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We present an extension of the well-known Bogoliubov theory to treat low-dimensional degenerate Bose
gases in the limit of weak interactions and low density fluctuations. We use a density-phase representation and
show that a precise definition of the phase operator requires a space discretization in cells d¥sigerform
a systematic expansion of the Hamiltonian in terms of two small parameters, the relative density fluctuations
inside a cell and the phase change over a cell. The resulting macroscopic observables can be computed in one,
two, and three dimensions with no ultraviolet or infrared divergence. Furthermore, this approach exactly
matches Bogoliubov's approach when there is a true condensate. We give the resulting expressions for the
equation of state of the gas, the ground state energy, and the first order and second order correlation functions
of the field. Explicit calculations are done for homogeneous systems.
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INTRODUCTION wherea, annihilates a particle in the condensate mode and

. L _ . S accounts for quantum and thermal fluctuations in the
Recent progress in the realization of low-dimensional

Bose gases in the quantum degenerate regime offers nediher modes. Then one uses the assumpiiy|<|ao| to
perspectives for comparison with theoretical treatments. 1$0Ive the field equations of motion perturbatively. This ap-
atomic Bose gases, low-dimensional systems are achieved Woach is not surt_able for a qua&_condensate as there is no
creating anisotropic trapping potentials. Bose-Einstein consingle macroscopically occupied field mode. Fortunately, in
densates of reduced dimensionality, that is, with the atomithe case of weak density fluctuations, the Bogoliubov idea
motion frozen in the harmonic oscillator ground state alongcan still be adapted in a quantum phase-density representa-
one or two directions, have been produ¢e]. tion of the field operator. One writes the field operafoas

Low-dimensional Bose gases with repulsive interactionsexp@);)l/z where # andp are position dependent operators,

were the S.Ub.JeCt of early theoretical studies. In the thermoining the phase and the density. One then splits the operator
dynamic limit for spatially homogeneous systems, the

Mermin-Wagner-Hohenberg theoreii,4] excludes the for-  91Ving the density apo+ dp, wherep, is ac number andsp
mation of a Bose-Einstein condensate at finite temperatur@re fluctuations, and one uses the fact | <p,. This
This is physically due to large phase fluctuations which reidea has already been used in the litera{dr@ but to our
strict the coherence length of the bosonic field to a finiteknowledge without a precise definition of the phase operator,
value. One expects, however, that strong enough repulsive well-known delicate point of quantum field theddy7,18|.
interactions between the particles strongly reduce the densils a consequence of the nonrigorous definition of the phase,
fluctuations of the gas in contrast to the noninteracting casgivergences appear in the thediy6]: one has to introduce
[5,6]. In this context, Popov introduced a long time ago thean arbitrary energy cutoff, so that predictions in 1D at zero
concept of aguasicondensatg’]. This concept has been ex- temperature are made within a logarithmic accuracy only,
tended to trapped gas¢8-10]. The recent observation of and in 3D there is no full equivalence with the Bogoliubov
large phase fluctuations for a degenerate Bose gas in a highflieory. Another approach based on the current-density opera-
anisotropic cigar shaped trap has brought qualitative expertor rather than on the phase operator was given by Schwartz
mental confirmation of the theory ina quaSi-One-dimenSiona{lg]: an expansion of the Hamiltonian in terms of weak den-
geometry[11,12. sity and current fluctuations is performed relating the corre-
It turns out that the theory of quasicondensates has not ygition function of the field to the static structure factor. It is
reached the maturity of the theory for condensates. In thgubject to the same divergence problem in 2D and 3D in the
case of regular three-dimension@D) Bose-Einstein con- apsence of an energy cutoff if one calculates the structure
densation in the weakly interacting regime, the Bogoliubovfactor in the Bogoliubov approximation.
theory[13], based on a systematic expansion in a small pa- A possibility to circumvent these difficulties is to rely on
rameter, gives a very precise description of the state of thehe path integral formulation of quantum field theory, which
gas. The intuitive idea of the Bogoliubov theory is to use theinyolves a functional integral over a classical field, for which
existence of a single macroscopically occupied mggeof  the phase is perfectly well defined. This is the approach used
the field, the mode of the condensate. We recall here thgy Popov, but with the introduction of an energy cutoff much
U(1)-symmetry preserving version of the thepiy},15. One  smaller than the chemical potential of the gas, so that the
first splits the bosonic field operator ag= ¢gay+ o), physics at length scales smaller than the healing length is not
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accurately described. This functional integral has recently p —/0(P\2\ 242 2

been considered: it can lead to a cutoff independent formal- vaip(n1=(p(r)%) = (p(r))"<(p(r))" @
ism for quasicondensat¢20,21 and it reproduces the same . ) A ]
results as the Bogoliubov theory for a 3D condengagl. ~ However, one finds that the expectation valuepf)® is

In this paper, we propose an improved Bogoliubov ap_|nf|n|te Aat every point with a nonvanishing mean density
proach to treat quasicondensates in the phase-density formal¢r) =(p(r)):
ism for a weakly interacting Bose gas. This approach is
baged on a lattice mocjel, that is, with d!sqete spatial modes, (p(N2y=8(0)p(r)+ (T ()P (r) () (1)), (3)
which allows us to give a careful definition of the phase
operator of the field and to introduce from the start an energy.
cutoff. It uses a systematic expansion in powers of the den-
sity fluctuations and of the spatial phase gradient and leads - ) o
simple expressions for the first and second order spatial coif—ef probability Qen§|Fy c_)f finding two atoms at the same
relation functions of the bosonic field that do not depend Orpomt Of. space, 1S f|n|t'e in any realistic model. Mathemaﬂ-
the energy cutoff and that exactly reproduce in 3D the prepa"y' _th's dlvgrgence IS dee to the use of the bPSOHIC com-
dictions of the Bogoliubov theory. We also use this formal-mutation relations of the field operatoggr) and ¢/'(r) at
ism to determine the equation of state of the gas to the lowedfe same point of space to put the atomic field product in
nonvanishing order in the thermal and quantum excitationsnormal order. o _

In Sec. I, we construct a discretized space model in order In order to have small, and therefore finite, density fluc-
to define in a precise way the operators giving the phase arigiations, one is forced to discretize the space, that is, to col-
discretization, restricting this approach to highly degenerat&ach little box has equal lengthalong each dimension of
and weakly interacting Bose systems. In Sec. I, we derive &Pace and is parametrized by the positiaof its center. The
guadratic approximation to the Hamiltonian, that is, we de-field operatoriys(r) has the effect of removing a particle in
rive approximate linear equations of motion for the densitythe box at positiorr and it now satisfies the bosonic com-
fluctuations and the phase operators. We recover to the lownutation relations
est order the Gross-Pitaevskii equation for the quasiconden-
sate density and we recover the Bogoliubov spectrum for the S,
excitations. We also push the expansion to the next order, by [g(r), ot (r)]= ==, (4
producing a cubic correction to the quadratic Hamiltonian, 1°
including the interaction between the quasicondensate and
the excitations. We show that inclusion of this correction iswhereé, ,, is the discrete Kronecker delta function aldds
necessary to get a consistent theory and to establish the fulhe dimension of space. The variance of the operator giving
equivalence between our approach and the number consenhe density is now finite:
ing Bogoliubov theory. In Sec. Ill, we present a few appli-
cations of our formalism: we give general formulas for the (1)
equation of state and the ground state of the gas, and for the  var p(r)]=(3"(r) &' (1) (1) J(r)) = p2(1)+ —==. (5)
first and second order correlation functiapsandg, of the |
field operator. In Sec. IV, we apply our formal results to the
homogeneous Bose gas in various dimensions of space. This the validity domain of the theoretical approach of this
allows us to derive simply the validity condition of the paper, this variance will be much smaller thef{r) because
method and to compare our results with existing results irhoth the sum of the first two terms and the last term in the
the literature. right-hand side are small:

here(0), the value of the Dirac distribution at the origin,
infinite, and the second term on the right-hand side, giving

|. CONSTRUCTION OF A DISCRETE SN TN T ) _ 2 <p2
PHASE-DENSITY REPRESENTATION (I OF PO = PN <p*(), ©

A. Why discretize the real space? p()l Ds. 1. 7)

In previous studies of quasicondensates the basic tools of

the theory are an operator B. The phase operator

p(N) =41 (1) () (1) In the usual continuous space theories, a Hermitian field
. phase operato??(r) is introduced subject to the following

giving the density i and an operatoé(r) giving the phase  commutation relation with the operator giving the density:
of ¢(r), the field operator i, the positionr being a con- .
tinuous variablg23]. A small parameter of the theory char- [p(r),0(r")]=id(r—r"). (8
acterizing the regime of quasicondensates is then that the
density fluctuations, that is, the fluctuations Mr), are In our discrete model the desired commutation relation is
small in relative values: modified into
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Sy AAT=1, A'A=1-]0)(0|, and [AA"=]0)0|,
oK (9) 16

[p(r),0(r")]=i

wherel is the identity operator anfD) is the zero-particle
state or vacuum state in the box of centee find that the
operatorA is almost unitary, i.e., it is effectively unitary for
a physical state of the system with a negligible probability of

First we recall briefly that there actually exists no Hermit-

ian operatorg(r) satisfying strictly the above commutation
relation. From the identity9) one can indeed show that the

operator having an empty box. In what follows, we assume that this
o condition is satisfied, so that the projec 0| can be
T(a)=e'*", (10 neglected: projectd 0|
wherea is any real number, is a translation operator for the occupation probability offn=0,r)<1. (17)
density[24]:
In this case, we write the approximately unitary operator
1 _- a A as
T(a) p(r)T(a)-p(r)+-ﬁ5- (11

A(r)=e®  with  9T(r)=0(r), (19
This identity contradicts two fundamental propertieg6f),

the positiveness and the discreteness of its spedt®iin
We now proceed with the construction of a phase operator

f9(r) approximately satisfying the commutation relati(@).

The key ingredients allowing such an approximate construcy:
tion are(i) to be in the limit of a large occupation number of
the considered box of the lattice, ari@é) to construct the i . . .
operatore” frst, which, according to EQLLY taken win 31 of e el operato i the commutaton reaton
a=—1, simply reduces the number of particles in the con->’* ) g

sidered box by 1. our phase-density representation:

In each spatial box we introduce the basis of Fock states is
[n,r) with exactly n particles in the box. In this basis the Sr) . o(r !
: : : _ [p(r),0(r")]
field operators have the following matrix elements: I

which amounts to writing the field operator as

P(r) =€ p(r). (19

his should be understood as a formal writing, allowing us,
for example, to recover the matrix elementsfofind there-

S [p(n).p(r)]=0,

fﬂ(r’)In,r>=%ﬁ|n—1,r>, [6(r),6(r")]=0. (20)

We come back to the constraifit7) at the basis of the
5 construction of expf). A sufficient condition to have a low
fp*(r’)|n,r)=i In+ 1n+1r) (12) probability for zero particle occupation in a box is obtained
| D72 for a large mean number of particles in the box and with
small relative particle number fluctuations. This is the regime
as a consequence of the commutation relati@h The  that we wish to consider in this paper. We are therefore back
atomic densityp defined byp(r)="(r)#(r) is diagonal in  to the discussion of the previous subsection and to the con-
the Fock state basis: ditions (6),(7) for weak density fluctuations. In particular, the

construction of the operator exg) becomes problematic in

~ n the limit | — 0, that is, in the continuous model.
p(r’)|n,r)=5ryr,|—D|n,r>. (13
C. How to choose the grid spacind
We then introduce the operatérdefined by Working on a grid can also be seen as performing a
. . _ coarse-grain average over all physical quantities on a $cale
Pp(r)=A(r)Vp(r). (14 This averaging suppresses the short wavelength modes
(shorter tharl) and thus introduces an energy cutoff:
In the Fock spacé(r) reduces by 1 the number of particles 5
nin the boxr: h

Ecu= W . (21)

A(r)[n,ry=(1- 8,08, In—1r). (15)

_ _ _ This cutoff is of no physical consequence if all characteristic
Note that its action on the vacuum state of the box g|Ve%nergieS LL, kBT) are Sma”er, |ej is smaller than the
zero. For each box, the definition ofA leads to the exact corresponding characteristic lengths. This leads, for instance,
relations to the following restrictions fot:
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2
'<¢ and I<h, 22 H:Z 1P —;—m@T(r)A&(rH[U(r)—M]@T(r)f/f(r)
where
) GG GG 29
&= \/T,u, @3 whereU(r) is an external trapping potential and where the

Laplacian is a symmetric operator coupling the different

is the healing length, and neighboring boxes:

f(r+le)+f(r—le)—2f(r)

2mh? Af(n=2 ‘ . (29
A= \/kaT (24) ] 12

The g are the unitary vectors arjdhe different orthogonal
is the thermal de Broglie wavelength. These two restrlctlonsspace directiongfor example,j =x,y,z in 3D). As usual we

combined with Eq(7), impose take periodic boundary conditions inside a rectangular box
with lengths integer multiples df
pAP>1, (25) We now rewrite the Hamiltonian in the density-phase rep-

resentation, that is, in term of the operatprand 6 giving

the density and the phase as defined in the previous section.
The contributions of the trapping potential and of the inter-
action potential to the Hamiltonian are local in real space and

therefore include the operatpronly:

P> 1, (26)

These are conditions of validity for our discrete model.
The first one, Eq(25), is the quantum degeneracy regime

occurring at sufficiently low temperatures. The second re- 1

str|ct|qn, Eq.(26), corresponds to the regime of yveakly in- pot_E | p(r p(r) D)

teracting systems. Its dependence on the density varies ac- |

cording to the dimension of space. In 1D and 3D, the mean

field prediction for the chemical potential is=gp, whereg ~ Where we have used the bosonic commutation relg#pmo

is a constant characterizing the interaction potential, the sg@xchange one of th¢fT with a,// in the interaction term. The

called coupling constant. In 1D, E(R6) is the high-density Kinetic energy term involves the phase operator explicitly:

limit where a mean field theory is valid; we recall that the

u(r)— ,u+g— , (30

small density limit p é&=7%+p/mg<1 corresponds to the Ho h? S pS \/7 i(b+-—b)\/“_
strongly interacting(or strongly correlatedTonks gas re- Kn = S m2 >, Vp(e] P+j

gime. In 3D, the effective coupling constagtis related to

the sswave scattering length of the interaction potential +e‘(b*i‘b)~/ﬁ,j—2\/;), (32)

=4mxh?alm, so that p&lx1/\pa>1: one recovers the

usual small gaseous paramet\@? In 2D, the chemical \yhere we have introduced the notatién;=0(r +1e) and
potential scales a&“p/[ mIn(1/pa“)] wherea is the scatter- —p(r+le). A remarkable property of this formulation,
ing length of the 2D interaction potential, so that the condi- to be used Below is that it involves only the difference of

2 2
t;of pE”>1 results in a low-density condition, Ingd") two phase operators between two neighboring points of the
' lattice.

II. PERTURBATIVE TREATMENT B. Hamiltonian quadratization and cubization

OF A MODEL HAMILTONIAN We now expand the Hamiltonian to third order in powers

A. Model Hamiltonian of two small parameters. As already discussed in Sec. | A the
In our lattice model, we represent the binary interaction C9'M¢ of quasicondensates that we are interested in corre-
potential among the particles by a discrétpotential: sponds to small relative fluctuatiod of the density. In the
zeroth order approach totally neglecting the density fluctua-
Jo tions, the density is set to a deterministic valug as we
V(r{—ry)= l—Dﬁrl,rz, (27) shall see. The second order expansion allows us to describe

the density fluctuations:

wheregj is the bare coupling constant. Note tlggtin gen- p(r)=po(r)+8p(r). (32

eral differs from the effective coupling constagitand we ) )

shall come back to this point in Sec. IV A. With this model The third order expansion allows us to calculate the mean
potential, the grand canonical Hamiltonian is value of 8p(r).
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The first small parameter of the systematic expansiorypothesis that the continuous quantum field problem can be

used in this paper is therefore given by

5
|| _ | 39
Po

€1~

where | 8p| is the typical value of the operatafp in the

physical state of the system. Mathematically, this allows us

to expand\/z as

~ R
~12_ 112 ___Eép 1 6p°

p 0 2 2 8p3/2+16 o (34)

The second small parameter of the expansion is given by

6=V o|<1. (35)
HereV represents the gradient on the lattice:
f(r+le)—f(r—le
Vi =2, ( ])2| ( J)e,-, (36)
i

wheref is an arbitrary function. Physically, the existence of

well approximated by a discrete lattice model, provided that
| is small enoughsee Sec. | € Mathematically, this second
small parameter allows us to expand the exponentials of the
phase differences in E¢431):

e D=1+i(h,;—b)— <0+, D2 (@37

From the fact that the discretization lengdthis on the
order of the smaller of the two macroscopic length scéles
and\ [see Eq(22)], it will be checked later that the param-

eterse; ande,, though of apparently different physical ori-
gin, can be chosen to be of the same order of magnitude,

1
VPo'D’

and can therefore be treated mathematically as infinitesimals
of the same order. The mathematical details of the expansion

€17 €r~ (38)

H=Ho+H,+H,+Hg+--- (39

the small parametet, is reasonable: it is at the basis of our are given in Appendix A; we present here only the results:

[ %
Ho=2 17| = 5=VoA Vpo+ ?Pg‘F[U(r)_M]Po}

[ 2
Hy=> IP| - Apo+U(r)—p+ 5,
12 " 2mine potU(r) = u+gopo | op
h2 Sp 5p) h25p2
Ho=Ej[pol+ 2, I1°| — 5= A
2 2[P0] Er 2m 2\/% (2\/% 8mp
12 1/2
oo . B on (P8
=—=2 &p+ I°(0,;—0 Sp+
zEr ’ 4m|2r2j (B )( R
52 [ 5
D
o 3 s o o

The quantityE, in H, is a c-number functional of the den-

sity pg, given in Appendix A, which therefore has no contri-

bution to the dynamics of the quantum field.

C. lterative solution for the quadratic Hamiltonian

We now solve perturbatively, order by order, the Hamil-

tonian problems defined by,, Ho+H;, and Ho+H;4
+H,. To zeroth order i, 5, the Hamiltonian is @ number.

5p+])(0+J )+_

[0(r+|ej) a(r)]

Yo
3/2A\/—+ 592"__ 2 VPo(r)po( r+|ej 2 ,

2

/ZAPO— 1/2)

5
P —124 12
SmZ P ? (b5 ¥2Ap}

(40)

As the chemical potential is fixed in our approaéty is
minimized for a density profile,(r) such thatyp, solves
the discrete version of the Gross-Pitaevskii equation:

2

h
= 5 A+ U(r) = it gopo| Vpo=0. (41)

This density profile constitutes the zeroth order approxima-
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tion to the densityp. It contains a number of particles that An important difference of these equations from the so-

we callNg: called quantum hydrodynamics equations & and @ is
that our formalism keeps the so-called quantum pressure

NOEE 1Ppo(r). (42) term foratb, whereas it is usually neglected in the literature
r [23]. This allows our treatment to have a cutoff energy larger
than ., whereas the usual treatment is restricted to energy
modes much belov.
Furthermore, one can simplify these equations using the
Gross-Pitaevskii equatiof#1) to eliminateA \/p—o:

Note thatN, coincides with the mean total number of par-
ticles N only to lowest order in the theory. Equatiddl)
definespy and thereforeNy as functions of the chemical
potentialw. It will, however, turn out to be more convenient
to parametrize the theory in terms Nf, rather than in terms

of u. We will therefore considep. and pg as functions of ) 52 5p
NO: ﬁﬁt0=——[——A+U+3gopo—,u} —
2\pol 2m Vpo
= to(No), (43 (46)
po(r)=po(r;No). (44) 2
- - N .ﬁa5‘(r)=2f—h—A+u+g — 1| (6po)
o is therefore the Gross-Pitaevskii prediction for the chemi-" “t°P Pol ™ 2m 0Po™ K Po)-

cal potential of a gas dfly particles. (47
For the choice of density profiletl), the first order cor-

rectionH, to the Hamiltonian vanishes. We therefore nOWThis ives the idea of a very simple canonical transformation
have to solve the Hamiltonian problem defined Hy, in S 9 y simple ¢ .
which, remarkably, maps our equations for a quasiconden-

order to determine the lowest-order approximation to thesate(46),(47) into the equations for the Bogoliubov modes of

density fluctuationdp and the phas@. It is instructive 0 condensate: the field
write the corresponding Heisenberg equations of motion,
which are lineafand therefore trivially solvabjesinceH,, is

quadratic. As@ and 5p are two canonically conjugate vari- A 5;) , -
ables, the equations of motion are B= 2\/—+' \/%0 (48)
Po
o 1 0H,  #2 A Sp 5AA\/E
t I° 98p(r)  2mypg 200 p 2po has bosonic commutation relations
- 905;3' S
. R -
[B(r),BY(r)]=—"=- (49)
. 1 4H, 1?2 . . l
hadp(N=15 = === Vol A(8+po) — A po].
(45 and it obeys the standard Bogoliubov equations
|
h2
Ih(?t éT :‘C’GP o = hz BT (50)
~GopPo - —ﬁA-f—U—,LH—ZgOpO)

This mapping can be readily extended to the HamiltonianlWe have checked that the identif§y1l) indeed holds by re-
H,, which is expected to be canonically equivalent to theplacingé by its expressio48) in terms ofp and®, and by

Bogoliubov Hamiltonian: using the value of the commutata0) and the fact that/p,
) solves the Gross-Pitaevskii equation. Remarkably, the energy
Ho=1 DE Bt — ﬁ_AJr U+ gopo— M) B functionalE,[ pg] is exactly compensated by the contribution
2 T 2m oPo of the commutators.

1 This mapping therefore allows us to reuse the standard
ATR L —(R2. RT2 diagonalization of the Bogoliubov Hamiltonian. We recall
+g°p°[B B+ 5(B™+B )}' GY pere briefly the procedure described[i5,27. One intro-
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duces the normal eigenmodes;(vs) of the Bogoliubov op- T D

erator Lgp With an energye,, normalizable as HZES €sbsbst 5P uo+Ealpol, (58)
> 1P[Jug(n)|2=ve(r)|2]=1. (520 where wy=dug/dNy. This is the sum of uncoupled har-
r

monic oscillators, plus a massive free degree of freedom cor-

Then @*,u¥) is an eigenmode of’gp with the energy responding to the unboynd p_haS(_a varia@le The effective

— €. To form a complete family of vectors one has to fur- Mass of the phase variable is given by.d/ The energy

ther introduce the zero-energy mode 6fp, given by  functional E,[ po] will be calculated in Sec. Il B, where it

(¢o,— &), and the anomalous modeé{, ¢,) with will be shown that it leads to exactly the same ground state
energy as the number conserving Bogoliubov theory. This

bo=po/No and .= Nodn,Vpo. (53)  shows that the Bogoliubov theory can be used to calculate

the ground state energy even for, e.g., 1D quasicondensates,

The corresponding normalization of the anomalous mode ia fact commonly used in the literatuf@8,29 but which

such that the scalar product ¢f, and ¢, is 1/2. With these looks rather heuristic in the absence of justification.

definitions, one introduces the components®fg") on the
zero-energy mode, on the anomalous mode and on the regu- D. Effect of cubic Hamiltonian corrections on the density

lar (us,vs) modes: The physics contained in the cubic tekty of the Hamil-

5 & B (4 toniaq is very rich. It includes ir?teraction.effects bgtween the
( ) - \/N_0Q< 0 + _( a) Bogoliubov modes of the previous section, allowing a gen-
Bt — oo \/N—o ba eralization to quasicondensates of the theory of energy shifts
. and Beliaev-Landau damping usually put forward for Bose-
< [Us| [ Us Einstein condensat¢80—-37.
+ES bs Ve +bg u? (54) We are more modest here. Our motivation to include the

cubic corrections is that the quadratic Hamiltonkdy brings

Q is a collective coordinate representing the quantum phas@Ctu"""y no correction to the zeroth order approxmamn
of the field andP is its conjugate momentum to the mean density, since the mean valuépfvanishes at

the level of the second order theory. This is highly nonsatis-
[P,0]=—i. (55) factory as it brings some inconsistency into the calculation of

an observable likg,, the first order correlation function of
the field: to get a nontrivial prediction fag, one has to

PhysicallyP corresponds to fluctuations in the total number, . .
of particles, as expected, and as shown in more detalil IatéPCIUde terms quadratic in the phase operator, which are sec-

h 8 b . inilati ond order ine,, which forces us to also include second order
[see Eq(67)]. The operator$s are bosonic annihilation op- -, rections to the mean density, as will become very explicit

erators with the usual commutation reIatiorﬁﬁs,Bs,] in Sec. IlI.
=Js¢ - They commute witl® andQ. The inverse formulas We therefore calculate the first order correction to the

giving b, O, and P in terms of B can be found, for ex- equations of motion op and # due to the cubic Hamil-
ample, in[15]. Equation(54) results in the following modal tonian termH,, and we take the average over the quantum
expansion for the density fluctuations and the phase operstate corresponding to the density operator at thermal equi-
tors: librium for the HamiltonianH,. This gives source terms to
add to the equations for the mean density and phase derived
from H,. We leave the details of the calculations to Appen-

. f et A
0(r)—§ Os(r)bs+ 05 (r)bs—Q, dix B and give the result directly:

2
dp(r)=2, Sps(r)bs+ dp% (1bL+Pay po. M‘<5;’>3:p‘1’/2[_ ;L—mA-I-U-I-gOpO—,u,}(Zp%/Z(AGh),
s (56) (59
where N h?
—2h \/P—0(7t<‘9>3:[_ ﬁA+U+3goPo_M}
g(r):M <5‘> _<|§TB>
° 2i VPO(r) , X(%)
0

Sps(r)=po(r)Lus(r)+uvg(r)]. (57 +gopé/2<4éTé+Bz+BT2>2

By construction, this modal expansion, when inserted into fo
the quadratic Hamiltoniak,, results in ~2(P?) 240N, \Po: (60)
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turbed HamiltonianH, and (- - -)5 is taken with the per- ~omA+U+30opo— 1

turbed HamiltoniarH,+ H to first order inH;. The expec-

tation value of the “kinetic energy” of the unbound phase ((5/3>3—¢§N61<ﬁ’2>2—(<|§§|§n>2—¢o¢a))
X

where the thermal averade- - ), is taken with the unper- [ K2
0=

variable in Eq.(58) is equal tokgT/2 according to the equi-
partition theorem so that

1/2
Po

- +90p0 X 4(BIB,— doba) + B+ B},
<|52>2:i- (61) 22 12 ,
0 +(P%)2[690pg 3N0\/%_2M015N0\/a- (65)

At equilibrium the expectation values @8p and 3,0 Fortunately the underlying physics is very simple and allows

. . . . L . us to predict the effect of this source term on the mean den-
vanish. This fact is obvious fo#,;5p; it is less obvious for P

2.9 because of the presence of the unbound vari@hleve sity. One first identifies the physical meaning Bfin Eq.
X ) i ;
therefore produce a proof of that in Appendix C. We there-(56)' Using the well known fact that the eigenmodes.ily

fore have to solve Eq$59) and (60) with the left-hand side ?ie_clr;h%gnoenﬁla;olrsihe modified scalar product of signature
set to zero. The first equatidf9) imposes the condition that "™’ '

the mean value ob is position independent, a trivial result. o

In the second equation, the operator acting (@p); is <¢0|Us>+<¢o|vs>z§r: 17 o(r)[us(r) +vs(r)]=0,

strictly positive so that it is invertible, and E¢60) deter- (66)
mines the correction to the mean density in a unique way.

We now go through a sequence of transformations allowso that the sum ofp over all spatial nodes vanishes. As a

ing us to get a physical understanding of the valu¢f)s. consequence, the operafdrgiving the total number of par-
The first step is to pull out the contribution of the “anoma- ticles in the gas is simply

lous” terms P, Q in the modal expansiotb4):

. N=2 I°p(r)=Ng+P, (67)
B(r)=—iVNgQgo(r)+ Tﬁ’¢a<r>+én. (62)
No where we have used the identity

We calculate the expectation values of E&)) involving the

I . d . dN,
operatorB, using the fact that all the crossed terms between Er) I IngPo(N) =GN Ny Z Ppo(N =g Ny 1. (69
the anomalous part and the operatbtshave a vanishing

expectation value: ) A
P The source terms involving therefore correspond to fluc-

2 tuations in the total number of particles in the gas, due to the
(B'B),=—2(P2),+ Nopp2(02),+(BIB.)»— dacho, fact that we consider the grand canonical ensemble. The ef-
No fect of these grand canonical fluctuations can be considered
(63)  for the case of a pure quasicondensate at the order of the

present calculation so it is easy to calculate it directly. In the

. N ¢>§ N « grand canonical ensemble the probability that the quasicon-
(BZ>2+(BT2)2:2N—0<P2)2—2N0¢§<Q2>2 densate has particles is

+(B2),+(B!?),. (64) I, exd — B(Eq(n) — wn)], (69)

The termeod, in Eq. (63) comes from the noncommutation whe.re Eo(n.) i§ the Gross-Pitaevskii energy for the density
of P and Q [see Eq.(55)]. The contributions of Q?), in profile po(r;n):
Eqgs.(63) and(64), when inserted into Eq60), are shown to

compensate exactly when one uses the factdatolves the Eo(n)= E |
Gross-Pitaevskii equation. This was expected from tki® U r
symmetry of the Hamiltonian: only differences of the phase

ﬁZ
= 5VPo(rin) Avpo(rin) +U()po(rin)

operator at two points appear in the Hamiltonian, so that + %pg(r;n) i (70)

does not depend of and the mean density does not depend

on(Q?),. ~ The corresponding mean grand canonical density is
We therefore get an equation f66p); involving the ex-

pectation value ofP? as a source term, and which looks _ .

rather involved: pec(n)= | dnllnpo(rin), 7D

053615-8
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where we treah as a continuous variable. The zeroth order

approximationn= N, for the number of particles in the qua-
sicondensate is such th&g(n) —xn has a minimum:

d
anlEo(N=un]=ue(n—p=0 for n=No (72

PHYSICAL REVIEW A7, 053615 (2003

1. Mo
Opac(r)= §<P2>2 I, Po(1:No) = — dn po(r;No) |-
Mo
(79

How does this compare to the general formali&®s)? We
need to obtain a partial differential equation #pcc. We

just take the second order derivative of the Gross-Pitaevskii

as shown in Eq(43). The corresponding density profile is
po(r;Np). The next order correction to that is obtained by
expanding then dependent density profile to second order in
n—Ng and by averaging over:

8pac(r)=((nN—=No))dn po(r;No)

1 2\ 42
+§<(n_No) >'9N0P0(fiNo)- (73

The second moment of— N is calculated to lowest nonva-
nishing order by a Gaussian approximationfq:

2

Eo )
Eo(n) — un=Eq(No) — uNo+ 5 d_NS(n_ No)
1
=constt E“é(n_ No)2. (74)
This leads to
keT .
((n=No)*)gause=—, =(P?).. (75)

Mo

equation(41) with respect td\, and we replace, by Vpo?
in the resulting equation and in E¢9). This leads to the
remarkable identity

(80)

2 opec— N51¢§< '52>2

1/2
Po

2m

A+ U+390P0_M}

—(P?)2[60p5 *dn, Vo~ 2151 dn, Vpo.

The right-hand side of this identity coincides with the source
term of Eq.(65) involving P. We have therefore successfully
identified Spgc as a piece of b‘[))s and we are left with the
simpler equation

ﬁZ

It |

(8p)a— Spac— ((BIBn)2— dodba)
+0ops X 4(BIB,— doba) + BZ+BI2),.

0:

A+U+3gopo— ,U«}

1/2
Po

(81)

We are not totally satisfied yet since the operefigldoes
not obey bosonic commutation relations when the system i

n

More care has to be taken in the calculation of the mean qf]ot Spa“a”y homogeneous; in particu'ar, the f|ég does

n—Ng: the Gaussian approximation kb, gives a vanishing
contribution, so that the cubic distortion to it has to be in-
cluded:

1
Eo(n) —un=Eq(No) — uNo+ EM()(n— No)?

1 ”n 3
+ 5 H5(n—No)®, (76)
1 ! 2 1 " 3
I exp — Eﬂ#«o(n_ No)“||1— gﬂ#o(n_ No)®|.
(77)
We then get a nonvanishing mean value fiof N:
1 " 4
<(n_ N0)>distor: - EBMO (n_ NO) >Gauss
1 ne/p2\ \2
== 5Brg((P?)2)? (78)

not commute with itself when taken at two different points:

[Bn(r),Bn(r')]1=da(r) do(r')— da(r' ) do(r), (82)
- BT/ .7 1 ’
[Bo(1).Ba(r")]="5 81,1 bo(1) dalr)

— do(r") a(r). (83

To circumvent this difficulty we split the fieIden into its
component along the quasicondensate m@geand its or-
thogonal component:

Ba(r)=ado(r)+A(r). (84
The Bogoliubov functionsug(r) and vg(r) can be chosen
here to be real. The operatarcan then be written as

&=Zs (¢olugy(bs—DY), (85)

where we have used the propef§6). This clearly shows

We have therefore predicted in a very simple way the corthat the operatofz is anti-Hermitian:

rection to the mean density due to grand canonical fluctua-

tions:

05361
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The field A has the following expansion dby: We then obtain the following final expression for the correc-
tion to the mean density due to the cubic Hamiltonian terms
- " Ay Hj:
A =2 us (Nbstvg (nby, (87)

(8p)3(1)=Spac(r) +2po(r) x(r) +(AT(A(1)),.
where the index_ indicates projection orthogonally t@. (95
This field now has the desired bosonic commutation relations
In the particular case where the gas is Bose condensed,
[A(r),A(r")]=0, (88)  our general theory for quasicondensates also applies, of
course. One then expects that the re€@B} has already been
~ ~ 1 obtained for the condensate and can be given a clear physical
[A(r),AT(r’)]z—Dﬁryr,— bo(r) do(r'). (89 interpretation. This expectation is totally justified: as shown
' in Appendix E, the component gf(r)/Ny orthogonal togg
is the correction given ifl5] to the Gross-Pitaevskii con-

Note thata does not commute witfA densate wave functiogs, due to the interaction with the
noncondensed particles; the componentyoélong ¢, de-
~a 1 . . PTeE
[a,A(r)]= §¢o(f)—¢>a(r). (90)  scribes the condensate depletion, gAd A ), is the mean

density of noncondensed patrticles.

We insert the splitting 0B, in Eq. (81). The terms qua-
dratic in a cancel exactly, in the same way the term<f
canceled. The terms linear incan all be expressed in terms
of the expectation value of an anticommutatfe,A}), us-

ing the commutation relatiof@0) and the fact thataA ), is What is referred to as thequation of statef the gas is
a real quantity. Furthermore, using the techniques of Appenthe expression of the cher_mcal potential as a funct|on_0f the
dix E of [26], as shown here in Appendix D, one obtains amean total number of parthl%and the temperatur'é Itis

simple partial differential equation for the anticommutator: Useful in particular to predict properties of an inhomoge-
neous gas within the local density approximation.

SN We therefore now have to calculate for the quasicon-

~ oAt Utgopo—u (({a, AN}, densate. This is equivalent to a calculationNof as x and

N, are by definition related through E@L3). To lowest order

of the theory one assumes a pure quasicondensate with a
density profilep(r)=po(r), where Jp, solves the Gross-
Pitaevskii equatior{41). One therefore getbl=N, so that
pmpoN. . o
Remarkably, this allows us to eliminate completely the op- The first nonvanishing correction to the density profile is

. i i given by Eq.(95). By integrating Eq(95) over space we get
eratora in Eq. (81). We finally get an equation for the cor- the corresponding correction for the mean total number of

IIl. APPLICATIONS OF THE FORMALISM:
GENERAL FORMULAS

A. Equation of state

ﬁ2

= =2 1%gopo(r ) o(r )({A(r) +AT(r), AN}

(91)

rection to the mean density involving the operaonnnIy: particles:
& <5IA?>3_5PGC_</A\T/A\>2 N=No+ N, (96)
+5(r), (92) 6N25NGC+ID§r: 2¢o(r)X(r)+|D§r‘, (AT(NA(r)),.
where we have introduced the source term o7

The contribution taSN due to our use of the grand canonical
ensemble can be calculated exactly from a spatial integration
of Eq. (79), using the same technique as in E68):

S(N=goNoo(N(4AT(NA () +A%(r)+ AT2(r) = ¢2(1),

=2 129opo(r) go(r)({A () + AT(r), AN}

93 SNgo= — kg T2 98)
2’
It will be convenient to introduce the functiop(r) de-
fined in a unique way by The contribution of the term involving can also be made
52 1 (e;?glicitdb)t/) multip_liclzgtion of !Eq.(9T4r)] b)f/ d)a(_r) d(ef)ined ig E?j
and by spatial integration. The functi@hy(r) is indee
0= = gmATUF80opo—px(N+58(N). (94 on [27]ytopsolve thegpartial differentialnguation
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hZ
_ﬁA+U+390P0_M da=Nougdo(r), (99

which can be checked easily, just by taking the derivative of

Eq. (41) with respect toN,. This leads to

1
1P} 2¢o(r)x(r)=— N > 1P¢,(r)S(r), (100
r 0 0 r

where the source terr@ is known explicitly[see Eq.(93)].
We now just have to repladd, by N— 6N in Eq. (43) and
expand to first order i®N:

p=po(N= 8N)= po(N) — SNp(No).

We obtain the following expression fqu:

(101)

4

uzm(NHkBTZ’L—;—ua(No)E IP(AT(NA(M),
0 r

+N32 1P (1) S(r). (102
o r

PHYSICAL REVIEW A7, 053615 (2003

. h? .
ggroun({Hz):lDE < BT( - ﬁA-i-U-l-goPo_:Uv) B>
' 2

+90Po<{|§TB+%(|§2+ BTZ)D . (106)

2

We reproduce the transformation of Sec. Il D. We splinto
an anomalous part involvin@,@, plus the contributions of

the anti-Hermitian operatar and of A, the orthogonal com-
ponent of the normal part. In the first expectation value of

the right-hand side of E(106) the operator€) and & dis-

appear as they come with the factgg(r) in B, and ¢,
solves the Gross-Pitaevskii equati¢fl). The expectation

value of P2 in the ground state dfl, also vanishes, so that

),

N h? N
< 2m )

N h?
<BT( - mA+U+90P0—M

Equivalently, we can replace the source term by its explicit

expression to get

n 1 . .
BN+ T = N 5+ |D<A*(r>A<r)>2)
0 r

+ 2, 1%90[ngpo(N1(2(ATA), + Re(A%),)

=2 1P90g5(NUAM +AT(r), 7)., (103
where we have introduced the operator
y=2 1P¢a(NA(), (104
and we have used the identity
#6= 2, 1°90¢5(r) dnypolriNo) (105)

obtained by performing the scalar product of both sides of
Eq. (99) with ¢. The application to spatially homogeneous
systems will be given in Sec. 1V; in this case both the opera-

tor y and u{ vanish.

B. Ground state energy

We now show that the ground state energy of a quasico
densate can be calculated with exactly the same Bogoliubov
formula as for the ground state energy of a condensate.

We have to determine the ground state energi of We

write it as the expectation value of EG1) at zero tempera-

ture, that is here in the vacuum of tbe and of P:

n-

The same transformation is applied to the last expectation

value in Eq.(106. Remarkably, the terms involving ex-
actly cancel when one uses the relati¢s3), (64), (90), and
(D5). This leads to

<[3Té+1(e2+@2>}>
2 2

Ahsdeean|)
2 2
(108

1
=—§¢(2)+<

The expectation values involving are readily calculated
from the modal expansiof87):

1
ggrount{Hz): ) Z |D90Po¢%

ﬁ2
( - ﬁA"'U"‘ZgoPo_M lvs)

+§S: <Us¢|

+9opolUsy ) |- (109

As (ug,v¢) is an eigenvector ofgp, (Ug, ,vg, ) IS an eigen-
vector of the operato£ defined in[15] and this expression
can be further simplified to

1
ggrouno(Hz): 2 Er: |D90Po¢g_§; 63<U5L|USL>'
(110
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The last step is to include the contribution ldf, and to This expression foig, is still exact. We now perform
remove the— N term from the grand canonical Hamil- approximations consistent with an expansiometip to sec-
tonian. The ground state energy of the canonical Hamiltonia®@nd order in the small parametees,. The expectation
for N particles is therefore value of the term quadratic idp is calculated within the

thermal equilibrium for the quadratic Hamiltoniadh,. The
Eground N) =N+ Eo(No) = No+ Eground H2), (111) expectation value ofp is evaluated in Sec. I D by inclusion

whereE, is the Gross-Pitaevskii energy0). As we did in ~ Of the cubic perturbatioiis. The contribution ofdp in the
Sec. IIl A we replaceN, by N— 8N, wheredN is calculated last term of Eq.(116) is negligible as it ise; times smaller

from HS! and we expanEO(N_ 5N) to first order inSN: than the Ieading term |gz We therefore obtain the eXpliCit
expression
#N+Eg(No) — uNg=Eg(N) = SN(xo(N) — w)=Eo(N). R R
(112 92(1)=po(r)po(0) + po(0)(Sp(r)) 3+ po(r)(5p(0))3
We recall that by definitiom = uo(Ng). The first term in the R R S o
right-hand side of Eq(110) amounts to performing a small +(p(r)6p(0)),— l—D’Po(O)- (117

change in the Gross-Pitaevskii energy functional, expressing
the fact that a given patrticle interacts in the gas whith 1
particles so that the mean field term should be proportiona\
to N—1 rather than tdN. The final expression for the ground
state energy is

| This formulation, however, is not the optimal one as the
ast term in 2P gives the wrong impression that,(0)
strongly depends on the discretization lenigitththe continu-
ous limitl—0. In fact, this strong dependence exactly com-

h? pensates a term in|¥ in the density fluctuationésp?(0))
Egrounc(N):NZ 1P| - ﬁ‘f’O(r; N)A do(riN) coming from the fact thab‘ﬁz(O) is a product of field opera-
1 tors not in normal order. To reveal this fact we exprégsn
+U(r) ¢2(r:N) + Ego(N—l)QSg(f;N) terms of the operatoh of Eq. (87):

Sp(r)=po(NLA(N) +AT(r) ]+ Pay po(r;No),
—ES: €(vsi|vs)- (113 (118

This exactly coincides with the Bogoliubov result; see, e.g.,and we put the resulting expression in normal order with

Eq. (71) of [15]. Egg)pect to the field. using the bosonic commutation relation

C. Second order correlation function

- - - - S
The second order correlation function of the atomic field Sp(r)ép(0)=: 5p(r)5p(0)3++3'0p0(0)—N0¢(2)(r)d)S(0),
is defined as ' 119

D= (N #T(0)J(0) (1)), 114
9(N=(H N (0 ¥(0)4(1)) 114 where : : is the standard notation to represent normal order.

where we have taken for simplicity one of the two points asThe spurious term in L7 is then exactly canceled:
the origin of the coordinates. To calculagg with the for- R
malism of this paper we have to expragsin terms of the 92(r) =Ng(No—1) ¢5(r) ¢5(0) + po(0)(Ip(r))3
operatorp giving the density. This is achieved using the - - -
. . e + 8p(0))3+(:8p(r)op(0):),. (120
commutation relatior{4) of the bosonic fieldj: poN)(0p(0)5+(:0p(r)3p(0):)z. (120
5 This expression allows a proof of the equivalence with the
D=(o(r)o(0) ——L¢5(0)). 11 prediction for g, in the Bogoliubov theory. We do not
92(1)=(p(p(0)) | (p(0) (119 present the calculations here, as they are a straightforward
application of Appendix E. Finally, we give a last alternative
We then insert the splitting32) of p in terms of the quasi- expression foig, equivalent to Eq(120) at the present or-

condensate density, and the fluctuationsp: der:
02(1)=po(1)po(0) + po(0)(8p(1)) + po(1)(Sp(0)) 921 =(1=1N)p(0)p(r) +(: 3p(r) 5p(0):)2, (121
R R 5o R whereN is the mean total number of particles apds the
+(5p(r)dp(0))— I—D'[po(0)+(5p(0))]. mean total density:

(116 p(r)=po(r)+{3p(r))s. (122
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D. First order correlation function The expectation value of a product of the density fluctuation
The first order correlation function of the field is defined dp and of the phase variatian 6 is particularly simple. In
as classical field theory this expectation value would obviously
o vanish, as there is no crossed ternHin between the density
gl(r)z<,},‘r(r)[/,(o)>:< p(r)e!l#0=or)] ,/[,(0))_ fluctuations and the phase. In the present quantum field

(123  theory this is not exactly the case asand  do not com-
) _ mute. To show that, we use the fact that the Bogoliubov
As previously done we perform the calculation up to secongyngde functionaig(r) andv(r) can be chosen to be real, so

order in the small PafflmEteé‘?z,z- We therefore expand/; that 5p andiA 6 are linear combinations dbs,b,P with
up to second order idp using Eq.(34). Note that we do not real coefficients. As a consequence,

expand the exponential it(0) — 6(r), contrary to what we _ _ 5

did in the Hamiltonian: as and0 are not neighboring points (8p(r)iAG),=(5p(r)iA6);=—(iA0Sp(r)). (131
of the lattice anymore, the phase difference of the field can

be arbitrarily large. The expansion ip gives rise to six 1Nis leads to

terms:
~ . | ~ 1_ 5[’,0
R (Bp(NiA )= ([ 5p(1),A0]),= 5. (132
01(1)=p§ A1) 0)| (€2 + 5(5p(r)€'4 7+ €4 755(0)) 2P0l
1 The same reasoning can be applied for the other expectation
_§<5;2(r)eiAH+eiA95;2(0) value:
(12057(0)),= 0 133
~ A0 ST i =
—25P(r)e'M5P(0)>}, (124 pi%72 2p0(0)IP
where we have introduced the following notation to simplify These expressions are second ordef{B. An important
the writing: consequence is that the product of such crossed phase-
density expectation values in Eq$29 and(130) is actually
A 9= 8(0)— d(r) (125  negligible at the present order of the calculation. The result-
ing form for g,, at the level ofH,, is quite simple:
5~(r)=5’3(r) (126 20y 1 2 LA
P polr) 91(1)|n,=pgAr)pg () (4 >2’2[1— 5((46p)%),

We calculate the expectation values in this expression in two
steps, first using the thermal equilibrium distribution Fos, + 2Escord 1)
and then including the corrections dueHa.

The thermal expectation values corresponding to the qu
dratic HamiltonianH, are evaluated using Wick’s theorem.
One first expands the exponential in powers\af, one cal-

. (134)

aI"he notationA &p is similar to the one for the phase:

culates the expectation value of each term, and then one ASp=5p(0)—ép(r) (139
performs an exact resummation of the resulting series. This )
leads to the simple identities and 53coria comes from the crossed expectation valuedef
and 6p:
<eiA0>2:e—<(A0)2>2/2, (127
<5’;)(r)eiA0>2:e—((A0)2)2/2<5’;)(r)iA0>2, (129 gscorle(r) (1 5r,o)< po(l’)|D + p0(0)|D) . (136
<67)2(r)e‘M)2:e*<(M)2>2’2 At this point we face the same apparent problem as in the
_ 5 calculation ofg,: EsoriaScales as 1P and gives the wrong
X[(8p?(r)) o+ ({( Sp(r)iA6),)?], impression that our expression fgi will depend dramati-

(129 cally onl in the continuous limit—0. As in the case ofj,,
we solve this problem by expressiag and# in terms of the

<57)(r)eiA057)(0)>2:ef<(A6)2)2/2[<5;(r)57)(0»2 field A and putting the operatovs. andAtin normal o.rder.
o _ _ We use Eq(118) for the expression fobp. For the differ-
+{(Sp(r)iA6)(iAGSp(0)),]. ence of two phase operatoi®, and the anti-Hermitian op-

(130 eratora cancel so that
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1o the phased and of the density fluctuationsp have been
Aa:E(AA_AA ), (139 calculated in Sec. IID. It was found that the expectation
value of the phase operator is space independent so that
where we have introduced the notation (A )3 vanishes. The expectation value of the density fluc-
. tuations including the effect dfi; was given in Eq(95) and
~ A(r) is in general different from zero. Remarkably, the whole ef-
A(r)ET(r)' (138 fect on the correlation functiog, of the first order correc-
Po tion in Hj is to replacepy(r) by the total mean densify(r)
AR=R(0)~K(r). (139 defined in Eq(122.

We write our final expression for the first order correlation

After some calculations we arrive at function of the field, calculated consistently upeti)z:

((A89)%,= (:(A 692+ ExcordT), (140 gy(r)= Jipmp(o)exp[ SCAOZ) S ((AG),|

1 (146
<(A0)2>2:<:(A6)2:>2+ngcoria(r)- (141) i i i i
Note that we have inserted the contribution of the density
fluctuations inside the exponential factor, which is allowed at
atlpe order of the present calculation since this contribution is
of ordere?,.
What happens in the regime where a true condensate is
i 1 5 present? Both phase and density fluctuations are small, so
91(Nln,=pg (1) pg(0)e (29 1>2’2[ 1-5(:(A 5p)2:>2}. that the exponential function in E(L46) can be expanded to
(142) first order. We then expressé and AE in terms of the op-
eratorA and the operatoP. Since the Bogoliubov theory is
The last step is to include the first order correctiorgio  usually considered in the canonical ensemble we remove the
coming from the cubic Hamiltoniaiti;. One then has to terms corresponding to the grand canonical fluctuations of
calculate expectation values with the thermal equilibriumthe particle number. We then recover exactly the Bogoliubov
density operator exp- 8(H,+H3)] to first order inH;. This  prediction:
thermal density operator can be viewed as the evolution op-
erator during the imaginary time iz 3 so that one can use gf"g(r)=\Pc(r)\Ifc(O)+<A*(r)A(0)>, (147
first order time dependent perturbation theory to get

As Eqcorials SeCONd Order if 5, its exponential function can
be expanded to first order. We then find as expected that
the 1IP terms exactly cancel:

; where W (r)=Nogo(r)+x(r)/\No is the condensate
<©>3:<©>2_I dT<eTH2H3e7‘rH2©>2, (143 field. Amazingly, the general form_u(zi46) for qua_smonden-
0 sates can be related to the Bogoliubov formula in the follow-
A ing very simple way:

where O is an arbitrary operator of the gas and where we .
have used the fact th&t; has a vanishing expectation value °9(r)
in the thermal equilibrium state fdd,. One is back to the gy(r)= VP(Y)P(O)GXF{\/L—l :
calculation of expectation values of some operators in the p(1)p(0)
thermal state corresponding tb,. Wick’s theorem can be
applied. The resulting calculations are very similar to the IV. EXPLICIT RESULTS FOR THE SPATIALLY
ones leading to Eq(142), but more involved, and are de- HOMOGENEOUS CASE
tailed in Appendix F. The same phenomenon occurs, that

terms of a higher order than the present calculation can be In this secgon we apgn_lﬁl our approzch tota dSpat'."f[‘"y. h(t)r-n
neglected. One then gets mogeneous Bose gas. The quasicondensate density is then

uniform:

(148

(€20, =e~ (30D 1 4 (| A g)s], (144
No nu
po(r):—Z—. (149)

(8p(r)eit?)g=e~ (SO (55(r)iA0),+(8p(1))s). L® %o
(14

The Bogoliubov equation§s0) can then be exactly solved
for any dimension of space and lead ug(r) =u,e™*"/L""
ando(r) =v,e*"/LP"? with

The first terms in the right-hand sides of Eq444) and
(145 already appeared at the level Hf,, and the second
terms are corrections due té5 that we now take into ac-
count. There is no need to incluéky corrections to the other
terms of Eq.(124) since they are quadratic ifip and are Uy —
therefore already of second order. The expectation values of

f2k22m+ 2, |

v =
« #2K2/2m
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and
— — [ nw2m ™
U +uv = m (150
The corresponding eigenenergies are given by
ﬁ2k2 ﬁ2k2 1/2
€= W(%-FZ,U,) (151

A. Equation of state

From the general expressi¢h03) for the chemical poten-
tial of the gas we arrive in the thermodynamic limit at

dk — — -
M:PgoﬂJofD W[(Mﬁw) Nt (Ut ],
(152)

where n,=1[exp(Be)—1] is the mean occupation number
of the Bogoliubov modé&. D=[— =/l,/I]° is the square

domain of integration in th& space. The integral over the
wave vectork does not contain any infrared divergence for

PHYSICAL REVIEW A7, 053615 (2003

wherea is the exact potential scattering length. A more ex-
plicit form of Eq. (155 is

9
gO_l_ICa/I ’ (157)
whereKX=2.42 ... . It has to benoted that the difference
betweeng, andg is still small in the validity domain of our
approach since it is a second order correctioe;ig: taking
|~¢& one findsa/l~1/pl3. Replacing the first factogg in
Eq. (152 with the formula (155 expanded up to second
order ine; , gives

M )

%2k2
(158

(Uit v Nt vy Uit vy +

=pg+ —
m=pg gofp(zw)g

One can then safely take tthe>0 limit. At T=0, the inte-
gration gives:

32Jm
1+ ——

any dimension of space. However, the long wave vector be-

havior given by

mu

5 (153

vi(Ugtog)=—

gives rise to an integral convergent in 1D and divergent in

2D and 3D in thd —0 limit. This gives the impression that
the result depends strongly dnThe solution of this paradox
comes from the link between the bare coupling consggnt

of the model potential in the discretized space and the low-
energy two-body scattering properties of the exact potentia?f"

in the continuous space. This givesdg in two and three
dimensions a dependence lirso that our expression fq
does not depend oh anymore in thel -0 limit. In one
dimension, the bare couplirgy, is simply equal to the actual
coupling strengthy for | —0 and there is no divergence. At
T=0, Eq.(152 leads to

where¢ is the healing length defined in E@®3). This agrees
with the result of Lieb and Liniger in the weak interaction
limit [28]. In three dimensions, we refer to the Appendix of
[26] where the calculation has been done. One finds

1

Tk (154

Mzgp(l—

g

9o= (159
1—gf [dk/(27)3](m/%%Kk?)
D
g is the usual 3D coupling strength given by
B 4mh’a 156
g=—— (156)

which is the same result as Lee and Yan[Bs]. In two
dimensions, the low-energy two-body scattering of a general
short range potential is described by a single leraytiso
named the scattering length. In a continuous space,Tthe
matrix can be calculated in the low-energy limit:

2mh2
" m[In(aky/2) +C—im/2]’
(160)

(KIT(E+in)|k')=

hereC=0.5772 ... is theEuler constanta is the scatter-
ing Iength,E=ﬁ2kS/m, and p—0". We can also calculate
the T matrix for the discreteS potential defined by Eq27),
which can also be expressed as

\% %|r=0)<r=0|. (161

The general scattering theory gives the relations between the
T matrix, the propagatoB, and the free propagat@,:

T=V+VGYV, (162)

G=Gy+GoVG. (163
Using these relations and E@.61) for the potential, we find
_ Jo
1-go(r=0[Go(E+in)|r=0)"
(164

<k|Tgrid(E+i 7])|kl>

The only term we need to calculate is the free propagator
taken at the origin, which is conveniently performed with a
Fourier transform:
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dk 1
D (2m)2 E+in—h3k3m
(165
We split the squareD into a disk of radiusz/I and the

(r=0|Go(E+in)|r=0)=

PHYSICAL REVIEW A 67, 053615 (2003

w2h?

——v(Utv) =

|
(2m)? "

-1-2J

wh? mi?u

-
(17D

Using EQs.(168 and (171) in Eq. (170, we arrive at an

complementary domain. Integration over the complementarymplicit equation of state:

domain gives simply a constant term in the low-energy limit

E<A?/ml?:

27h?
m

J’ dk 1
D-disk (27)2 E+in—#A%k2/m

1

dk

27 ) p—disk k2

2G
——In(2),

kg

(166)

whereG=0.915% . .. is theCatalan constant. The disk in-

tegration is straightforward and leads to the following ex-

pression for thel matrix:

<k|Tgrid(E+i 7l)|k,>

1
T 1lgo— (M2 2)In(Ikg/ )+ im/ah2— (mi2mh2)d

(167

We now takeTyq=T, where T is approximated by Eqg.
(160), in order to reproduce the low-energy scattering prop
erties of the exact potential. This leads to

1 m

= In
o 27h?2

ma

2G
a

. (168

Note that the conditior{26) has to be satisfied in our ap-
proach. In two dimensions, this givé€/mgy,>1, or using
Eq. (168

1
Zln 5) >1. (169

We now show that the logarithmic dependencel @ppear-

442
2C+1

mu
47h?

P In W(Uk"'v_k)znk-

-

Remarkably, this is identical to the res(@0.45 obtained by
the functional integral method {Y]. At T=0, one can show
from the conditionp&?>1 [see EQ.(26)] that the validity
condition of our approach is In(@%>4. If one approxi-
mately inverts Eq.(172, neglecting constant terms and
In[In(1/pa?)] with respect to In(lda?), one recovers Schick’s
formula[34].

a’mue
(172

B. Are density and gradient-of-phase fluctuations small?

As mentioned in Sec. Il B, our approach relies in particu-
lar on two assumptions: the assumption that the relative den-
sity fluctuatione, is small, and the assumption that the phase
variation e, between two neighboring points of the grid is
small.

Let us consider first the relative density fluctuations. Be-
cause of Eq(119), their mean square value can be separated

Into two parts:

»_(90%(0))2 _

1 8p2(0):
&2 . +< p=(0):),
Po

2 )
pol® Po

173

where we have neglectedLE) with respect to 1P in the
thermodynamic limit. The second term in EG4.73), involv-

ing the normal order, is expressed in terms of thev in
the thermodynamic limit as

(:0p%(0)1), 2

> -
Po

[(Utvi) 2N o (Ut vy ],

(174

~ polo (27)P

ing in go, Eq.(168), exactly cancels the one appearing in thewhere the integration domain B=[— /I, 7/I]°. At zero

equation of state. Equatidil52) can be rewritten as

)

In the thermal part, one can immediately take [theO limit.
In order to calculate the integral corresponding to The0
case, we use the same technique as for the calculatigg of
the integration is done on a disk domain of radiwd and

o

"0 [(Ut i) 2N+ vi(U o) 1.

P (2m)?

(170

temperature one introduces the change of varigbté ¢ in
the integral: one finds that E¢L74) is of the order of 13,¢
in 1D, of the order of Ing/l)/py&? in 2D, and of the order of
1/po&?l in 3D. Sincel <& the second term in Eq173) is
dominated by the first term, and one has indeed

0 1
El_

175

Po'D.

At finite temperature we have to calculate the thermal con-

we keep as a correction the integration over the complemenribution to Eq.(174) involving the occupation numbaer, .
tary domain. The complementary domain integration is done At a temperaturdzT<u we use the low-momentum ex-

by using the high-wave-vector behavior of(u,+v,), Eq.
(153. This leads to

pansion ofu,+v,, ande, and we find that the thermal con-
tribution is (kgT/u)P1(1/£)P times smaller than phIP.
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At a temperaturekgT>pu, that is, A<¢, the treatment At a temperatur&gT<u we estimate the thermal contri-
depends on the dimension of space. In 1D the main Contribution by rep|acinng_v_k and €k by their low-momentum
bution to the integral comes from the domadg~w, over  approximations: the thermal contribution is then
which one can approximate the Bose formula by its low-(|/\)2*P(£/)\)P times smaller than the zero-temperature re-
energy ||m|thT/6k . This leads to a normal ordered fluctua- sult (180) and is therefore neg||g|b|e sindec §<)\
tion (174) of the order ofkgT/(upoé). This is larger than At a temperaturekgT>u we use the high-energy ap-
1/pg\ so that the conditioh<<\ then no longer implies that proximation, replacingi.— vy by unity ande, by #2k%/2m.

the first. term 1ol in Er?' (173 isdt.Ee domilnant onhe.hFor Note that this works even in 1D because of the presence of
convenience, one can however adjush a value such that a2 factor in the integral179. This leads to a thermal

1 kT 1 contribution which is [/\)?*P times smaller than the zero-
— B = (176)  temperature contributiofl80), and which is negligible since
pol  m poé <\,

We conclude that the small parameter of the theory,
ensuring that there is a weak phase variation over a grid cell,
keT 1 is always given by Eq(180 provided that the conditions
€~ — <1. A77) (22), (25), and(26) are satisfied.
K Pot One may wonder if the corrections of the mean density
Using po=p and u=gp we recover the condition already due to the interactipr_Hg betvygen the Bogoliubov modes
obtained in5] with a pure classical field approach. Note thatlead 'to an extra validity cqndltlon of our treatment'. For the
this condition can be rewritten @s<I, where the coherence considered case of a spatially homogeneous gas it turns out
length of the field will be defined in Eq187). In 2D both ~ hat the answer to this question is no. One has indeed the
the low-energy domail,<kgT and the high-energy domain remarkable identity in the thermodynamic limit
€,>kgT have important contributions. In the low-energy do-
main we approximate the Bose law by its low-energy limit. 1 1
In the high-energy domain we keep the full Bose law eyt, —(8p(r))a=——(: Sp(r)2:),. (182
being then larger thap, we approximateu,+uv, by unity Po 2pp
and e, by #2k?/2m. This leads to a normal ordered fluctua-
tion (174 of the order of InkgT/uw)kgT/(upoé?), a quantity
that is larger than ppA2. As in 1D we therefore adjustso
that

The condition for weak density fluctuations then becomes

If the relative density fluctuations are weak, the relative cor-
rection to the density will also be weak.
To end this subsection we discuss briefly the second order
1 kT (KaT) 1 correlation function of the fieldy,(r). Restricting the gen-
B ( B )_ (179  eral formula(12] to the spatially homogeneous case in the
poé thermodynamic limit, we obtain

In 3D the high-energy domaia,>kgT gives the dominant

contribution so that the normal ordered expectation value 5 - —

(174 scales as pp\ 3. This is dominated by the first term in 92(r)=p +2PL) (2P [(U+ovi) N

Eq. (173 so that the estimatél75 applies as soon ak

<\ +o(ut v ]cogk ). (182)

Let us consider now the condition that the mean squared
phase change over a grid cell,
Limiting cases of this general formula can be compared to

2 existing results in the literature. At zero temperature for a 1D

I -
2_ 72\ — 2 2
e;=((1V0) >2_2—Po » (277)Dk (U= v (Nt 1/2), Bose gas one gets for=0,
(179
is much smaller than unity. The presence of the fastor gz(O)sz(l— i) (183
inside the integral, coming from the action §f, has the mpé

consequence that the contribution to the integral is domi-

nated by the high e”er?’y dgmam. AF Zero te_mpera'.[ure °"This formula can be checked frof@8]: the mean interaction
can replaceu,— vy by unity since the integral is dominated energy per particle is equal tog,(0) multiplied by g/2p,

by wave vectork~11>1/¢. This leads to andv can be calculated in the weakly interacting regime by
combining(3.29 of [28] (relatingv to the derivative of the
2 1 (180 ground state energy with respect ¢9 and (4.2) of [28]
2 pol® (giving the.ground state energy in the Bpgoliub_oy approxi-
mation. This exactly leads to Eq183). This prediction for
whatever the dimensiob. g,(0) also appears if35].
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C. First order correlation function 0.8 T T — T
Because of the general formula48) the first order cor- § 0.7 - 7]
relation function of the field for the quasicondensate is im-<= 46 |- PR
mediately related to that of the Bogoliubov theory, here in _% 0s L 1
the thermodynamic limit ¥ : -
0.4
Bog
g7 (r)
In[gx(r)/p]==——~1 3
0.2
10 d°k  — — - 0.1
=—- ﬁ[(uk+vk)nk+vk] 0
P (2m) 0 2 4 6 8 10
&3

X (1—cosk-r).

(184

We have also taken here the continuous lilrit0, which
does not lead to any divergence.

FIG. 1. First order correlation function of the fietf{(z) for a
repulsive 1D Bose gas in the thermodynamic limit. The different
curves correspond to various ratios of the temperature to the chemi-

We concentrate our analysis on the 1D case and we mak&y potential:kgT/=0 (solid line), 1/15 (dot-dashed ling 1/8
the link with existing results in the literature. These existing(dashed ling 1/4 (dotted ling. We plot the logarithm ofg,(2)

results deal with the asymptotic behavior @f for larger,

multiplied by the parametesé, wherep is the 1D spatial density

wherer is the absolute value of the spatial coordinate. Atand é=#/\mu is the healing length, so that we obtain a quantity

zero temperature, we find foe> &:

, (185

r 12mpé
r

gl(r)zp(

with r;=e?"©¢/4=1.03% whereC=0.5772... is Eul-

depending only orz/¢ andkgT/w in the weakly interacting limit.

1'[(p)=2f0 xdrgl(r)cos(pr/h) (189

normalized here agdpll(p)=2=#fp so thatll(p) is di-

er's constanf36]. This reproduces a result obtained in amensionless. This is illustrated in Fig. 2 where we have plot-

nonexplicit way in[37]. At a finite temperaturey, /p is the
exponential of an integral of the form

J+°°A(k)
[1—cogkr)], (186)

o k2

where the functiorA(k) is a regular and even function &f
therefore behaving quadratically with aroundk=0 [38].
Writing A(k) as[A(k) —A(0)]+A(0) and splitting the inte-
gral, accordingly one obtains farmuch larger than bott§
and\,

In[gl(r)/p]=|L+K+o(1/r”), (187

where the coherence length=p\?/7 coincides with the
one of[39] and the constarK is given by

K= erm w (188

0 k2

SinceA(K) is even one can show by repeated integration by
parts that the remainder in E¢L87) tends to O faster than

any power law, contrary to what is stated[B9)].
Of course our formula gives accessgpfor any value of

ted the momentum distribution for various temperatures and
for p£=10. Using integration by parts we can show that the
behavior ofll for largep is related to the fact that the third
order derivative ofy; in r=0" does not vanish:

2h%9P(0")
H(p)~gl—4( with  g{¥(0")=u?m?/(21%).
P
(190
1200 = ! I T .
1000 —

800 i

&

a 600 .
400 -
200 .

0 .':T:'“'“'"‘ii""""""'"""""""'
0.1 0.15 0.2

pé/h

FIG. 2. Momentum distribution of a repulsive 1D Bose gas in
the thermodynamic limit.II(p) is normalized asfdplIl(p)
=27hp wherep is the 1D spatial density so thBk(p) is dimen-

the distance. This is illustrated in Fig. 1 where we have plotsjonless. We plofl(p) as a function ofp&/% for various ratios of

ted the logarithm ofy; as function ofr/¢ for various tem-
peratures.

the temperature to the chemical potentigT/ = 1/3 (dot-dashed
lines), 1 (dashed lines 10/7 (dotted lines. We have takerpé

As a consequence, we can, for example, calculate the me=10>1 whereé=#/\mu is the healing length. The solid line is

mentum distribution of the atoms:

the largep limit: (4/p&)*. The inset is a magnification.
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This prediction, valid at zero or finite temperature, agreesThe only point is to realize that the terml/is €7 times
with the weak interaction limit of a recently obtained exactsmaller than the zeroth order density. This leads to
result based on the Bethe angat]. At zero temperature we

find that the momentum distribution divergespat O as Jo
HE=2 1%g U =+ Sopo,  (AD)
hpmy )
H(p)~ 5 (ryp/h)”, (191
HED= 20 1°6p[U(1) — p+ oo, (A2)
wherev=1/(2mp&)<1. '
CONCLUSION Hf)%'to)zg |D% 6;32—:)—3 : (A3)

We have studied the thermal equilibrium of weakly inter-
acting degenerate Bose gases in the regime of weak density
fluctuations, the so-called icond [ Go__3 905

, quasicondensate regime. The H ot > 5 op. (A4)

method can be considered as a Bogoliubov method in the r
density-phase representation of the field operator. . L .

In t?l]epfirst steg one discretizes the realpspace in cells of 1he expansion of the kinetic energy pa#l) is more
sizel: | is small enough that the macroscopic properties ofomplicated as it involves also the phase operafawhich,
the gas are not affected by the discretization, &rdrge  furthermore, does not commute withp. An expression
enough that each cell contains on the average a large numbslightly more convenient than E¢B1) can be given for the
of particles. The macroscopic occupation of each cell allowsinetic energy. Because of the periodic boundary conditions
one to give a precise definition of the phase operator, followone can freely shift the summation variable in the term of

ing the method of Girardeau and Arnow/ift8]. Eq. (31) involving p_;, so that
In a second step one performs a systematic expansion of
the full Hamiltonian in terms of two small parameters, the 72 o
relative density fluctuations inside a cell and the phase H,;,=— > ID{[\/;ei(0+J“’)\/ﬁ_ﬂ+ H.c]—2p}.
change over a grid cell. This procedure leads to an exact 2ml? 7]
expansion of the observables of the gas in the regime of (AS)

weak interactions and low density fluctuations, in 1D, 2D
and 3D. In particular, it is free of any ultraviolet or infrared
divergences and exactly matches the usual Bogoliubov pr i
dictions when the gas contains a true Bose-Einstein condefs?) {0 all orders ine;,
sate. 2

As a first application of the general formalism, we have HE 0= — A > P \/;A \/;. (AB)
given in this paper formulas for the equation of state of the " 2m
gas, the ground state energy, and the first order and second
order correlation functions of the field. We have appliedThis involves a function op only that it is easily expanded
these formulas to the spatially homogeneous case in 1D, 20n powers ofe; using Eq.(34). A simplification occurs after
and 3D, recovering in this way known results, but obtainingsummation over the lattice, as the matfixis symmetric for
also other results, like the full position dependence of thehe considered periodic boundary conditions:
first order correlation function of the field.

'The calculation to zeroth order &} can be done first easily:
dising the expansiof37) to zeroth order, we get from Eq.

ACKNOWLEDGMENTS Z “AU:Z (Au)v, (A7)
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. . . leads to
Baym. Laboratoire Kastler Brossel is a research unit of Ecole

Normale Supeeure and Universitéaris 6, associated with 52
CNRS. H®O=— %PE VpoApo, (A8)
r
APPENDIX A: EXPANSION OF THE HAMILTONIAN 2 ~
) ) o (1,0) he b p
As explained in Sec. | B we expand the Hamiltoni@8) HGO=—5=1P> —=Avpo, (A9)
' %

up to third order in powers of the small parameterande,
defined in EQgs.(33) and (35). This will produce terms

S5p  Sp  8p?

2
H(M:"2) of order €] ey? with n;+n,<3. The expansion of H20_ _ h_|[>2 AP Apo
the potential energy paitl o, defined in Eq.(30) is very Kin 2m T 1 4Jpy Vpo 4p3? ’
simple as it involves only the operator giving the density. (A10)
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p
Rk
0
(A11)

The second order term of vanishing orderenis also im-
mediately obtained:

1 8p?

(30)_ -
312
8 0

kin

#? 1 6p°
D
“am! 2 |5 gt eom

(0,2)_
kin

H 2

(A12)

52
2|Dr2j VPopo+j(0+j—0)

The last second order quantity to calculatél{$;”, which is
first order ine; and first order ine,. There are four terms,

two involving f9+j and two being their Hermitian conjugates.
One can then collect the terms to form commutators:

72 i

po |12
an__ " o -( ) B~ 0,55,
kin 2m|2 = 2 o+ [ +j P+J]
: 2
' PO,+j)l - PR
- = 0.:—0,6p]. (A13)
2( Po [ +] p]
_ 72 2 Hpo’ﬂ)uz_‘_( 00 )1/2}
4ml? 7] Po Po+j ’
(A14)

where we have used the commutation relatiorpodnd 6
[see Eq(20)].

We collect all the second ordernumber contributions to
the HamiltonianH in a single energy functional of the den-
sity profile of the quasicondensate,

1/2 1/2
Lo ]

(A15)
- 1,1)
The technique used to calculatdl can be extended to

the calculation oH (%Y. There are now three terms and their

th

4Aml? 7]

Po
Po,+j

Po,+j
Po

9o
Ealpol=— > Z po—
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and we expand to first order ip, which leads to a sum of
terms that are not individually Hermitian. We then use the
commutation relatior{20) to produce Hermitian terms, e.g.,

0).
(A19)

B 50,

(6= 0)8p(6:=0)

Sp(04;— )%=

The last term of the right-hand side of this expression is
anti-Hermitian and does not contribute to the final result

pl/2 1/2
0,+]
H(kiLr'IZ)_ |2 2 |D(0+] 0) 1/2 5P+ 1/2 5P+J
Po Po i
X(01—0). (A20)
Finally, HO: and H{>® vanish as the odd order expan-

sion of exyi(6,;—#)] is anti-Hermitian.

APPENDIX B: CORRECTIONS TO THE EQUATIONS
OF MOTION DUE TO Hj

The HamiltoniarH 5 gives rise to quadratic corrections to

the equations of motion fosp and . In this appendix, these
corrections are calculated explicitly and the thermal average
is taken over the equations of motion with the Hamiltonian
H,+H5 for the linear part and the Hamiltonian, for the
quadratic corrections. This allows us to calculate the first
correction to the mean density dueHla.

The corrections to the equation of motion for the density
fluctuations are given by

i 2 N PAREC
N
Po 1/2 .
+ ) 5P+j]+(+j<—>_j)}, (B1)
Po,+j

Hermitian conjugates. Two of these terms, when combined
with their Hermitian conjugates, form a commutator that iswhere{A,B} stands for the anticommutat&B+ BA of two

calculated according to E¢R0). The third term and its Her-
mitian conjugate involve the expression

8p(0.—8)dp,—Sp, (0, —0)dp
=3[0, ,8p,1-[8p,016p+ ,

which is a sum of two commutators, easy to evaluate. This
leads to

(A16)

#?
8m

p

(2h= —(Po

Hkln

Y

(1.2)
kin

1/2Ap1/2 /ZAPE 12) - (A17)

we first evaluate

rEj 1°0Vp(B, — 9)Vp.+H.c]

(A18)

To calculateH

(s+e2)_
kin

H |2

operators. When we take the average with the Hamiltonian
H,, we use the explicit modal expansmn@,ﬁ and & given

by Eq. (56). The operatoiQ disappears since E@B1) in-
volves only differences of.. Terms withP also disappear
since (P),=0. The expectation value of the product
A(r)Sp(r'), whered is written withoutQ and 5p is written
without P, is actually purely imaginary: as andv can be

chosen to be reak; = — 05 [see Eq.(57)]. Sincedy 5p> is
real, all imaginary contributions to it have to cancel so that

the corrections to the motion ¢®p) due toH; finally van-
ish when we take the thermal average:

i3y 5p)|n,=0. (B2)

The corrections to the equation of motion férare more
involved:
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. 1 h? Sp 2
hobly.=—— SpA 2A(\po
= g ) a0
th 5p? h?
8m ps/z omli?

XE}_: [\/Po,ﬂ(bﬂ'_b)z

o (- 0)2]+ g"l—ﬁg
2
— 4m|D\/—(Po 1/2Ap1/2 /ZApa 1/2) ] (53)
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2 poi(B41= 0+ po (8-~ 0)°

=1 92Apo—20A(\poB) +A(Vpe0d)]. (B8)

Using this equality, the Gross-Pitaevskii equatidd), and
the equation of motioi47), the fourth term in square brack-
ets of Eq.(B3) can be written as

72 o o
omP? 2 [VPo+i(0+j= 0)*+ po (6= )]

2

h A(95p
=| ~omA+TU—k+Gopo (Vpot?) — 1o

I

(B9)

Fortunately, we can use the linear equations of motionThe sixth(and last term in square brackets of EB3) can
(46),(47) to significantly simplify the above equation of mo- also be transformed using the Gross-Pitaevskii equéin

tion. We rewrite the first term in square brackets of EBB)
as

hZ .

SpA %
ampo P2\ og

P
2po

5p .
<U—M+Sgopo)(—)+2@hata
Vpo

(B4)

The second term in square brackets of 8BR) gives, asy/pg

solves the Gross-Pitaevskii equation,

2
3/2(U /*L+gOpO) (BS)

p2A(Vpo) =

The sum of Eqs(B4) and(B5) and the third term in square

brackets of Eq(B3) leads to

ol +U—pu+ )(5’)2) v 7(3,6) %

7l =5 tU—u+gopo|| 5| 90— —1(d0) ——.

41 2m g’ Vpo Vpo
(B6)

To rewrite the fourth term in square brackets of EBB), it is

convenient to use the following identity:
2 Vpoj(B4)= 0%+ Vpo-(9-,- 9)?
+20[\po+j(8+— 8)+po—j(0-;—0)]
=; Vo (07— 03 +\po_;(8*,— 6?)
=17[A(Vpo#*) —

leading to

#2A(\po)1, (B7)

ﬁZ

_4mID\/—

1/2 1/2__ /2 —1/2
(po "“Apy —pyApy ™)

2
~omA+tU—1+0opo

(B10)

) 1
21°po/
This leads finally to a rewriting of the thermal average of Eq.
(B3) as

2o )=

ﬁZ
- ﬁA"'U—M"'QoPo)

( 3,2+J_< O 2|DJ—)

B <5;32>2_P0/|D_ﬁ3t<295;)>2

° Voo Vo
(B11)

The last term of this expression can be calculated using Eq.
(56). The harmonic modes do not contribute since the expec-

tation value of products di; andb! is time independent. We
are left with

5t<QP>z—0t<Q(0)P+t P2> MO<P2>z, (B12)

2

which gives
19 05p), -
— ——=2u4(P?),n,\po- (B13)
Vpo °

As a conclusion, the quadratic correction to the first equation

of motion can be written as in EG60) if one uses the iden-

tities
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52 APPENDIX D: AN EQUATION FOR {a,A}
—=1po(B+B")2 . . . L .
Vpo In this appendix, we derive the partial differential equa-

tion (92). We first note thaB,,, being a sum of eigenmodes
of the operatoiCgp, obeys the differential equation for the

frn Ao A 1
_ t 2 t2,
\/p—o 2B BBTHB D) (B14) evolution governed by ,:

=Lgp

i B B
APPENDIX C: THE MEAN VALUE OF .0 VANISHES iﬁ(?t( X ~ :) . (D1)
Bﬂ

RT
AT EQUILIBRIUM Bn

As the field degree of freedof, that is, the global phase We project this equation orthogonally #, and alonggg, S0
of the field, is not subject to a restoring forceH, it is not  that we get the quantum analog of E4E9) and (E10 of
totally obvious that the perturbatiod; cannot set it into [26], with the simplification thatpy(r) is real:
permanent motion. We therefore check this point explicitly

here. ) _ A Q 0 A\ oL Qgopodo
The first step is to calculate the mean valuePofo first 12| 4| =| 0 Lep| +4] Tlatal)| 0 ,
. ; . . A A JoPo®o
order inH3. We approximate the unnormalized density op- (D2)
erator of the gas at thermal equilibrium to first ordeHn
using perturbation theory: A
L da 5 o At
; ih57=1"2 dopoco(Bnt BY)
Uze*B(HerHa):e*BHz_f dTe*(B*T)Hsze*THz_q_ R
O ~ ~
(D =172 gopoo(A+AN). (D3)

P commutes wittH, and has a vanishing mean value in the\y have introduced the projection matrix
thermal state corresponding t, so that, to first order in

Ha (r[Qlr") =6, =1 (1) (). (D4)
(P)3=—(BPH3),. (C2)  Asais anti-Hermitian, the source term in E@2) vanishes
X and one can replad®, by A in Eq. (D3).
The HamiltonianH 3 is a polynomial of degree 3 iR: We use these two equations of motion to calculate the first
order time derivative oA(r)=({a,A(r)}),. We do not give
Ha=Ag+A;P+A,P2+ AP, (C3)  the intermediate result. A& is real here, we have the prop-
erty
where theA; are still operators with respect to the harmonic o o
oscillator variablesg. This leads to {a, AT} =~ {a,A(N)}),. (D5)
(Pa= = Bl(A)2APH)2+ (Ag)o(P?2].  (C4  AsA s orthogonaltod, one has
OA=A. (D6)

From Wick’s theorem({P*),=3(P?)3.
In the second step we calcula(td@/dt) to first order in  All this leads to Eq.(91).

Hsj:
R R APPENDIX E: INTERPRETATION OF x IN THE NUMBER
(dQ/dty=(dp(Hy+H3))3=u{(P)z+ (A1) CONSERVING BOGOLIUBOV APPROACH
+3<A3>2<I52>2, (C5) We assume here that the gas is a quasipure condensate so

that ¢, is now the condensate wave function in the Gross-
Pitaevskii approximation. We then show thdt)/N,, where

x is defined in Eq(94), essentially coincides with the lowest
order deviation of the exact condensate wave function from
the Gross-Pitaevskii predictioth,. This deviation was cal-

where the terms coming fromsH3 are calculated in the
thermal state foH, since they are already first order in the

perturbation. From the value ¢P); obtained from Eq(C4)

and from Eq.(61) we obtain the desired result: culated in[15].
. We split y into a component orthogonal 6, and a com-
(dQ/dt)3=0 (C6)  ponent collinear tapy:
to first order inHs. X(r)=7ydo(r)+x.(r). (ED
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The componenty has a simple physical interpretation: we APPENDIX F: CORRECTIONS TO g; DUE
sum Eq.(95) overr after multiplication byi®. If we omit the TO THE CUBIC HAMILTONIAN
grand canonical ternfabsent in the canonical treatment of

[15]) we obtain We calculate the corrections to the first order correlation

function due toH; using the perturbative formuldl43). A

N=Ngy+2y+ N, (g2) first remark is that
where Ha(r)=e™M2H e 2 (F)
SN=IPD (ATA), (E3) s still cubic in the operatorbg, since one has
r
exactly coincides with the mean number of noncondensed eTi2hse” 2= by, (F2)
particles predicted ifil5]. The physical interpretation of{2
is then simple: e™Mzble"M2=e7esh] (F3
6Ng=2y (E4)

wheree;, is the energy of the Bogoliubov modeThe second

is the correction to apply to the pure condensate predictiogtep is to use Wick’s theorem to calculate the expectation
for the number of condensate particles in order to recover théalues in the thermal state corresponding to the Hamiltonian
correct Bogoliubov prediction. Applying to E¢94) the ma- H2. One can derive the general formulas

trix @ (D4) projecting orthogonally tap, we obtain _
(A1ALAGE' %) =[(A1ALAGIA 0),

+(ALA ) (ALiAG)(AziAB),]

h2
{— ﬁA"'U"'goPo_M X1 T29dopox.

x e~ ((40)?)2/2 (F4)

1
+ Q( 2gopoydot ES

_ 1
(A1ALAZAe 2 = { (A1ALAZAL) | 1+ E<(A 0)24

=0. (E5)
We modify slightly the form of the source ter eliminat- _ E 2
ing the anticommutator: 5 (A1A2AzAL(A 0)%),

N N R R 1 +(A11A0) (Asi AB)(AziAG),
{AT(r'),A(r)}z2AT(r')A(r)+|—D(r|Q|r'>. (E6)
><<A4iAa>2]e—<<“>2>2’2, (F5)
This leads to the system

0 S where theA; are linear indp and 8 and have a vanishing
Q X1 QSeft _ mean value. A last point is to realize that some of the terms
G =0 (E7) . .
0 Q9 X1 — QSq obtained contain a larger number of factors equal tothan
_ . other ones. SincA ¢ scales as 1/p, [see, e.g., the expres-
with the effective source term

sion of & in terms of the mode functionss,v. in Eq. (57)],
the terms with an excess Aff factors are higher order in the
Seit(r)=9opo(r) do(r)(6Ng—1) +goNoo(r) expansion and are therefore negligible. Note that, strictly
PP <o speaking, this argument is correct provided that each factor
X[2{AUNAT))2+(A%().] (AjA 6), remains bounded whatever the distance fftor.
5 ~ - . This can be checked to be indeed the case: from the form of
. E dopol(r) (T )([A(r)+AN(r)]AM)2.  H, one sees thah, is either 5p or the phase difference
' between two neighboring points of the grid. One can there-
(E®  fore use the approximate identities

where we used the fact that hetA?),=(A"?), since the
condensate wave function is real. Equati&n) is the steady
version of Eq.(95) of [15], which givesN times the correc- ,
tion to the condensate wave function, and the source term  (A;A,AzALe'2%),=(A1A,AzA,) e ((A07)22,

(AARAGE ") = (A1ALAGI A B),e (40722 (Fg)

(E8) exactly coincides with the one of E(6) of [15] if one (F7)
realizes thalN=N,, so thatéNy=— 6N, in the systematic
expansion used ifil5]. This immediately leads to the identiti€s44) and(145).
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