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Algebraic approach to the Tavis-Cummings problem
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An algebraic method is introduced for an analytical solution of the eigenvalue problem of the Tavis-
Cummings Hamiltonian, based on polynomially deforme@}ui.e., su,(2) algebras. In this method the
eigenvalue problem is solved in terms of a specific perturbation theory, developed here up to third order.
Generalization to théV-atom case of the Rabi frequency and dressed states is also provided. A remarkable
enhancement of spontaneous emissioVadtoms in a resonator is found to result from collective effects.
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[. INTRODUCTION Ref.[4]. In this work the properties of a dilute flux of atoms
excited to the Rydberg states and interacting with a single-
We consider here the collective behavior of the system ofjuantum mode of the electromagnetic field were analyzed in
N two-level atoms coupled to a single mode of the electro-a high<Q cavity. The results reported in R¢#l] demonstrate
magnetic field in a resonator. The useful form for the atom-that the physical assumptions underlying the JC model can
field interaction was proposed in the rotating wave approxiindeed be experimentally realized. This triggered a lot of
mation (RWA) by Tavis and CumminggL]. In their model, theoretical interest towards the one-atom microméséero-
Nidentical two-level atoms interact via dipole coupling with lase) (see Refs[5-7] and references thergirThe analysis
a single-mode quantized radiation field at resonance, so thaf the JC model is greatly simplified by the fact that the
the Hamiltonian is given by eigenvalue problem of the Jaynes-Cummings Hamiltonian
can be solved exactly. An algebraic approach to the solution
of the generalized Jaynes-Cummings types of models can be
H=Ho+V, Ho=wa'atwo| Sy+ %/-) found in Refs[8,9]. The approach to the Tavis-Cummings-
type models based on the algebraic bethe ansatz is formu-
V=g(a'sS_+as,). (1) lated in Ref.[10].
An analytical solution of theNV-atom case, i.e., the TC
Herew is a frequency of the electromagnetic field anglis ~ model, is much more complicated than that of the JC model
the level splitting of the two-level atoms. The operatorsand is thus still far from completion. In this paper, we ana-
S;,S. are collective spin variables of/ two-level atoms. lyze this model and develop an analytical technique that is
These operators are defined as applicable to a variety of problems of TC type.
To begin with, we notice that Hamiltoniaii) belongs to
a class of operators that can be expressed in the form:

N N
S=2 ob, S.=2 o, 2
=1 =1

H=f(Ag) +g(A.+A_). 3)
whereo’s are Pauli matrices. They satisfy the(2ualgebra.
a,a’ are the annihilation and creation operators of the fie|dHeref(X) is an analytic function ok with real coefficients,

Due to historical reasons, the Tavis-Cummikg€) modelis  hile the operator#\. satisfy the commutation relations
often called the Dicke mod¢R]. We concentrate here on the

case of exact resonance, i.@5 wg. In this case, the system _
. : X . ; A [Ag,AL]=*A.. (4)
exhibits a most interesting collective behavior. For simplic-

ity, time will be measured in units of the coupling constgnt - .
4 ping on We also assume the operatdto be self-adjoint. This means

i.e., we assume in the following thgt=1. hat f irreducibl . h
The one-atom version of the TC model, i.e., the Jaynesthat: for any irreducible representatiéirep), the operators

Cummings mode{JC) [3] has recently attracted much atten- Ao:A= must satisfy the conditions
tion because of, e.g., the spectacular experiments reported in

(Ap)'=As, (AD)T=A_. )
*Electronic address: vadeiko@mkk.ifmo.ru It is worth mentioning that Hamiltonians of tygé) are also
TElectronic address: mirosh@mkk.ifmo.ru used in description of the Raman and the Brillouin scatter-
*Electronic address: rybin@phys.jyu.fi ing, and frequency conversion, as well as parametric ampli-
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2 two arbitrary PAE. We also provide a classification of iso-
H=wa'a+ >, wbb;+g(blb,a+b;bla’). (6)  morphic representations of polynomial algebras of excita-
=1 tions. In our approach, classes of isomorphic representations
are specified by the multiplicity of the maximal and minimal
eigenvalues of the operatdy, in the given representation.
We formulate then an analytical approach that allows us to
1 expand the Hamiltonian, when expressed in terms of PAE, as
S, =blb,, S_=b;b}, 83=§(b1b1—b£b2). (7)  a perturbation series.
For completely symmetric states of atoms, our results
The Hamiltonians of the type of E¢3) are usually ana- agree with those reported in Refd.6,17. Our formalism
lyzed by approximating them with an exactly solvable one Provides, however, a solution of the problem for any value of
The solvable Hamiltonian is usually quadratic in the bosorf, Which allows us to discuss new physical effects in the
operators or linear in the generators of a classical Lie algePicke model. . .
bra. In this approach, the so-called parametric approximation The paper is organized as follows. In Sec. Il, we discuss
tion of this approximation is that one of the quantum modeghe general approach to the Tavis-Cummings model, and in
or Subsystems is prepared in a h|gh|y exci(eden coher- SeC.. IV, .We construct the perturbatlon theory for the TC
end state, or in a state close to the vacuum. This approactjamiltonian and solve its eigenvalue problem up to third
however, puts certain restrictions on the type of possible iniorder. The generalized/~atom quantum Rabi frequency is
tial conditions as well as on the timespan over which thedefined for arbitrary quantum states of the system. In Sec. V,
guantum dynamics can be followed. Another type of an apWe use the zero-order approximation for the TC Hamiltonian
proach to the solution of Hamiltonia@) is based on pertur- t0 calculate the intensity of spontaneous emission of atoms
bation theory for nonlinear algebrfi#5]. This approach re- Prepared in the state of thermal equilibrium with the resona-
quires, however, the existence of a small parameter. In thior mode. We show that the correlation of the atoms due to
TC mode'l such a parameter was found in the case where tH@teraCtion with the field giVeS rise to the enhancement of
atoms are in completely symmetric states=(\/2) [16,17.  SPontaneous emission as compared to the atoms in the ab-
The basic idea of the present work is to combine theséence of resonator. In conclusion, we discuss possible further
two approaches through a|gebraic methods as applied, e_@pplications Of: the methOdS deve|0pe_d he_l’e. Technical d_etai|S
in Refs.[18—21)). To this end we reformulate the Hamil- Of the algebraic manipulations are given in the Appendix.
tonian in terms of an algebra that better allows the diagonal-

The equivalence of Hamiltoniar{d) and (6) can be readily
seen by applying the Schwinger transformation

ization of the Hamiltonian. This idea was already used by Il. IRREDUCIBLE REPRESENTATIONS OF THE
Holstein and Primakoff22]. They expressed the generators POLYNOMIAL ALGEBRA OF COLLECTIVE
S;,S. of the su?2) algebra in terms of boson operatird’, EXCITATIONS

b'b The coefficients of the structure polynomial of a polyno-
S;=r—b'b, S,=2r\/1-—=—b, S_=(S,)". (8 mially deformed algebra are usually expressed through the

2r Casimir operators of the algebra. In this section, we discuss
: : ; : _ representations of a special cld&\E) of polynomially de-
Herer is an index that characterizes the irrep ofuHow formed algebras when the coefficients of the structure poly-

ever, in Ref[22] the square root in the transformation Eq. . i
(8) was in the end replaced by unity, which amounts to ap_nom|al arec numbers. We denote a PAE with a structure

plying the so-called “weak-field” approximation (bb) polynomial of orderx asil,. Formally,il, is an associative

<2r). Obviously, this approximation corresponds to zeroth_?_lk?ebra with f[m'ty’ dtgfmetd bi’) three genera?ﬂ@ ’AIO' i
order in the expansion of the problem with respect to param- ese generators satisfy wo basic commutation relations,

: . : Eq. (4). As can be readily seen from these commutation re-
eter 1/2. Transformatior(8) has also been appli¢@3] with ! B
expansion up to second order. lations,[Ag,A . A_]=0. We can thus assume that

We consider here the case when the operadgré\.. in K
Eq. (3) are generators of a polynomial deforma_tinuh(Z) (_)f A A_=p,(Ag) = CoH (Ag—0). 9
the Lie algebra si2) [21,24,25. Numerous physical applica- i=1
tions exist for polynomially deformed algebrf22,26,28—
37]. A particularly interesting, in view of the present prob- Herep,(X) is a structure polynomial of orde¢, whose co-
lem, application of deformed algebras was developed bfficients are generally complex numbers. The terminology is
Karassiov (see in Ref.[26] and references therdinThe  chosen in analogy to the structure functions of quantum al-
method to be introduced below is an extension of Karasgebras -deformed algebras[27], and the structure con-
siov’s method. stants of the linear Lie algebras. The sehoéal roots of the
We introduce here the notion of a polynomial algebra ofstructure polynomial is denoted Hy;}/_, . In physical ap-
excitations (PAE). In this algebra the coefficients of the plications, the operato&. of Eq.(4) often play the role of
structure polynomials are numbers, rather than the Casimir creation and annihilation operators of collective excitations.
operators as is typical of polynomial deformations. We de-Therefore, hereafter the algela will be referred to as the
rive an exact mapping between isomorphic representations &fAE of orderx. Notice that this algebra is different from the
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algebrasu,(2). All PAE’s arecompletely defined bx+1 ¢ n
numbers, the coefficier,, and thex roots{q;} of the struc- Ap=blb+q;, A.=+v/co I] (b/bj+a;—ab],
ture polynomial. In the case «fu,(2), however, the struc- i=1i#]

ture polynomial has some coefficients in the form of the

Casimir operators. n ;

Below we consider two elementary, but important for the A-=b; COi =11_Lj (bjbj+a;—aj). (16)
following, examples of PAE. First we assume, without loss '
of generality, that,==1. Indeed, in the casgo| # 1, it is Hereb; b are the usual boson operators associated with
always possible to renormalize the generatorsl,of the chosen roog; of the structure polynomiap,(x). The

corresponding Fock vectors, i.e., the eigenvectorbfm‘-,
are denoted af);. In what follows, the chosen roaf; of
the structure polynomial will be referred to as tpeotal
£9ot. Notice that the product in Eq16) always contains
exactly k multipliers regardless of the multiplicity of the
AAL=A.(Ayx1), A_A,=p(Ag+1). (11) root. Sincebijj has a well-defined discrete spectrum, the
-7 square-root function is defined in the form of spectral de-
As indicated aboveA, andA_ have the physical mean- composition. We specify the branch of the square root by
ing of creation and annihilation operators of collective exci-choosingy/—1=i. It is easy to see that conditiof®) and
tations(quasippapejs while A, is the operator for the num- commutation relation$4) for generators ofl, are satisfied.
ber of excitations. The most simple and important example A useful automorphisn"iA' [38],
of a PAE of first orderil;, is provided by the well-known

AL —|co| YA, (10)

such that commutation relation@) remain intact. Using
these commutation relations, it can also be readily seen th

Heisenberg-Weil Lie algebra, viz., Tbf=ib, Th=ib'=Tb'b=—(b'b+1), (17
b'—A,, b—A_, b'Tb—A,, of 4{; allows us to construct another realizatiortfthrough
Uy,
co=1, q;=0. (12
0 ! Aozq]'—l—bjrbj,

Here b,b" are the usual boson operators. For the sake of

simplicity, in what follows we will denote the generators of «

44 by b,b™. The algebral,; allows us to construct the irrep A,=bj\/(—co ] (g;—gi—b/b;),

of any other PAE of higher ordet>1 as a multiple tensor e

product ofil;. =
An example of a PAE of second order, denoted here by _ \/ _ iR RT

S, , that is relevant to the algebra(8) is given by the com- A-= VI CO)izll_,Lj (= ai~byby)by. (18

mutation relations

It is worth mentioning that transformations similar to Egs.

[S5,S:]=*=S., [S,.,S_]1=2S;. (13 (16) and(18) have been introduced earlier under the name of
multiboson realizations of the Bose operators. These multi-
It is plain that boson realizations satisfy the usual boson commutation rela-
tions[A,AT]=1 [28-30.
S,S_ =8-S%+s,. (14) Applying the realization16) and(18) in any representa-

tion of &1, we can construct a representationshf. In the
For every irrep the Casimir operat®® is equal tor(r case of realizatiol16), an irreducible representation gf, is
+1)I, wherel is the identity operator. The corresponding constructed through the application of the oper#torto the

PAE of second ordef;, , is constructed such that vacuum vector|0);. The finite-dimensional representation
can be constructed in the case when the gqt, is sepa-
S,—A,, S A, S—A; rated fromgq; by a natural numbed. Then it can be readily
seen thatA’|0);=0. Indeed, provided thad_=A' , it is
Co=—1, qi=-r, Qgy=r+1. (15  not difficult to show that the norm of the vect@r‘ilO),—

. o _ . vanishes, i.e.;(0JAYA$|0);=0. The general construction
Obviously, S, has a matrix irrep isomorphic to the irrep of can be exemplified by, . Whenr is an integer or half inte-
su?2) with the same'. Notice thatonly in this representation ger, d=q,~q,=2r+1 is an integer, and, has a finite-
of S, condition(5) is fulfilled. This gives us a motivation to - dimensional irrep which is isomorphic to the corresponding
denote the three generatorsfasS;,S. . irrep of sy?2).

Previously[38] we have proposed a general method to In the case of realizatiofil8), the corresponding irrep is
construct a realization of any PAH, through the algebra constructed through the application of the oper#torto the
i1;. Choosing a roog; of the structure polynomial we can vacuum vectot0);. Using an argumentation similar to that
construct this realization in the form given above, it can be seen that the finite-dimensional repre-
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sentation can now be constructed, provided that theqpot ~ R(k_ ,k, ,d). For instanceR(1,02) means the representa-
is separated frong; by a natural number. tion of 4;, while the irrep of5; is R(1,1,2r +1).

The meaning of transformatior46) and (18) becomes An isomorphism between irreps of, andil’,, that be-
now transparent. The realizati¢h6) corresponds to the case long to the same clafR(k_ ,k, ,d), is given by
when the operatoA, is a creation operator, while realiza-

tion (18) corresponds to the case whan is an annihilation Ao=Ag+(q; —qj’,),
operator.
Since the spectrum of operatbfbj is a set of natural K
numbers z_ind zero, the operatdp—q; in Eg. (16) has a CoH (A6+qj_qjll_Qi)
non-negative spectrum. Therefore, the argument of the B i=1 ,
square-root function is a positive operator in the finite- Ar= «' At
dimensional subspace, where the structure polynomial c! H (AY—q)
. . 0 0 i’
p.(Ap) has non-negative spectrum. In this case, the opera- =1

tors A, andA_ are Hermitian conjugated. In the subspace
corresponding to the negative values of the spectrum of the
structure polynomial, the argument of the square-root func- CoH (Ag+a;— a,—q)
tion in Eg. (16) has a negative spectrum. The operators will , I’
be anticonjugated, i.e., AL)"=—A,, which is not plau- A-=A_ . (@)
sible. Thus, in a physical problefisee Eq.(5)], we should CoH (Ay—q'))
only consider those irrep for which the spectrumpaf{A,) ir=1 '
is non-negative. The same is true for Ef8).

The two relations, Eqs(16) and (18), between any two or by
algebrasii,, andl;, show that there is no principal differ-
ence as to how exactly the meanings of the creation and Ap=(q/, +aq—1)—A},
annihilation operators of collective excitations are prescribed ' .
to the pairA. . The important point is that the pair exists. It

is the physical problem in question which prescribes the c H m .)
meaning of operatord. and determines the location of the 0 4~ RoGi

equidistant spectrum of, on the real axis. Should one be
interested in the eigenvaluesA§, to the right of the pivotal
rootq;, itis necessary to choose the transformation (&),
while for the region to the left ofj;, it is necessary to use

realization(18). As was explained above, we choose the re-
gion such that the structure polynomial is non-negative. \/

C0 H (Ag—a;)

The general considerations given above can be illustrated COH (ql 0= Ao~ i)
by the S, algebra. In the case of the realization $fcon-
nected to the pivotal roaj;= —r, it is necessary to use Eq.
(16). This leads to the conventional Holstein-Primakoff rep-
resentation,

AL (22
COH (Ag—a;)

In Egs.(21) and(22), the operator argument of the square-
S;=blb;—r, S,=\2r+1-blb,bl, S =(5,)". root function should be taken after identical multipliers in the
(19 nominator and denominator are canceled. The pivotal roots
g; and qj’, define a vacuum vector of the irrep. Compare
In the case ofj,=r+1, we use the realization E{L8), these expressions with Eq4d.6) and (18).
To recapitulate: in the general case two irreducible repre-
Sy=r—blb,, S, =byy2r+1- bszz, S =5 sentationR(k_ ,k, ,d) andR’(k" ,k’. ,d") of &, andl’,.
(200 are isomorphic provided that=d’, and

The spectra oblb, andb}b, are limited from above by ko=k', ky=Kk}or k-=k\, ki=kl. (23
the value 2, while the subspace spanned by eigenvectors
[n); (n=0,1,...2) of operatorA, is irreducible[cf. Eq. For symmetric irreps, i.e., whek, =k_, these condi-
8)]. tions coincide. The |somorph|sm is a consequence of the fact

Obviously, all the realizations of PAE constructed throughthat, under condition&3), one can choosqj(q]-’) in such a
Egs.(16) and(18) are fully characterized by the dimensidn  way that the functions under the square root in Eg%) and
of the invariant subspace and by the orlerof the left and  (22) do not have zeros in the spectrum of operaigr and
k. of the right roots defining the corresponding irreducibletherefore we can consider the square root as a single-valued
representation. Thus an irrep of PAE is characterized by a setnalytic function. This means that transformations are invert-
of parametergk_,k, ,d}. Such irrep we will denote by ible, analytic, and therefore define an isomorphism of irreps.
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The constructed transformations give us a tool to realize__ 35

i, in terms of a simpler PAE with the same type of irrep. % 4] ;m;l e 3r/2+1
This procedure will be applied below to the Tavis-Cummings & {4 % | M=6
Hamiltonian. S 254
S 2]
IIl. THE TAVIS-CUMMINGS HAMILTONIAN IN TERMS é 154
OF THIRD-ORDER PAE 8_ 10
The interaction part of the Hamiltonian E(l) can be g 5]
expressed in terms of third-order PAE. The generators‘éb P
Mg, M . of this algebra are realized as % 0 ,, \\
a'a—s, é’ ] \
M_=aS,, M.,=a'S., My= 5 (24) -10 — A —
4 3 2 41 0 1 2 3 4 5 6
It is plain that these generators satisfy commutation relations X
(4). The generators of the algelvé,,M .. commute with the FIG. 1. The structure polynomigls(x) of the My, . algebra for
operators r=2.

left by g, or g,. Notice that the numbeM is conserved.
Therefore, this number is determined by the initial state. The
different values oM andr define different algebrasly, .,
Hereafter, we use the same notatnboth for the Casimir  whose single physical finite-dimensional representation we
operator and its eigenvalue, if no confusion arises. We showill call a zone The caseM < 2r corresponds taearby
below that the eigenvalueldl,r(r+1) of the operators of zones. The two largest roots agg andqs and the irrep has

Eq. (25 parametrize the PAE in question. We thus denotehe typeR(1,1M +1). Consequently, the well-known weak-
this PAE asMy . The structure polynomial dfly . can be  field limit corresponds to nearby zones.

1
M=a'a+S;+r, 82=S§+§(S+S_+S_S+). (25)

expressed in the form The caseM >2r corresponds taemotezones. The two
fec2 2 largest roots arg, andqs, and the corresponding irrep is of

Ps(Mo) =M M_=a'a(S"~$;~S;) the typeR(1,1,2r +1). Notice that the regioM> 2r is usu-

—a'a(r—Sy)(r+S;+1) ally called the .strong-field limit. . _
In the special caser2M, called asintermediatezone,
M~—r M —3r the algebraM,, , possesses an irrep of the typ{2,1,2r
=—| Mot 2 ) 0T T +1). Itis the only irreducible representation that principally
differs from all the others.

<M M+r+2 26) As indicated above, the simplest PAE with irrep of the

0 2 type R(1,1d) is S (we use here to distinguish it from the

] ) (physica) collective indexr). It would be convenient to
The parameters of this structure polynomial are solve the eigenvalue problem in terms of the simplest algebra
S;. Notice that in any finite-dimensional irrep of PAE char-

Co=—1, g=-— M-T acterized byR(1,1d), the structure polynomial of the alge-
0 ' 2 bra can be approximated by a parabolic curve. This is shown
in Fig. 2 (for M #2r) for the structure polynomial dfly, , .
M—r M—r isi i i i
Qa=—y 1, o= Frel, @7 The larger(smalley M is in comparison with 2, the better is

the approximation. However, fdvl~2r the approximation

is not satisfactornysee Fig. 20)]. In the regions where the

and its behavior as a function ™ is given in Fig. 1. approximation is adequate, it is then not difficult to diago-
We turn next to the description of finite-dimensional irrep nalize the operatov=S, +S_, defined in terms of genera-

of My . In physical applications, the parametehas the tors of the conventional $B) algebra. The latter has a para-

meaning of collective Dicke index. This index runs from bolic structure polynomial. In Fig. 2 the two roots p§(x)

e(N)=1+(—1)M4 to N72 with unit steps, whileM can be are chosen to be equal to the corresponding two roots of

any natural number including zero. Thug is the biggest ps(x). The choice ofcy in p,(x) will be explained below.

positive root of first order. IfM<2r, thenq;>q,; if M Thus in the cases of nearby or remote zones, it is convenient

>2r thenq,<q,; the caseM =2r=q, =, corresponds to to study the problem in terms of algelifa. The approxima-

a root of second order. A typical plot of the structure poly-tion illustrated in Fig. 2 indicates that the TC problem can be

nomial is shown in Fig. 1 for these three cases is given. Asolved via an appropriate perturbation theory.

finite-dimensional representation dfly, , [where M Bl To begin with, we consider the transformation)\dy, , to

=M _) corresponds to the positive spectrum mf(My)]. S; for the case of remote zones. The dimension of a remote

The spectrum is limited from the right by; and from the zone is 2+ 1, and the algebrg; should be characterized by
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representation like that of E@G29). The particular choice of

the pivotal rootqj’, is unimportant and we use the same
choice as before. Applying E¢22) we obtain

M0=%—~S3, M, =5 \/(4r;M +1—”53),

M,=(M_)T". (30

70
60-

50+

40+
30+
20
104

9 Since all the eigenvalues of the operafy belong to the

interval —T to T, the argument of the square-root function

does not have zero eigenvalues in the nearby zones. The

realization ofS; through spin and boson variables is then
FIG. 2. Approximation of the structure polynomiad(x) by the  given by

parabolicp,(x) forr=2. (8 M=1; (b) M=4; (c) M=12.

10

20
2

~ ~ M ~ 1
r=r. The finite-dimensional irrep df; is isomorphic to the S;=—-a'a, S,=————8S,a,
corresponding irreducible representation of the atomic sub- 2 Nr+1-S,
system. For the pivotal roa;, we choose the largest root
that bounds the irrep ofly , from the right[the g5 in Eq. - 1 .
(27)], while as the rooqj’, we take theq, of S, from Eq. S—:S—ﬁa : (3D
(15). Applying mapping(22) we obtain
M=r _ 5 _ Notice that the nearby zones do not contain the eigenvector
Mo= 5 -S;, M,=S_V(M—-r+1-5;), [r,r) of S;.
To clarify the structure of intermediate zone we choose
— the pivotal root as the third root gi;(x) of Eq. (27), and
M_=V(M-r+1-8§;)S, . (28)  apply transformatiori18). We thus obtain
The spectrun{ﬁn} of the operatoB; belongs to the region r
—r<ms=r, consequently the argument of the square-root Mo=03—blbs—1= T—b;bg,
function in Eq.(28) is positive in the remote zonedM(—r
>r). The relations, Eq928), express the generators of al-
gebraMy , as analytic function of the generators of the M =b3\(M+1-blbs)(2r +1-bJbs),
algebra. They thus allow us to approximate the more com-
plex algebraMy, , of third order by a simpler algebra of M_=\/(M+1—b§b3)(2r+1—b§b3)b§. (32)

second order.
Before we begin to study this approximation, we con- N
struct a realization d8, in terms of boson and spin variables. H€rébs,b; are generators of the algebria.

From Egs.(24), (25), and (28) it follows that in remote In the regionM>2r, the multiplier (2 +1-bby) in
zones, Eq. (32) vanishes first. This corresponds to remote zones. In

the regionM <2r, the multiplier that vanishes first isM
+1—blbg). In the intermediate zonkl =2r, we have

_ _ 1
§,=s,, B =——

Jalar1

aa M. =bs(2r+1—blbs), M_=(2r+1—blbs)b}.

Notice that the subspaces that correspond to remote zones do (33

not contain the vacuum state of the field. It is also worth

mentioning that the matrix representation of the operatoin the intermediate zone we thus obtain a special realization
1/JaTa+1ais 8, 1,1 in any remote zone. This operator has of the TC Hamiltonian,

been considered before as earlier in terms of phase operator

as,, S =(S)". (29

[17-19. 1 o 1o N
We turn now to the nearby zon&< 2r. For this region, Him=2ry=| 2r + 5 | (b3 +b3) = 5[b3bs(bs+Dbs)
the mapping of the algebrdy, , to the algebra; is realized
through procedure similar to that described above for remote +(bs+bl)blbg]. (34

zones. Notice that the dimension of nearby zoned=g);

—@;=M+1, and therefore =M/2 [cf. Fig. 2a)]. For the  The domain of the quantum space for this Hamiltonian is
nearby zones there is no simple correspondence to a physicgpecified by the condition,<2r.
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IV. DIAGONALIZATION OF THE TAVIS-CUMMINGS DEDsozuluo- (38)

HAMILTONIAN

Let us introduce anV-atom generalization fqr arbitrary The spectrum of the operatdfas given by Eq(38) agrees
valuesr andM of the well-known quantum Rabi frequency with the results of Refd16,17) for the symmetric states of

such that the atoms.
We compared third-order solutid88) with the exact nu-
2\VM—r+3, M=2r merical diagonalization oV and found that result38) is
Qe (35) very accurate, especially for increasing valuegMf-2r|.
R 2 [Ar—M+1 M < 2r The results of this comparison are shown in Fig. 3.
2 ' ' In their original paper[1], Tavis and Cummings also

found an approximative analytical expression for the spec-
For r=AN12 our definition agrees with that used in Refs. trum of the interaction operatat. We compare the results of
[16,17). Introducing a small parameter=(3Qg) 2 we can  Ref.[1] with our analytical and numerical solutions in Fig. 4.
rewrite the realizations of.. in nearby and remote zones It is evident that the Tavis and Cummings solution is only
[see Egs(28) and(30)] in the form accurate for very large and very small values of inglex
Figure 5 compares the energies calculated numerically
Qn. | 1 and in accordance with analytical solutitd8). In the inter-
M . =78_ 1- a( S;— E) , M_= Ml . (36 mediate region oM, the curves for nearby and remote zones
overlap and coincide thus providing still satisfactory corre-
spondence to the exact solution. However, evidently the ex-
Haansion for the remote zone breaks down in the nearby zone
and vice versa. This means that the classification of zones

The diagonalization problem for operat@t) can now be
solved in each zone by means of perturbation theory wit
respect to the small parametaet One can show that the . o .
eigenvalues of the argument of the square-root function Mntrqduced in this Paper 1S indeed adequate.

Eq. (36) are less than unity. Hence, we can expand the square Finally, we consider thev-atomdressed statedn other

with respect tow, and find thereby for the interaction part of word_s , We mt_rodu_ce a repres_entatlon In Wh'.Ch the ze_ro-order
the Hamiltonian Hamiltonian is diagonal. This representation is given by

transformationJ,. For A'=1, all the higher-order terms in
Eqg. (37) (higher than zero ordgrvanish, while the eigen-
states of the zero-order Hamiltonian coincide with the
~ 1 dressed states of the Jaynes-Cummings model. We can thus
S~ 2 call the eigenstates of the zero-order Hamiltoniandtessed
statesof the N-atom model. Notice also that in the remote
3, 1)2} zones the Rabi frequen¢®5) does not depend on the Dicke
2

2 indexr. If we consider only the zero-order terms lof it is
convenient to combine all the remote zones that have the
~ 1)\ " same Rabi frequency into a remaigperzonewhose dimen-
“ (2n—-3)!! a| Sg— 211 sion is 2V. Introducing an operator for the total number of
- 23 nl > S, +S- quanta in the atom-field systeficf. the definition ofM in Eq.
n= H
(29)],
~ L)\ "
(2n—3)!! “(83_ E) . 2.0,
n=3 n! 2 ’ ( 7) 181
1.6
In the interaction representation the Hamiltonian coincides 1.4
with V, we only need to diagonalize the latter. Up to third 1.2
order ina we find that 1.0
w ]
Qg < o8]
V= 7(v<°>+v<1>+v<2>+v(3>), 0.6-
0.4-
where thevV(" are the terms ofith order ina, and are given 0.2
in the Appendix. In the Appendix, we also show that unitary 004 Ll e . . i : . . .
transformationd), , k=0,1,2,3, which bring the interaction 0 10 20 30 40 50 60 70 8 90 100
operator into diagonal form: M
2 FIG. 3. Deviation of the eigenvalues ®ffrom their numerical
- —~ —~ —~ a —~ —~ o~ . . . - .
=0vU =0 1+ =| 1582—3F(T+1)+1 ' values in zergsolid line) and seconddashed lingorder in«, for
RS ( 7] [3Ss=3r(r+1)+1] by
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O Exact numerical solution E(1)

X Algebraic approach
@ Tavis-Cummings's solution

300+ 2500
. 20004
250+ QO 1500
200 .55 1000
..Q
¢ Q 500
.. Q
150 ... QQ [}
L )
o°.. QQ -500
100{ o0***  °
® -1000+
()
50, &fp -15004
0(5 -2000 K=3
o 4
I P . . 25005
25 30 35 J 40 45 50
FIG. 4. Energy levels o¥ in the ascending order far=25, as _
calculated numericallycircles, from Eg.(38) and(crosses and as K=2
is given in Ref[1] (squares (8) M =50; (b) M =2525.
. N
K=a a+83+§, (39 K=1

we can define the remote superzone as follows. A remote
superzone contains all eigenvectorskothat have the same
eigenvalue, provided it is larger thai. In Fig. 6, we show K=0
the definition of the zones in the Tavis-Cummings model for
N=4.

It can be readily seen that, in the Hilbert subspace corre-
sponding to the remote superzone, the unitary transformation

UO can be factorized into a product ¢f single-particle

PHYSICAL REVIEW A 67, 053808 (2003

-------------- Superzone

\
/
b \—/ ; Remote
! fzmmmz=mzazs zones
N

Boundary
____________ 20nes

{ )

zones

r=2 r=1 r=0
G(2)=1 G(1)=2 G(0)=1

FIG. 6. Zones structure fol=4. E®) is the spectrum of the
zero-order HamiltonianK is an eigenvalue of the corresponding

transformations that are the dressing operators for thSperator(Sg), andG(r) is a number of equivalent irreps of (@

Jaynes-Cummings problefof. Eq. (29)],

Uozﬁ exd = #aoj o aT;
j=1 4\ Jafa+1 7 7 afa+1

defined below.

a'1/JaTa+1 commute. This means that the system behaves
almost like a semiclassical one.

(40)
From the discussion following Eq29), it follows that in V. ENHANCEMENT OF SPONTANEOUS EMISSION IN
each remote superzone, the field operatosg@ald+1a and THE RESONATOR DUE TO COLLECTIVE EFFECTS
In the preceding section we developed an algebraic ap-
207 —— Remote zones - proach to the Tavis-Cummings model. We introduced the
181 - Nearby zones ' operatorsS. describing collective excitations in the atom-
o 16 ©  Numerical values field system. In terms of these operators we constructed a
3 14] perturbation series for the Tavis-Cummings Hamiltonian Eq.
§ 12] (1). The derived perturbation series gives us a tool to distin-
S 7 guish and classify cooperatienultiparticle effects of dif-
S 10+ < ferent orders that are involved in calculations of different
3 8- .- physical observables characterizing the atom-field system. In
g 6 ’.°' the preceding section we constructed a Hamiltonian(&g.
= 4] o corresponding to the zero-order approximation for the
g ] D,-' Hamiltonian Eq.(1). This simplified operator depends on
2j . multippaper Rabi frequency E¢35), which depends on the
0+—— number of atoms in the cavity. Therefore, the simplified

01 2 3 4 5 6 7 8 9 10 11 12 Hamiltonian Eq.(37) allows to account for cooperative ef-

M .
fects in the system.
FIG. 5. The dependence dvi of the maximal eigenvalue of In this section, we study a contribution of cooperative
for r=3, as calculated numerically and from H§8). effects into the rate of spontaneous emission generated by

053808-8



ALGEBRAIC APPROACH TO THE TAVIS-CUMMINGS PROBLEM PHYSICAL REVIEW A7, 053808 (2003

the atom-field system. The atom-field system is assumed tBinally, the intensity of spontaneous emission is given by
be prepared in the state of thermal equilibrium. This state is

described by the canonical Gibbs ensemble with the thermo- - ~
; p ” © N2 r —w|M=r+—=|+Qgm
stat temperaturd@. This means that under the “system” we lo 2
imply A" atoms strongly coupled to the resonator mode. Un- =7 ME:O 25 G(r) > exp T
der the “thermostat” we imply the surrounding environment, m=-r
for instance, cavity walls taken at the temperattirén the - 3 1) 1.,
state of thermal equilibrium, the exact atom-field density ma- Xjr|2r=gr+ 3]+ zm7. (46)

trix should be defined using the Hamiltonian Ed). How-
ever, for the exact density matrix the analytical analysis ofHere e=[1—(—1)]/4, and G(r)=[M(2r +1)]/[ (M2
the transition probablllty, if pOSSible at a”, would be hlghly +r+ 1)|(M2_ r)l] is the number of equiva]ent representa-
technically involved. tions with the same.

We demonstrate that nontrivial physical results for the | et ys consider the intensity per atom, ilg=1/\. This
intensity of spontaneous emission &f two-level atoms ntensity consists of two terms, i.e., the first is given by a
placed |nS|de. the.CaVIty can be all’eady. Obt.a|ned f0r the Zer%ingle_parti(ﬂe Contributionsingle and the Second one pro-
order approximation of the exact Hamiltonian E87). The  portional to the two-particle correlation functidhico,, 11

thermal state is given by =lginglet lo(N—1)Fcq,. They are found to be
Qr ~ - 1 o 1 1
1 H0+7(S++S—) lsingle=lo7+ > o' ) =lo| 5+ 4Ss) |,
pn==expl — (41) N\ 4 2 N
th=—z kT '
. — 1 .
HereZ is a normalization factor. Fcor= m E oo ). (47)
We show here that the intensity of spontaneous emission 1]

?g;gﬁastzftiq”;ggrgﬂgse?edzggr?rf‘s,:{]%n%ye??nuaﬁli?attz tgzn It is plain that in the absence of the cavity, the correlation
prepa . e t?Snction vanishes and the only contributionltois given by
greatly enhanced at a certain temperature. This amphﬂcaﬂonle first term

results from high correlations in the atomic subsystem. Simi- ’
lar effect exists for Dicke’s super-radiant st§®4. This state |Smg|e:|CIE|O(1+ew/kT)—1_ (48)

is prepared by a short laser pulse. Therefore, the setting of

Dicke’s theory is quite different from our considerations of The contribution of any remote superzone can eas”y be

the stationary state of thermal equilibrium. found due to the factorization property of the operator Eq.
When calculating the rate of spontaneous emisédorthe  (40). If we denote the trace over states that belong to the

intensity proportional to this quantbt,ywe merely follow the same remote superzone by SubschWe obtain
ideas of Dicke’s papefsee, e.g., Ref2]). According to this

theory, the rate of spontaneous emission in the system is KelkT Qg \ 1V
proport_ional to the average of the square of the atomic di- <S+S—>K=§e 2 cos kT
pole, viz.,
NMN=D) or 2 Or| M2
I=1(S:S)=1oTr{pnS. S} (42) e cost 5, ¢

2
: (49)

It is convenient to calculate the average in the dressed states
basis, where X

[ Qg
Sin m

} 43) In Fig. 7, we compare the spontaneous emissipin the
kT ' presence of a cavity against the intendity of A atoms in
the absence of cavity.

Taking into account Eq(14) along with the fact that, for an Notice that if the number of atoms is big enough, the

~ -1
pth— 5UopinUg "=ex

1 Ho+ QrS;
- _ 0T AR>S

arbitrary zone, intensity of radiation exhibits a high maximum. In a cavity at
low T, the cluster of\ two-level atoms emits much more
S;=(r—r)+S;, (44)  intensively than it does in the free space. It should be pos-
sible to drive the system to thermal equilibrium at the tem-
it can be shown that in the dressed states basis perature where the spontaneous emission exhibits maximum.
s 1 L The marked amplification of spontaneous emission should be
~ ~_ 1 ~ ~| = = observed in cavity experiments.
Uo(S+S-)Ug "=t 2r = ) i (S+5-) Concluding thiz secl?tion, we recapitulate our main results.

We consider spontaneous emission of the system comprised
_ E("éz —2~S§+~SZ ) (45) N two-level atoms strongly coupled to the cavity mode and
4t - prepared in the state of thermal equilibrium. In the absence
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cal expressions for all the eigenvalues of the Hamiltonian up
—() to third order in the small parametet For the nearby zones
““““ 2 we showed explicitly how the collective quantum Rabi fre-
quency depends on the Dicke indexSince this index char-
acterizes the symmetry of atomic states, the result has sig-
nificant physical implications. The dependence on atomic
symmetry is revealed already in zeroth order in the perturba-
104 3 tion expansion. Employing our methods, we found an inter-
\ esting new effect, amplification of spontaneous emission of
N thermal N-atom states due to collective effects. We expect
0.5 B that this phenomenon can be observed in cavity experiments.
am et It is worth mentioning that the applicability of the method
developed in this paper can be extended to many other prob-
- lems, including the Bose-Einstein condensation, multiphoton
50 60 70 interactions in the micromaser, and multimode interaction of
an electromagnetic field with matter. Our methods allow, in
FIG. 7. The intensity of spontaneous emission per aforonits ~ Particular, to address the problem of collective and dressed
of I ) versus cavity temperature. The cuKig is the classical result States in the mentioned physical systems.
given by Eq.(48). The curves(2,3,49 correspond toNV=10, N
=50, N'=100, respectively, and/g=10.

204t
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essarily be taken into account. We demonstrate that in this

case the intensity of spontaneous emission can be greatly ~APPENDIX: SIMILARITY TRANSFORMATIONS
enhanced. This phenomenon can be explained by additional o o~ ) )
correlation between atoms established by the cavity mode, VVe look for similarity transformationt that diagonalize
To analyze the effect analytically we have replaced the exadhe Hamiltonian in different orders af,

Tavis-Cummings Hamiltonian Eq1) by its zero-order ap- () \o() -1

proximation derived in the previous sections. This allowed Vil =UVi21 Uy o, (A1)
us to represent the intensity of spontaneous emission in ,
simple analytical form(46). It is appropriate to emphasize wherek=0,1,2,3. In Eq(Al) only the terms of order(1n|)n
once again that the zero-order approximation of the Hamilthe small parametex are present. Fak=0, the termVy=,
tonian contains strong coupling and, thus, describes cooperghould be replaced by the corresponding term in €&4).
tive effects in the atomic subsystem. This is the consequend@egrouping the terms we obtain

of the fact that the operatoS. describe collective excita-

- ; - 1{a\?

tions in the atom-field system. v0=25|1- 5(%) , (A2)
VI. CONCLUSION V(l):_z 1+1 a 2 5 A3

In this work we solved the Tavis-Cummings problem by 2 4\ 4 '

applying the technique of polynomially deformed algebras.

We constructed the transformations that map one polynomial a\? . S, +5

algebra of operators onto another. This allowed us to refor- V@)= _(E) S , (A4)

mulate the problem in terms of a simpler algebra of second

order, S,, and develop a specific perturbation theory. Our 1 3

results have a significant advantage over the so-called linear- v® = — _<f) [$:BS;], (A5)

ization approximation, i.e., the case when the Hamiltonian is

linearized in terms of the algebt§ . In this latter approach,

a structure polynomial of higher order is approximated by aVhere
polynomial of first order. This method allows only to calcu- -~~~
late the lowest or highest eigenvalues, and the corresponding B=[S:S+SS:], (AB)
eigenstates. It does not take into account the finite- dimen-
sionality of the representation. The parabolic approximatiorf:’
developed in this work provides in this respect a significant
advantage because it allows to construct a finite-dimensional ~S<E (A7)
representation for the problem. We were able to find analyti- 2
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1. The zero-order transformation U,

As known from the theory of 4@) algebra, the operator

S, can be diagonalized by the transformation

~ T~ ~ LT
Ug=ex Z(S+_S’) =ex —|§Sy. (A8)
Employing this transformation we obtain

~ 1/a\?

VE,O)=233 1_E Z) }’ Vgl):_v(l),
2 ~ o~
v<2>——(5) [SSS4,
vo-L[2) 3 83 A9

2. The first-order transformation U,

It can readily be seen that the transformation

U,;=exgaxD1], D1=-i[S;S,+5S;] (A10)

diagonalizes the operators in the first order. In the diagonal-

ization, one needs the commutators
[S;.D1]=B,

- S P |
[[ss,Dl],D1]=4ss(sz—ZS§—Z),
[[[$;,D1],D1],D1]=(4$?—1)B-8[S;B+BS;

-S$,853],
[S:5:S:,D1]=285(S*-255) + (5502 +(555)%
(A11)

Then up to third order iny,

o3
- 2\4
a1 (@0)®
“257 )73

U 1Vg)0)(D )t

=V -2ax B+4(ax)?S;

X {(4$—1)B—83},

(A12)

and

(A13)

PHYSICAL REVIEW 47, 053808 (2003
whereJ=5;B+BS;—5;5,S;.

U 1V§)2)(D 1) _1:V(02)+ a3

X\2 o o

5) {88:(25*-455-5))

+(28-45-5)5:5. (A14)
In third order, the operatdv$®) remains unchanged after

the transformation, i.e\V{¥=V{ . In order to calculat&/{?)

up to third order, we take into account that

@ 2

1+

and find then that
2
a\L [~ ~, 1
v(1°>=vg°)—4(z) 53(52—253— Z)'
viP=0, v@P=v{®,

3
B+=

oz)3 - 8
3 7] (48-1)B-83}

lla
=5

3
(382545~ (591 +[25 45

+a
4

~(80%15:54- (A15)
3. The second- and the third-order transformations

To find the second-order transformation we rewwi®) in
a symmetrized form

(2) e\ oo aw 2 22
Vi'=—31| 5] [LSstSsbit S3(S = S5- 1)),
(A16)
whereL,=($2 +S?)/4. The diagonalizing transformation is
then given by

~ e\ o o - -
UZEEX4|§<Z) [LyS3+S3Ly]], (A17)

whereL,=(S7 —'S?)/4. Keeping the terms up to third order
we obtain[see Eq(A13)]

2
Ozva°>(02>—l=v<1°)+%(§) [L,S:+SL,]. (A18)

The transformatior{A17) does not change the expressions,
given above foiv{?) andV{®, and we find that

2
(64 ~ o~ ~
V‘2°>=V‘1°’—(Z) 25,($-%5-1),

VP-VP-0, VPV A
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Diagonalization of\/(23) can be performed in a similar way

with an operatorJ ;=exd —(«/4)%0]. Since there are no
diagonal terms inv§®), which would contribute to the spec-
trum of the Hamiltonian, we do not give here the fairly com-
plicated form of operato®©. The final diagonal form for the
interactionV is thus given by

2
[682-3r(r+1)+1];.

Vv

03,

a

4

1+ (A20)

PHYSICAL REVIEW A 67, 053808 (2003

To recapitulate, we introduced four transformatidng,
k=0,1,2,3, which successively diagonalize the interaction
operator in the Tavis-Cummings Hamiltonian up to third or-

der with respect to the small parametes (3Qg) 2, with
Qg being the generalized Rabi frequency of E85), such
that

_EDV‘Dil, UEU3020100. (A21)
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