

=NDg(K)/L? where, up to a constant factax=1/N is the  of the conductancg only the states inside the Thouless en-

level spacing and 2.=Dy(K)/L? is the Thouless energy ergy interval 2y, have a significant scalar overldg7,28,

(see[27] for a recent review In spite of strong fluctuations and thus we can make a conjecture tRathould be replaced

the data presented in Fig. 3 can be described by the globaly the effective number of components, which is of the order

average dependen@-~ 1/y/g=1/\/N. Indeed, forkK=0.5L  of Nz~ y./A~g. According to thisC~ 1/\/g in agreement

=4 the system size varies by three orders of magnitude, angith the data of Fig. 3.

the fit gives an algebraic decay with power 0.56+0.02 The existence of a residual level of concurrence for an

being close to 1/2. We attribute the presence of strong flucideal quantum algorithm reflects the fact that the global be-

tuations to the fact that the valu@ is averaged only over havior of the whole system remains coherent. In fact, the

time but there is no averaging over parameters. Thus, frorfPoincaretheorem guarantees that for very large times the

the point of view of disordered systerfi27], c represents concurrence_will_have a revival close to the initial va]ue

only one value for one realization of disorder. (however, this will happen on an exponentially large time
We propose the following explanation of the results pre_scale). The situation becomes qualitatively different in the

sented in Figs. 1-3. For a stag) like that in Fig. 1, we can presence of e_xternal decc_)herence_ represented by noisy gates.

Wfite|¢)=Ea1a2|alaz>|¢a1a2> wherea, ,=0 or 1. Then the In our numerlcal simulations, noisy gates are m(_)deled_by

value of the concurrenc€ is proportional to the difference unitary rotations by an angle randomly ﬂuct.uatmg in the in-

of two scalar products,C~|Qis—Qsq, Where Qi :alar::lelng_eeéfzﬂizs) eitrgfnr;ﬁ Jggoﬁg:;i%erlzt:ct;g rt10aan glleeér;—;see of

=2 oo #101* and Qz3=2[( po1| $10)|°. From this rela- ' ' in Fia. 4:

tion and the fact that the initial state is symmetrically distrib-the residual value o€ as illustrated in Fig. 4: the constant

uted with respect to the transformatior-N—n, it follows

that C is proportional to the differencéW,;+Woo—Wp,

- Wiy, whereW, ,, is the total probability inside the part

level is replaced by an exponential decay which giges
xcexp(—TIt).
In order to obtain the dependencelbbn the parameters,
. o o we extracted it from the fit of the averaged ratio@under
(a18,). In the classical limit this probability difference re- 4 poisy evolution to its value in the ideal one. An example of
laxes to zero with the class_ical relaxation rte andthatis  this ratio and the corresponding fit is shown in Fig. 4. To
why y= v, in agreement with the data of Fig. 2. suppress fluctuations we averaged over 20 realizations of the
The residual value€ is determined by the quantum fluc- noisy evolution. Moreover, the fit was restricted to the pla-
tuations of the previous difference of scalar products. In factteau regime, where the exact concurrence is fluctuating
due to the discretization of the mag), the symmetryn  around its residual valu@he initial diffusive relaxation was
—N—n is broken, and ¢y, becomes different from¢pi;).  excluded from the fjt
Therefore in the scalar produ@y, (andQ,3) the N/4 terms The results forl' obtained in this way are presented in
have random signs and th@,<1/yN (each term is of the Fig. 5. Quite naturally, we find thdtx €2, as was also seen
order of 1N). In this estimate we assumed a summation ovein other simulations of quantum algorithms with noisy gates
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I' is computed over a very large time interval, for which the
quantum dynamics has already reached its asymptotic behav-
ior (plateau for the residual concurrengci is known that at
very large times the eigenstates are exponentially sensitive to
imperfections due to the chaotic structure of the wave func-
tions (see the results and discussion[80]). Another pos-
sible reason can be related to the fact that the residual value
of the concurrence on the plateau is on its own exponentially
small, and maybe this is the reason why it becomes so sen-
sitive to decoherence. Further investigation of the decoher-
ence effects for the concurrence is required to understand in
a better way this exponential sensitivity Gf

In our studies we restricted ourselves to the investigation
= = -3 of entanglement only between two qubits. The problem of

FIG. 5. (Color onling Dependence of the decoherence inducedcharacterizing f[he ent?_:lnglement of a larger number Of qubit_s
decay ratel’ of the residual concurrence a?JN for K=0.5, L represents an mtergstmg challenge but at the same 'qme it is
—4. Here the noise amplitude changes from 0.001 to 0.000 ~ Much more complicatei?]. However, even the relatively
equidistant valuggor 7<n,=15. The data pointéircles are con- simple case of two qub[ts shovys nontrl\_/lal links between
nected by lines for fixed values @f The color intensity changes concurrence and such interesting physical phenomena as
gradually from one chain to another to mark the variatior fibw ~ quantum phase transitiofi§] and statistical relaxation.

(high) intensity corresponds to smaflarge values of €]. The In summary, our studies show that the decay of concur-
straight line shows the averaged behawior 0.582\/N. rence in an operating quantum computer is determined by the
underlying relaxation rate of the classical dynamics. We
show that the residual level of entanglement in an ideal al-
gorithm scales as the inverse square root of the conductance
of the system. This residual entanglement is destroyed by

IS an expongnhal grqwth df V_‘”th the number of qu',ts'q . decoherence, whose effective rate grows exponentially with
(T'=+/N). This result is very different from those obtained in the number of qubits.

[12,29, where the time scale for fidelity and the decoherence

rate for tunneling oscillations varied polynomially with, . This work was supported in part by the EC Contracts No.
We see two possible reasons for the exponential sensitivitRTN QTRANS and No. IST-FET EDIQIP and the NSA and
of the residual concurrence to decoherence. First, in our cageRDA under ARO Contract No. DAAD19-01-1-0553.

(e.g.,[29]). This scaling becomes better and better for large
values wherd" is larger. However, more surprisingly, there
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