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Detuning effects in the one-photon mazer

Thierry Bastin* and John Martin†

Institut de Physique Nucle´aire, Atomique et de Spectroscopie, Universite´ de Liège au Sart Tilman, Baˆtiment B15, B-4000 Lie`ge, Belgium
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The quantum theory of the mazer in the nonresonant case~a detuning between the cavity mode and the
atomic transition frequencies is present! is described. The generalization from the resonant case is far from
being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity
may slow down or speed up the atoms according to the sign of the detuning and that the induced emission
process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a
potential step effect not present at resonance and that the use of positive detunings defines a well-controlled
cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the
reflection and transmission coefficients have been obtained. The general properties of the induced emission
probability are finally discussed in the hot, intermediate, and cold atom regimes. Comparison with the resonant
case is given.
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I. INTRODUCTION

The interaction of cold atoms with microwave high-Q
cavities~a cold atom micromaser! has recently attracted in
creasing interest since it was demonstrated by Scullyet al.
@1# that this interaction leads to a new type of induced em
sion inside the cavity. The new emission properties a
from the necessity to treat quantum mechanically the cen
of-mass motion of the atoms interacting with the cavity.
insist on the importance of this quantization, usually defin
along thez axis, the system was called a mazer~for micro-
wave amplification viaz-motion-induced emission of radia
tion!. The complete quantum theory of the mazer was
scribed in a series of three papers by Scully and co-work
@2–4#. The theory was written for two-level atoms interac
ing with a single mode of the high-Q cavity via a one-photon
transition. In particular, it was shown that the induced em
sion properties are strongly dependent on the cavity m
profile. Results were presented for the mesa, sech2, and sinu-
soidal modes. Retamalet al. @5# later refined these results i
the special case of the sinusoidal mode, and a nume
method was proposed by Bastin and Solano@6# for effi-
ciently computing the mazer properties with arbitrary cav
field modes. Lo¨ffler et al. @7# showed also that the maze
may be used as a velocity selection device for an ato
beam. The mazer concept was extended by Zhanget al.
@8–10#, who considered two-photon transitions@8#, and
three-level atoms interacting with a single cavity@9# and
with two cavities@10#. Collapse and revival patterns with
mazer have been computed by Duet al. @11#. Arun et al.
@12,13# studied the mazer with bimodal cavities and Agarw
and Arun @14# demonstrated resonant tunneling of cold
oms through two mazer cavities.

In all these previous studies, the mazer properties w
always presented in the resonant case where the cavity m
frequencyv is equal to the atomic transition frequencyv0.
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When three-level atoms were considered, a generalized r
nant condition was assumed@9,10,12#. In this paper, we re-
move this restriction and establish the theory of the maze
the nonresonant case (vÞv0) for two-level atoms.

The paper is organized as follows. In Sec. II, the Ham
tonian modeling the mazer in the nonresonant case is
sented. The wave functions of the system are described
generalized expressions for the reflection and transmis
coefficients in the special case of the mesa mode function
derived. The properties of the induced emission probabi
when a detuning is present are then discussed in Sec
Three regimes of the mazer are considered~hot, intermedi-
ate, and cold!. A brief summary of our results is finally given
in Sec. IV.

II. MODEL

A. The Hamiltonian

We consider a two-level atom moving along thez direc-
tion on the way to a cavity of lengthL. The atom is coupled
unresonantly to a single mode of the quantized field pres
in the cavity. The atomic center-of-mass motion is describ
quantum mechanically and the usual rotating-wave appr
mation is made. We thus consider the Hamiltonian

H5\v0s†s1\va†a1
p2

2m
1\gu~z!~a†s1as†!, ~1!

wherep is the atomic center-of-mass momentum along thz
axis, m is the atomic mass,v0 is the atomic transition fre-
quency,v is the cavity field mode frequency,s5ub&^au (ua&
and ub& are, respectively, the upper and lower levels of t
two-level atom!, a anda† are, respectively, the annihilatio
and creation operators of the cavity radiation field,g is the
atom-field coupling strength, andu(z) is the cavity field
mode function. We denote in the following the detuningv
2v0 by d, the cavity field eigenstates byun&, and the global
state of the atom-field system byuc(t)&.
©2003 The American Physical Society04-1
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B. The wave functions

We introduce the orthonormal basis

uGn
1~u!&5cosuua,n&1sinuub,n11&,

uGn
2~u!&52sinuua,n&1cosuub,n11&, ~2!

with u an arbitrary parameter. TheuGn
6(u)& states coincide

with the noncoupled statesua,n& and ub,n11& when u50
and with the dressed states whenu5un given by

cot 2un52
d

Vn
, ~3!

with

Vn52gAn11. ~4!

We denote asu6,n& the dressed statesuGn
6(un)&. The

Schrödinger equation reads in thez representation and in th
basis~2!

i\
]

]t
cn,u

1 ~z,t !5F2
\2

2m

]2

]z2
1~n11!\v2\dcos2u

1\gu~z!An11 sin 2uGcn,u
1 ~z,t !

1F\gu~z!An11 cos 2u

1
1

2
u\d sin 2Gcn,u

2 ~z,t !, ~5a!

i\
]

]t
cn,u

2 ~z,t !5F2
\2

2m

]2

]z2
1~n11!\v2\d sin2u

2\gu~z!An11 sin 2uGcn,u
2 ~z,t !

1F\gu~z!An11 cos 2u

1
1

2
\d sin 2uGcn,u

1 ~z,t !, ~5b!

with

cn,u
6 ~z,t !5^z,Gn

6~u!uc~ t !&. ~6!

We get for eachn two coupled partial differential equa
tions. In the resonant case (d50), these equations may b
decoupled over the entirez axis when working in the dresse
state basis and the atom-field interaction reduces to an
ementary scattering problem over a potential barrier an
potential well defined by the cavity~see Ref.@2#!. In the
presence of detuning, this is no longer the case: there i
basis where Eqs.~5! would separate over the entirezaxis and
05380
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the interpretation of the atomic interaction with the cavity
a scattering problem over two potentials is less evident.

Outside the cavity~which we define to be located in th
range 0,z,L), the mode functionu(z) vanishes and Eqs
~5! become in the noncoupled state basis (u50)

i\
]

]t
cn

a~z,t !5F2
\2

2m

]2

]z2Gcn
a~z,t !, ~7a!

i\
]

]t
cn11

b ~z,t !5F2
\2

2m

]2

]z2
1\dGcn11

b ~z,t !, ~7b!

with

cn
a~z,t !5ei (v01nv)t^z,a,nuc~ t !&, ~8a!

cn11
b ~z,t !5ei (v01nv)t^z,b,n11uc~ t !&. ~8b!

In Eq. ~8!, we have introduced the exponential fact
ei (v01nv)t in order to define the energy scale origin at t
ua,n& level. The solutions to Eqs.~7! are obviously given by
linear combinations of plane wave functions. If we assu
initially a monokinetic atom~with momentum\k) coming
upon the cavity from the left side~negativez values! in the
excited stateua& and the cavity field in the number stateun&,
the atom-field system is described outside the cavity by
wave function components~which correspond to the eigen
stateufk& of energyEk5\2k2/2m)

cn
a~z,t !5e2 i (\k2/2m)twn

a~z!, ~9a!

cn11
b ~z,t !5e2 i (\k2/2m)twn11

b ~z!, ~9b!

with

wn
a~z!5H eikz1rn

ae2 ikz, z,0,

tn
aeik(z2L), z.L,

~10!

wn11
b ~z!5H rn11

b e2 ikbz, z,0,

tn11
b eikb(z2L), z.L,

~11!

and

kb
25k22

2md

\
. ~12!

Introducing

k25
2mg

\
~13!

we may write

kb
25k22k2

d

g
. ~14!
4-2
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DETUNING EFFECTS IN THE ONE-PHOTON MAZER PHYSICAL REVIEW A67, 053804 ~2003!
The solutions~9! must be interpreted as follows: The e
cited atom coming upon the cavity will be found reflected
the upper state or in the lower state with the amplitudern

a

andrn11
b , respectively, or transmitted with the amplitudetn

a

or tn11
b . However, in contrast to the resonant case, the a

reflected or transmitted in the lower stateub& will be found to
propagate with a momentum\kb different from its initial
value \k. The atomic transitionua&→ub& induced by the
cavity is responsible for a change of the atomic kinetic
ergy. According to the sign of the detuning@see Eq.~14!#, the
cavity will either speed up the atom~for d,0) or slow it
down ~for d.0). This results merely from energy conserv
tion. When, after leaving the cavity region, the atom
passed from the excited stateua& to the lower stateub&, the
photon number has increased by one unit in the cavity
the internal energy of the atom-field system has varied by
quantity \v2\v05\d. This variation needs to be exact
counterbalanced by the external energy of the system,
the atomic kinetic energy. In this sense, when a photon
emitted inside the cavity by the atom, the cavity acts a
potential step\d ~see Fig. 1!, and the atom experiences a
attractive or a repulsive force according to the sign of
detuning. Similar~although not identical! mechanical effects
are obtained under the adiabatic approximation@15# ~requir-
ing no quantum treatment of the atomic center-of-mass
tion!. In this case the dressed levels may also decelerat
accelerate the atoms. However, in this regime and contrar
what is described here, the atom always leaves the ca
with the same kinetic energy~if no dissipation process is
considered! and the mechanical effects are not related to
emission of a photon inside the cavity.

Presently the use of positive detunings in the atom-fi
interaction defines a well-controlled cooling mechanism
single excitation exchange between the atom and the
inside the cavity is sufficient to cool the atom to a desir
temperatureT5\2kb

2/2mkB (kB is the Boltzmann constant!
which may in principle be as low as imaginable. However
the initial atomic kinetic energy\2k2/2m is lower than\d
~i.e., if k/k,Ad/g), the transitionua,n&→ub,n11& cannot
take place~as it would remove\d from the kinetic energy!
and no photon can be emitted inside the cavity. In this c
the emission process is completely blocked.

FIG. 1. Potential step effect of the cavity when a photon
emitted by the atom.E represents the total energy of the atom-fie
system.
05380
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Due to this change in the kinetic energy when a photon
emitted, the reflection and transmission probabilities of
atom in the lower stateub& are given, respectively, by~for
\2k2/2m.\d)

Rn11
b 5

kb

k
urn11

b u2, ~15a!

Tn11
b 5

kb

k
utn11

b u2. ~15b!

These probabilities vanish for\2k2/2m<\d. When the
atom remains in the excited stateua& after having interacted
with the cavity, there is no change in the atomic kinetic e
ergy and the reflection and transmission probabilities are
rectly given by

Rn
a5urn

au2, ~16a!

Tn
a5utn

au2. ~16b!

To calculate any quantity related to the reflection a
transmission coefficients, we must solve the Schro¨dinger
equation over the entirez axis. Inside the cavity, the problem
is much more complex since we have two coupled par
differential equations. In the special case of the mesa m
function @u(z)51 inside the cavity, 0 elsewhere#, the prob-
lem is, however, greatly simplified. In the dressed state b
(u5un), the Schro¨dinger equations~5! take the following
form inside the cavity:

i\
]

]t
cn

6~z,t !5F2
\2

2m

]2

]z2
1Vn

6Gcn
6~z,t ! ~17!

with

cn
6~z,t !5ei (v01nv)t^z,6,nuc~ t !& ~18!

and

Vn
15sin2un\d1\gAn11 sin 2un , ~19a!

Vn
25\d2Vn

1 . ~19b!

Vn
1 and Vn

2 represent the internal energies of theu1,n&
andu2,n& components, respectively. Except for the reson
case, they cannot be strictly interpreted as a potential ba
and a potential well as Eq.~17! holds only inside the cavity.

Using Eq.~3!, we have the well-known relations

sinun5
ALn1d

A2Ln

, tanun5ALn1d

Ln2d
,

cosun5
ALn2d

A2Ln

, cotun5ALn2d

Ln1d
, ~20!

with

Ln5Ad21Vn
2 . ~21!
4-3
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We thus have

Vn
15\gAn11 tanun , ~22a!

Vn
252\gAn11 cotun . ~22b!

The exponential factorei (v01nv)t has been introduced a
well in Eq. ~18! in order to define the same energy sca
inside and outside the cavity. Figure 2 illustrates the inter
energies of the atom-field system over the wholez axis. The
positive internal energyVn

1 increases with positive detuning
and vice versa with negative ones. For a fixed value of
incident kinetic energyEk5\2k2/2m, Vn

1 may be switched
in this way from a higher value thanEk to a lower one.
For large positive~negative! detunings,Vn

1 tends to the
ub,n11& (ua,n&) state energy.

The most general solution of Eqs.~17! corresponding to
the eigenstateufk& is given by

cn
6~z,t !5e2 i (\k2/2m)twn

6~z! ~23!

with

wn
6~z!5An

6eikn
6z1Bn

6e2 ikn
6z, ~24!

whereAn
6 andBn

6 are complex coefficients and

kn
625k22

2m

\2
Vn

6 . ~25!

FIG. 2. Schematic energy diagram of the atom-field system
side and outside the cavity, ford.0 ~a! andd,0 ~b!.
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Defining

kn5kA4 n11, ~26!

we have

kn
125k22kn

2 tanun , ~27a!

kn
225k21kn

2 cotun . ~27b!

Using Eq.~19b!, we may also write

kn
225kb

21kn
2 tanun . ~28!

From Eq.~2!, we may express the wave function comp
nents of the atom-field state inside the cavity over the n
coupled state basis. We have

cn
a~z,t !5cosuncn

1~z,t !2sinuncn
2~z,t !, ~29a!

cn11
b ~z,t !5sinuncn

1~z,t !1cosuncn
2~z,t !. ~29b!

This allows us to find the wave function components of t
eigenstateufk& over the entirez axis. The relations~9! hold
with

wn
a~z!5H eikz1rn

ae2 ikz, z,0,

wn
a~z!uC , 0,z,L,

tn
aeik(z2L), z.L,

~30!

wn11
b ~z!5H rn11

b e2 ikbz, z,0,

wn11
b ~z!uC , 0,z,L,

tn11
b eikb(z2L), z.L,

~31!

and

wn
a~z!uC5cosun~An

1eikn
1z1Bn

1e2 ikn
1z!

2sinun~An
2eikn

2z1Bn
2e2 ikn

2z!, ~32a!

wn11
b ~z!uC5sinun~An

1eikn
1z1Bn

1e2 ikn
1z!

1cosun~An
2eikn

2z1Bn
2e2 ikn

2z!. ~32b!

The coefficientsrn
a , rn11

b , tn
a , tn11

b , An
1 , An

2 , Bn
1 , and

Bn
2 in expressions~30!–~32! are found by imposing the con

tinuity conditions on the wave function and its first deriv
tive at the cavity interfaces. A tedious calculation yields

-

4-4
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tn
a5

~cos2un!tn
2~k!/tn

2~kb!tn
1~kb!1sin2untn

2~k!

@~cos2un!~k2kb!/kn
c~L !21#@~cos2un!~k2kb!/kn

t ~L !21#
, ~33!

rn
a5

~cos2un!
tn

2~k!

tn8
2~k,kb!

Dn
1~k!

Dn
1~kb!

rn
1~kb!1S 12~cos2un!

tn
1~kb!

t n9
1~k,kb!

D rn
2~k!1

cos2un

4 S kb

k
2

k

kb
D un~k!

rn
2~k!rn

1~kb!

Dn
2~k!Dn

1~kb!

S cos2un

k2kb

kn
c~L !

21D S cos2un

k2kb

kn
t ~L !

21D ,

~34!

tn11
b 5

sin 2un

4 S 11
k

kb
D @tn

2~k!/ t̃n
2~k,kb!#tn

1~kb!2@tn
1~kb!/ t̃n

1~k,kb!#tn
2~k!

@~cos2un!~k2kb!/kn
c~L !21#@~cos2un!~k2kb!/kn

t ~L !21#
, ~35!

rn11
b 5sin 2un

1
2 @tn

2~k!/ t̄n
2~k,kb!#@Dn

1~k!/Dn
1~kb!#rn

1~kb!2 1
2 @tn

1~kb!/ t̄n
1~k,kb!#rn

2~k!1 1
4 ~k/kb21!vn~k!tn

2~k!tn
1~kb!

@~cos2un!~k2kb!/kn
c~L !21#@~cos2un!~k2kb!/kn

t ~L !21#
,

~36!
lts
with

un~k!5sin2un

Sn
12

sin~kn
1L !sin~kn

2L !
1S kn

2kn
1

k2
2

k2

kn
2kn

1D ,

~37!

vn~k!5 i S kn
1

k
sin~kn

1L !cos~kn
2L !

2
kn

2

k
sin~kn

2L !cos~kn
1L ! D 2

cos 2un

2
Sn

12 ,

~38!

Sn
125sin~kn

1L !sin~kn
2L !S kn

2

kn
1

1
kn

1

kn
2D

12@cos~kn
2L !cos~kn

1L !21#, ~39!

and

rn
6~k!5 iDn

6~k!sin~kn
6L !tn

6~k!, ~40!

tn
6~k!5@cos~kn

6L !2 iSn
6~k!sin~kn

6L !#21, ~41!

Sn
6~k!5

1

2 S kn
6

k
1

k

kn
6D , ~42!

Dn
6~k!5

1

2 S kn
6

k
2

k

kn
6D , ~43!

tn8
6~k,kb!5Fcos~kn

6L !2 i
kb

k
Sn

6~k!sin~kn
6L !G21

,

~44!
05380
tn9
6~k,kb!5Fcos~kn

6L !2 i
k

kb
Sn

6~k!sin~kn
6L !G21

,

~45!

t̃n
6~k,kb!5@cos~kn

6L !2 i S̃n
6~k,kb!sin~kn

6L !#21, ~46!

t̄n
6~k,kb!5Fcos~kn

6L !2 i
k1kb

2kb
Sn

6~k!sin~kn
6L !G21

,

~47!

S̃n
6~k,kb!5S kn

6

k1kb
1

kb

k1kb

k

kn
6D , ~48!

kn
c~L !5 i

„k1 i cot~kn
2L/2!kn

2
…„kb1 i cot~kn

1L/2!kn
1
…

cot~kn
2L/2!kn

22cot~kn
1L/2!kn

1
,

~49!

kn
t ~L !5 i

„k2 i tan~kn
2L/2!kn

2
…„kb2 i tan~kn

1L/2!kn
1
…

tan~kn
1L/2!kn

12tan~kn
2L/2!kn

2
.

~50!

At resonance,d50, un5p/4, kb5k, tn
6(k)5tn8

6(k,kb)

5t9n
6(k,kb)5 t̃n

6(k,kb)5 t̄n
6(k,kb), and the reflection and

transmission coefficients reduce to the well-known resu
~see Ref.@2#!

tn
a5

1

2
~tn

11tn
2!, ~51a!

rn
a5

1

2
~rn

11rn
2!, ~51b!

and
4-5
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tn11
b 5

1

2
~tn

12tn
2!, ~52a!

rn11
b 5

1

2
~rn

12rn
2!. ~52b!

III. INDUCED EMISSION PROBABILITY

The induced emission probability of a photon inside t
cavity is given by

Pem~n!5Rn11
b 1Tn11

b . ~53!

According to Eqs.~15!, this probability may be written as

Pem~n!5H kb

k
@ urn11

b u21utn11
b u2# if

k

k
.Ad

g
,

0 otherwise.

~54!

We distinguish three regimes determined by the incid
kinetic energy of the atom compared with the internal ene
Vn

1 ~see Fig. 2!: the hot atom regime~when k@knAtanun

and kb is approximated tok), the intermediate regime (k
'knAtanun), and the cold atom regime (k!knAtanun). In
comparison with the resonant case, the detuning define
additional parameter that fixes the working regime of
system.

A. Hot atom regime

In the hot atom regime, the kinetic energy is much high
than the energiesVn

6 and the atoms are always transmitt
through the cavity. For the mesa mode, the atomic mom
tum inside the cavity is given by

\kn
1.\kS 12

kn
2

2k2
tanunD , ~55a!

\kn
2.\kS 11

kn
2

2k2
cotunD . ~55b!

After the atom-field interaction, the global state of t
system reduces to

uc~ t !&5E dzc~z,t !~cosune2 i (kn
2L/2k)tanunuz,1,n&

2sinunei (kn
2L/2k)cot unuz,2,n&) ~56!

with

c~z,t !5eikze2 i (\k2/2m)t. ~57!
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The induced emission probability is thus given by

Pem~n!5 z^z,b,n11uc~ t !& z2

5
sin2~2un!

4
ue2 i (kn

2L/2k)tanun

2ei (kn
2L/2k)cot unu2. ~58!

Using Eq.~20! we get straightforwardly

Pem~n!5F11S d

Vn
D 2G21

sin2S t

2
AVn

21d2D , ~59!

wheret5mL/\k is the classical transit time of the therm
atoms through the cavity.

Equation ~59! is exactly the classical expression of th
induced emission probability of an atom interacting with
single mode during a timet. We recover the well-known
Rabi oscillations in the general case where the field and
atomic frequencies are detuned by the quantityd.

B. Intermediate regime

The frontier between the cold atom and the hot atom
gime appears when the atomic kinetic energy becomes e
to the positive energyVn

1 inside the cavity, i.e., when the
ratio k/kn is equal to the critical value

k

kn
U

c

5Atanun5S A~d/g!214~n11!1d/g

A~d/g!214~n11!2d/g
D 1/4

. ~60!

At resonance, this frontier occurs fork/kn51. This condi-
tion changes significantly when the cavity and the atom
transition are detuned. This is well illustrated in Fig.
which shows the induced emission probability as a funct
of k/k at resonance and for a positive value of the detuni
In the second case, the regime change occurs for a la
value of k/k than one. Please notice also that the induc
emission probability vanishes fork/k,Ad/g according to
Eq. ~54!.

Equation~60! may be inverted to yield a critical detunin
when working with a fixed value ofk/k. We get

FIG. 3. Induced emission probabilityPem(n50) with respect to
k/k ~for kL510p and two different values of the detuning!.
4-6
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d

g U
c

5An11F S k

kn
D 2

2S k

kn
D 22G . ~61!

Figure 4 illustrates the induced emission probability a
function of the detuning fork/k slightly greater than 1. At
resonance, the system is on the hot atom regime side a
atomic kinetic energy is greater than the internal energyVn

1 .
When the detuning is increased,Vn

1 is increased as well an
becomes greater than the kinetic energy@see Fig. 2~a!#,
switching the system toward the cold atom regime. T
therefore could define a convenient way to switch from o
regime to the other rather than by varying the incide
atomic momentum.

A similar effect of the detuning is presented in Fig.
which presents the induced emission probability with resp
to the interaction length in the intermediate regime. It a
pears clearly there that working with a negative detuning
similar to working with hotter atoms at resonance. This
sults merely from the level ofVn

1 compared to the inciden

FIG. 4. Induced emission probabilityPem(n50) with respect to
d/g in the intermediate regime (k/k51.01). The interaction length
was fixed tokL5100.
t
af
to
on
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a
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kinetic energy, which is identical in both cases considered
Fig. 5.

From all these situations, we conclude that a detun
variation has an identical effect as a change of the kin
energy of the incoming atoms, confirming that the only im
portant parameter of the system in the intermediate regim
the actual value of theVn

1 energy in comparison with the
kinetic energy\2k2/2m.

C. Cold atom regime

In the cold atom regime (k/kn!Atanun), the induced
emission probability exhibits a completely different beha
ior. We have in this regime forudu/Vn!1, exp(knL)@1, and
knL!(kn /k)2,

Pem~n!5
B~L !

2

11@~cotun!/2#sin~2knAcotunL !

11~kn/2k!2 cotun sin2~knAcotunL !
,

~62!

with

FIG. 5. Induced emission probabilityPem(n50) with respect to
the interaction lengthkL in the intermediate regime. Comparison
a detuning variation with a change of the atomic kinetic energy
B~L !5
kb

k

1

u~cos2un!~k2kb!/kn
c~L !21u2u~cos2un!~k2kb!/kn

t ~L !21u2
. ~63!
e

At resonance, this expression simplifies to

Pem~n!5
1

2

11 1
2 sin~2knL !

11~kn/2k!2 sin2~knL !
~64!

and the results of Meyeret al. @2# are well recovered. Figure
6 illustrates the induced emission probability~62! with re-
spect to the interaction lengthkL for various values of the
detuning. The curves present a series of peaks where
induced emission probability is optimum. The detuning
fects the peak position, amplitude, and width. Similarly
the resonant case, the curves still look like the Airy functi
of classical optics@11F sin2(D/2)#21 with finesseF and
total phase differenceD, even if the structure of Eq.~62! has
he
-

become complicated with the factorB(L). In fact, this equa-
tion is extremely well fitted in its domain of validity by th
function

Pem~n!5
2kb /k

~11kb /k!2

11 1
2 sin~2knAcotunL !

11@kn /~kb1k!#2 sin2~knAcotunL !
.

~65!

1. Peak position

The induced emission probability is optimum when

knAcotunL5mp ~m a positive integer!. ~66!
4-7
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This occurs when the cavity length fits a multiple of one-h
the de Broglie wavelengthldB of the atom inside the cavity

L5m
ldB

2
. ~67!

Indeed, in the cold atom regime, only theu2,n& compo-
nent propagates inside the cavity with the de Broglie wa
length

ldB5
2p

kn
2

.
2p

knAcotun

. ~68!

Inserting Eq.~68! into Eq. ~67! gives the condition~66!.

2. Peak amplitude

The peak amplitude of the induced emission probabi
Pem(n) is given by

A[
B~L5mldB/2!

2
.

1

2

4kb /k

~11kb /k!2
. ~69!

We illustrate this amplitude in Fig. 7 as a function of th
detuningd. In contrast to the hot atom regime@see Eq.~59!#,
the curves present a strong asymmetry with respect to
sign of the detuning. This results from the potential step\d
~see Sec. II! experienced by the atoms when they emit
photon. For cold atoms whose energy is similar to or l

FIG. 6. Induced emission probabilityPem(n50) with respect to
the interaction lengthkL in the cold atom regime (k/k50.1) and
for various values of the detuning.

FIG. 7. AmplitudeA of the resonances with respect tod/g for
two values ofk/k in the cold atom regime.
05380
f

-

y

he

s

than the step height, the sign of the step is a crucial par
eter. According to Eq.~54!, the induced emission probabilit
drops down very rapidly to zero for positive detunings,
contrast to what happens for negative detunings.

It is also interesting to note that the peak amplitude~69! is
equal to the amplitude at resonance (1/2) times the fa
(4kb /k)/(11kb /k)2 that corresponds exactly to the tran
mission factor of a particle of momentum\k through a po-
tential step\d. This is an additional argument to say that t
use of a detuning adds a potential step effect for atoms e
ting a photon inside the cavity~see Fig. 1!.

3. Peak width

The peak width is determined by the finesse@kn /(kb
1k)#2. Positive detunings increase the finesse (kb,k) while
negative ones decrease it (kb.k).

4. Large detunings

For large detunings, Eq.~62! is no longer valid and the
induced emission probability must be computed using
general relation~54!. We present in Fig. 8Pem(0) as a func-
tion of the detuning and the interaction lengthkL. The varia-
tion of the resonance positions with respect to the detunin
very clear in this figure. It is interesting to note that o
resonance out of two disappears when increasing the de
ing toward negative values. Also, the induced emission pr
ability does not decrease monotonically with the detun
~especially for small interaction lengths!. This effect is
strictly limited to the cold atom regime as for hot atoms t
Rabi oscillation amplitudes always decrease when larger
larger detunings are used@see Eq.~59!#.

The use of large negative detunings in the cold atom
gime is not limitless. As2d increases, the internal energ
Vn

1 decreases@see Fig. 2~b!# and may finally become lowe
than the incident kinetic energy. To keep the system in
cold atom regime, we must have fork/kn!1 @see Eq.~61!#

2
d

g
,An11S kn

k D 2

. ~70!

FIG. 8. Induced emission probabilityPem(n50) with respect to
the interaction lengthkL andd/g ~for k/k50.1).
4-8
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This condition is well respected in Fig. 8 as the limitin
lower value of d/g to keep the system in the cold ato
regime is2100 for k/k50.1.

The use of large positive detunings in the cold atom
gime is not possible as the induced emission probability v
ishes for

d

g
>S k

k D 2

. ~71!

IV. SUMMARY

In this paper we have presented the quantum theory of
mazer in the nonresonant case. Interesting effects have
pointed out. In particular, we have shown that the cavity m
slow down or speed up the atoms according to the sign of
detuning and that the induced emission process may be c
pletely blocked by use of a positive detuning. We have a
demonstrated that the detuning adds a potential step e
not present at resonance. This defines a well-controlled c
.

05380
-
-

e
en
y
e

m-
o
ct
l-

ing mechanism for positive detunings. In the special case
the mesa mode function, generalized expressions for the
flection and transmission coefficients have been obtain
The properties of the induced emission probability in t
presence of a detuning have been discussed. In the cold
regime, we have obtained a simplified expression for t
probability and have been able to describe the detuning
fects on the resonance amplitude, width, and position.
contrast to the hot atom regime, we have shown that
mazer properties are not symmetric with respect to the s
of the detuning. In the intermediate regime, the use of det
ing could be a convenient way to switch from the hot ato
regime to the cold atom one.
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