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Generation of entangledN-photon states in a two-mode Jaynes-Cummings model
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We describe a mathematical solution for the generation of entafglgitbton states in two field modes. A
simple and compact solution is presented for a two-mode Jaynes-Cummings model by combining the two field
modes in a way that only one of the two resulting quasimodes enters in the interaction term. The formalism
developed is then applied to calculate various generation probabilities analytically. We show that entanglement,
starting from an initial field and an atom in one defined state may be obtained in a single step. We also show
that entanglement may be built up in the case of an empty cavity and excited atoms whose final states are
detected, as well as in the case when the final states of the initially excited atoms are not detected.
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I. INTRODUCTION Il. ALGEBRAIC SOLUTION OF THE TWO-MODE
JAYNES-CUMMINGS MODEL

Entangled states are one of the building blocks in quan- The JC Hamiltonian for resonant interaction of a two-

tum mformathn processing and nonlocality te_E;Iﬁ._They level atom {e),|g)) with two field modes &;,a,) in the
can be used, in the case of the electromagnetic field, to imy. . AR

o : ; ipole and rotating wave approximation is given lHy=H,
prove the sensitivity of interferometric measuremdgts5), “H. where
and may help to overcome the classical Rayleigh diffraction’ * "™’
limit in quantum optical lithography6]. A feasible way to
generate such states is given by the atom-field interaction in Ho=tw o, +1
the framework of one- or two-mode Jaynes-Cummififs 2
models[7-12).

Here we consider the generation of entangled two-mode Hn=%Alo"(g1a1+08,)+ o (g¥al+gial)]. (4
field states by different schemes inspired partly by Refs.
[7,8,13. We let two-level atoms interact, one at a time, with
two degenerate modes of a lossless cavity. Solving the cor-
responding JC model algebraically by an(8JUtransforma-
tion, we discuss the generation of entangighoton states
of the general form

+(aja; +aja,) 1], )

ere o,:=|e)(e|—[g)(gl, 0" :=[e)(gl, o :=[g)(e], and1
le)(e|+|g){(g| are operators for the two-level atom, is
the coupling constant of théh mode with the atom, antiw
is the photon energy. We introduce theasimodeoperators

\ Ai=yiast vy, A=—via;tyiay, %)
N
|\PN>:,;0 ok IN=k.k), (1) wherey;:=g; /g andg:=]g,|?+]g,|%. Equation(5) defines
an SU?2) transformation of the mode operatars,a,, leav-
ing the commutation relations and the number-sum operator
ala;+ala,=AlA;+AJA, invariant. The transformed
Hamiltonian then reads

which comprises the maximally entangled Bell states

1
[W)=—"=(IN,0)=|ON)). 2) +1
V2 Ho=ha| 5+ (AlA+ AIAL)1], ©)
The field states are defined in terms of the usual two-mode Hi=fg(o*A+a Al @

Fock stategn;,n,):=|n;)41|n,),, with n; (n,) photons in

mode 1(2). The two modes have the same energy and are in . I .
resonance with the two-level atom. We solve the model alféPresenting a JC Hamiltonian for the quasimédedecou-

gebraically by combining the two field modes into two quasi-P!ed from noninteracting quasimod®,. SinceH;, depends
modes, of which only one enters in the interaction term@Nly on quasimode 1 anjHo,Hiy]=0, the time evolution
yielding an effective one-mode JC modd4]. Using its operatorU(t) = exp(—iH;,t/%) in the interaction picture is
known solution and the transformation between mode an{’® S@me as for a one-mode JC model. Expandirig the
quasimode Fock states, the generation probabilities of thatom basig|e),[g)}
entangled states are found for three different schemes.

U=Ucde)(e|+Ugdg){(e|+Uegle)(gl+Ugglg)(gl, (8)

*Electronic address: wildfeuer@physik.uni-siegen.de the matrix element$) 4,(t) are given by[15]
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in(7yAjA;+1 U im)y=—isin(r/j+m+1)|j+ &, ,m+ 1)),
Uee:cos{Tm), UgezAISIr(T 171 )’ ge(T)“ m>> |S|n(7' JjTm )|J 2,M 2>>
iVAIA +1

Ueg(n)lj,m))=—isin(7yj+m)[j— 3,m—3)),

sin(7yAJA;+1) T rm
Ueg:i— \/A1A1+1A1' Ugg=cosmyA1A),  (9) Ugg()]j,m))=cog7yj+m)[j,m)), (13

» The showing thatUe. and Uyy do not change the number of
guasiphotons, whereds,. (Uey) act as creatiorfannihila-
tion) operators of quasimode 1. Using E¢EL) and(12), we
find for the action on the usual Fock states,

where 7:=gt is the dimensionless “interaction time.
model can be solved in the usual way in terms of quasimod
Fock states defined as the common eigenstat@x{,éi and
AJA,. The complete solution is then found by giving the
relation between the quasimodeTand the mode Fock states. i

The quasimode operatofs, A, i=1,2, obey the same C o) — j .
algebra as the mode operatas, aiT, so that two-quasi- Ued li.m) mg,j Covm( DM,

mode Fock state&enoted by a double-ketan be defined

by j+12 _
UgeDlimy= 2 SL(Dli+3.m),
Inl ;nz m'=-j-1/2
N{,Ny)):i=——==—=,0,0)). 10
| 1 2>> \/W| >> ( ) i—12 B
. . Ueg(Dlimy= 2 S n(nli—3.m),
To find the transformation between the two-mode Fock states m'=—j+1/2

[ny,n,) and the two-quasi-mode Fock states,n,)), we _

use Schwinger’s oscillator model6] and introduce angular- L

momentum state$j,m) and |j,m)), wherej=(n,+n,)/2 Ugg(Dli.my= X CL.(Dli.m’), (14
and m=(n;—n,)/2. In cases where it is not obvious, we m'=-j

shall write subscriptS on the state vectors to indicate the
Schwinger angular-momentum basis, €/8,0)=|1,1)s. In-
serting Eq.(5) into Eq. (10) and identifying the two vacua i

where we have introduced the following coefficients:

|0,0)) and|0,0), we obtain wam(T)z > COS(T\/m)Dgszg%T,
. ) v=—]
. (vfal+ysal) " M(— yal+ yia))l " 0.0

j

j . : : j+1/2 Tt
S (7)=—i V;_ sin(7\j+»+1)DY, "2 DU,
Expanding the products, rearranging the tefing and using )
the definition of the Fock basi®; ,n,) in terms ofa] and j

1 . . . . . A i
a,, we obtain the important relation between the quasimode g =—j si i+ )DU-12 D(])T
and the mode Fock bases, mm( 7) V:z_,- NTVI+)B 12D om

i . j
|j,m>>=m§_j DY) (e, 9. 0]i.m"), (11) cl L (n)= E,— cog 7j+ DY) O (15

o j it o Given the above equations, we now have all the ingredients
lj,m)= 2 ' D@, 9, x0[5,m")). (120 {0 calculate the time evolution of the density operator ac-
me cording top(t)=U(t)p(0)UT(t).

Here DY) (¢, 9,x)=exd—i(m e+my1dY) (9) are the
Wigner D-matrix elements of the S\) group[16,17], with Il. GENERATION OF ENTANGLEMENT IN ONE STEP

arguments  determined  bye=¢1—,, Xx=¢1+ ¢, We start with the calculation of the probability to find at

cos@®/2):=|y|, sin@®/2):=|y,|, andy;=|yilexpig). It fol- . : - : -

. . time 7 the field statg¥y) in Eq. (1), assuming an initial
lows that the mode and quasimode Fock states belonging rt(i)eld state|¢) and an atom entering the cavity in either the
the same total number of photons,+n,=2j, are related

. X . : 2 . excited or ground state. The analytical calculation is straight-
by an wredumple rotation matrix (.)f waglptand with Euler forward. Tﬁe initial field state is gxpanded according to ’
angles determined solely by the interaction constants.

The action ofU,, on the field states is easily calculated in o o |
the quasimode Fock basis |&)= 2 E bn1n2|nlrn2>: 2 2 Bjm“ ,m),
0 ] j

ny=0 ny= =0m=—j

Ued 7)]j,m))=cogmj+m+1)[j,m)), (16)

053801-2



GENERATION OF ENTANGLEDN-PHOTON STATES IN . .. PHYSICAL REVIEW A67, 053801 (2003

where the primed summation symbol indicates a sum over
integer and half-integer values ¢f The expansion coeffi-
cients with respect to the Fock and Schwinger bases are re
lated by bj+m,j,m=~bjym. State |Wy) is given in the
Schwinger basis by

N/2
Tw= > ~C(N/2)m|N/2 Ms, (17
m=—N/2

with density operatorpy, =|Wy\)(Wy|. From the time-

evolved initial states FIG. 1. Parametric plot of the generation probabilit(@s,,f)

Ule;é)=Ugde; &)+ Uge| g:é), (solid) and<pq,1—> (dasheglas a function of time-= gt, for different
initial atom-field states shown at the right.
Ulg;é)=Uede;€) +Uqqlg:€),

we obtain the reduced density operator of the field by tracing {le;1,0,|€;0,5}U{|e;0,0} (22)
out the atomic degrees of freedom:

and according to Eq21)
PP () =tra(U(t)]a;€)(a;¢lUT(t)), a=e or g.

N o , {l9:1,0,/9;0,D}U{]g;2,0,|9;1,1),|9;0,2}. (23
The probability of finding|W¥y) at time t follows from
<p(a)> tr(p®(t)pw,) and is given by We illustrate the probabilities for the generation |af ;)
=(]1,0+/0,2))/y2 in Fig. 1, where we have takeg,

Pl Nzlz Nzlz ~ N/2 ? =0,, ¢1= ¢,=0 (real coupling constankts
W . N b(N/Z)mC(N/Z)m’Cm’m( 7) The states shown on the right are just the initial atom-field
m’ states from EQs(22) and (23). The interesting case is
(N-1)12 N2 |e;0,0), where the staté¥; ) is produced periodically with
o bn-1/2)m probability 1 at the times,,=(n+1/2)x, forn=0,1, -
m=—(N=1)/2 m’ = —ni2 Next we consider the creation of various Bell states, Eq.
2 (2), resulting from the initial atom-field statée;N,0)
><C('\Uz)m,S(Nfl)/Z(7_) (19 /2)s. We obtain from Eq.(18) the entangled
N-photon field state$¥ ) with probabilities
for the initial atom-field stat¢e; £), and by ©
N/2 N/2 2 (Py >_ |C(N/2)(N/2)(T) CMm (D3 (29
519) 2 Z b(N/2)mC(N/2)m'62I1/2m( 7) * :
N2 = as well as the entangled¢- 1)-photon stateg¥ . ;) with
(N+1)/2 N/2 probabilities
" m (N+1)/2 b(N+1)/2m ( )
= "=—NI/2 e
" > 2|§(N+1)/2](N/2)(7)+5 [(N+1)/2](N/2)(T)|
2
(25
Xy St A7) (19)

In the case of Eqs(25) the Bell statedW¥y. ;) have no
for the initial state|g;£). It follows that in order to obtain ~overlap with the initial field stat¢N,0). The probabilities at
nonvanishing probabilities at time, the initial field state time 7, however, may come close to 1 for some particular
must contain at least one of the Fock states from the set Values of the coupling constants and interaction time. In this
case we may say thdWy, ,) have been generated in a
{IN.0),[N=1,2), ... JON)} single stepor single shot. This property of the two-mode JC
U{IN=1,0,|N=2,2), ... JON=1)}, (20) model can be understood if we think of the at®emitting
photons into andre)absorbing photons from the two modes
if the atom is initially in the excited state, or from the set many times during the interaction time

{INOL[N=1.1, ... [ON)} IV. CONDITIONAL GENERATION

UIN+LOMN.D. . JON+1}E - (2D Next we present @onditional scheme for the generation
if it is in the ground state. of N-photon entangled states starting with an empty cavity
ForN=1, the set of contributing atom-field states accord-[7,8]. The scheme implies sending consecutively atoms in
ing to Eq.(20) is the excited state through a two-mode cavity and detecting
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them in the ground state. We start with an initial atom-field niz
state|e;0,0)=|e;0,0))s and let the first atom interact for a P 7h) =2 Pl (29)
time r,. By using Eq.(13), we obtain the state 1=0
U(71)]€;0,0)s=cog 1)|€;0,0))s—isin(71)|g; 3, 3))s- where the coefficientp(" are given recursively by
Detecting the atom in the ground state leaves the field o 0
n)__ n—
in the state |x.)=K.(—i)sin(m)|3.3))s, Where K; po” =cos(7,)pg
=|sin(m)| *explay) is a normalization constant. By choos-
ing phase«, appropriately, the factor entering the normal- (n) 2 n-1) 1
= V2j+ +sir? (n- 2
ized state may be set equal to 1, yielding the sthté))s. =co$(m2j + 1)p| Sirf (m /2D p{" 17,
Proceeding this way, the field state obtained aNecondi-
tional steps is simply given by E?%—Slnz(fnf)pEﬂiB/z, (30)
N
|xn)=IN/2 ,N/2))s= E D/ il @9, X) IN— K K), for 1/2<j<(n—1)/2 andp{?’=1. The argumenfr,} stands
(26) for all interaction times £, . .. ,7,) of then steps. Equation

(29), which is obviously true fon=1 andn=2 [see Eq.
where we have used E¢l1) and Fock-state notation on the (31)], can be proven by induction.
right-hand side. This is precisely a state of the form given in  The coefficientsp{™ in Eq. (29) are the probabilities to
Eg. (1) with coefficients determined by the Wigner rotation find the field aftem nonconditional steps in the qua5|mode
matrix elements. Since these elements depend solely on tistate |j,j))s. In particular, p(”)—cos’-(rl)co§(7-2\/_)
coupling constants, the generated entangled state is sensitige<(r,\/n) andpﬁr}%—smz(rl)sm%.z\/‘), - siré(r/n) corre-
to their magnitudes and phases. The state in(E6). corre-  spond to the cases, where insteps the initially excited
sponds to the quasimode Fock stai&0)), implying that  atoms emerge times in the excited and ground state, re-
each conditional step generates one photon in quasimode dpectively. The mtermedlatp(”)’s correspond to the cases,
The generation probabilities of statelsy) and|¥y) afterN  where then atoms emerge12t|mes in the ground state and
conditional steps are given by n—2j times in the excited state, irrespective of the order of
appearance. The coefficiepf”) consists of a sum of%)
~ terms, each of which corresponds to a particular sequence of
(D)= m=ZN/2 C?N/Z)mD%/Z ' 27 |g)'s and|e)’s contributing, rgspectively!oa sine-squaqred and
cosine-squared factor. There are altogethete2ms in Eqg.
(29). All this is easily seen by glvm@(z) as an example:

N/2 2

+ 2 L e
(PN )| —§|D(N/2)(N/2)—D (N/2)(N/2)| (28)

@)= cogr,cod $7,sir?
pr’=Cc0S 7,05 7,|0,0)) (0,0 + [ cos 7y Sin‘r
We shall show that the probability of detecting the atdxhs F ! 2A0.0)s(( ! ?

times consecutively in the ground state is a rapidly decaying +sirtrcof(m\2) 1|5, E)((%, 5|

function of N. But, as discussed below, it is not essential to

rely on this assumption. Actually, it is sufficient to detect +SirPrySi(7542)|1,1))5((1,1]. (3
them in a sequence of (=N) stepsN times in the ground

state.

Here the four terms correspond to the final-state sequences
(e.e), (e,9), (9,e), and @,9).
States|¥) and|Wy) are generated in a nonconditional
In the following we consider aonconditionalscheme. N-step process with probabilities
We start with an empty cavity and send a sequence of excited
atoms through it without detecting their final states. The re- N/2 2

V. NONCONDITIONAL GENERATION

duced density operator of the field after the passage of the _ ~* N/2
first atom (interaction timer,) is given by (Pwy) =Pz m:ZNIZ CinmDmiz| (32
pE(71)=coS(1)0,0) (0,0 .
+sir(m)|3,3)s((3 . 3 (pyi)= Epg\ln/)2|DE\Il\/l§2)(N/2)tD’j/(zNIZ)(NIZ)lz! (33)

and serves as the “initial” field configuration for the second
excited atom. Proceeding this way, the reduced density opwzhich are theconditional probabilities found before, multi-
erator of the field aften steps turns out to be of the form  plied by the probabilityp(],. Here the interaction times must
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be chosen such that,# 0, which amounts to control the
parameters 4, .. .,r,). State|¥y) can be generated in a
minimum number oh=N steps with probability )} which,
however is a rapidly decaying function b

In the nonconditional scheme, all field statdsj))s
=12j,0)) for j=0,1/2 ... ,n/2 are produced, Eq29). On
the contrary, in theconditional scheme only the entangled
N-photon statéN,0)), Eq.(26), is generated, if im stepsN
atoms are detected in the ground state. To pro¢hlfg it is,
therefore, not crucial that the atoms have been detedted

times consecutively in their ground state. Any sequence o?

the ground and excited states containhigimes the ground

state will do it. Finally, we note that there is a particular

choice of the interaction time of théth atom, given byr,
=/(2/€) for which both the conditional and noncondi-
tional schemes givéwith probability 1) the same entangled
state|N,0)) in Eq. (26).

PHYSICAL REVIEW A67, 053801 (2003

VI. CONCLUSION

To conclude, we have solved the two-mode JC model al-
gebraically by reducing it to an effective one-quasi-mode JC
model. The mode and quasimode picture are unitarily related
by an SU?2) transformation. The solution found is used to
discuss three different schemes for the generation of en-
tangled states of the two field modes. To generate entangled
N-photon states in a single step, the initial state must contain
at leastN— 1 photons and an excited atom. Starting from the
vacuum we need at least= N steps to produce pukenixed)
eld states in the conditiongdhonconditiongl scheme pre-
sented.
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