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Generation of entangledN-photon states in a two-mode Jaynes-Cummings model

C. Wildfeuer* and D. H. Schiller
Fachbereich Physik, Universita¨t Siegen, D-57068 Siegen, Germany

~Received 30 October 2002; published 8 May 2003!

We describe a mathematical solution for the generation of entangledN-photon states in two field modes. A
simple and compact solution is presented for a two-mode Jaynes-Cummings model by combining the two field
modes in a way that only one of the two resulting quasimodes enters in the interaction term. The formalism
developed is then applied to calculate various generation probabilities analytically. We show that entanglement,
starting from an initial field and an atom in one defined state may be obtained in a single step. We also show
that entanglement may be built up in the case of an empty cavity and excited atoms whose final states are
detected, as well as in the case when the final states of the initially excited atoms are not detected.
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I. INTRODUCTION

Entangled states are one of the building blocks in qu
tum information processing and nonlocality tests@1#. They
can be used, in the case of the electromagnetic field, to
prove the sensitivity of interferometric measurements@2–5#,
and may help to overcome the classical Rayleigh diffract
limit in quantum optical lithography@6#. A feasible way to
generate such states is given by the atom-field interactio
the framework of one- or two-mode Jaynes-Cummings~JC!
models@7–12#.

Here we consider the generation of entangled two-m
field states by different schemes inspired partly by Re
@7,8,13#. We let two-level atoms interact, one at a time, w
two degenerate modes of a lossless cavity. Solving the
responding JC model algebraically by an SU~2! transforma-
tion, we discuss the generation of entangledN-photon states
of the general form

uCN&5 (
k50

N

ck
(N)uN2k,k&, ~1!

which comprises the maximally entangled Bell states

uCN
6&5

1

A2
~ uN,0&6u0,N&). ~2!

The field states are defined in terms of the usual two-m
Fock statesun1 ,n2&ªun1&1un2&2, with n1 (n2) photons in
mode 1~2!. The two modes have the same energy and ar
resonance with the two-level atom. We solve the model
gebraically by combining the two field modes into two qua
modes, of which only one enters in the interaction ter
yielding an effective one-mode JC model@14#. Using its
known solution and the transformation between mode
quasimode Fock states, the generation probabilities of
entangled states are found for three different schemes.

*Electronic address: wildfeuer@physik.uni-siegen.de
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II. ALGEBRAIC SOLUTION OF THE TWO-MODE
JAYNES-CUMMINGS MODEL

The JC Hamiltonian for resonant interaction of a tw
level atom (ue&,ug&) with two field modes (a1 ,a2) in the
dipole and rotating wave approximation is given byH5H0
1H int , where

H05\vFsz11

2
1~a1

†a11a2
†a2!1G , ~3!

H int5\@s1~g1a11g2a2!1s2~g1* a1
†1g2* a2

†!#. ~4!

Here szªue&^eu2ug&^gu, s1
ªue&^gu, s2

ªug&^eu, and 1
5ue&^eu1ug&^gu are operators for the two-level atom,gi is
the coupling constant of thei th mode with the atom, and\v
is the photon energy. We introduce thequasimodeoperators

A15g1a11g2a2 , A252g2* a11g1* a2 , ~5!

whereg iªgi /g andgªAug1u21ug2u2. Equation~5! defines
an SU~2! transformation of the mode operatorsa1 ,a2, leav-
ing the commutation relations and the number-sum oper
a1

†a11a2
†a25A1

†A11A2
†A2 invariant. The transformed

Hamiltonian then reads

H05\vFsz11

2
1~A1

†A11A2
†A2!1G , ~6!

H int5\g~s1A11s2A1
†!, ~7!

representing a JC Hamiltonian for the quasimodeA1 decou-
pled from noninteracting quasimodeA2. SinceH int depends
only on quasimode 1 and@H0 ,H int#50, the time evolution
operatorU(t)5exp(2iH intt/\) in the interaction picture is
the same as for a one-mode JC model. ExpandingU in the
atom basis$ue&,ug&%

U5Ueeue&^eu1Ugeug&^eu1Uegue&^gu1Uggug&^gu, ~8!

the matrix elementsUab(t) are given by@15#
©2003 The American Physical Society01-1
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Uee5cos~tAA1
†A111!, Uge5A1

†
sin~tAA1

†A111!

iAA1
†A111

,

Ueg5
sin~tAA1

†A111!

iAA1
†A111

A1 , Ugg5cos~tAA1
†A1!, ~9!

where tªgt is the dimensionless ‘‘interaction time.’’ Th
model can be solved in the usual way in terms of quasim
Fock states defined as the common eigenstates ofA1

†A1 and
A2

†A2. The complete solution is then found by giving th
relation between the quasimode and the mode Fock stat

The quasimode operatorsAi , Ai
† , i 51,2, obey the same

algebra as the mode operatorsai , ai
† , so that two-quasi-

mode Fock states~denoted by a double-ket! can be defined
by

un1 ,n2&&ª
A1

†n1A2
†n2

An1!n2!
u0,0&&. ~10!

To find the transformation between the two-mode Fock sta
un1 ,n2& and the two-quasi-mode Fock statesun1 ,n2&&, we
use Schwinger’s oscillator model@16# and introduce angular
momentum statesu j ,m& and u j ,m&&, where j 5(n11n2)/2
and m5(n12n2)/2. In cases where it is not obvious, w
shall write subscriptS on the state vectors to indicate th
Schwinger angular-momentum basis, e.g.,u2,0&5u1,1&S. In-
serting Eq.~5! into Eq. ~10! and identifying the two vacua
u0,0&& and u0,0&, we obtain

u j ,m&&ª
~g1* a1

†1g2* a2
†! j 1m~2g2a1

†1g1a2
†! j 2m

A~ j 1m!! ~ j 2m!!
u0,0&.

Expanding the products, rearranging the terms@17# and using
the definition of the Fock basisun1 ,n2& in terms ofa1

† and
a2

† , we obtain the important relation between the quasim
and the mode Fock bases,

u j ,m&&5 (
m852 j

j

Dm8m
( j )

~w,q,x!u j ,m8&, ~11!

u j ,m&5 (
m852 j

j

Dm8m
( j )†

~w,q,x!u j ,m8&&. ~12!

Here Dm8m
( j ) (w,q,x)5exp@2i(m8w1mx)#dm8m

(j) (q) are the
Wigner D-matrix elements of the SU~2! group @16,17#, with
arguments determined byw5w12w2 , x5w11w2 ,
cos(q/2)ªug1u, sin(q/2)ªug2u, andg i5ug i uexp(iwi). It fol-
lows that the mode and quasimode Fock states belongin
the same total number of photons,n11n252 j , are related
by an irreducible rotation matrix of weightj and with Euler
angles determined solely by the interaction constants.

The action ofUab on the field states is easily calculated
the quasimode Fock basis

Uee~t!u j ,m&&5cos~tAj 1m11!u j ,m&&,
05380
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Uge~t!u j ,m&&52 i sin~tAj 1m11!u j 1 1
2 ,m1 1

2 &&,

Ueg~t!u j ,m&&52 i sin~tAj 1m!u j 2 1
2 ,m2 1

2 &&,

Ugg~t!u j ,m&&5cos~tAj 1m!u j ,m&&, ~13!

showing thatUee and Ugg do not change the number o
quasiphotons, whereasUge (Ueg) act as creation~annihila-
tion! operators of quasimode 1. Using Eqs.~11! and~12!, we
find for the action on the usual Fock states,

Uee~t!u j ,m&5 (
m852 j

j

Cm8m
j

~t!u j ,m8&,

Uge~t!u j ,m&5 (
m852 j 21/2

j 11/2

Sm8m
j

~t!u j 1 1
2 ,m8&,

Ueg~t!u j ,m&5 (
m852 j 11/2

j 21/2

S̄m8m
j

~t!u j 2 1
2 ,m8&,

Ugg~t!u j ,m&5 (
m852 j

j

C̄m8m
j

~t!u j ,m8&, ~14!

where we have introduced the following coefficients:

Cm8m
j

~t!5 (
n52 j

j

cos~tAj 1n11!Dm8n
( j ) Dnm

( j )†
,

Sm8m
j

~t!52 i (
n52 j

j

sin~tAj 1n11!Dm8,n11/2
( j 11/2) Dnm

( j )†
,

S̄m8m
j

~t!52 i (
n52 j

j

sin~tAj 1n!Dm8,n21/2
( j 21/2) Dnm

( j )†
,

C̄m8m
j

~t!5 (
n52 j

j

cos~tAj 1n!Dm8n
( j ) Dnm

( j )†
. ~15!

Given the above equations, we now have all the ingredie
to calculate the time evolution of the density operator
cording tor(t)5U(t)r(0)U†(t).

III. GENERATION OF ENTANGLEMENT IN ONE STEP

We start with the calculation of the probability to find
time t the field stateuCN& in Eq. ~1!, assuming an initial
field stateuj& and an atom entering the cavity in either th
excited or ground state. The analytical calculation is straig
forward. The initial field state is expanded according to

uj&5 (
n150

`

(
n250

`

bn1n2
un1 ,n2&5(

j 50

`

8 (
m52 j

j

b̃ jmu j ,m&,

~16!
1-2
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where the primed summation symbol indicates a sum o
integer and half-integer values ofj. The expansion coeffi-
cients with respect to the Fock and Schwinger bases are
lated by bj 1m, j 2m5b̃ j ,m . State uCN& is given in the
Schwinger basis by

uCN&5 (
m52N/2

N/2

c̃(N/2)muN/2 ,m&S, ~17!

with density operatorrCN
5uCN&^CNu. From the time-

evolved initial states

Uue;j&5Ueeue;j&1Ugeug;j&,

Uug;j&5Uegue;j&1Uggug;j&,

we obtain the reduced density operator of the field by trac
out the atomic degrees of freedom:

rF
(a)~ t !5trA~U~ t !ua;j&^a;juU†~ t !!, a5e or g.

The probability of finding uCN& at time t follows from
^rCN

(a) &5tr(rF
(a)(t)rCN

) and is given by

^rCN

(e) &5U (
m52N/2

N/2

(
m852N/2

N/2

b̃(N/2)mc̃(N/2)m8
* Cm8m

N/2
~t!U2

1U (
m52(N21)/2

(N21)/2

(
m852N/2

N/2

b̃(N21/2)m

3 c̃(N/2)m8
* Sm8m

(N21)/2
~t!U2

~18!

for the initial atom-field stateue;j&, and by

^rCN

(g) &5U (
m52N/2

N/2

(
m852N/2

N/2

b̃(N/2)mc̃(N/2)m8
* C̄m8m

N/2
~t!U2

1U (
m52(N11)/2

(N11)/2

(
m852N/2

N/2

b̃(N11)/2m

3 c̃(N/2)m8
* S̄m8m

(N11)/2
~t!U2

~19!

for the initial stateug;j&. It follows that in order to obtain
nonvanishing probabilities at timet, the initial field state
must contain at least one of the Fock states from the se

$uN,0&,uN21,1&, . . . ,u0,N&%

ø$uN21,0&,uN22,1&, . . . ,u0,N21&%, ~20!

if the atom is initially in the excited state, or from the set

$uN,0&,uN21,1&, . . . ,u0,N&%

ø$uN11,0&,uN,1&, . . . ,u0,N11&%, ~21!

if it is in the ground state.
For N51, the set of contributing atom-field states acco

ing to Eq.~20! is
05380
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$ue;1,0&,ue;0,1&%ø$ue;0,0&% ~22!

and according to Eq.~21!

$ug;1,0&,ug;0,1&%ø$ug;2,0&,ug;1,1&,ug;0,2&%. ~23!

We illustrate the probabilities for the generation ofuC1
6&

5(u1,0&6u0,1&)/A2 in Fig. 1, where we have takeng1
5g2, w15w250 ~real coupling constants!.

The states shown on the right are just the initial atom-fi
states from Eqs.~22! and ~23!. The interesting case is
ue;0,0&, where the stateuC1

1& is produced periodically with
probability 1 at the timestn5(n11/2)p, for n50,1,̄ .

Next we consider the creation of various Bell states, E
~2!, resulting from the initial atom-field stateue;N,0&
5ue;N/2,N/2&S. We obtain from Eq.~18! the entangled
N-photon field statesuCN

6& with probabilities

^rC
N
6

(e)
&5

1

2
uC(N/2)(N/2)

N/2 ~t!6C2(N/2)(N/2)
N/2 ~t!u2, ~24!

as well as the entangled (N11)-photon statesuCN11
6 & with

probabilities

^rC
N11
6

(e)
&5

1

2
uS[(N11)/2](N/2)

N/2 ~t!6S2[(N11)/2](N/2)
(N/2) ~t!u2.

~25!

In the case of Eqs.~25! the Bell statesuCN11
6 & have no

overlap with the initial field stateuN,0&. The probabilities at
time t, however, may come close to 1 for some particu
values of the coupling constants and interaction time. In t
case we may say thatuCN11

6 & have been generated in
single stepor single shot. This property of the two-mode J
model can be understood if we think of the atom~re!emitting
photons into and~re!absorbing photons from the two mode
many times during the interaction timet.

IV. CONDITIONAL GENERATION

Next we present aconditionalscheme for the generatio
of N-photon entangled states starting with an empty cav
@7,8#. The scheme implies sending consecutively atoms
the excited state through a two-mode cavity and detec

FIG. 1. Parametric plot of the generation probabilities^rC
1
1&

~solid! and^rC
1
2& ~dashed! as a function of timet5gt, for different

initial atom-field states shown at the right.
1-3
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them in the ground state. We start with an initial atom-fie
stateue;0,0&5ue;0,0&&S and let the first atom interact for
time t1. By using Eq.~13!, we obtain the state

U~t1!ue;0,0&&S5cos~t1!ue;0,0&&S2 isin~t1!ug; 1
2 , 1

2 &&S.

Detecting the atom in the ground state leaves the fi

in the state ux1&5K1(2 i )sin(t1)u
1
2,

1
2&&S, where K1

5usin(t1)u21exp(ia1) is a normalization constant. By choo
ing phasea1 appropriately, the factor entering the norma

ized state may be set equal to 1, yielding the stateu 1
2 , 1

2 &&S.
Proceeding this way, the field state obtained afterN condi-
tional steps is simply given by

uxN&5uN/2 , N/2&&S5 (
k50

N

DN/22k,N/2
N/2 ~w,q,x!uN2k,k&,

~26!

where we have used Eq.~11! and Fock-state notation on th
right-hand side. This is precisely a state of the form given
Eq. ~1! with coefficients determined by the Wigner rotatio
matrix elements. Since these elements depend solely on
coupling constants, the generated entangled state is sen
to their magnitudes and phases. The state in Eq.~26! corre-
sponds to the quasimode Fock stateuN,0&&, implying that
each conditional step generates one photon in quasimod
The generation probabilities of statesuCN& anduCN

6& afterN
conditional steps are given by

u^CNuxN&u25U (
m52N/2

N/2

c̃(N/2)m* DmN/2
N/2 U2

, ~27!

u^CN
6uxN&u25

1

2
uD (N/2)(N/2)

N/2 6D2(N/2)(N/2)
N/2 u2. ~28!

We shall show that the probability of detecting the atomsN
times consecutively in the ground state is a rapidly decay
function of N. But, as discussed below, it is not essential
rely on this assumption. Actually, it is sufficient to dete
them in a sequence ofn (>N) stepsN times in the ground
state.

V. NONCONDITIONAL GENERATION

In the following we consider anonconditionalscheme.
We start with an empty cavity and send a sequence of exc
atoms through it without detecting their final states. The
duced density operator of the field after the passage of
first atom~interaction timet1) is given by

rF
(1)~t1!5cos2~t1!u0,0&& Ŝ ^0,0u

1sin2~t1!u 1
2 , 1

2 && Ŝ ^ 1
2 , 1

2 u

and serves as the ‘‘initial’’ field configuration for the seco
excited atom. Proceeding this way, the reduced density
erator of the field aftern steps turns out to be of the form
05380
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rF
(n)~$tn%!5(

j 50

n/2
8pj

(n)~$tn%!u j , j && Ŝ ^ j , j u, ~29!

where the coefficientspj
(n) are given recursively by

p0
(n)5cos2~tn!p0

(n21) ,

pj
(n)5cos2~tnA2 j 11!pj

(n21)1sin2~tnA2 j !pj 21/2
(n21) ,

pn/2
(n)5sin2~tnAn!p(n21)/2

(n21) , ~30!

for 1/2< j <(n21)/2 andp0
(0)51. The argument$tn% stands

for all interaction times (t1 , . . . ,tn) of then steps. Equation
~29!, which is obviously true forn51 and n52 @see Eq.
~31!#, can be proven by induction.

The coefficientspj
(n) in Eq. ~29! are the probabilities to

find the field aftern nonconditional steps in the quasimod
state u j , j &&S. In particular, p0

(n)5cos2(t1)cos2(t2A2)•••
cos2(tnAn) andpn/2

(n)5sin2(t1)sin2(t2A2)•••sin2(tnAn) corre-
spond to the cases, where inn steps the initially excited
atoms emergen times in the excited and ground state, r
spectively. The intermediatepj

(n)’s correspond to the cases
where then atoms emerge 2j times in the ground state an
n22 j times in the excited state, irrespective of the order
appearance. The coefficientpj

(n) consists of a sum of (2 j
n )

terms, each of which corresponds to a particular sequenc
ug& ’s and ue& ’s contributing, respectively, a sine-squared a
cosine-squared factor. There are altogether 2n terms in Eq.
~29!. All this is easily seen by givingrF

(2) as an example:

rF
(2)5cos2t1cos2t2u0,0&& Ŝ ^0,0u1@cos2t1sin2t2

1sin2t1cos2~t2A2!#u 1
2 , 1

2 && Ŝ ^ 1
2 , 1

2 u

1sin2t1sin2~t2A2!u1,1&& Ŝ ^1,1u. ~31!

Here the four terms correspond to the final-state seque
(e,e), (e,g), (g,e), and (g,g).

StatesuCN& and uCN
6& are generated in a noncondition

n-step process with probabilities

^rCN
&5pN/2

~n!U (
m52N/2

N/2

c̃(N/2)m* DmN/2
N/2 U2

, ~32!

^rC
N
6&5

1

2
pN/2

~n! uD (N/2)(N/2)
N/2 6D2(N/2)(N/2)

N/2 u2, ~33!

which are theconditional probabilities found before, multi-
plied by the probabilitypN/2

(n) . Here the interaction times mus
1-4
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be chosen such thatpN/2
(n) Þ0, which amounts to control then

parameters (t1 , . . . ,tn). StateuCN& can be generated in
minimum number ofn5N steps with probabilitypN/2

(N) which,
however is a rapidly decaying function ofN.

In the nonconditional scheme, all field statesu j , j &&S

5u2 j ,0&& for j 50,1/2, . . . ,n/2 are produced, Eq.~29!. On
the contrary, in theconditional scheme only the entangle
N-photon stateuN,0&&, Eq. ~26!, is generated, if inn stepsN
atoms are detected in the ground state. To produceuCN& it is,
therefore, not crucial that the atoms have been detecteN
times consecutively in their ground state. Any sequence
the ground and excited states containingN times the ground
state will do it. Finally, we note that there is a particul
choice of the interaction time of the,th atom, given byt,

5p/(2A,) for which both the conditional and noncond
tional schemes give~with probability 1! the same entangle
stateuN,0&& in Eq. ~26!.
ll-

M
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VI. CONCLUSION

To conclude, we have solved the two-mode JC model
gebraically by reducing it to an effective one-quasi-mode
model. The mode and quasimode picture are unitarily rela
by an SU~2! transformation. The solution found is used
discuss three different schemes for the generation of
tangled states of the two field modes. To generate entan
N-photon states in a single step, the initial state must con
at leastN21 photons and an excited atom. Starting from t
vacuum we need at leastn>N steps to produce pure~mixed!
field states in the conditional~nonconditional! scheme pre-
sented.
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