PHYSICAL REVIEW A 67, 053804 (2003
Detuning effects in the one-photon mazer
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The quantum theory of the mazer in the nonresonant ¢asketuning between the cavity mode and the
atomic transition frequencies is preseist described. The generalization from the resonant case is far from
being direct. Interesting effects of the mazer physics are pointed out. In particular, it is shown that the cavity
may slow down or speed up the atoms according to the sign of the detuning and that the induced emission
process may be completely blocked by use of a positive detuning. It is also shown that the detuning adds a
potential step effect not present at resonance and that the use of positive detunings defines a well-controlled
cooling mechanism. In the special case of a mesa cavity mode function, generalized expressions for the
reflection and transmission coefficients have been obtained. The general properties of the induced emission
probability are finally discussed in the hot, intermediate, and cold atom regimes. Comparison with the resonant
case is given.
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[. INTRODUCTION When three-level atoms were considered, a generalized reso-
nant condition was assumé#,10,19. In this paper, we re-

The interaction of cold atoms with microwave high- move this restriction and establish the theory of the mazer in
cavities(a cold atom micromasghas recently attracted in- the nonresonant case ¢ wg) for two-level atoms.
creasing interest since it was demonstrated by Sacatllgl. The paper is organized as follows. In Sec. II, the Hamil-
[1] that this interaction leads to a new type of induced emistonian modeling the mazer in the nonresonant case is pre-
sion inside the cavity. The new emission properties ariséented. The wave functions of the system are described and
from the necessity to treat quantum mechanically the centegeneralized expressions for the reflection and transmission
of-mass motion of the atoms interacting with the cavity. Tocoefficients in the special case of the mesa mode function are
insist on the importance of this quantization, usually definedlerived. The properties of the induced emission probability
along thez axis, the system was called a magfr micro- when a detuning is present are then discussed in Sec. lll.
wave amplification viaz-motion-induced emission of radia- Three regimes of the mazer are considefieot, intermedi-
tion). The complete quantum theory of the mazer was deate, and cold A brief summary of our results is finally given
scribed in a series of three papers by Scully and co-worker# Sec. IV.

[2—4]. The theory was written for two-level atoms interact-

ing with a single mode of the higf)- cavity via a one-photon

transition. In particular, it was shown that the induced emis- Il. MODEL

sion properties are strongly dependent on the cavity mode
profile. Results were presented for the mesa, 5eaid sinu-
soidal modes. Retamat al.[5] later refined these results in We consider a two-level atom moving along théirec-

the special case of the sinusoidal mode, and a numericdion on the way to a cavity of length. The atom is coupled
method was proposed by Bastin and Sold6d for effi- unresonantly to a single mode of the quantized field present
ciently computing the mazer properties with arbitrary cavityin the cavity. The atomic center-of-mass motion is described
field modes. Léfler et al. [7] showed also that the mazer quantum mechanically and the usual rotating-wave approxi-
may be used as a velocity selection device for an atomienation is made. We thus consider the Hamiltonian

beam. The mazer concept was extended by Zheingl.
[8—10], who considered two-photon transitio8], and
three-level atoms interacting with a single cavj§| and
with two cavities[10]. Collapse and revival patterns with a
mazer have been computed by RBtial. [11]. Arun et al.
[12,13 studied the mazer with bimodal cavities and Agarwalwherep is the atomic center-of-mass momentum alongzhe
and Arun[14] demonstrated resonant tunneling of cold at-axis, m is the atomic massypy is the atomic transition fre-
oms through two mazer cavities. quency,w is the cavity field mode frequency,=|b){a| (|a)

In all these previous studies, the mazer properties werand |b) are, respectively, the upper and lower levels of the
always presented in the resonant case where the cavity modigo-level atom, a anda' are, respectively, the annihilation
frequencyw is equal to the atomic transition frequenoy. and creation operators of the cavity radiation fieds the

atom-field coupling strength, and(z) is the cavity field

mode function. We denote in the following the detuniag
*Electronic address: T.Bastin@ulg.ac.be —wg by 8, the cavity field eigenstates lyy), and the global
"Electronic address: John.Martin@ulg.ac.be state of the atom-field system by(t)).

A. The Hamiltonian

2

H=%wyo oc+hwa'a+ 2p—m +hgu(z)(ato+ac’), (1)
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B. The wave functions

We introduce the orthonormal basis

Il (6))=cosé|a,n)+sind|b,n+1),
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the interpretation of the atomic interaction with the cavity as
a scattering problem over two potentials is less evident.

Outside the cavitywhich we define to be located in the
range 6<z<L), the mode functioru(z) vanishes and Egs.
(5) become in the noncoupled state bagis=Q)

T, (6))=—sin6|a,n)+coséd|b,n+1), ) -
o d d
with @ an arbitrary parameter. TH& > (6)) states coincide i yn(z) =] — 5 022 ¥a(zt) (78
with the noncoupled statgs,n) and|b,n+1) when =0 -
and with the dressed states whes 6, given by 5 p2 2
ih—yni 1 (Z0)=| — 5= —+hd|yn,a(zt), (7D
cot26,= — —, 3) at | 2m gz
Qn
with
with
3(z,t)=¢€'(@0t )7 g n|y(t)), 8
0= 2T, @ YRz (zan|u(t) (8a

We denote ag+,n) the dressed statdd’, (6,)). The
Schralinger equation reads in ttrErepresentation and in the

basis(2)

Ynia(z) =@z b n+1]y(t)). (8

~In Eq. (8), we have introduced the exponential factor
e'(@otne)t in order to define the energy scale origin at the

P 2 g2 |a,n) level. The solutions to Eqs7) are obviously given by
ih— i (Z0)=| — 5= — +(n+ 1) w—H Scos linear combinations of plane wave functions. If we assume
gt 2m gz initially a monokinetic atom(with momentum# k) coming
upon the cavity from the left sidenegativez values in the
s h+1sin20|u’ (zt excited statéa) and the cavity field in the number stdte),
gu(2) Sin 26|, o(2,0) the atom-field system is described outside the cavity by the
wave function componentsvhich correspond to the eigen-
| figu(z) T 1 cos P state| ¢, ) of energyE,=#2k?/2m)
1 WAz =e MR 2), C
+§0ﬁ55in2 U o(Z,1), (59 o
Ynia(zt) =7 HKEMGD (2), (9b)
d 2 52 ith
L0 _|_ T _ ; wi
ih i o(21) om azz+(n+1)hw 43 sirtg
e'?+ple Kz z<0,
ERD=1 a k-t (10
—hgu(z)yn+15sin 20|y, 4(z,t) " ek b, z>L,
b P2+ 1e_ikbza z<0,
+|Agu(z)yn+1cos ¥ en+1(2)= D eknED, g (11
1 : + and
+§ﬁ5 Sin 20| ¢, 4(z,1), (5b)
> ., 2M6
with Kp=k"= ——. (12)
Yo =(2T5 ()| 9(D)). (6) Introducing
We get for eacm two coupled partial differential equa- 2mg
tions. In the resonant cas&+£0), these equations may be Ki=—" (13
decoupled over the entimaxis when working in the dressed h
state basis and the atom-field interaction reduces to an el- )
ementary scattering problem over a potential barrier and ¥/€ may write
potential well defined by the cavitysee Ref.[2]). In the
presence of detuning, this is no longer the case: there is no k2=k2—;<2§ (14)
basis where Eq$5) would separate over the entzexis and b g’
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E Due to this change in the kinetic energy when a photon is
~ emitted, the reflection and transmission probabilities of the

@N\/\_ atom in the lower stat¢h) are given, respectively, bgfor

h2Kk212m>1.6)
[
g " Kp
I Rﬁ+1:?|PE+1|2a (159
»s
b Ko\ 2
emission t Tn+1:?|7'n+l| . (15b)

FIG. 1. Potential step effect of the cavity when a photon is
emitted by the atonE represents the total energy of the atom-field ~ These probabilities vanish for*k?/2m=# 6. When the
system. atom remains in the excited std&) after having interacted
with the cavity, there is no change in the atomic kinetic en-
ergy and the reflection and transmission probabilities are di-

The solutiong9) must be interpreted as follows: The ex- .
rectly given by

cited atom coming upon the cavity will be found reflected in

the upper state or in the lower state with the amplitpde R3=|p3?, (163
andp®, ,, respectively, or transmitted with the amplituefe
or 72, , . However, in contrast to the resonant case, the atom Ta=|73. (16b)

reflected or transmitted in the lower stabe will be found to

ropagate with a momenturik, different from its initial T 7. :
propag b transmission coefficients, we must solve the Sdhger

value k. The atomic transitiorja)—|b) induced by the . s ; .
L : S equation over the entireaxis. Inside the cavity, the problem
cavity is responsible for a change of the atomic kinetic en-

. . . is much more complex since we have two coupled partial
€rgy. Acc_:ord_lng to the sign of the detunifgpe Eq(14)], th_e differential equations. In the special case of the mesa mode
cavity will either speed up the atoiffior §<0) or slow it

, function[u(z) =1 inside the cavity, 0 elsewhdrehe prob-
down (for 6>0). This results merely from energy conserva- e js however, greatly simplified. In the dressed state basis

tion. When, after Ief';lving the cavity region, the atom is(gz 6,), the Schrdinger equationg5) take the following
passed from the excited st to the lower statéb), the  form inside the cavity:

photon number has increased by one unit in the cavity and
the internal energy of the atom-field system has varied by the J .
quantity iw—fwo=% 5. This variation needs to be exactly 1= (2,1) =
counterbalanced by the external energy of the system, i.e.,

the atomic kinetic energy. In this sense, when a photon it

emitted inside the cavity by the atom, the cavity acts as a

potential steph & (see Fig. 1, and the atom experiences an P (z,) =€/ (@t N7z + nlyq(t)) (18
attractive or a repulsive force according to the sign of the

detuning. Similaralthough not identicalmechanical effects and

are obtained under the adiabatic approximafit®] (requir-

ing no quantum treatment of the atomic center-of-mass mo-
tion). In this case the dressed levels may also decelerate or
accelerate the atoms. However, in this regime and contrary to
what is described here, the atom always leaves the cavity

with _the same kinetic ener_gyf no dissipation process is and|—,n) components, respectively. Except for the resonant
consideregland the mechanical effects are not related 0 thg,se  they cannot be strictly interpreted as a potential barrier
emission of a photon inside the cavity. ~and a potential well as Eq17) holds only inside the cavity.

Presently the use of positive detunings in the atom-field Using Eq.(3), we have the well-known relations
interaction defines a well-controlled cooling mechanism. A

To calculate any quantity related to the reflection and

2(92

Y
2m (922 n

Yo (zt) (17

V. =sirf,h6+hgyn+1sin26,, (193
V,=hé-V, . (19b)

V. andV, represent the internal energies of ffe,n)

single excitation exchange between the atom and the field ) VA,+ 8 Ap+o

inside the cavity is sufficient to cool the atom to a desired sinon= N o=\ 1 —5°
temperatureT=ﬁ2k§/2ka (kg is the Boltzmann constant " "

which may in principle be as low as imaginable. However, if A —b A—o

the initial atomic kinetic energyi?k?/2m is lower than% & coSf,=———, coth,= An , (20)
(i.e., if k/k<\/é/g), the transitiona,n)—|b,n+1) cannot V2A, nto

take place(as it would removei § from the kinetic energy

and no photon can be emitted inside the cavity. In this case

the emission process is completely blocked. Ap= \/m ] (21)
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E Defining
Vo +,n)
o ! : Kn:K4\/n+l, (26)
- b, n+1) | 6, n+1)
T Y we have
0
la, ) L lan z
ki2=k?— k2 tan#,, (279
Vi o e
k, 2=k?+ «2 cot#,. (27b)
(a)
E

Using Eq.(19b), we may also write

] SR o Y SO ky2=k3+ K2 tand, . (29
o tom L la.n) From Eq.(2), we may express the wave function compo-
l hs i i nents of the atom-field state inside the cavity over the non-
[b, 1) [6, n+1) coupled state basis. We have
LA L) 2(z,t)=cosb, i, (z,t)—sin by, (2,t), (29a

® P (2 =SiNB7 (2,8) +COSO U (2,1). (29h)

FIG. 2. Schematic energy diagram of the atom-field system in-

side and outside the cavity, f@>0 (&) and 5<0 (b). This allows us to find the wave function components of the

We thus have eigenstatd ¢,) over the entirez axis. The relationg9) hold

with
V. =hgyn+1tand,, (22a . .
e"‘z+pﬁe"kz, Z<0,
V., =—-#hgyn+1coté,. (22b) o3(2)= ©3(2)c. 0<z<L, (30)
The exponential factoe'(“o* ")t has been introduced as el z>L,
well in Eq. (18) in order to define the same energy scale
inside and outside the cavity. Figure 2 illustrates the internal b o-ikyz 2<0
energies of the atom-field system over the whosxis. The Pn+1 ' '
positive internal energy,! increases with positive detunings o 1(2)=1 enii(Dlc,  0<z<L, (31)
and vice versa with negative ones. For a fixed value of the Tb+1eikb(sz) 7>L
n ’ 1

incident kinetic energyg,=#2k%/2m, V,\ may be switched
in this way from a higher value thak, to a lower one.
For large positive(negativeé detunings,V, tends to the and
|b,n+1) (|a,n)) state energy.
The most general solution of Eg&l7) corresponding to a _ +oikiz, pta-iklz
the eigenstatés, ) is given by #n(2)lc=costh(A, efn?+ B, e )
P (z,t) = 1ML = () (23 TS TEB e, (32
nl4&U= Pn

with ¢hi1(2)]c=sinOy(AT e n 7+ B e n?)
o (z)=A%eknZ+Bre knZ, (24) +cosO,(Ase*nZ+B e 2. (32D

whereA,, andB, are complex coefficients and The coefficient?, p2, ., 7, .., A* A, B, and

5 B, in expression$30)—(32) are found by imposing the con-
KI2=K2— _mvt ) (25)  finuity conditions on the wave function and its first deriva-
" n2 " tive at the cavity interfaces. A tedious calculation yields
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(cog0,) m, (K) 7, (Kp) 7t (Kp) + SirP 0,7, (K)

T [ (c0£6y) (k— ko) KS(L) — 1] (€02 ) (K—kp)/KL(L) — 1] 33
() AF(K) (ko) | _ co2,[ky K pr (K)pi (ky)
(008 ) ) B (k) P (o) | 1 (CoS ) ﬁ*(kk)) 3 (?_k_b>“” A, (A7 (ky)
Pn= 2 —k 2 k—Kp :

c0 (’”kC(L) )(Co G"M‘l)
(34)
) _sinzen( 5) L7 (K07 (Koko) 17 (ko) — [ 77 (ko) /72 (koK) 75 (K) 5
T [(co26,)(K—ky)/KE(L) — 1][(cOS6y) (K— ko) Ky(L) — 1]

3 (K7 (K ko) LA (KA (ko) 1pp (Kp) —

Horm (ko) 7 (K, ko) 1pn (K)+

7 (klky—D)vn(k) 7y (K) 7y (k)

Pg+l:Sin 26,

with
| Sy (k;k: k2 )
Un(K)=sirf 6, — —+ -,
sin(kL)sin(k, L) k> Kk kg,
(37)
Ko .
vn(k)=i(?sm(k,TL)cos{knL)
Ko . _ . cos2, .,
—?sm(knL)COS(knL)>—TSn ,
(39)
- +
S =sin(k’L)sin(k L)| —+ —
. =sin(k, L)sin(k, L) k§+kn
+2[cogk, L)cogk,L)—1], (39
and
pn (K)=1A7 (K)sin(ky L) 7, (k), (40
7, (K)=[cogky L) =X (k)sin(kyL)]™%,  (41)
Lo 1[ky ok
h (k=5 7+E : (42)
_1 k, k
Ag (k)= * k) (43
N + Ko N
7 (Kkp) = cos{knL)—I?En(k)sm(knL)} :

(44)

[(cog 6,) (k—kp)/KR(L) — 1][(cOS 6,) (k—ky)/Kp(L) — 1]

(36)

-1
T,rl]i(k.kb): ;(k)sm(k,TL)} )

(49

. k
cogk,L)—i—X%
Kp
T (K Ky) =[cog kL) —i3 Z (K, ky)sin(kiL)] "L, (46)

|

(47

T (K, kp) =

k= Ko k)

20 ko) = e ok ke

(48)

(k+i cottk; L/2)k: ) (ky+i otk L/2)k’)

KS(L) =i 0 —
cot(k; L/2)k; —cot(k; L/2)k;'
(49)
(=i (k—i tan(k;, L/2)k;, )(Kp—i tar(krfL/Z)k:)'

tan(k; L/2)k: —tan(k;, L/2)k;,

(50

At resonanced=0, 0,=m/4, ky=K, 7, (K)= 7,7 (K,Kp)
=72 (k,kp) =71 (k,k,) =7, (k,kp), and the reflection and
transmission coefficients reduce to the well-known results

(see Ref[2])

1
Tﬁ=—(7:+7';),

(513

Pn 2(pn +pn) (51b)

and
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1

The1=5 (T = 7)), (523
1 S
- g
pﬁ+1=§(p§—pn ). (52b) N
I1l. INDUCED EMISSION PROBABILITY

The induced emission probability of a photon inside the
cavity is given by

FIG. 3. Induced emission probabilify,(n=0) with respect to
PerM) =R, +T0, . (53) ki« (for kL=10m and two different values of the detuning

According to Eqs(15), this probability may be written as 1 h€ induced emission probability is thus given by

Penn)=[(z,b,n+1](1))[?

Sl it 2
Pl =1 | < Vo s s
_ stz

2
. —i(k,L/2k)tan 6,
0 otherwise. e

e : : o _ei(KﬁL/ZK)cown|z (58)
We distinguish three regimes determined by the incident :

kinetic energy of the atom compared with the internal energy
V. (see Fig. 2 the hot atom regiméwhen k> «,tané,
and k,, is approximated td), the intermediate regimek(

Using Eq.(20) we get straightforwardly

21-1
~ kpytand,), and the cold atom regim&k& «k,\tané,,). In Por(n) = 1+<i sir? T 02+ 52 (59)
comparison with the resonant case, the detuning defines an € Q, 20" ’

additional parameter that fixes the working regime of the
system. where r=mL/%K is the classical transit time of the thermal

atoms through the cavity.

Equation(59) is exactly the classical expression of the
induced emission probability of an atom interacting with a
In the hot atom regime, the kinetic energy is much highersingle mode during a time. We recover the well-known
than the energie¥,, and the atoms are always transmitted Rabi oscillations in the general case where the field and the
through the cavity. For the mesa mode, the atomic momenatomic frequencies are detuned by the quandity

tum inside the cavity is given by

A. Hot atom regime

5 B. Intermediate regime
K
ﬁk:zhk( 1- —nztanen) , (558 The frontier between the cold atom and the hot atom re-
2k gime appears when the atomic kinetic energy becomes equal

to the positive energy/, inside the cavity, i.e., when the
2 ) ratio k/ k,, is equal to the critical value

— Kn
Ak, =#hk| 1+ ——cotf (55b)
" ( k2 " J(olgy%+a(n+1)+s/g\ "
J(6lg)?+4(n+1)-6lg)
After the atom-field interaction, the global state of the

system reduces to At resonance, this frontier occurs f&fx,=1. This condi-
tion changes significantly when the cavity and the atomic

(60)

=\tanb,= (

KnC

B —i(RLiZKtane transition are detuned. This is well illustrated in Fig. 3,
|¢(t)>—J dzyg(z,t)(cosbe” " n "z,+,n) which shows the induced emission probability as a function
) of k/ k at resonance and for a positive value of the detuning.
—sin §,e'(<nt/2Kcoton| 7 — n)) (56) In the second case, the regime change occurs for a larger

value ofk/k than one. Please notice also that the induced
emission probability vanishes fdt/ «k<./6/g according to
Eq. (54).
‘ o Equation(60) may be inverted to yield a critical detuning
P(z,t)=elkzg i(hkT2m)t (57)  when working with a fixed value df/x. We get

with
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1 T T T T T
1 4
08
08 4
= 06 @ 06l |
3 g
Q& o4 & ol d
02 0.2 Kk = T ig=0 ——
kjk=1, §/g=-004 ©
0% L L I I T
—04 —0.2 [} 0.2 0.4 0 5 10 15 20 25 30
/9 KL
FIG. 4. Induced emission probabilifj.{n=0) with respect to FIG. 5. Induced emission probabilitje,{n=0) with respect to
5/g in the intermediate regimek(«x=1.01). The interaction length the interaction lengtixL in the intermediate regime. Comparison of
was fixed toxL=100. a detuning variation with a change of the atomic kinetic energy.

K12 [ K\-2 I;i_netisc energy, which is identical in both cases considered in
ig. 5.
K_n) (K_n) } (62) gFrom all these situations, we conclude that a detuning
variation has an identical effect as a change of the kinetic
Figure 4 illustrates the induced emission probability as &£n€rgy of the incoming atoms, confirming that the only im-
function of the detuning fok/« slightly greater than 1. At portant parameter of the+system |n.the mterm_edlate.reglme is
resonance, the system is on the hot atom regime side as tee actual value of the/, energy in comparison with the
atomic kinetic energy is greater than the internal enafgy ~ Kinetic energyf °k?/2m.
When the detuning is increased, is increased as well and
becomes greater than the kinetic enefgge Fig. 2a)],
switching the system toward the cold atom regime. This In the cold atom regimek{«,<+tanéd,), the induced
therefore could define a convenient way to switch from oneemission probability exhibits a completely different behav-
regime to the other rather than by varying the incidentior. We have in this regime fdw|/Q,<1, exp,L)>1, and

=yn+1

C. Cold atom regime

atomic momentum. koL <(xp/K)?,
A similar effect of the detuning is presented in Fig. 5
which presents the induced emission probability with respect P B(L) 1+[(coté,)/2]sin(2«,\cotb,L)
to the interaction length in the intermediate regime. It ap- erlN)=—5 > . s
pears clearly there that working with a negative detuning is 1+ (x/2K)* COL 0y SIIT(icp VCOLB,L) 62)

similar to working with hotter atoms at resonance. This re-
sults merely from the level 0¥, compared to the incident with

Ky 1
B(L)=— . (63
K |(cog0) (k—kp)/Kq(L) — 117 (cOS ) (K—Kp) /Ky (L) — 1|
|
At resonance, this expression simplifies to become complicated with the fact8¢L). In fact, this equa-
tion is extremely well fitted in its domain of validity by the
i) 1 1+ %sin(2«,L) 64) function
n=-
¢ 2 1+ (kp/2K)? sir?( kL)
2k, /k 1+ 3 sin(2k,\cotd,L
and the results of Meyest al.[2] are well recovered. Figure P, (n)= o 2 Sin :n_ D) _
6 illustrates the induced emission probabil{B2) with re- (1+kp/K)? 1+[xn/(kptk)]? Sin(kpy/cOt L)
spect to the interaction lengtklL for various values of the (65)
detuning. The curves present a series of peaks where the
induced emission probability is optimum. The detuning af- 1. Peak position

fects the peak position, amplitude, and width. Similarly to
the resonant case, the curves still look like the Airy function
of classical opticq 1+F sir’(A/2)]~ with finesseF and

total phase differenca, even if the structure of Eq62) has kpyVcotd,L=ma (m a positive integer. (66)

The induced emission probability is optimum when
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08

L}
5= 0 —

0.7 i
8/g= 9.5%10™3 s

06
05 fy,
o) |
03 I
oz i
o1

Pen(0)

FIG. 6. Induced emission probabilify,(n=0) with respect to
the interaction lengttxL in the cold atom regimek{x=0.1) and
for various values of the detuning.

FIG. 8. Induced emission probabilif§,,(n=0) with respect to
This occurs when the cavity length fits a multiple of one-halfthe interaction lengtikL and §/g (for k/x=0.1).
the de Broglie wavelengthyg of the atom inside the cavity:

N than the step height, the sign of the step is a crucial param-
L=m_3 (67) eter. According to Eq(54), the induced emission probability
? drops down very rapidly to zero for positive detunings, in

Indeed, in the cold atom regime, only the ,n) compo- contrast to what happens for negative detunings.

S . . . _Itis also interesting to note that the peak amplit(@1® is
nent propagates inside the cavity with the de Broglie Vvaweequal to the amplitude at resonance (1/2) times the factor

length (4ky,/K)/ (14K, /k)? that corresponds exactly to the trans-
o o mission factor of a particle of momentufik through a po-
Agg=—=—"7"7"7". (68) tential steph 6. This is an additional argument to say that the
k, &pycoOto, use of a detuning adds a potential step effect for atoms emit-

) , . . ting a photon inside the cavitisee Fig. 1
Inserting Eq.(68) into Eq. (67) gives the condition(66).

2. Peak amplitude 3. Peak width

The peak amplitude of the induced emission probability Thf peak width is determined by the finedse,/(k,
Pen(n) is given by +Kk)]°. Positive detunings increase the finedgg(k) while

negative ones decrease k,&k).
_ B(L=m\gg/2)

1 4k, /k
2 T2

(1+ky/k)?

(69 4. Large detunings

For large detunings, Eq62) is no longer valid and the
We illustrate this amplitude in Fig. 7 as a function of the induced emission probability must be computed using the
detuningé. In contrast to the hot atom regimsee Eq(59)],  general relatior{54). We present in Fig. &,,(0) as a func-
the curves present a strong asymmetry with respect to thgon of the detuning and the interaction length. The varia-
sign of the detuning. This results from the potential si€p tion of the resonance positions with respect to the detuning is
(see Sec. )l experienced by the atoms when they emit avery clear in this figure. It is interesting to note that one
photon. For cold atoms whose energy is similar to or lessesonance out of two disappears when increasing the detun-
ing toward negative values. Also, the induced emission prob-
07 ; ' — Y PTT p— ability does not decrease monotonically with the detuning
/= 0.005 - i (especially for small interaction lengthsThis effect is
i strictly limited to the cold atom regime as for hot atoms the
Rabi oscillation amplitudes always decrease when larger and
larger detunings are usé¢dee Eq.(59)].
The use of large negative detunings in the cold atom re-
. gime is not limitless. As— § increases, the internal energy
i V. decreasefsee Fig. 20)] and may finally become lower
than the incident kinetic energy. To keep the system in the
cold atom regime, we must have fefx,<1 [see Eq(61)]

05

06 [

05 F 03

0.1

04

0.3

o/g

FIG. 7. Amplitude A of the resonances with respectdtg for

o Kp\?
——<yn+1|+—| .
two values ofk/« in the cold atom regime. g : 1( k ) (70
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This condition is well respected in Fig. 8 as the limiting ing mechanism for positive detunings. In the special case of
lower value of 6/g to keep the system in the cold atom the mesa mode function, generalized expressions for the re-
regime is— 100 fork/«x=0.1. flection and transmission coefficients have been obtained.
The use of large positive detunings in the cold atom re-The properties of the induced emission probability in the
gime is not possible as the induced emission probability vanpresence of a detuning have been discussed. In the cold atom

ishes for regime, we have obtained a simplified expression for this
5 probability and have been able to describe the detuning ef-

f>(E> (71) fects on the resonance amplitude, width, and position. In

g\« - contrast to the hot atom regime, we have shown that the

mazer properties are not symmetric with respect to the sign
IV. SUMMARY of the detuning. In the intermediate regime, the use of detun-
ing could be a convenient way to switch from the hot atom
In this paper we have presented the quantum theory of theegime to the cold atom one.
mazer in the nonresonant case. Interesting effects have been
pointed out. In particular, we have shown_that the ca_vity may ACKNOWLEDGMENTS
slow down or speed up the atoms according to the sign of the
detuning and that the induced emission process may be com- This work has been supported by the Belgian Institut In-
pletely blocked by use of a positive detuning. We have alsderuniversitaire des Sciences Nuailes(IISN). T.B. wants to
demonstrated that the detuning adds a potential step effethank H. Walther and E. Solano for their hospitality at Max-
not present at resonance. This defines a well-controlled cooRlanck-Institut fu Quantenoptik, GarchingGermany.

[1] M.O. Scully, G.M. Meyer, and H. Walther, Phys. Rev. L&, [8] Z.-M. Zhang, Z.-Y. Lu, and L.-S. He, Phys. Rev. 39, 808

4144(1996. (1999.
[2] G.M. Meyer, M.O. Scully, and H. Walther, Phys. Rev.58, [9] Z.-M. Zhang and L.-S. He, Opt. Commub57, 77 (1998.

4142(1997). [10] Z.-M. Zhang, S.-W. Xie, Y.-L. Chen, Y.-X. Xia, and S.-K.
[3] M. Loffler, G.M. Meyer, M. Schider, M.O. Scully, and H. Zhou, Phys. Rev. &0, 3321(1999.

Walther, Phys. Rev. A6, 4153(1997. [11] Si-de Du, Lu-wei Zhou, Shang-ging Gong, Zhi-zhan Xu, and
[4] M. Schrcder, K. Vogel, W.P. Schleich, M.O. SCU”y, and H. Jlng LU, J. PhyS EBZ, 5645(1999

Walther, Phys. Rev. A6, 4164 (1997). [12] R. Arun, G.S. Agarwal, M.O. Scully, and H. Walther, Phys.
[5] J.C. Retamal, E. Solano, and N. Zagury, Opt. Comnii, Rev. A62, 023809(2000

28 (1998. [13] R. Arun and G.S. Agarwal, Phys. Rev.66, 043812(2002.

[6] T. Bastin and E. Solano, Comput. Phys. Commii4, 197 [14] G.S. Agarwal and R. Arun, Phys. Rev. Le#d, 5098(2000.

2000. )
[7] f\/l Lgfﬂer G.M. Meyer, and H. Walther, Europhys. Ledtl [15] S. Haroche, M. Brune, and J.M. Raimond, Europhys. Llett.
593 (1998. 19 (1999.

053804-9



