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Phase evolution in a multicomponent system
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We derive a general expression for the expectation value of the phase acquired by a time dependent wave
function in a multicomponent system, as excursions are made in its coordinate space. We then obtain the mean
phase for the~linear dynamicE^ e) Jahn-Teller situation in an electronically degenerate system. We interpret
the phase-change as an observable measure of theeffectivenodal structure of the wave function.
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In a recent publication, a geometric~or Berry! phase was
calculated for the wave function of a multicomponent clos
system@1#. This differs from the usually considered situ
tions, in which the Berry phases emerge from the wave fu
tion of the system during the cyclic evolution of some ext
nal parameter. It is of interest to point out that in a famo
prototype of a multicomponent closed system~an electroni-
cally doubly degenerate molecule!, dynamic solutions for the
E^ e linear Jahn-Teller effect~DJTE! were fully obtained as
long ago as 1957@2,3#. The two parts of system were th
electronic and ionic constituents of the molecule. Thou
this has received, as just noted, a complete treatment e
on, the dynamic problem has not left the scientific agen
ever since. Descriptions of some of the early refinements
found in two books@4,5#; the most recent publication know
to us and involving a variational treatment of the problem
in Ref. @6#. The physical consequences of the Berry phase
the DJTE were clearly brought out by Ham@7# and more
recently in Ref.@8#, both of which papers showed~albeit
under different physical conditions! that the value of the
Berry phase may be critical in determining the order of e
ergy levels in the closed molecular system. This phase is
clearly observable by experiment@7#. Its physical interpreta-
tion, essentially along the lines of Refs.@7,8#, will be given
later in this work.

In Ref. @1#, an operator was proposed for the pha
change~called ‘‘quantized phase’’! in a closed system. Here
we shall derive an expression for this phase from first p
ciples and use it to calculate the phase change in the vibr
doublet ground states of anE^ e linearly coupled Jahn-
Teller system. We shall use a ‘‘guessed solution,’’ for t
ground state, which is transparent, intuitively simple and
gebraically easily manageable@4,9,10#. Though not varia-
tionally obtained, the guessed solution was found to h
eigenenergies that are considerably closer to the exact, c
puted energies of Ref.@3# than any other approximate solu
tion with which it was compared. This comparison is seen
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Fig. 2 of Ref.@11#. Later treatments did not test their met
ods by comparison with the guessed solution.

Our point of departure is the time-dependent Schro¨dinger
equation

i
]

]t
c~r ,t !5H~r ,t !c~r ,t ! ~1!

for a wave functionc(r ,t) that depends on the internal co
ordinatesr of the system, as well as on timet. (\51). The
system is coupled to the environment; hence the depend
on t in the Hamiltonian. In a closed system, the Hamiltoni
is time independent.c is still time dependent, as, e.g., in
wave packet.

We write the state~assumed to be regular in the coord
nate space and vanishing at its boundaries! as

c5AeiS ~2!

with A and S being real functions ofr ,t (A.0). We shall
utilize the equation of continuity and the Hamilton-Jaco
equation@15#:

]A2

]t
52

1

m
“~A2

“S!, ~3!

1

2m
~“S!252

]S

]t
2V~r ,t !1

1

2m
A21~“ !2A. ~4!

Herem is a mass parameter common to all degrees of fr
dom, with all coordinates scaled to this mass.V is the poten-
tial.

Let us now consider the change in the wave functio
between the initial state of the system att50 and a final time
t f . Real and imaginary parts of the change in the logarit
are

@ ln c#0
t f5@ lnucu#0

t f1 i @arg~c!#0
t f5@ ln A#0

t f1 i @S#0
t f . ~5!

These are functions of the coordinates. To form quantu
mechanical expectation values~denoted by angular bracket
about the relevant quantities!, we multiply by A2 and inte-
grate over all coordinates. Thus, the mean of the changes
be written as

c-
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^@ ln A#0
t f&1 i ^@S#0

t f&5E
0

t f
dt

]

]tE drA2~ ln A1 iS!. ~6!

@It is natural to conjecture that to form statistical expectat
values~appropriate to mixed states@12#!, the factorA2 is to
be multiplied by the relative statistical weight of the sta
and the contribution due to all states be summed over. We
not pursue this topic here.# Separating real and imaginar
parts we get for the real part the quantity2 1

2 @Se#0
t f , where

Se52E dr ucu2lnucu2. ~7!

Se ~which is different from the phaseS) is reminiscent of a
von Neumann entropy, in which the density operator is p
jected onto the initial state.

We turn now to the rate of change of the expectation va
of the phased^S&/dt. We change the order of integrations
Eq. ~6! and obtain after some manipulations the following

d^S&
dt

5E dr S A2
]S

]t
1S

]A2

]t D
5E dr FA2

]S

]t
2

1

m
S“~A2

“S!G
5E dr FA2

]S

]t
1

1

m
A2~¹S!2G , ~8!

having used Eq.~3! and integrated by parts~with vanishing
integrands at space extremities!. We now substitute for
(“S)2 from Eq. ~4! and obtain a change in the sign of th
first term in the above expression, as well as the expecta
values of~twice! the potential and a term related to the k
netic energies, which can be reworked by a further integ
tion by parts so as to put it into a form of definite sign, givin

d^S&
dt

52E dr S A2
]S

]t D22^V~r ,t !&2
1

mE dr ~“A!2.

~9!

We next recall thatS5Im(ln c) and reinstate the time inte
gration to get the change in phase as

@^S&#0
t f52E

0

t f
dtE dr F ImS c1~r ,t !

]c~r ,t !

]t D
12uc~r ,t !u2V~r ,t !1

1

m
~“uc~r ,t !u!2G , ~10!

where the cross means Hermitian conjugate. On the o
hand, multiplying Eq.~1! by c1(r ,t), integrating over the
coordinates, and again integrating by parts, we obtain
05410
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ImE dr S c1~r ,t !
]c~r ,t !

]t D52E dr
u“c~r ,t !u2

2m

2E dr u~c~r ,t !u2V~r ,t !,

~11!

which we use to eliminate the expectation value of the
tential from Eq.~10!. We then get

@^S&#0
t f5ImE

0

t f
dtE dr S c1~r ,t !

]c~r ,t !

]t D
1

1

mE
0

t f
dtE dr @ u“c~r ,t !u22~“uc~r ,t !u!2#.

~12!

This is our central result for the mean phase change.
first term is of the form familiar in, e.g., expressions of t
open path geometric phase@13#. In the second term, to be
denoted for brevitydK, one has the difference between tw
space-derivative terms, one involving the total~complex!
time-dependent wave function and the other its modulus

We now calculate the phase change in our molecu
model for a multicomponent closed system. The main s
plification in the model is the restriction to a two
dimensional electronic subspace~it being assumed that othe
electronic states of the molecule are too far away to have
effect! and small displacements of the nuclear coordina
from some standard configuration~so that only linear terms
in the nuclear displacement coordinates appear in the Ha
tonian below!. The solution to the mathematical problem~the
DJTE! embodies the correlated nuclear-electronic traject
near a conical intersection of the~diabatic! potential sur-
faces. Under these circumstances, the usual Bo
Oppenheimer approximation breaks down and the desc
tion of the combined dynamics is nontrivial.

The total Hamiltonian consists ofHmol for the internal
degrees of freedom of the molecule and an interaction t
with the environmentHenv :

H5Hmol1Henv . ~13!

The first term is a function of the electronic and nucle
coordinates, while the second term may also contain an
ternally imposed time dependence. Our restriction to a tw
dimensional electronic subspacesu1&,u2& removes from the
formalism the presence of electronic coordinates and lea
only the nuclear coordinates. Two of these, designated
qa ,qb , are of interest.Hmol when expressed in terms of th
bosonic creation (a1,b1) and annihilation (a,b) operators
of the nuclear motion takes the form

Hmol5
v

2 H a1a1 b1b2
k

A2
@~a11a!sz2~b11b!sx#J .

~14!

Herev is the frequency of oscillation of the nuclear motio
andk is the electron-nuclear coupling strength expressed
3-2
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dimensionless units. The 232 matricessx and sz are the
familiar Pauli operators acting on the electronicu1&,u1& sub-
spaces. Equivalent representations of the HamiltonianHmol
are given in works on the Jahn-Teller effect~@4,5,9#!; i.e., in
terms of the nuclear coordinatesqa , qb or of the associated
cylindrical coordinates (q,f), where qa5q cosf, qb
5q sinf, as, e.g., in Eq.~3.5! of Ref. @4#.

The algebraic expression for the ground-state doublet
posed in Refs.@9,10#, and which solves the time-independe
Schrödinger equation for the HamiltonianHmol to a good
approximation, has the following~unnormalized! form:

ĉ~qa ,qb!5exp2
1

2
@~qa2ksz!

21~qb1ksx!
2#. ~15!

~Intuitively, this form is suggested by an analogy with t
ground-state solutions of displaced harmonic oscillators,
its justification is in close agreement with exactly compu
eigenvalues ofHmol @3#.! To obtain the ground-state double
we operate withĉ(qa ,qb) on any two linearly independen
combinations of the basic vectorsu1&,u2&. In a column vec-
tor representation, these are just (0

1),(1
0). The exponential,

which includes noncommuting matrices, can be manipula
by use of the commutation relations between the Pauli
trices to give, in terms of the cylindrical coordinates defin
above, the following expression:

ĉ~q,f!5exp@2k22q2/2#@cosh~kq!I2sinh~kq!

3~sz cosf2sx sinf!#. ~16!

I is the unit 232 matrix. One notes that this is a singl
valued function off ~there are no cosf/2 terms!, as indeed
is required by the wave function of a closed system@7#.

By operating withĉ on (1/A2)(7 i
1 ), one gets the two

degenerate ground-state functionsC(q,f) (5C2) and
C* (q,f) (5C1). The eigenvalues and other related pro
erties of these states have been calculated in Refs.@4,10#.
Here we compute the phase change for each function, a
angular coordinate changes by a full period betweenf50
andf52p.

One procedure to induce such a change in an inte
coordinate~and physically, perhaps, the only consistent o!
is to consider it being guided by an external force alon
circle. ~The concept of a guiding potential was used in, e
Ref. @14#, but here we guide the angular coordinate, rat
than the radial one.! To achieve this, one needs an extern
time-dependent agent acting on the otherwise closed sy
and this is the role played byHenv in the Hamiltonian shown
in Eq. ~13!. We suppose that there is an environment Ham
tonian that induces ad-function like behavior in the wave
function ~forcing f to equalVt) and that this time depen
dentHenv dominates the kinetic energy of the angular va
able. In this,d-function limit the variablef turns into a
~classical! parameter and is no longer a ‘‘degree of freedom

We thus get from Eq.~12!, for the expectation value of th
phase change in theC2 state, the following expression:
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^@S#0
t f&5F ImE

0

t f
dtF E

0

`

dqqC2
1~q,Vt !

]

]t
C2~q,Vt !

1dKG Y E
0

`

dqquC2~q,Vt !u2G , ~17!

wheredK is the second term on the right-hand side of E
~12! involving the space differentials. In all integrals, th
integration is over the radial coordinate qonly, sincef
5Vt is treated as a parameter.

It can be shown thatdK is identically zero for both the
C2 and C1 . ~Remember that the gradient operator indK
involves now only the radial degree of freedomq.! The
evaluation of the first integral in Eq.~17! leads to the plot
shown in Fig. 1 for the mean phase after a full cyclic rev
lution ^@S#0

2p/V& as a function of the coupling strengthk.
As seen in the figure, the acquired mean phase forC2

increases monotonically with the coupling and levels off
strong coupling (k@1) to p ~the value of the Berry phase!.
The corresponding phase for the partner stateC1 is the
negative of this value, and any linear combination of t
ground-state doublets will result in intermediate values
tween the two extremes6p. The phase depends only on th
strength of the couplingk. It is independent of the adiabati
parameterkv/V, since the integrand contains only the i
stantaneous value of the initial componentC2 , and no ad-
mixture from its partnerC1 . @Applying Eq. ~17! to the
eigenstatesFn

6 of Ref. @1# expressed in a coordinate repr
sentation reproduces exactly the results obtained in that
per. However, evaluation of the expectation value of
phase-shift operator proposed in Ref.@1# for the states
C6(q,f) in this work, where the rotating-wave approxim
tion is not made, yields values that diverge quadratically
a largek.#

We conclude with an interpretation of the ‘‘closed
system’’ phase. In this, we follow Refs.@7,8#. For low values
of the coupling constant, the wave function is smeared o
the origin q50 and cannot be said to circlearound this
point, which is a point of degeneracy of the two states. Th

FIG. 1. Expectation value of the phase change after a full cy
in the coordinate space vs the coupling strength. We plot@^S&#0

2p/V

@Eq. ~17!, with dK50] againstk ~introduced in Eq.~13!#. For a
largek, the phase approachesp.
3-3
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there is hardly any acquired phase. For large values of
coupling, the wave function is located nearq5k, meaning
that it keeps away from origin so that circlingaround it can
achieve the full measure of the geometric phase.

On the other hand, it has been known for some time t
~in the adiabatic limit! the phase change comes abo
abruptly, precisely at the moment of circling when a comp
nent amplitude vanishes.~This occurs when cosVt/250 or
Vt5p. The abrupt change is clearly seen in the figures
Refs.@16,17# and has recently formed the subject of a pa
in Phys. Rev. Letter@18#.! By the interpretation just given
ys

,

ls

05410
e

at
t
-

f
r

the phase change is a measure of the extent that a circlin
the coordinate space scans the zeros of the wave functio
the region encircled. Since zeros~nodes! in the wave func-
tion are known to affect~in general, raise! the energies of the
states, it is natural to find that the phase acquired durin
revolution determines the ordering of the energy levels. S
connections between phase change and energy levels
been noted first in Ref.@7# and more recently in Ref.@8#.

We thank Professor Roi Baer for helpful discussions.
n,
@1# I. Fuentes-Guridi, A. Carollo, S. Bose, and V. Vedral, Ph
Rev. Lett.89, 220404~2002!.

@2# W. Moffitt and W. Thorson, Phys. Rev.106, 1251~1957!.
@3# H.C. Longuet-Higgins, U. O¨ pik, M.H.L. Pryce, and R.A. Sack

Proc. R. Soc. London, Ser. A244, 1 ~1958!.
@4# R. Englman,The Jahn-Teller Effect in Molecules and Crysta

~Wiley, Chichester, 1972!.
@5# I.B. Bersuker and V.Z. Polinger,Vibronic Interactions in Mol-

ecules and Crystals~Springer-Verlag, Berlin, 1989!.
@6# J.L. Dunn and M.R. Eccles, Phys. Rev. B64, 195104~2001!;

H. Barentzen, G. Olbrich, and M.C.M. O’Brien, J. Phys. A14,
111 ~1981!; W.H. Wong and C.F. Lo, Phys. Lett. A233, 123
~1996!; N. Manini and E. Tosatti, Phys. Rev. B58, 782~1998!;
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