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Phase evolution in a multicomponent system
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We derive a general expression for the expectation value of the phase acquired by a time dependent wave
function in a multicomponent system, as excursions are made in its coordinate space. We then obtain the mean
phase for thélinear dynamicE® €) Jahn-Teller situation in an electronically degenerate system. We interpret
the phase-change as an observable measure efffihetivenodal structure of the wave function.
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In a recent publication, a geometiior Berry) phase was Fig. 2 of Ref.[11]. Later treatments did not test their meth-
calculated for the wave function of a multicomponent closedods by comparison with the guessed solution.
system[1]. This differs from the usually considered situa-  Our point of departure is the time-dependent Sdhrger
tions, in which the Berry phases emerge from the wave funcequation
tion of the system during the cyclic evolution of some exter-
nal parameter. It is of interest to point out that in a famous iiw(r,t)zH(r,t)d/(r,t) (1)
prototype of a multicomponent closed systéam electroni- ot
cally doubly degenerate molecylelynamic solutions for the

E® € linear Jahn-Teller effedDJTE) were fully obtained as ordinatesr of the system. as well as on time(i=1). The

long ago as 19572,3]. The two parts of system were the system is coupled to the environment; hence the dependence

electronic and ionic constituents of the molecule. Thougt‘bnt in the Hamiltonian. In a closed system, the Hamiltonian
this has received, as just noted, a complete treatment eary (e independenty is still ime dependent, as, e.g., i

on, the dynamic problem has not left the scientific agendg 5y e packet.

ever since. Descriptions of some of the early refinements are \ve write the statdassumed to be regular in the coordi-
found in two bOOk{4,5], the most recent publication known nate space and Vanishing at its boundarm

to us and involving a variational treatment of the problem is _

in Ref.[6]. The physical consequences of the Berry phase on y=Ag" 2
the DJTE were clearly brought out by Hafid] and more
recently in Ref.[8], both of which papers showelbeit
under different physical conditionghat the value of the

for a wave functioni(r,t) that depends on the internal co-

with A and S being real functions of,t (A>0). We shall
utilize the equation of continuity and the Hamilton-Jacobi

Berry phase may be critical in determining the order of en_equatlon[ls]:
ergy levels in the closed molecular system. This phase is thus IA2 1
clearly observable by experimejit]. Its physical interpreta- e EV(AZVS), (3

tion, essentially along the lines of Refg,8], will be given
later in this work. 1 9S 1

In Ref. [1], an operator was proposed for the phase ﬁ(VS)2=—E—V(r,t)+ﬁA‘1(V)2A. (4)
change(called “quantized phasg’in a closed system. Here,
we shall derive an expression for this phase from first printierem is a mass parameter common to all degrees of free-
ciples and use it to calculate the phase change in the vibronigom, with all coordinates scaled to this magss the poten-
doublet ground states of aB® e linearly coupled Jahn- {jal.
Teller system. We shall use a “guessed solution,” for the et us now consider the change in the wave function,
ground state, which is transparent, intuitively simple and alhetween the initial state of the systent at0 and a final time

gebraically easily manageabld,9,10. Though not varia- t,. Real and imaginary parts of the change in the logarithm
tionally obtained, the guessed solution was found to havgyre

eigenenergies that are considerably closer to the exact, com-
puted energies of Ref3] than any other approximate solu- [In g1 =[In[¢|1¢ +ilarg ) If=[InAT{+i[SIY. (5)
tion with which it was compared. This comparison is seen in
These are functions of the coordinates. To form quantum-
mechanical expectation valuédenoted by angular brackets
*Also at College of Judea and Samaria, Ariel 44284, Israel; elecabout the relevant quantitipsve multiply by A% and inte-
tronic address: englman@vms.huji.ac.il grate over all coordinates. Thus, the mean of the changes can
Electronic address: asya@ycariel.yosh.ac.il be written as
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tt 4 a(r t Vu(r,t)|?
([InA]g>+i<[S]g>=JOfthJ drA(InA+iS). (6) Imf dr(¢+(r,t) wr )):—fd [Vyrvl®

ot 2m

[It is natural to conjecture that to form statistical expectation - f dr|(y(r,0)[2V(r,1),
values(appropriate to mixed stat¢$2]), the factorA? is to

be multiplied by the relative statistical weight of the state 1D
and the contribution due to all states be summed over. We
not pursue this topic hereSeparating real and imaginary

parts we get for the real part the quanti%;é[Se]g, where

d\?/hich we use to eliminate the expectation value of the po-
tential from Eq.(10). We then get

[(S)]t'—lmftfdtf dr( w*(r,t)(?l'k;:'t))

- [ arlupolor. @ .
v e artivuc - (91pr0)2)

Se (which is different from the phas§) is reminiscent of a
von Neumann entropy, in which the density operator is pro- (12)
jected onto the initial state. This is our central result for the mean phase change. The
We turn now to the rate of change of the expectation valugirst term is of the form familiar in, e.g., expressions of the
of the phasel(S)/dt. We change the order of integrations in open path geometric pha$&3]. In the second term, to be
Eq. (6) and obtain after some manipulations the following: denoted for brevitysK, one has the difference between two
space-derivative terms, one involving the totabmplex
d<S) (7A2 time-dependent wave function and the other its modulus.
fd ( ) We now calculate the phase change in our molecular
&t model for a multicomponent closed system. The main sim-
plification in the model is the restriction to a two-
f dr{ — ——SV(AZVS)} dimensional electronic subspagebeing assumed that other
electronic states of the molecule are too far away to have any
S effect) and small displacements of the nuclear coordinates
:f df{AZE +EA2(VS)2}, (8)  from some standard configuratigso that only linear terms
in the nuclear displacement coordinates appear in the Hamil-
tonian below. The solution to the mathematical probléthe
having used Eq(3) and integrated by partsvith vanishing DJTE) embodies the correlated nuclear-electronic trajectory
integrands at space extremitiesNe now substitute for near a conical intersection of th@liabatio potential sur-
(VS)? from Eq. (4) and obtain a change in the sign of the faces. Under these circumstances, the usual Born-
first term in the above expression, as well as the expectatio®@ppenheimer approximation breaks down and the descrip-
values of(twice) the potential and a term related to the ki- tion of the combined dynamics is nontrivial.
netic energies, which can be reworked by a further integra- The total Hamiltonian consists dfl,,, for the internal
tion by parts so as to put it into a form of definite sign, giving degrees of freedom of the molecule and an interaction term
with the environment,, :

d<S>_ fd ( ) 2<V(r t))__f dr VA)Z H:HmoI+Henu- (13)

9 The first term is a function of the electronic and nuclear
coordinates, while the second term may also contain an ex-
ternally imposed time dependence. Our restriction to a two-
dimensional electronic subspadds,|2) removes from the
formalism the presence of electronic coordinates and leaves
only the nuclear coordinates. Two of these, designated as
a(r,t) da.qp, are of interestH,,; when expressed in terms of the

) bosonic creationg™,b*) and annihilation &,b) operators
of the nuclear motion takes the form

We next recall thaG=Im(In ¢) and reinstate the time inte-
gration to get the change in phase as

()= fotfdtf dr[lm(zp*(r,t)

2 i 2} k
£20y(r DIV D+ (Vg 0)?|, (10 oo=2{ 2% b6 X f(a* + 10, (67 4By

V2

where the cross means Hermitian conjugate. On the other (14)
hand, multiplying Eq.(1) by 7 (r,t), integrating over the Herew is the frequency of oscillation of the nuclear motion
coordinates, and again integrating by parts, we obtain andk is the electron-nuclear coupling strength expressed in
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cylindrical coordinates d,¢), where q,=qcos¢, qp
=qsing, as, e.g., in Eq(3.5 of Ref.[4].

The algebraic expression for the ground-state doublet pro-  1.s
posed in Refd9,10], and which solves the time-independent
Schralinger equation for the HamiltoniaH,,,, to a good
approximation, has the followingunnormalizeg form: 0.5

dimensionless units. The>X22 matriceso, and o, are the 4
familiar Pauli operators acting on the electrofti¢,|1) sub- 3
spaces. Equivalent representations of the Hamiltohlgp, o
are given in works on the Jahn-Teller eff¢pt,5,9); i.e., in s 3 P
terms of the nuclear coordinatgg, gy, or of the associated f 2.5
g
=

1 2 3 4 5
k

. 1
#(0a,0) = exp= 5[(da—ka)*+ (A ko). (15)

+ oK

FIG. 1. Expectation value of the phase change after a full cycle
in the coordinate space vs the coupling strength. We[pﬁta)t]é’f’Q
(Intuitively, this form is suggested by an analogy with the [Ed. (17), with 6K=0] againstk (introduced in Eq.(13)]. For a
ground-state solutions of displaced harmonic oscillators, bugrgek, the phase approaches
its justification is in close agreement with exactly computed
eigenvalues oH o [3].) To obtain the ground-state doublet, tf t = N d
we operate withfp(qa,qb) on any two linearly independent {[Slg)= Imfo dt JO dqq\If,(q,Qt)E\If,(q,Qt)
combinations of the basic vectdrk),|2). In a column vec-
tor representation, these are ju%p,(‘f). The exponential, f“’d W anl2 1
which includes noncommuting matrices, can be manipulated 0 qq¥-(a.20[%), (a7
by use of the commutation relations between the Pauli ma-
trices to give, in terms of the cylindrical coordinates defined . . :
above, the following expression: wher_e oK is the second term on t_he rlght-har_ld side of Eq.
(12 involving the space differentials. In all integrals, the
. integration is over the radial coordinate qnly, since ¢
¥(d,$)=exgd —k?—qg?/2][costikq)| —sinh(kq) =t is treated as a parameter.
. It can be shown thatK is identically zero for both the
X (07C08p =0y sing)]. (16) ¥ _ andV, . (Remember that the gradient operatordid
involves now only the radial degree of freedoq) The
| is the unit 2<2 matrix. One notes that this is a single- evaluation of the first integral in Eq17) leads to the plot
valued function of¢ (there are no cog/2 termg, as indeed  shown in Fig. 1 for the mean phase after a full cyclic revo-
is required by the wave function of a closed sysféth lution ([ S]5™*) as a function of the coupling strengih
By operating withi on (1A/2)(%,), one gets the two As seen in the figure, the acquired mean phase¥or
degenerate ground-state functions(q,¢) (=W¥_) and increases monotonically with the coupling and levels off for
¥*(q,¢) (=V¥.). The eigenvalues and other related prop-strong coupling k>1) to 7 (the value of the Berry phase
erties of these states have been calculated in Réf&0]. The corresponding phase for the partner stéite is the
Here we compute the phase change for each function, as thnegative of this value, and any linear combination of the
angular coordinate changes by a full period betweéen0  ground-state doublets will result in intermediate values be-
and ¢=2m. tween the two extremes 7. The phase depends only on the
One procedure to induce such a change in an internatrength of the coupling. It is independent of the adiabatic
coordinate(and physically, perhaps, the only consistent)one parametekw/(), since the integrand contains only the in-
is to consider it being guided by an external force along astantaneous value of the initial compondnt , and no ad-
circle. (The concept of a guiding potential was used in, e.g.mixture from its partnerV, . [Applying Eq. (17) to the
Ref. [14], but here we guide the angular coordinate, ratheeigenstatesb,; of Ref.[1] expressed in a coordinate repre-
than the radial ong.To achieve this, one needs an external,sentation reproduces exactly the results obtained in that pa-
time-dependent agent acting on the otherwise closed systeper. However, evaluation of the expectation value of the
and this is the role played b, in the Hamiltonian shown phase-shift operator proposed in Réfl] for the states
in Eq. (13). We suppose that there is an environment Hamil-¥ = (q, ¢) in this work, where the rotating-wave approxima-
tonian that induces &-function like behavior in the wave tion is not made, yields values that diverge quadratically for
function (forcing ¢ to equal(t) and that this time depen- a largek.]
dentH,,, dominates the kinetic energy of the angular vari- We conclude with an interpretation of the “closed-
able. In this, s-function limit the variable¢ turns into a  system” phase. In this, we follow Refgz,8]. For low values
(classical parameter and is no longer a “degree of freedom.”of the coupling constant, the wave function is smeared over
We thus get from Eq.12), for the expectation value of the the origin g=0 and cannot be said to circlaround this
phase change in thé& ~ state, the following expression: point, which is a point of degeneracy of the two states. Then,
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there is hardly any acquired phase. For large values of ththe phase change is a measure of the extent that a circling in
coupling, the wave function is located neg+k, meaning the coordinate space scans the zeros of the wave function in
that it keeps away from origin so that circlimgoundit can  the region encircled. Since zer@sodes in the wave func-
achieve the full measure of the geometric phase. tion are known to affectin general, raisgthe energies of the

On the other hand, it has been known for some time thagtates, it is natural to find that the phase acquired during a
(in the adiabatic limit the phase change comes aboutrevolution determines the ordering of the energy levels. Such
abruptly, precisely at the moment of circling when a compo-connections between phase change and energy levels have
nent amplitude vanishe¢This occurs when cd@t/2=0 or  been noted first in Ref.7] and more recently in Ref8].
Qt=. The abrupt change is clearly seen in the figures of
Refs.[16,17] and has recently formed the subject of a paper
in Phys. Rev. Lettef18].) By the interpretation just given, We thank Professor Roi Baer for helpful discussions.
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