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Algebraic approach to the Tavis-Cummings problem
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An algebraic method is introduced for an analytical solution of the eigenvalue problem of the Tavis-
Cummings Hamiltonian, based on polynomially deformed su~2!, i.e., sun(2) algebras. In this method the
eigenvalue problem is solved in terms of a specific perturbation theory, developed here up to third order.
Generalization to theN-atom case of the Rabi frequency and dressed states is also provided. A remarkable
enhancement of spontaneous emission ofN atoms in a resonator is found to result from collective effects.

DOI: 10.1103/PhysRevA.67.053808 PACS number~s!: 42.50.Ct
o
ro
m
x

th
th

rs

ld

e

ic

e
n-
ed

s
le-

d in

can
of

he
ian
tion
n be
s-
mu-

del
a-
t is

s

er-
pli-
I. INTRODUCTION

We consider here the collective behavior of the system
N two-level atoms coupled to a single mode of the elect
magnetic field in a resonator. The useful form for the ato
field interaction was proposed in the rotating wave appro
mation ~RWA! by Tavis and Cummings@1#. In their model,
N identical two-level atoms interact via dipole coupling wi
a single-mode quantized radiation field at resonance, so
the Hamiltonian is given by

H5H01V, H05va†a1v0S S31
N
2 D ,

V5g~a†S21aS1!. ~1!

Herev is a frequency of the electromagnetic field andv0 is
the level splitting of the two-level atoms. The operato
S3 ,S6 are collective spin variables ofN two-level atoms.
These operators are defined as

S35(
j 51

N
s3

j , S65(
j 51

N
s6

j , ~2!

wheres ’s are Pauli matrices. They satisfy the su~2! algebra.
a,a† are the annihilation and creation operators of the fie
Due to historical reasons, the Tavis-Cummings~TC! model is
often called the Dicke model@2#. We concentrate here on th
case of exact resonance, i.e.,v5v0. In this case, the system
exhibits a most interesting collective behavior. For simpl
ity, time will be measured in units of the coupling constantg,
i.e., we assume in the following thatg51.

The one-atom version of the TC model, i.e., the Jayn
Cummings model~JC! @3# has recently attracted much atte
tion because of, e.g., the spectacular experiments report
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Ref. @4#. In this work the properties of a dilute flux of atom
excited to the Rydberg states and interacting with a sing
quantum mode of the electromagnetic field were analyze
a high-Q cavity. The results reported in Ref.@4# demonstrate
that the physical assumptions underlying the JC model
indeed be experimentally realized. This triggered a lot
theoretical interest towards the one-atom micromaser~micro-
laser! ~see Refs.@5–7# and references therein!. The analysis
of the JC model is greatly simplified by the fact that t
eigenvalue problem of the Jaynes-Cummings Hamilton
can be solved exactly. An algebraic approach to the solu
of the generalized Jaynes-Cummings types of models ca
found in Refs.@8,9#. The approach to the Tavis-Cumming
type models based on the algebraic bethe ansatz is for
lated in Ref.@10#.

An analytical solution of theN-atom case, i.e., the TC
model, is much more complicated than that of the JC mo
and is thus still far from completion. In this paper, we an
lyze this model and develop an analytical technique tha
applicable to a variety of problems of TC type.

To begin with, we notice that Hamiltonian~1! belongs to
a class of operators that can be expressed in the form:

H5 f ~A0!1g~A11A2!. ~3!

Here f (x) is an analytic function ofx with real coefficients,
while the operatorsA6 satisfy the commutation relations

@A0 ,A6#56A6 . ~4!

We also assume the operatorH to be self-adjoint. This mean
that, for any irreducible representation~irrep!, the operators
A0 ,A6 must satisfy the conditions

~A0!†5A0 , ~A2!†5A1 . ~5!

It is worth mentioning that Hamiltonians of type~1! are also
used in description of the Raman and the Brillouin scatt
ing, and frequency conversion, as well as parametric am
fication that involves trilinear boson operators@11#:
©2003 The American Physical Society08-1
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H5va†a1(
i 51

2

v ibi
†bi1g~b1

†b2a1b1b2
†a†!. ~6!

The equivalence of Hamiltonians~1! and ~6! can be readily
seen by applying the Schwinger transformation

S15b1
†b2 , S25b1b2

† , S35
1

2
~b1

†b12b2
†b2!. ~7!

The Hamiltonians of the type of Eq.~3! are usually ana-
lyzed by approximating them with an exactly solvable on
The solvable Hamiltonian is usually quadratic in the bos
operators or linear in the generators of a classical Lie a
bra. In this approach, the so-called parametric approxima
or its variations@12–14# are often used. The basic assum
tion of this approximation is that one of the quantum mod
or subsystems is prepared in a highly excited~often coher-
ent! state, or in a state close to the vacuum. This approa
however, puts certain restrictions on the type of possible
tial conditions as well as on the timespan over which
quantum dynamics can be followed. Another type of an
proach to the solution of Hamiltonian~3! is based on pertur
bation theory for nonlinear algebras@15#. This approach re-
quires, however, the existence of a small parameter. In
TC model, such a parameter was found in the case where
atoms are in completely symmetric states (r 5N/2) @16,17#.

The basic idea of the present work is to combine th
two approaches through algebraic methods as applied,
in Refs. @18–21#!. To this end we reformulate the Hami
tonian in terms of an algebra that better allows the diago
ization of the Hamiltonian. This idea was already used
Holstein and Primakoff@22#. They expressed the generato
S3 ,S6 of the su~2! algebra in terms of boson operatorsb,b†,

S35r 2b†b, S15A2rA12
b†b

2r
b, S25~S1!†. ~8!

Herer is an index that characterizes the irrep of su~2!. How-
ever, in Ref.@22# the square root in the transformation E
~8! was in the end replaced by unity, which amounts to
plying the so-called ‘‘weak-field’’ approximation (^b†b&
!2r ). Obviously, this approximation corresponds to zero
order in the expansion of the problem with respect to para
eter 1/2r . Transformation~8! has also been applied@23# with
expansion up to second order.

We consider here the case when the operatorsA0 ,A6 in
Eq. ~3! are generators of a polynomial deformationsun(2) of
the Lie algebra su~2! @21,24,25#. Numerous physical applica
tions exist for polynomially deformed algebras@22,26,28–
37#. A particularly interesting, in view of the present pro
lem, application of deformed algebras was developed
Karassiov ~see in Ref.@26# and references therein!. The
method to be introduced below is an extension of Kar
siov’s method.

We introduce here the notion of a polynomial algebra
excitations ~PAE!. In this algebra the coefficients of th
structure polynomials arec numbers, rather than the Casim
operators as is typical of polynomial deformations. We d
rive an exact mapping between isomorphic representation
05380
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two arbitrary PAE. We also provide a classification of is
morphic representations of polynomial algebras of exc
tions. In our approach, classes of isomorphic representat
are specified by the multiplicity of the maximal and minim
eigenvalues of the operatorA0 in the given representation
We formulate then an analytical approach that allows us
expand the Hamiltonian, when expressed in terms of PAE
a perturbation series.

For completely symmetric states of atoms, our resu
agree with those reported in Refs.@16,17#. Our formalism
provides, however, a solution of the problem for any value
r, which allows us to discuss new physical effects in t
Dicke model.

The paper is organized as follows. In Sec. II, we discu
the irreducible representations of PAE. In Sec. III, we ap
the general approach to the Tavis-Cummings model, an
Sec. IV, we construct the perturbation theory for the T
Hamiltonian and solve its eigenvalue problem up to th
order. The generalizedN-atom quantum Rabi frequency i
defined for arbitrary quantum states of the system. In Sec
we use the zero-order approximation for the TC Hamilton
to calculate the intensity of spontaneous emission of ato
prepared in the state of thermal equilibrium with the reso
tor mode. We show that the correlation of the atoms due
interaction with the field gives rise to the enhancement
spontaneous emission as compared to the atoms in the
sence of resonator. In conclusion, we discuss possible fur
applications of the methods developed here. Technical de
of the algebraic manipulations are given in the Appendix

II. IRREDUCIBLE REPRESENTATIONS OF THE
POLYNOMIAL ALGEBRA OF COLLECTIVE

EXCITATIONS

The coefficients of the structure polynomial of a polyn
mially deformed algebra are usually expressed through
Casimir operators of the algebra. In this section, we disc
representations of a special class~PAE! of polynomially de-
formed algebras when the coefficients of the structure po
nomial arec numbers. We denote a PAE with a structu
polynomial of orderk asUk . Formally,Uk is an associative
algebra with unity, defined by three generatorsA6 ,A0.
These generators satisfy two basic commutation relatio
Eq. ~4!. As can be readily seen from these commutation
lations,@A0 ,A1A2#50. We can thus assume that

A1A25pk~A0!5c0)
i 51

k

~A02qi !. ~9!

Herepk(x) is a structure polynomial of orderk, whose co-
efficients are generally complex numbers. The terminolog
chosen in analogy to the structure functions of quantum
gebras (q-deformed algebras! @27#, and the structure con
stants of the linear Lie algebras. The set ofn real roots of the
structure polynomial is denoted by$qi% i 51

k . In physical ap-
plications, the operatorsA6 of Eq. ~4! often play the role of
creation and annihilation operators of collective excitatio
Therefore, hereafter the algebraUk will be referred to as the
PAE of orderk. Notice that this algebra is different from th
8-2
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ALGEBRAIC APPROACH TO THE TAVIS-CUMMINGS PROBLEM PHYSICAL REVIEW A67, 053808 ~2003!
algebrasun(2). All PAE’s arecompletely defined byk11 c
numbers, the coefficientc0, and thek roots$qi% of the struc-
ture polynomial. In the case ofsun(2), however, the struc-
ture polynomial has some coefficients in the form of t
Casimir operators.

Below we consider two elementary, but important for t
following, examples of PAE. First we assume, without lo
of generality, thatc0561. Indeed, in the caseuc0uÞ1, it is
always possible to renormalize the generators ofUk ,

A6→uc0u21/2A6 , ~10!

such that commutation relations~4! remain intact. Using
these commutation relations, it can also be readily seen

A0A65A6~A061!, A2A15pk~A011!. ~11!

As indicated above,A1 andA2 have the physical mean
ing of creation and annihilation operators of collective ex
tations~quasippapers!, while A0 is the operator for the num
ber of excitations. The most simple and important exam
of a PAE of first order,U1, is provided by the well-known
Heisenberg-Weil Lie algebra, viz.,

b†→A1 , b→A2 , b†b→A0 ,

c051, q150. ~12!

Here b,b† are the usual boson operators. For the sake
simplicity, in what follows we will denote the generators
U1 by b,b†. The algebraU1 allows us to construct the irre
of any other PAE of higher orderk.1 as a multiple tenso
product ofU1.

An example of a PAE of second order, denoted here
Sr , that is relevant to the algebra su~2!, is given by the com-
mutation relations

@S3 ,S6#56S6 , @S1 ,S2#52S3 . ~13!

It is plain that

S1S25S22S3
21S3 . ~14!

For every irrep the Casimir operatorS2 is equal to r (r
11)I , where I is the identity operator. The correspondin
PAE of second order,Sr , is constructed such that

S1→A1 , S2→A2 , S3→A0 ;

c0521, q152r , q25r 11. ~15!

Obviously,Sr has a matrix irrep isomorphic to the irrep o
su~2! with the samer. Notice thatonly in this representation
of Sr condition ~5! is fulfilled. This gives us a motivation to
denote the three generators ofSr as S̃3 ,S̃6 .

Previously @38# we have proposed a general method
construct a realization of any PAEUk through the algebra
U1. Choosing a rootqj of the structure polynomial we ca
construct this realization in the form
05380
s
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A05bj
†bj1qj , A15Ac0 )

i 51,iÞ j

n

~bj
†bj1qj2qi !bj

† ,

A25bjAc0 )
i 51,iÞ j

n

~bj
†bj1qj2qi !. ~16!

Herebj ,bj
† are the usual boson operators associated w

the chosen rootqj of the structure polynomialpk(x). The
corresponding Fock vectors, i.e., the eigenvectors ofbj

†bj ,
are denoted asun& j . In what follows, the chosen rootqj of
the structure polynomial will be referred to as thepivotal
root. Notice that the product in Eq.~16! always contains
exactly k multipliers regardless of the multiplicity of the
root. Sincebj

†bj has a well-defined discrete spectrum, t
square-root function is defined in the form of spectral d
composition. We specify the branch of the square root
choosingA215 i . It is easy to see that condition~9! and
commutation relations~4! for generators ofUk are satisfied.

A useful automorphismT̂ @38#,

T̂b†5 ib, T̂b5 ib†⇒T̂b†b52~b†b11!, ~17!

of U1 allows us to construct another realization ofUk through
U1,

A05qj212bj
†bj ,

A15bjA~2c0! )
i 51,iÞ j

k

~qj2qi2bj
†bj !,

A25A~2c0! )
i 51,iÞ j

k

~qj2qi2bj
†bj !bj

† . ~18!

It is worth mentioning that transformations similar to Eq
~16! and~18! have been introduced earlier under the name
multiboson realizations of the Bose operators. These mu
boson realizations satisfy the usual boson commutation r
tions @A,A†#51 @28–30#.

Applying the realizations~16! and~18! in any representa-
tion of U1, we can construct a representation ofUk . In the
case of realization~16!, an irreducible representation ofUk is
constructed through the application of the operatorA1 to the
vacuum vectoru0& j . The finite-dimensional representatio
can be constructed in the case when the rootqj 11 is sepa-
rated fromqj by a natural numberd. Then it can be readily
seen thatA1

d u0& j50. Indeed, provided thatA25A1
† , it is

not difficult to show that the norm of the vectorA1
d u0& j

vanishes, i.e.,j^0uA2
d A1

d u0& j50. The general construction
can be exemplified bySr . Whenr is an integer or half inte-
ger, d5q12q252r 11 is an integer, andSr has a finite-
dimensional irrep which is isomorphic to the correspond
irrep of su~2!.

In the case of realization~18!, the corresponding irrep is
constructed through the application of the operatorA2 to the
vacuum vectoru0& j . Using an argumentation similar to tha
given above, it can be seen that the finite-dimensional re
8-3
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VADEIKO et al. PHYSICAL REVIEW A 67, 053808 ~2003!
sentation can now be constructed, provided that the rootqj 21
is separated fromqj by a natural number.

The meaning of transformations~16! and ~18! becomes
now transparent. The realization~16! corresponds to the cas
when the operatorA1 is a creation operator, while realiza
tion ~18! corresponds to the case whenA1 is an annihilation
operator.

Since the spectrum of operatorbj
†bj is a set of natural

numbers and zero, the operatorA02qj in Eq. ~16! has a
non-negative spectrum. Therefore, the argument of
square-root function is a positive operator in the fini
dimensional subspace, where the structure polynom
pk(A0) has non-negative spectrum. In this case, the op
tors A1 and A2 are Hermitian conjugated. In the subspa
corresponding to the negative values of the spectrum of
structure polynomial, the argument of the square-root fu
tion in Eq. ~16! has a negative spectrum. The operators w
be anticonjugated, i.e., (A2)†52A1 , which is not plau-
sible. Thus, in a physical problem@see Eq.~5!#, we should
only consider those irrep for which the spectrum ofpk(A0)
is non-negative. The same is true for Eq.~18!.

The two relations, Eqs.~16! and ~18!, between any two
algebrasUk and U1, show that there is no principal differ
ence as to how exactly the meanings of the creation
annihilation operators of collective excitations are prescrib
to the pairA6 . The important point is that the pair exists.
is the physical problem in question which prescribes
meaning of operatorsA6 and determines the location of th
equidistant spectrum ofA0 on the real axis. Should one b
interested in the eigenvalues ofA0, to the right of the pivotal
root qj , it is necessary to choose the transformation Eq.~16!,
while for the region to the left ofqj , it is necessary to use
realization~18!. As was explained above, we choose the
gion such that the structure polynomial is non-negative.

The general considerations given above can be illustra
by the Sr algebra. In the case of the realization ofSr con-
nected to the pivotal rootq152r , it is necessary to use Eq
~16!. This leads to the conventional Holstein-Primakoff re
resentation,

S̃35b1
†b12r , S̃15A2r 112b1

†b1b1
† , S̃25~S̃1!†.

~19!

In the case ofq25r 11, we use the realization Eq.~18!,

S̃35r 2b2
†b2 , S̃15b2A2r 112b2

†b2, S̃25~S̃1!†.
~20!

The spectra ofb1
†b1 andb2

†b2 are limited from above by
the value 2r , while the subspace spanned by eigenvect
un&1,2(n50,1, . . . 2r ) of operatorA0 is irreducible@cf. Eq.
~8!#.

Obviously, all the realizations of PAE constructed throu
Eqs.~16! and~18! are fully characterized by the dimensiond
of the invariant subspace and by the orderk2 of the left and
k1 of the right roots defining the corresponding irreducib
representation. Thus an irrep of PAE is characterized by a
of parameters$k2 ,k1 ,d%. Such irrep we will denote by
05380
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R(k2 ,k1 ,d). For instance,R(1,0,̀ ) means the representa
tion of U1, while the irrep ofSr is R(1,1,2r 11).

An isomorphism between irreps ofUk andU8k8 that be-
long to the same classR(k2 ,k1 ,d), is given by

A05A081~qj2qj 8
8 !,

A15!c0)
i 51

k

~A081qj2qj 8
8 2qi !

c08 )
i 851

k8

~A082qi 8
8 !

A18 ,

A25A28 !c0)
i 51

k

~A081qj2qj 8
8 2qi !

c08 )
i 851

k8

~A082qi 8
8 !

, ~21!

or by

A05~qj 8
8 1qj21!2A08 ,

A15A28 !c0)
i 51

k

~qj 8
8 1qj2A082qi !

c08 )
i 851

k8

~A082qi 8
8 !

,

A25!c0)
i 51

k

~qj 8
8 1qj2A082qi !

c08 )
i 851

k8

~A082qi 8
8 !

A18 . ~22!

In Eqs. ~21! and ~22!, the operator argument of the squar
root function should be taken after identical multipliers in t
nominator and denominator are canceled. The pivotal ro
qj and qj 8

8 define a vacuum vector of the irrep. Compa
these expressions with Eqs.~16! and ~18!.

To recapitulate: in the general case two irreducible rep
sentationsR(k2 ,k1 ,d) andR8(k28 ,k18 ,d8) of Uk andU8k8
are isomorphic provided thatd5d8, and

k25k28 , k15k18 or k25k18 , k15k28 . ~23!

For symmetric irreps, i.e., whenk15k2 , these condi-
tions coincide. The isomorphism is a consequence of the
that, under conditions~23!, one can chooseqj (qj8) in such a
way that the functions under the square root in Eqs.~21! and
~22! do not have zeros in the spectrum of operatorA0, and
therefore we can consider the square root as a single-va
analytic function. This means that transformations are inv
ible, analytic, and therefore define an isomorphism of irre
8-4
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ALGEBRAIC APPROACH TO THE TAVIS-CUMMINGS PROBLEM PHYSICAL REVIEW A67, 053808 ~2003!
The constructed transformations give us a tool to rea
Uk in terms of a simpler PAE with the same type of irre
This procedure will be applied below to the Tavis-Cummin
Hamiltonian.

III. THE TAVIS-CUMMINGS HAMILTONIAN IN TERMS
OF THIRD-ORDER PAE

The interaction part of the Hamiltonian Eq.~1! can be
expressed in terms of third-order PAE. The generat
M0,M 6 of this algebra are realized as

M 25aS1 , M 15a†S2 , M05
a†a2S3

2
. ~24!

It is plain that these generators satisfy commutation relati
~4!. The generators of the algebraM0 ,M 6 commute with the
operators

M5a†a1S31r , S25S3
21

1

2
~S1S21S2S1!. ~25!

Hereafter, we use the same notationM both for the Casimir
operator and its eigenvalue, if no confusion arises. We sh
below that the eigenvaluesM ,r (r 11) of the operators of
Eq. ~25! parametrize the PAE in question. We thus den
this PAE asMM ,r . The structure polynomial ofMM ,r can be
expressed in the form

p3~M0!5M 1M 25a†a~S22S3
22S3!

5a†a~r 2S3!~r 1S311!

52S M01
M2r

2 D S M02
M23r

2 D
3S M02

M1r 12

2 D . ~26!

The parameters of this structure polynomial are

c0521, q152
M2r

2
,

q25
M2r

2
2r , q35

M2r

2
1r 11, ~27!

and its behavior as a function ofM0 is given in Fig. 1.
We turn next to the description of finite-dimensional irr

of MM ,r . In physical applications, the parameterr has the
meaning of collective Dicke index. This index runs fro
«(N)511(21)N/4 to N/2 with unit steps, whileM can be
any natural number including zero. Thus,q3 is the biggest
positive root of first order. IfM,2r , then q1.q2; if M
.2r thenq1,q2; the caseM52r⇒q15q2 corresponds to
a root of second order. A typical plot of the structure po
nomial is shown in Fig. 1 for these three cases is given
finite-dimensional representation ofMM ,r @where (M 1)†

5M 2) corresponds to the positive spectrum ofp3(M0)].
The spectrum is limited from the right byq3 and from the
05380
e
.
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rs
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e
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A

left by q1 or q2. Notice that the numberM is conserved.
Therefore, this number is determined by the initial state. T
different values ofM and r define different algebrasMM ,r ,
whose single physical finite-dimensional representation
will call a zone. The caseM,2r corresponds tonearby
zones. The two largest roots areq1 andq3 and the irrep has
the typeR(1,1,M11). Consequently, the well-known weak
field limit corresponds to nearby zones.

The caseM.2r corresponds toremotezones. The two
largest roots areq2 andq3, and the corresponding irrep is o
the typeR(1,1,2r 11). Notice that the regionM@2r is usu-
ally called the strong-field limit.

In the special case 2r 5M , called asintermediatezone,
the algebraMM ,r possesses an irrep of the typeR(2,1,2r
11). It is the only irreducible representation that principa
differs from all the others.

As indicated above, the simplest PAE with irrep of th
type R(1,1,d) is Sr̃ ~we use herer̃ to distinguish it from the
~physical! collective index r ). It would be convenient to
solve the eigenvalue problem in terms of the simplest alge
Sr̃ . Notice that in any finite-dimensional irrep of PAE cha
acterized byR(1,1,d), the structure polynomial of the alge
bra can be approximated by a parabolic curve. This is sho
in Fig. 2 ~for MÞ2r ) for the structure polynomial ofMM ,r .
The larger~smaller! M is in comparison with 2r , the better is
the approximation. However, forM'2r the approximation
is not satisfactory@see Fig. 2~b!#. In the regions where the
approximation is adequate, it is then not difficult to diag
nalize the operatorV5S11S2 , defined in terms of genera
tors of the conventional su~2! algebra. The latter has a para
bolic structure polynomial. In Fig. 2 the two roots ofp2(x)
are chosen to be equal to the corresponding two roots
p3(x). The choice ofc0 in p2(x) will be explained below.
Thus in the cases of nearby or remote zones, it is conven
to study the problem in terms of algebraSr̃ . The approxima-
tion illustrated in Fig. 2 indicates that the TC problem can
solved via an appropriate perturbation theory.

To begin with, we consider the transformation ofMM ,r to
Sr̃ for the case of remote zones. The dimension of a rem
zone is 2r 11, and the algebraSr̃ should be characterized b

FIG. 1. The structure polynomialp3(x) of theMM ,r algebra for
r 52.
8-5
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VADEIKO et al. PHYSICAL REVIEW A 67, 053808 ~2003!
r̃ 5r . The finite-dimensional irrep ofSr̃ is isomorphic to the
corresponding irreducible representation of the atomic s
system. For the pivotal rootqj , we choose the largest roo
that bounds the irrep ofMM ,r from the right@the q3 in Eq.
~27!#, while as the rootqj 8

8 we take theq1 of Sr from Eq.
~15!. Applying mapping~22! we obtain

M05
M2r

2
2S̃3 , M 15S̃2

A~M2r 112S̃3!,

M 25A~M2r 112S̃3!S̃1 . ~28!

The spectrum$m̃% of the operatorS̃3 belongs to the region
2r<m̃<r , consequently the argument of the square-r
function in Eq.~28! is positive in the remote zones (M2r
.r ). The relations, Eqs.~28!, express the generators of a
gebraMM ,r as analytic function of the generators of theSr
algebra. They thus allow us to approximate the more co
plex algebraMM ,r of third order by a simpler algebra o
second order.

Before we begin to study this approximation, we co
struct a realization ofSr in terms of boson and spin variable
From Eqs.~24!, ~25!, and ~28! it follows that in remote
zones,

S̃35S3 , S̃15
1

Aa†a11
aS1 , S̃25~S̃1!†. ~29!

Notice that the subspaces that correspond to remote zone
not contain the vacuum state of the field. It is also wo
mentioning that the matrix representation of the opera
1/Aa†a11a is dn,n11 in any remote zone. This operator h
been considered before as earlier in terms of phase ope
@17–19#.

We turn now to the nearby zonesM,2r . For this region,
the mapping of the algebraMM ,r to the algebraSr̃ is realized
through procedure similar to that described above for rem
zones. Notice that the dimension of nearby zones isd5q3

2q15M11, and thereforer̃ 5M /2 @cf. Fig. 2~a!#. For the
nearby zones there is no simple correspondence to a phy

FIG. 2. Approximation of the structure polynomialp3(x) by the
parabolicp2(x) for r 52. ~a! M51; ~b! M54; ~c! M512.
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representation like that of Eq.~29!. The particular choice of
the pivotal rootqj 8

8 is unimportant and we use the sam
choice as before. Applying Eq.~22! we obtain

M05
r

2
2S̃3 , M 15S̃2AS 4r 2M

2
112S̃3D ,

M 15~M 2!†. ~30!

Since all the eigenvalues of the operatorS̃3 belong to the
interval 2 r̃ to r̃ , the argument of the square-root functio
does not have zero eigenvalues in the nearby zones.
realization ofSr̃ through spin and boson variables is th
given by

S̃35
M

2
2a†a, S̃15

1

Ar 112S3

S1a,

S̃25S2

1

Ar 112S3

a†. ~31!

Notice that the nearby zones do not contain the eigenve
ur ,r & of S3.

To clarify the structure of intermediate zone we choo
the pivotal root as the third root ofp3(x) of Eq. ~27!, and
apply transformation~18!. We thus obtain

M05q32b3
†b3215

M1r

2
2b3

†b3 ,

M 15b3A~M112b3
†b3!~2r 112b3

†b3!,

M 25A~M112b3
†b3!~2r 112b3

†b3!b3
† . ~32!

Hereb3 ,b3
† are generators of the algebraU1.

In the regionM.2r , the multiplier (2r 112b3
†b3) in

Eq. ~32! vanishes first. This corresponds to remote zones
the regionM,2r , the multiplier that vanishes first is (M
112b3

†b3). In the intermediate zoneM52r , we have

M 15b3~2r 112b3
†b3!, M 25~2r 112b3

†b3!b3
† .

~33!

In the intermediate zone we thus obtain a special realiza
of the TC Hamiltonian,

H $M52r %5S 2r 1
1

2D ~b31b3
†!2

1

2
@b3

†b3~b31b3
†!

1~b31b3
†!b3

†b3#. ~34!

The domain of the quantum space for this Hamiltonian
specified by the conditionn3<2r .
8-6
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IV. DIAGONALIZATION OF THE TAVIS-CUMMINGS
HAMILTONIAN

Let us introduce anN-atom generalization for arbitrar
valuesr andM of the well-known quantum Rabi frequenc
such that

VR[H 2AM2r 1 1
2 , M>2r

2A4r 2M11

2
, M,2r .

~35!

For r 5N/2 our definition agrees with that used in Re

@16,17#. Introducing a small parametera[( 1
2 VR)22 we can

rewrite the realizations ofM 6 in nearby and remote zone
@see Eqs.~28! and ~30!# in the form

M 15
VR

2
S̃2A12aS S̃32

1

2D , M 25M 1
† . ~36!

The diagonalization problem for operator~1! can now be
solved in each zone by means of perturbation theory w
respect to the small parametera. One can show that the
eigenvalues of the argument of the square-root function
Eq. ~36! are less than unity. Hence, we can expand the sq
with respect toa, and find thereby for the interaction part o
the Hamiltonian

V5
VR

2
H ~S̃11S̃2!2

a

2 F S S̃32
1

2D S̃11S̃2S S̃32
1

2D G
2

1

2! S a

2 D 2F S S̃32
1

2D 2

S̃11S̃2S S̃32
1

2D 2G

2F (
n53

`
~2n23!!!

n!
S aS S̃32

1

2D
2

D n

S̃11S̃2

3 (
n53

`
~2n23!!!

n!
S aS S̃32

1

2D
2

D nG J . ~37!

In the interaction representation the Hamiltonian coincid
with V, we only need to diagonalize the latter. Up to thi
order ina we find that

V5
VR

2
~V(0)1V(1)1V(2)1V(3)!,

where theV(n) are the terms ofnth order ina, and are given
in the Appendix. In the Appendix, we also show that unita
transformationsŨk , k50,1,2,3, which bring the interactio
operator into diagonal form:

V̄[ŨVŨ215VRS̃3H 11S a

4 D 2

@5S̃3
223r̃ ~ r̃ 11!11#J ,
05380
.

h

in
re

s

Ũ[Ũ3Ũ2Ũ1Ũ0 . ~38!

The spectrum of the operatorV as given by Eq.~38! agrees
with the results of Refs.@16,17# for the symmetric states o
the atoms.

We compared third-order solution~38! with the exact nu-
merical diagonalization ofV and found that result~38! is
very accurate, especially for increasing values ofuM22r u.
The results of this comparison are shown in Fig. 3.

In their original paper@1#, Tavis and Cummings also
found an approximative analytical expression for the sp
trum of the interaction operatorV. We compare the results o
Ref. @1# with our analytical and numerical solutions in Fig.
It is evident that the Tavis and Cummings solution is on
accurate for very large and very small values of indexj.

Figure 5 compares the energies calculated numeric
and in accordance with analytical solution~38!. In the inter-
mediate region ofM, the curves for nearby and remote zon
overlap and coincide thus providing still satisfactory cor
spondence to the exact solution. However, evidently the
pansion for the remote zone breaks down in the nearby z
and vice versa. This means that the classification of zo
introduced in this paper is indeed adequate.

Finally, we consider theN-atom dressed states. In other
words, we introduce a representation in which the zero-or
Hamiltonian is diagonal. This representation is given
transformationŨ0. For N51, all the higher-order terms in
Eq. ~37! ~higher than zero order! vanish, while the eigen-
states of the zero-order Hamiltonian coincide with t
dressed states of the Jaynes-Cummings model. We can
call the eigenstates of the zero-order Hamiltonian thedressed
statesof the N-atom model. Notice also that in the remo
zones the Rabi frequency~35! does not depend on the Dick
index r. If we consider only the zero-order terms ofH, it is
convenient to combine all the remote zones that have
same Rabi frequency into a remotesuperzone, whose dimen-
sion is 2N. Introducing an operator for the total number
quanta in the atom-field system@cf. the definition ofM in Eq.
~25!#,

FIG. 3. Deviation of the eigenvalues ofV from their numerical
values in zero~solid line! and second~dashed line! order ina, for
r 56.
8-7
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K5a†a1S31
N
2

, ~39!

we can define the remote superzone as follows. A rem
superzone contains all eigenvectors ofK that have the same
eigenvalue, provided it is larger thanN. In Fig. 6, we show
the definition of the zones in the Tavis-Cummings model
N54.

It can be readily seen that, in the Hilbert subspace co
sponding to the remote superzone, the unitary transforma
Ũ0 can be factorized into a product ofN single-particle
transformations that are the dressing operators for
Jaynes-Cummings problem@cf. Eq. ~29!#,

Ũ05)
j 51

N
expFp

4 S 1

Aa†a11
as1

j 2s2
j a†

1

Aa†a11
D G .

~40!

From the discussion following Eq.~29!, it follows that in
each remote superzone, the field operators 1/Aa†a11a and

FIG. 4. Energy levels ofV in the ascending order forr 525, as
calculated numerically~circles!, from Eq.~38! and~crosses!, and as
is given in Ref.@1# ~squares!. ~a! M550; ~b! M52525.

FIG. 5. The dependence onM of the maximal eigenvalue ofV
for r 53, as calculated numerically and from Eq.~38!.
05380
te

r
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e

a†1/Aa†a11 commute. This means that the system beha
almost like a semiclassical one.

V. ENHANCEMENT OF SPONTANEOUS EMISSION IN
THE RESONATOR DUE TO COLLECTIVE EFFECTS

In the preceding section we developed an algebraic
proach to the Tavis-Cummings model. We introduced
operatorsS̃6 describing collective excitations in the atom
field system. In terms of these operators we constructe
perturbation series for the Tavis-Cummings Hamiltonian E
~1!. The derived perturbation series gives us a tool to dis
guish and classify cooperative~multiparticle! effects of dif-
ferent orders that are involved in calculations of differe
physical observables characterizing the atom-field system
the preceding section we constructed a Hamiltonian Eq.~37!
corresponding to the zero-order approximation for t
Hamiltonian Eq.~1!. This simplified operator depends o
multippaper Rabi frequency Eq.~35!, which depends on the
number of atoms in the cavity. Therefore, the simplifi
Hamiltonian Eq.~37! allows to account for cooperative e
fects in the system.

In this section, we study a contribution of cooperati
effects into the rate of spontaneous emission generated

FIG. 6. Zones structure forN54. E(1) is the spectrum of the
zero-order Hamiltonian.K is an eigenvalue of the correspondin
operator~39!, andG(r ) is a number of equivalent irreps of su~2!
defined below.
8-8
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ALGEBRAIC APPROACH TO THE TAVIS-CUMMINGS PROBLEM PHYSICAL REVIEW A67, 053808 ~2003!
the atom-field system. The atom-field system is assume
be prepared in the state of thermal equilibrium. This stat
described by the canonical Gibbs ensemble with the ther
stat temperatureT. This means that under the ‘‘system’’ w
imply N atoms strongly coupled to the resonator mode. U
der the ‘‘thermostat’’ we imply the surrounding environmen
for instance, cavity walls taken at the temperatureT. In the
state of thermal equilibrium, the exact atom-field density m
trix should be defined using the Hamiltonian Eq.~1!. How-
ever, for the exact density matrix the analytical analysis
the transition probability, if possible at all, would be high
technically involved.

We demonstrate that nontrivial physical results for t
intensity of spontaneous emission ofN two-level atoms
placed inside the cavity can be already obtained for the z
order approximation of the exact Hamiltonian Eq.~37!. The
thermal state is given by

r th5
1

Z
expF2

H01
VR

2
~S̃11S̃2!

kT
G . ~41!

HereZ is a normalization factor.
We show here that the intensity of spontaneous emis

of the system comprised ofN atomsstronglycoupled to the
resonator mode and prepared in the thermal state ca
greatly enhanced at a certain temperature. This amplifica
results from high correlations in the atomic subsystem. Si
lar effect exists for Dicke’s super-radiant state@2#. This state
is prepared by a short laser pulse. Therefore, the settin
Dicke’s theory is quite different from our considerations
the stationary state of thermal equilibrium.

When calculating the rate of spontaneous emission~or the
intensity proportional to this quantity!, we merely follow the
ideas of Dicke’s paper~see, e.g., Ref.@2#!. According to this
theory, the rate of spontaneous emission in the system
proportional to the average of the square of the atomic
pole, viz.,

I 5I 0^S1S2&5I 0Tr$r thS1S2%. ~42!

It is convenient to calculate the average in the dressed s
basis, where

r th→
1

Z
Ũ0r thŨ0

215expF2
H01VRS̃3

kT
G . ~43!

Taking into account Eq.~14! along with the fact that, for an
arbitrary zone,

S35~ r̃ 2r !1S̃3 , ~44!

it can be shown that in the dressed states basis

Ũ0~S1S2!Ũ0
215 r̃ S 2r 2

3

2
r̃ 1

1

2D2S r 1
1

2
2 r̃ D ~S̃1S̃2!

2
1

4
~S̃1

2 22S̃3
21S̃2

2 !. ~45!
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Finally, the intensity of spontaneous emission is given by

I 5
I 0

Z (
M50

`

(
r 5«

N/2

G~r ! (
m̃52 r̃

r̃

exp

2vS M2r 1
N
2 D1VRm̃

kT

3F r̃ S 2r 2
3

2
r̃ 1

1

2D1
1

2
m̃2G . ~46!

Here «[@12(21)N#/4, and G(r )5@N!(2r 11)#/@(N/2
1r 11)!(N/22r )! # is the number of equivalent represent
tions with the samer.

Let us consider the intensity per atom, i.e.,I 1[I /N. This
intensity consists of two terms, i.e., the first is given by
single-particle contributionI single and the second one pro
portional to the two-particle correlation functionFCor, I 1
5I single1I 0(N21)FCor . They are found to be

I single[I 0

1

N K (
i

s1
i s2

i L 5I 0S 1

2
1

1

N ^S3& D ,

FCor[
1

N~N21! K (iÞ j
s1

i s2
j L . ~47!

It is plain that in the absence of the cavity, the correlati
function vanishes and the only contribution toI 1 is given by
the first term,

I single5I cl[I 0~11ev/kT!21. ~48!

The contribution of any remote superzone can easily
found due to the factorization property of the operator E
~40!. If we denote the trace over states that belong to
same remote superzone by subscriptK, we obtain

^S1S2&K5
N
2Z

e2Kv/kTF2 coshS VR

2kTD GN

1
N~N21!

Z
e2Kv/kTF2 coshS VR

2kTD GN22

3FsinhS VR

2kTD G2

. ~49!

In Fig. 7, we compare the spontaneous emissionI 1 in the
presence of a cavity against the intensityI cl of N atoms in
the absence of cavity.

Notice that if the number of atoms is big enough, t
intensity of radiation exhibits a high maximum. In a cavity
low T, the cluster ofN two-level atoms emits much mor
intensively than it does in the free space. It should be p
sible to drive the system to thermal equilibrium at the te
perature where the spontaneous emission exhibits maxim
The marked amplification of spontaneous emission should
observed in cavity experiments.

Concluding this section, we recapitulate our main resu
We consider spontaneous emission of the system compr
N two-level atoms strongly coupled to the cavity mode a
prepared in the state of thermal equilibrium. In the abse
8-9
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VADEIKO et al. PHYSICAL REVIEW A 67, 053808 ~2003!
of the cavity, the atoms in the thermal equilibrium would
uncorrelated. In this case, the spontaneous emission w
be described by conventional formula~48!. For high-Q reso-
nators, the strong coupling to the resonator mode should
essarily be taken into account. We demonstrate that in
case the intensity of spontaneous emission can be gre
enhanced. This phenomenon can be explained by additi
correlation between atoms established by the cavity mo
To analyze the effect analytically we have replaced the ex
Tavis-Cummings Hamiltonian Eq.~1! by its zero-order ap-
proximation derived in the previous sections. This allow
us to represent the intensity of spontaneous emission
simple analytical form~46!. It is appropriate to emphasiz
once again that the zero-order approximation of the Ham
tonian contains strong coupling and, thus, describes coop
tive effects in the atomic subsystem. This is the conseque
of the fact that the operatorsS̃6 describe collective excita
tions in the atom-field system.

VI. CONCLUSION

In this work we solved the Tavis-Cummings problem
applying the technique of polynomially deformed algebr
We constructed the transformations that map one polynom
algebra of operators onto another. This allowed us to re
mulate the problem in terms of a simpler algebra of sec
order, Sr , and develop a specific perturbation theory. O
results have a significant advantage over the so-called lin
ization approximation, i.e., the case when the Hamiltonia
linearized in terms of the algebraU1. In this latter approach
a structure polynomial of higher order is approximated b
polynomial of first order. This method allows only to calc
late the lowest or highest eigenvalues, and the correspon
eigenstates. It does not take into account the finite- dim
sionality of the representation. The parabolic approximat
developed in this work provides in this respect a signific
advantage because it allows to construct a finite-dimensi
representation for the problem. We were able to find anal

FIG. 7. The intensity of spontaneous emission per atom~in units
of I 0) versus cavity temperature. The curve~1! is the classical resul
given by Eq. ~48!. The curves~2,3,4! correspond toN510, N
550, N5100, respectively, andv/g510.
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cal expressions for all the eigenvalues of the Hamiltonian
to third order in the small parametera. For the nearby zones
we showed explicitly how the collective quantum Rabi fr
quency depends on the Dicke indexr. Since this index char-
acterizes the symmetry of atomic states, the result has
nificant physical implications. The dependence on atom
symmetry is revealed already in zeroth order in the pertur
tion expansion. Employing our methods, we found an int
esting new effect, amplification of spontaneous emission
thermalN-atom states due to collective effects. We exp
that this phenomenon can be observed in cavity experime
It is worth mentioning that the applicability of the metho
developed in this paper can be extended to many other p
lems, including the Bose-Einstein condensation, multipho
interactions in the micromaser, and multimode interaction
an electromagnetic field with matter. Our methods allow,
particular, to address the problem of collective and dres
states in the mentioned physical systems.
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APPENDIX: SIMILARITY TRANSFORMATIONS

We look for similarity transformationsŨk that diagonalize
the Hamiltonian in different orders ofa,

Vk
(n)[ŨkVk21

(n) Ũk
21 , ~A1!

wherek50,1,2,3. In Eq.~A1! only the terms of ordern in
the small parametera are present. Fork50, the termVk21

(n)

should be replaced by the corresponding term in Eq.~37!.
Regrouping the terms we obtain

V(0)52S̃xF12
1

2 S a

4 D 2G , ~A2!

V(1)52
a

2 F11
1

4 S a

4 D 2GB, ~A3!

V(2)52S a

2 D 2F S̃3

S̃11S̃2

2
S̃3G , ~A4!

V(3)52
1

2 S a

2 D 3

@S̃3BS̃3#, ~A5!

where

B[@S̃3S̃x1S̃xS̃3#, ~A6!

and

S̃x[
S̃11S̃2

2
. ~A7!
8-10
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ALGEBRAIC APPROACH TO THE TAVIS-CUMMINGS PROBLEM PHYSICAL REVIEW A67, 053808 ~2003!
1. The zero-order transformation Ũ0

As known from the theory of su~2! algebra, the operato
S̃x can be diagonalized by the transformation

Ũ05expFp4 ~S̃12S̃2!G5expF2 i
p

2
S̃yG . ~A8!

Employing this transformation we obtain

V0
(0)52S̃3F12

1

2 S a

4 D 2G , V0
(1)52V(1),

V0
(2)52S a

2 D 2

@S̃xS̃3S̃x#,

V0
(3)5

1

2 S a

2 D 3

@S̃xBS̃x#. ~A9!

2. The first-order transformation Ũ1

It can readily be seen that the transformation

Ũ15exp@axD1#, D1[2 i @S̃3S̃y1S̃yS̃3# ~A10!

diagonalizes the operators in the first order. In the diago
ization, one needs the commutators

@S̃3 ,D1#5B,

@@S̃3 ,D1#,D1#54S̃3S S̃222S̃3
22

1

4D ,

@@@S̃3 ,D1#,D1#,D1#5~4S̃221!B28@S̃3B1BS̃3

2S̃3S̃xS̃3#,

@S̃3S̃xS̃3 ,D1#52S̃3
2~S̃222S̃3

2!1~S̃3S̃x!
21~S̃xS̃3!2.

~A11!

Then up to third order ina,

Ũ1V0
(0)~Ũ1!21

5V0
(0)22axS 12

1

2 S a

4 D 2DB14~ax!2S̃3

3S S̃222S̃3
22

1

4D2
~ax!3

3
$~4S̃221!B28J̃%,

~A12!

and

Ũ1V0
(1)~Ũ1!21

5
a

2 F11
1

4 S a

4 D 2GB2a2x2S̃3S S̃222S̃3
22

1

4D
1a3S x

2D 2

$~4S̃221!B28J̃%, ~A13!
05380
l-

whereJ̃[S̃3B1BS̃32S̃3S̃xS̃3.

Ũ1V0
(2)~Ũ1!215V0

(2)1a3S x

2D 2

$S̃xS̃3~2S̃224S̃3
22S̃x

2!

1~2S̃224S̃3
22S̃x

2!S̃3S̃x%. ~A14!

In third order, the operatorV0
(3) remains unchanged afte

the transformation, i.e.,V1
(3)5V0

(3) . In order to calculateV0
(2)

up to third order, we take into account that

x5
1

4

F11S a

8 D 2G
F122S a

8 D 2G '
1

4 F113S a

8 D 2G ,
and find then that

V1
(0)5V0

(0)24S a

4 D 2

S̃3S S̃222S̃3
22

1

4D ,

V1
(1)50, V1

(2)5V0
(2) ,

V1
(3)5V0

(3)2
1

2 S a

4 D 3

B1
2

3 S a

4 D 3

$~4S̃221!B28J̃%

1S a

4 D 3

$S̃xS̃3@2S̃224S̃3
22~S̃x!

2#1@2S̃224S̃3
2

2~S̃x!
2#S̃3S̃x%. ~A15!

3. The second- and the third-order transformations

To find the second-order transformation we rewriteV1
(2) in

a symmetrized form

V1
(2)52

1

2 S a

2 D 2

@ L̃xS̃31S̃3L̃x1S̃3~S̃22S̃3
221!#,

~A16!

whereL̃x[(S̃1
2 1S̃2

2 )/4. The diagonalizing transformation i
then given by

Ũ2[expH i
1

2 S a

4 D 2

@ L̃yS̃31S̃3L̃y#J , ~A17!

whereL̃y[(S̃1
2 2S̃2

2 )/4. Keeping the terms up to third orde
we obtain@see Eq.~A13!#

Ũ2V1
(0)~Ũ2!215V1

(0)1
1

2 S a

2 D 2

@ L̃xS̃31S̃3L̃x#. ~A18!

The transformation~A17! does not change the expression
given above forV1

(2) andV1
(3) , and we find that

V2
(0)5V1

(0)2S a

4 D 2

2S̃3~S̃22S̃3
221!,

V2
(1)5V2

(2)50, V2
(3)5V1

(3) . ~A19!
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Diagonalization ofV2
(3) can be performed in a similar wa

with an operatorŨ35exp@2(a/4)3O#. Since there are no
diagonal terms inV2

(3) , which would contribute to the spec
trum of the Hamiltonian, we do not give here the fairly com
plicated form of operatorO. The final diagonal form for the
interactionV is thus given by

V̄5VS̃3H 11S a

4 D 2

@5S̃3
223r̃ ~ r̃ 11!11#J . ~A20!
J.

s.

on

a

ov

05380
To recapitulate, we introduced four transformationsŨk ,
k50,1,2,3, which successively diagonalize the interact
operator in the Tavis-Cummings Hamiltonian up to third o

der with respect to the small parametera5( 1
2 VR)22, with

VR being the generalized Rabi frequency of Eq.~35!, such
that

V̄[ŨVŨ21, Ũ[Ũ3Ũ2Ũ1Ũ0 . ~A21!
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