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Extension of Bogoliubov theory to quasicondensates
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We present an extension of the well-known Bogoliubov theory to treat low-dimensional degenerate Bose
gases in the limit of weak interactions and low density fluctuations. We use a density-phase representation and
show that a precise definition of the phase operator requires a space discretization in cells of sizel. We perform
a systematic expansion of the Hamiltonian in terms of two small parameters, the relative density fluctuations
inside a cell and the phase change over a cell. The resulting macroscopic observables can be computed in one,
two, and three dimensions with no ultraviolet or infrared divergence. Furthermore, this approach exactly
matches Bogoliubov’s approach when there is a true condensate. We give the resulting expressions for the
equation of state of the gas, the ground state energy, and the first order and second order correlation functions
of the field. Explicit calculations are done for homogeneous systems.
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INTRODUCTION

Recent progress in the realization of low-dimensio
Bose gases in the quantum degenerate regime offers
perspectives for comparison with theoretical treatments
atomic Bose gases, low-dimensional systems are achieve
creating anisotropic trapping potentials. Bose-Einstein c
densates of reduced dimensionality, that is, with the ato
motion frozen in the harmonic oscillator ground state alo
one or two directions, have been produced@1,2#.

Low-dimensional Bose gases with repulsive interactio
were the subject of early theoretical studies. In the therm
dynamic limit for spatially homogeneous systems, t
Mermin-Wagner-Hohenberg theorem@3,4# excludes the for-
mation of a Bose-Einstein condensate at finite temperat
This is physically due to large phase fluctuations which
strict the coherence length of the bosonic field to a fin
value. One expects, however, that strong enough repul
interactions between the particles strongly reduce the den
fluctuations of the gas in contrast to the noninteracting c
@5,6#. In this context, Popov introduced a long time ago t
concept of aquasicondensate@7#. This concept has been ex
tended to trapped gases@8–10#. The recent observation o
large phase fluctuations for a degenerate Bose gas in a h
anisotropic cigar shaped trap has brought qualitative exp
mental confirmation of the theory in a quasi-one-dimensio
geometry@11,12#.

It turns out that the theory of quasicondensates has no
reached the maturity of the theory for condensates. In
case of regular three-dimensional~3D! Bose-Einstein con-
densation in the weakly interacting regime, the Bogoliub
theory @13#, based on a systematic expansion in a small
rameter, gives a very precise description of the state of
gas. The intuitive idea of the Bogoliubov theory is to use
existence of a single macroscopically occupied modef0 of
the field, the mode of the condensate. We recall here
U~1!-symmetry preserving version of the theory@14,15#. One
first splits the bosonic field operator asĉ5f0â01dĉ,
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where â0 annihilates a particle in the condensate mode a

dĉ accounts for quantum and thermal fluctuations in

other modes. Then one uses the assumptionudĉu!uâ0u to
solve the field equations of motion perturbatively. This a
proach is not suitable for a quasicondensate as there i
single macroscopically occupied field mode. Fortunately,
the case of weak density fluctuations, the Bogoliubov id
can still be adapted in a quantum phase-density represe

tion of the field operator. One writes the field operatorĉ as

exp(iû)r̂1/2 whereû and r̂ are position dependent operator
giving the phase and the density. One then splits the oper

giving the density asr01dr̂, wherer0 is ac number anddr̂

are fluctuations, and one uses the fact thatudr̂u!r0. This
idea has already been used in the literature@16# but to our
knowledge without a precise definition of the phase opera
a well-known delicate point of quantum field theory@17,18#.
As a consequence of the nonrigorous definition of the pha
divergences appear in the theory@16#: one has to introduce
an arbitrary energy cutoff, so that predictions in 1D at ze
temperature are made within a logarithmic accuracy on
and in 3D there is no full equivalence with the Bogoliubo
theory. Another approach based on the current-density op
tor rather than on the phase operator was given by Schw
@19#: an expansion of the Hamiltonian in terms of weak de
sity and current fluctuations is performed relating the cor
lation function of the field to the static structure factor. It
subject to the same divergence problem in 2D and 3D in
absence of an energy cutoff if one calculates the struc
factor in the Bogoliubov approximation.

A possibility to circumvent these difficulties is to rely o
the path integral formulation of quantum field theory, whi
involves a functional integral over a classical field, for whi
the phase is perfectly well defined. This is the approach u
by Popov, but with the introduction of an energy cutoff mu
smaller than the chemical potential of the gas, so that
physics at length scales smaller than the healing length is
©2003 The American Physical Society15-1
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accurately described. This functional integral has rece
been considered: it can lead to a cutoff independent form
ism for quasicondensates@20,21# and it reproduces the sam
results as the Bogoliubov theory for a 3D condensate@22#.

In this paper, we propose an improved Bogoliubov a
proach to treat quasicondensates in the phase-density for
ism for a weakly interacting Bose gas. This approach
based on a lattice model, that is, with discrete spatial mo
which allows us to give a careful definition of the pha
operator of the field and to introduce from the start an ene
cutoff. It uses a systematic expansion in powers of the d
sity fluctuations and of the spatial phase gradient and lead
simple expressions for the first and second order spatial
relation functions of the bosonic field that do not depend
the energy cutoff and that exactly reproduce in 3D the p
dictions of the Bogoliubov theory. We also use this form
ism to determine the equation of state of the gas to the low
nonvanishing order in the thermal and quantum excitatio

In Sec. I, we construct a discretized space model in or
to define in a precise way the operators giving the phase
the density. We give the physical implications of the spa
discretization, restricting this approach to highly degener
and weakly interacting Bose systems. In Sec. II, we deriv
quadratic approximation to the Hamiltonian, that is, we d
rive approximate linear equations of motion for the dens
fluctuations and the phase operators. We recover to the
est order the Gross-Pitaevskii equation for the quasicond
sate density and we recover the Bogoliubov spectrum for
excitations. We also push the expansion to the next order
producing a cubic correction to the quadratic Hamiltonia
including the interaction between the quasicondensate
the excitations. We show that inclusion of this correction
necessary to get a consistent theory and to establish the
equivalence between our approach and the number con
ing Bogoliubov theory. In Sec. III, we present a few app
cations of our formalism: we give general formulas for t
equation of state and the ground state of the gas, and fo
first and second order correlation functionsg1 andg2 of the
field operator. In Sec. IV, we apply our formal results to t
homogeneous Bose gas in various dimensions of space.
allows us to derive simply the validity condition of th
method and to compare our results with existing results
the literature.

I. CONSTRUCTION OF A DISCRETE
PHASE-DENSITY REPRESENTATION

A. Why discretize the real space?

In previous studies of quasicondensates the basic too
the theory are an operator

r̂~r !5ĉ†~r !ĉ~r ! ~1!

giving the density inr and an operatorû(r ) giving the phase
of ĉ(r ), the field operator inr , the positionr being a con-
tinuous variable@23#. A small parameter of the theory cha
acterizing the regime of quasicondensates is then that
density fluctuations, that is, the fluctuations ofr̂(r ), are
small in relative values:
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var@ r̂~r !#[^r̂~r !2&2^r̂~r !&2!^r̂~r !&2. ~2!

However, one finds that the expectation value ofr̂(r )2 is
infinite at every point with a nonvanishing mean dens
r(r )5^r̂(r )&:

^r̂~r !2&5d~0!r~r !1^ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !&, ~3!

whered(0), the value of the Dirac distribution at the origin
is infinite, and the second term on the right-hand side, giv
the probability density of finding two atoms at the sam
point of space, is finite in any realistic model. Mathema
cally, this divergence is due to the use of the bosonic co
mutation relations of the field operatorsĉ(r ) and ĉ†(r ) at
the same point of space to put the atomic field product
normal order.

In order to have small, and therefore finite, density flu
tuations, one is forced to discretize the space, that is, to
lect the particles in little boxes at the nodes of a spatial g
Each little box has equal lengthl along each dimension o
space and is parametrized by the positionr of its center. The
field operatorĉ(r ) has the effect of removing a particle i
the box at positionr and it now satisfies the bosonic com
mutation relations

@ĉ~r !,ĉ†~r 8!#5
d r ,r8

l D
, ~4!

whered r ,r8 is the discrete Kronecker delta function andD is
the dimension of space. The variance of the operator giv
the density is now finite:

var@ r̂~r !#5^ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !&2r2~r !1
r~r !

l D
. ~5!

In the validity domain of the theoretical approach of th
paper, this variance will be much smaller thanr2(r ) because
both the sum of the first two terms and the last term in
right-hand side are small:

u^ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !&2r2~r !u!r2~r !, ~6!

r~r !l D@1. ~7!

B. The phase operator

In the usual continuous space theories, a Hermitian fi
phase operatorû(r ) is introduced subject to the following
commutation relation with the operator giving the density

@ r̂~r !,û~r 8!#5 id~r2r 8!. ~8!

In our discrete model the desired commutation relation
modified into
5-2
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@ r̂~r !,û~r 8!#5 i
d r ,r8

l D
. ~9!

First we recall briefly that there actually exists no Herm
ian operatorû(r ) satisfying strictly the above commutatio
relation. From the identity~9! one can indeed show that th
operator

T~a![e2 iaû(r ), ~10!

wherea is any real number, is a translation operator for t
density@24#:

T~a!†r̂~r !T~a!5 r̂~r !1
a

l D
. ~11!

This identity contradicts two fundamental properties ofr̂(r ),
the positiveness and the discreteness of its spectrum@25#.

We now proceed with the construction of a phase oper
û(r ) approximately satisfying the commutation relation~9!.
The key ingredients allowing such an approximate constr
tion are~i! to be in the limit of a large occupation number
the considered box of the lattice, and~ii ! to construct the
operatorei û first, which, according to Eq.~11! taken with
a521, simply reduces the number of particles in the co
sidered box by 1.

In each spatial box we introduce the basis of Fock sta
un,r & with exactly n particles in the box. In this basis th
field operators have the following matrix elements:

ĉ~r 8!un,r &5
d r ,r8

l D/2
Anun21,r &,

ĉ†~r 8!un,r &5
d r ,r8

l D/2
An11un11,r & ~12!

as a consequence of the commutation relation~4!. The
atomic densityr̂ defined byr̂(r )5ĉ†(r )ĉ(r ) is diagonal in
the Fock state basis:

r̂~r 8!un,r &5d r ,r8

n

l D
un,r &. ~13!

We then introduce the operatorÂ defined by

ĉ~r ![Â~r !Ar̂~r !. ~14!

In the Fock spaceÂ(r ) reduces by 1 the number of particle
n in the boxr :

Â~r 8!un,r &5~12dn,0!d r ,r8un21,r &. ~15!

Note that its action on the vacuum state of the box gi
zero. For each boxr , the definition ofÂ leads to the exac
relations
05361
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ÂÂ†5I , Â†Â5I 2u0&^0u, and @Â,Â†#5u0&^0u,
~16!

where I is the identity operator andu0& is the zero-particle
state or vacuum state in the box of centerr . We find that the
operatorÂ is almost unitary, i.e., it is effectively unitary fo
a physical state of the system with a negligible probability
having an empty box. In what follows, we assume that t
condition is satisfied, so that the projectoru0&^0u can be
neglected:

occupation probability ofun50,r &!1. ~17!

In this case, we write the approximately unitary opera
Â as

Â~r !.ei û(r ) with û†~r !. û~r !, ~18!

which amounts to writing the field operator as

ĉ~r !.ei û(r )Ar̂~r !. ~19!

This should be understood as a formal writing, allowing
for example, to recover the matrix elements ofÂ and there-
fore of the field operatorĉ from the commutation relation
~9!. We summarize below all the commutation relations
our phase-density representation:

@ r̂~r !,û~r 8!#.
id r ,r8

l D
, @ r̂~r !,r̂~r 8!#50,

@ û~r !,û~r 8!#.0. ~20!

We come back to the constraint~17! at the basis of the
construction of exp(iû). A sufficient condition to have a low
probability for zero particle occupation in a box is obtain
for a large mean number of particles in the box and w
small relative particle number fluctuations. This is the regi
that we wish to consider in this paper. We are therefore b
to the discussion of the previous subsection and to the c
ditions~6!,~7! for weak density fluctuations. In particular, th
construction of the operator exp(iû) becomes problematic in
the limit l→0, that is, in the continuous model.

C. How to choose the grid spacingl

Working on a grid can also be seen as performing
coarse-grain average over all physical quantities on a scal.
This averaging suppresses the short wavelength mo
~shorter thanl ) and thus introduces an energy cutoff:

Ecut.
\2

ml2
. ~21!

This cutoff is of no physical consequence if all characteris
energies (m, kBT) are smaller, i.e.,l is smaller than the
corresponding characteristic lengths. This leads, for insta
to the following restrictions forl:
5-3
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l ,j and l ,l, ~22!

where

j5
\

Amm
~23!

is the healing length, and

l5A2p\2

mkBT
~24!

is the thermal de Broglie wavelength. These two restrictio
combined with Eq.~7!, impose

rlD@1, ~25!

rjD@1. ~26!

These are conditions of validity for our discrete model.
The first one, Eq.~25!, is the quantum degeneracy regim

occurring at sufficiently low temperatures. The second
striction, Eq.~26!, corresponds to the regime of weakly in
teracting systems. Its dependence on the density varies
cording to the dimension of space. In 1D and 3D, the m
field prediction for the chemical potential ism.gr, whereg
is a constant characterizing the interaction potential, the
called coupling constant. In 1D, Eq.~26! is the high-density
limit where a mean field theory is valid; we recall that t
small density limit r j5\Ar/mg!1 corresponds to the
strongly interacting~or strongly correlated! Tonks gas re-
gime. In 3D, the effective coupling constantg is related to
the s-wave scattering lengtha of the interaction potential,g
54p\2a/m, so that rj3}1/Ara3@1: one recovers the
usual small gaseous parameterAra3. In 2D, the chemical
potential scales as\2r/@m ln(1/ra2)# wherea is the scatter-
ing length of the 2D interaction potential, so that the con
tion rj2@1 results in a low-density condition, ln(1/ra2)
@1.

II. PERTURBATIVE TREATMENT
OF A MODEL HAMILTONIAN

A. Model Hamiltonian

In our lattice model, we represent the binary interact
potential among the particles by a discreted potential:

V~r12r2!5
g0

l D
d r1 ,r2

, ~27!

whereg0 is the bare coupling constant. Note thatg0 in gen-
eral differs from the effective coupling constantg, and we
shall come back to this point in Sec. IV A. With this mod
potential, the grand canonical Hamiltonian is
05361
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H5(
r

l DF2
\2

2m
ĉ†~r !Dĉ~r !1@U~r !2m#ĉ†~r !ĉ~r !

1
g0

2
ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !G , ~28!

whereU(r ) is an external trapping potential and where t
Laplacian is a symmetric operator coupling the differe
neighboring boxes:

D f ~r !5(
j

f ~r1 lej !1 f ~r2 lej !22 f ~r !

l 2
. ~29!

The ej are the unitary vectors andj the different orthogonal
space directions~for example,j 5x,y,z in 3D!. As usual we
take periodic boundary conditions inside a rectangular b
with lengths integer multiples ofl.

We now rewrite the Hamiltonian in the density-phase re
resentation, that is, in term of the operatorsr̂ and û giving
the density and the phase as defined in the previous sec
The contributions of the trapping potential and of the int
action potential to the Hamiltonian are local in real space a
therefore include the operatorr̂ only:

Hpot5(
r

l Dr̂~r !FU~r !2m1
g0

2 S r̂~r !2
1

l DD G , ~30!

where we have used the bosonic commutation relation~4! to
exchange one of theĉ† with ĉ in the interaction term. The
kinetic energy term involves the phase operator explicitly

Hkin52
\2

2ml2
(

r
l D(

j
Ar̂~ei ( û1 j 2 û)Ar̂1 j

1ei ( û2 j 2 û)Ar̂2 j22Ar̂ !, ~31!

where we have introduced the notationû6 j5 û(r6 lej ) and
r̂6 j5 r̂(r6 lej ). A remarkable property of this formulation
to be used below, is that it involves only the difference
two phase operators between two neighboring points of
lattice.

B. Hamiltonian quadratization and cubization

We now expand the Hamiltonian to third order in powe
of two small parameters. As already discussed in Sec. I A
regime of quasicondensates that we are interested in co
sponds to small relative fluctuationsdr̂ of the density. In the
zeroth order approach totally neglecting the density fluct
tions, the density is set to a deterministic valuer0, as we
shall see. The second order expansion allows us to desc
the density fluctuations:

r̂~r !5r0~r !1dr̂~r !. ~32!

The third order expansion allows us to calculate the m
value ofdr̂(r ).
5-4
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The first small parameter of the systematic expans
used in this paper is therefore given by

e15
udr̂u
r0

!1, ~33!

where udr̂u is the typical value of the operatordr̂ in the
physical state of the system. Mathematically, this allows

to expandAr̂ as

r̂1/25r0
1/21

1

2

dr̂

r0
1/2

2
1

8

dr̂2

r0
3/2

1
1

16

dr̂3

r0
5/2

•••. ~34!

The second small parameter of the expansion is given b

e25u l“ ûu!1. ~35!

Here“ represents the gradient on the lattice:

“ f ~r !5(
j

f ~r1 lej !2 f ~r2 lej !

2l
ej , ~36!

wheref is an arbitrary function. Physically, the existence
the small parametere2 is reasonable: it is at the basis of o
-
ri-

il-

05361
n
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hypothesis that the continuous quantum field problem can
well approximated by a discrete lattice model, provided t
l is small enough~see Sec. I C!. Mathematically, this second
small parameter allows us to expand the exponentials of
phase differences in Eq.~31!:

ei ( û1 j 2 û)511 i ~ û1 j2 û !2
1

2
~ û1 j2 û !2

•••. ~37!

From the fact that the discretization lengthl is on the
order of the smaller of the two macroscopic length scalej
andl @see Eq.~22!#, it will be checked later that the param
eterse1 ande2, though of apparently different physical or
gin, can be chosen to be of the same order of magnitude

e1;e2;
1

Ar0l D
, ~38!

and can therefore be treated mathematically as infinitesim
of the same order. The mathematical details of the expan

H5H01H11H21H31••• ~39!

are given in Appendix A; we present here only the result
H05(
r

l DF2
\2

2m
Ar0DAr01

g0

2
r0

21@U~r !2m#r0G ,
H15(

r
l DF2

\2

2mAr0

DAr01U~r !2m1g0r0Gdr̂,

H25E2@r0#1(
r

l DF2
\2

2m

dr̂

2Ar0

DS dr̂

2Ar0
D 1

\2dr̂2

8mr0
3/2

DAr01
g0

2
dr̂21

\2

2m (
j

Ar0~r !r0~r1 lej !
@ û~r1 lej !2 û~r !#2

l 2 G ,

H352
g0

2 (
r

dr̂1
\2

4ml2
(
r , j

l D~ û1 j2 û !S r0,1 j
1/2

r0
1/2

dr̂1
r0

1/2

r0,1 j
1/2

dr̂1 j D ~ û1 j2 û !1
\2

8m (
r

dr̂

r0
~r0

21/2Dr0
1/22r0

1/2Dr0
21/2!

2
\2

16m (
r

l DF dr̂3

r0
5/2

DAr02
dr̂2

r0
3/2

DS dr̂

Ar0
D G . ~40!
a-
The quantityE2 in H2 is a c-number functional of the den
sity r0, given in Appendix A, which therefore has no cont
bution to the dynamics of the quantum field.

C. Iterative solution for the quadratic Hamiltonian

We now solve perturbatively, order by order, the Ham
tonian problems defined byH0 , H01H1, and H01H1
1H2. To zeroth order ine1,2, the Hamiltonian is ac number.
As the chemical potential is fixed in our approach,H0 is
minimized for a density profiler0(r ) such thatAr0 solves
the discrete version of the Gross-Pitaevskii equation:

F2
\2

2m
D1U~r !2m1g0r0GAr050. ~41!

This density profile constitutes the zeroth order approxim
5-5
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tion to the densityr. It contains a number of particles tha
we call N0:

N0[(
r

l Dr0~r !. ~42!

Note thatN0 coincides with the mean total number of pa
ticles N only to lowest order in the theory. Equation~41!
definesr0 and thereforeN0 as functions of the chemica
potentialm. It will, however, turn out to be more convenien
to parametrize the theory in terms ofN0 rather than in terms
of m. We will therefore considerm and r0 as functions of
N0:

m5m0~N0!, ~43!

r0~r !5r0~r ;N0!. ~44!

m0 is therefore the Gross-Pitaevskii prediction for the che
cal potential of a gas ofN0 particles.

For the choice of density profile~41!, the first order cor-
rection H1 to the Hamiltonian vanishes. We therefore no
have to solve the Hamiltonian problem defined byH2, in
order to determine the lowest-order approximation to
density fluctuationdr̂ and the phaseû. It is instructive to
write the corresponding Heisenberg equations of moti
which are linear~and therefore trivially solvable! sinceH2 is
quadratic. Asû and dr̂ are two canonically conjugate var
ables, the equations of motion are

\] tû.2
1

l D

]H2

]dr̂~r !
5

\2

2mAr0
FDS dr̂

2Ar0
D 2dr̂

DAr0

2r0
G

2g0dr̂,

\] tdr̂~r !.
1

l D

]H2

]û~r !
52

\2

m
Ar0@D~ûAr0!2 ûDAr0#.

~45!
ia
h

05361
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An important difference of these equations from the s
called quantum hydrodynamics equations fordr̂ and û is
that our formalism keeps the so-called quantum press
term for ] tû, whereas it is usually neglected in the literatu
@23#. This allows our treatment to have a cutoff energy larg
than m, whereas the usual treatment is restricted to ene
modes much belowm.

Furthermore, one can simplify these equations using
Gross-Pitaevskii equation~41! to eliminateDAr0:

\] tû52
1

2Ar0
F2

\2

2m
D1U13g0r02m G S dr̂

Ar0
D ,

~46!

\] tdr̂~r !52Ar0F2
\2

2m
D1U1g0r02mG~ ûAr0!.

~47!

This gives the idea of a very simple canonical transformat
which, remarkably, maps our equations for a quasicond
sate~46!,~47! into the equations for the Bogoliubov modes
a condensate: the field

B̂5
dr̂

2Ar0

1 iAr0û ~48!

has bosonic commutation relations

@B̂~r !,B̂†~r 8!#5
d r ,r8

l D
~49!

and it obeys the standard Bogoliubov equations
i\] tS B̂

B̂†D 5LGPS B̂

B̂†D [S 2
\2

2m
D1U2m12g0r0 g0r0

2g0r0 2S 2
\2

2m
D1U2m12g0r0D D S B̂

B̂†D . ~50!
ergy
n

ard
ll
This mapping can be readily extended to the Hamilton
H2, which is expected to be canonically equivalent to t
Bogoliubov Hamiltonian:

H25 l D(
r

B̂†S 2
\2

2m
D1U1g0r02m D B̂

1g0r0F B̂†B̂1
1

2
~B̂21B̂†2!G . ~51!
n
e
We have checked that the identity~51! indeed holds by re-

placingB̂ by its expression~48! in terms ofdr̂ andû, and by
using the value of the commutators~20! and the fact thatAr0
solves the Gross-Pitaevskii equation. Remarkably, the en
functionalE2@r0# is exactly compensated by the contributio
of the commutators.

This mapping therefore allows us to reuse the stand
diagonalization of the Bogoliubov Hamiltonian. We reca
here briefly the procedure described in@15,27#. One intro-
5-6
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duces the normal eigenmodes (us ,vs) of the Bogoliubov op-
eratorLGP with an energyes , normalizable as

(
r

l D@ uus~r !u22uvs~r !u2#51. ~52!

Then (vs* ,us* ) is an eigenmode ofLGP with the energy
2es . To form a complete family of vectors one has to fu
ther introduce the zero-energy mode ofLGP, given by
(f0 ,2f0), and the anomalous mode (fa ,fa) with

f05Ar0 /N0 and fa5AN0]N0
Ar0. ~53!

The corresponding normalization of the anomalous mod
such that the scalar product off0 andfa is 1/2. With these
definitions, one introduces the components of (B̂,B̂†) on the
zero-energy mode, on the anomalous mode and on the r
lar (us ,vs) modes:

S B̂

B̂†D 52 iAN0Q̂S f0

2f0
D 1

P̂

AN0
S fa

fa
D

1(
s

b̂sS us

vs
D 1b̂s

†S vs*

us*
D . ~54!

Q̂ is a collective coordinate representing the quantum ph
of the field andP̂ is its conjugate momentum

@ P̂,Q̂#52 i . ~55!

PhysicallyP̂ corresponds to fluctuations in the total numb
of particles, as expected, and as shown in more detail l
@see Eq.~67!#. The operatorsb̂s are bosonic annihilation op
erators with the usual commutation relations@ b̂s ,b̂s8#

5ds,s8 . They commute withP̂ andQ̂. The inverse formulas
giving b̂s , Q̂, and P̂ in terms of B̂ can be found, for ex-
ample, in@15#. Equation~54! results in the following moda
expansion for the density fluctuations and the phase op
tors:

û~r !5(
s

us~r !b̂s1us* ~r !b̂s
†2Q̂,

dr̂~r !5(
s

drs~r !b̂s1drs* ~r !b̂s
†1 P̂]N0

r0 ,

~56!

where

us~r !5
us~r !2vs~r !

2iAr0~r !
,

drs~r !5Ar0~r !@us~r !1vs~r !#. ~57!

By construction, this modal expansion, when inserted i
the quadratic HamiltonianH2, results in
05361
is

u-

se

r
er

ra-

o

H5(
s

esb̂s
†b̂s1

1

2
P̂2m081Ẽ2@r0#, ~58!

where m085dm0 /dN0. This is the sum of uncoupled ha
monic oscillators, plus a massive free degree of freedom
responding to the unbound phase variableQ̂. The effective
mass of the phase variable is given by 1/m08 . The energy

functional Ẽ2@r0# will be calculated in Sec. III B, where i
will be shown that it leads to exactly the same ground st
energy as the number conserving Bogoliubov theory. T
shows that the Bogoliubov theory can be used to calcu
the ground state energy even for, e.g., 1D quasicondens
a fact commonly used in the literature@28,29# but which
looks rather heuristic in the absence of justification.

D. Effect of cubic Hamiltonian corrections on the density

The physics contained in the cubic termH3 of the Hamil-
tonian is very rich. It includes interaction effects between
Bogoliubov modes of the previous section, allowing a ge
eralization to quasicondensates of the theory of energy s
and Beliaev-Landau damping usually put forward for Bos
Einstein condensates@30–32#.

We are more modest here. Our motivation to include
cubic corrections is that the quadratic HamiltonianH2 brings
actually no correction to the zeroth order approximationr0

to the mean density, since the mean value ofdr̂ vanishes at
the level of the second order theory. This is highly nonsa
factory as it brings some inconsistency into the calculation
an observable likeg1, the first order correlation function o
the field: to get a nontrivial prediction forg1 one has to
include terms quadratic in the phase operator, which are
ond order ine2, which forces us to also include second ord
corrections to the mean density, as will become very expl
in Sec. III.

We therefore calculate the first order correction to t
equations of motion ofdr̂ and û due to the cubic Hamil-
tonian termH3, and we take the average over the quant
state corresponding to the density operator at thermal e
librium for the HamiltonianH2. This gives source terms to
add to the equations for the mean density and phase der
from H2. We leave the details of the calculations to Appe
dix B and give the result directly:

\] t^dr̂&35r0
1/2F2

\2

2m
D1U1g0r02mG~2r0

1/2^û&3!,

~59!

22\Ar0] t^û&35F2
\2

2m
D1U13g0r02mG

3S ^dr̂&32^B̂†B̂&2

r0
1/2 D

1g0r0
1/2^4B̂†B̂1B̂21B†2&2

22^P̂2&2m08]N0
Ar0, ~60!
5-7
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C. MORA AND Y. CASTIN PHYSICAL REVIEW A 67, 053615 ~2003!
where the thermal average^•••&2 is taken with the unper-
turbed HamiltonianH2 and ^•••&3 is taken with the per-
turbed HamiltonianH21H3 to first order inH3. The expec-
tation value of the ‘‘kinetic energy’’ of the unbound pha
variable in Eq.~58! is equal tokBT/2 according to the equi
partition theorem so that

^P̂2&25
kBT

m08
. ~61!

At equilibrium the expectation values of] tdr̂ and ] tû

vanish. This fact is obvious for] tdr̂; it is less obvious for
] tû because of the presence of the unbound variableQ̂; we
therefore produce a proof of that in Appendix C. We the
fore have to solve Eqs.~59! and~60! with the left-hand side
set to zero. The first equation~59! imposes the condition tha
the mean value ofû is position independent, a trivial resul
In the second equation, the operator acting on^dr̂&3 is
strictly positive so that it is invertible, and Eq.~60! deter-
mines the correction to the mean density in a unique wa

We now go through a sequence of transformations allo
ing us to get a physical understanding of the value of^dr̂&3.
The first step is to pull out the contribution of the ‘‘anom
lous’’ terms P̂, Q̂ in the modal expansion~54!:

B̂~r ![2 iAN0Q̂f0~r !1
1

AN0

P̂fa~r !1B̂n . ~62!

We calculate the expectation values of Eq.~60! involving the
operatorB̂, using the fact that all the crossed terms betwe
the anomalous part and the operatorsbs have a vanishing
expectation value:

^B̂†B̂&25
fa

2

N0
^P̂2&21N0f0

2^Q̂2&21^B̂n
†B̂n&22faf0 ,

~63!

^B̂2&21^B̂†2&252
fa

2

N0
^P̂2&222N0f0

2^Q̂2&2

1^B̂n
2&21^B̂n

†2&2 . ~64!

The termf0fa in Eq. ~63! comes from the noncommutatio
of P̂ and Q̂ @see Eq.~55!#. The contributions of̂ Q̂2&2 in
Eqs.~63! and~64!, when inserted into Eq.~60!, are shown to
compensate exactly when one uses the fact thatf0 solves the
Gross-Pitaevskii equation. This was expected from the U~1!
symmetry of the Hamiltonian: only differences of the pha
operator at two points appear in the Hamiltonian, so thaH

does not depend onQ̂ and the mean density does not depe
on ^Q̂2&2.

We therefore get an equation for^dr̂&3 involving the ex-
pectation value ofP̂2 as a source term, and which look
rather involved:
05361
-

-

n

e

d

05F2
\2

2m
D1U13g0r02mG

3S ^dr̂&32fa
2N0

21^P̂2&22~^B̂n
†B̂n&22f0fa!

r0
1/2 D

1g0r0
1/2^4~B̂n

†B̂n2f0fa!1B̂n
21Bn

†2&2

1^P̂2&2@6g0r0
1/2]N0

Ar022m08#]N0
Ar0. ~65!

Fortunately the underlying physics is very simple and allo
us to predict the effect of this source term on the mean d
sity. One first identifies the physical meaning ofP̂ in Eq.
~56!. Using the well-known fact that the eigenmodes ofLGP
are orthogonal for the modified scalar product of signat
(1,21), one has@15#

^f0uus&1^f0uvs&[(
r

l Df0~r !@us~r !1vs~r !#50,

~66!

so that the sum ofdrs over all spatial nodes vanishes. As
consequence, the operatorN̂ giving the total number of par-
ticles in the gas is simply

N̂[(
r

l Dr̂~r !5N01 P̂, ~67!

where we have used the identity

(
r

l D]N0
r0~r !5

d

dN0
(

r
l Dr0~r !5

dN0

dN0
51. ~68!

The source terms involvingP̂ therefore correspond to fluc
tuations in the total number of particles in the gas, due to
fact that we consider the grand canonical ensemble. The
fect of these grand canonical fluctuations can be conside
for the case of a pure quasicondensate at the order of
present calculation so it is easy to calculate it directly. In
grand canonical ensemble the probability that the quasic
densate hasn particles is

Pn}exp@2b„E0~n!2mn…#, ~69!

whereE0(n) is the Gross-Pitaevskii energy for the dens
profile r0(r ;n):

E0~n!5(
r

l DF2
\2

2m
Ar0~r ;n!DAr0~r ;n!1U~r !r0~r ;n!

1
g0

2
r0

2~r ;n!G . ~70!

The corresponding mean grand canonical density is

rGC~r !5E dn Pnr0~r ;n!, ~71!
5-8
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EXTENSION OF BOGOLIUBOV THEORY TO . . . PHYSICAL REVIEW A67, 053615 ~2003!
where we treatn as a continuous variable. The zeroth ord
approximationn5N0 for the number of particles in the qua
sicondensate is such thatE0(n)2mn has a minimum:

d

dn
@E0~n!2mn#5m0~n!2m50 for n5N0 ~72!

as shown in Eq.~43!. The corresponding density profile
r0(r ;N0). The next order correction to that is obtained
expanding then dependent density profile to second order
n2N0 and by averaging overn:

drGC~r !5^~n2N0!&]N0
r0~r ;N0!

1
1

2
^~n2N0!2&]N0

2 r0~r ;N0!. ~73!

The second moment ofn2N0 is calculated to lowest nonva
nishing order by a Gaussian approximation toPn :

E0~n!2mn.E0~N0!2mN01
1

2

d2E0

dN0
2 ~n2N0!2

5const1
1

2
m08~n2N0!2. ~74!

This leads to

^~n2N0!2&Gauss5
kBT

m08
5^P̂2&2 . ~75!

More care has to be taken in the calculation of the mean
n2N0: the Gaussian approximation toPn gives a vanishing
contribution, so that the cubic distortion to it has to be
cluded:

E0~n!2mn.E0~N0!2mN01
1

2
m08~n2N0!2

1
1

6
m09~n2N0!3, ~76!

Pn}expF2
1

2
bm08~n2N0!2GF12

1

6
bm09~n2N0!3G .

~77!

We then get a nonvanishing mean value forn2N0:

^~n2N0!&distor52
1

6
bm09^~n2N0!4&Gauss

52
1

2
bm09~^P̂2&2!2. ~78!

We have therefore predicted in a very simple way the c
rection to the mean density due to grand canonical fluc
tions:
05361
r

of

-

r-
a-

drGC~r !5
1

2
^P̂2&2F ]N0

2 r0~r ;N0!2
m09

m08
]N0

r0~r ;N0!G .

~79!

How does this compare to the general formalism~65!? We
need to obtain a partial differential equation fordrGC. We
just take the second order derivative of the Gross-Pitaev
equation~41! with respect toN0 and we replacer0 by Ar0

2

in the resulting equation and in Eq.~79!. This leads to the
remarkable identity

F2
\2

2m
D1U13g0r02mG S drGC2N0

21fa
2^P̂2&2

r0
1/2 D

52^P̂2&2@6g0r0
1/2]N0

Ar022m08#]N0
Ar0. ~80!

The right-hand side of this identity coincides with the sour
term of Eq.~65! involving P̂. We have therefore successful
identifieddrGC as a piece of̂dr̂&3 and we are left with the
simpler equation

05F2
\2

2m
D1U13g0r02mG

3S ^dr̂&32drGC2~^B̂n
†B̂n&22f0fa!

r0
1/2 D

1g0r0
1/2^4~B̂n

†B̂n2f0fa!1B̂n
21Bn

†2&2 . ~81!

We are not totally satisfied yet since the operatorB̂n does
not obey bosonic commutation relations when the system
not spatially homogeneous; in particular, the fieldB̂n does
not commute with itself when taken at two different point

@B̂n~r !,B̂n~r 8!#5fa~r !f0~r 8!2fa~r 8!f0~r !, ~82!

@B̂n~r !,B̂n
†~r 8!#5

1

l D
d r ,r82f0~r !fa~r 8!

2f0~r 8!fa~r !. ~83!

To circumvent this difficulty we split the fieldB̂n into its
component along the quasicondensate modef0 and its or-
thogonal component:

B̂n~r !5âf0~r !1L̂~r !. ~84!

The Bogoliubov functionsus(r ) and vs(r ) can be chosen
here to be real. The operatorâ can then be written as

â5(
s

^f0uus&~ b̂s2b̂s
†!, ~85!

where we have used the property~66!. This clearly shows
that the operatorâ is anti-Hermitian:

â†52â. ~86!
5-9
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C. MORA AND Y. CASTIN PHYSICAL REVIEW A 67, 053615 ~2003!
The fieldL̂ has the following expansion onb̂s :

L̂~r !5(
s

us'~r !b̂s1vs'~r !b̂s
† , ~87!

where the index' indicates projection orthogonally tof0.
This field now has the desired bosonic commutation relati

@L̂~r !,L̂~r 8!#50, ~88!

@L̂~r !,L̂†~r 8!#5
1

l D
d r ,r82f0~r !f0~r 8!. ~89!

Note thatâ does not commute withL̂:

@â,L̂~r !#5
1

2
f0~r !2fa~r !. ~90!

We insert the splitting ofB̂n in Eq. ~81!. The terms qua-
dratic in â cancel exactly, in the same way the terms inQ̂2

canceled. The terms linear inâ can all be expressed in term
of the expectation value of an anticommutator^$â,L̂%&2 us-
ing the commutation relation~90! and the fact that̂âL̂&2 is
a real quantity. Furthermore, using the techniques of App
dix E of @26#, as shown here in Appendix D, one obtains
simple partial differential equation for the anticommutato

F2
\2

2m
D1U1g0r02mG^$â,L̂~r !%&2

52(
r8

l Dg0r0~r 8!f0~r 8!^$L̂~r 8!1L̂†~r 8!,L̂~r !%&2 .

~91!

Remarkably, this allows us to eliminate completely the o
eratorâ in Eq. ~81!. We finally get an equation for the co
rection to the mean density involving the operatorL̂ only:

05F2
\2

2m
D1U13g0r02mG S ^dr̂&32drGC2^L̂†L̂&2

f0
D

1S~r !, ~92!

where we have introduced the source term

S~r ![g0N0f0~r !^4L̂†~r !L̂~r !1L̂2~r !1L̂†2~r !2f0
2~r !&2

2(
r8

l Dg0r0~r 8!f0~r 8!^$L̂~r 8!1L̂†~r 8!,L̂~r !%&2 .

~93!

It will be convenient to introduce the functionx(r ) de-
fined in a unique way by

05F2
\2

2m
D1U13g0r02mGx~r !1

1

2
S~r !. ~94!
05361
s

n-

-

We then obtain the following final expression for the corre
tion to the mean density due to the cubic Hamiltonian ter
H3:

^dr̂&3~r !5drGC~r !12f0~r !x~r !1^L̂†~r !L̂~r !&2 .
~95!

In the particular case where the gas is Bose conden
our general theory for quasicondensates also applies
course. One then expects that the result~95! has already been
obtained for the condensate and can be given a clear phy
interpretation. This expectation is totally justified: as sho
in Appendix E, the component ofx(r )/N0 orthogonal tof0
is the correction given in@15# to the Gross-Pitaevskii con
densate wave functionf0 due to the interaction with the
noncondensed particles; the component ofx along f0 de-
scribes the condensate depletion, and^L̂†L̂&2 is the mean
density of noncondensed particles.

III. APPLICATIONS OF THE FORMALISM:
GENERAL FORMULAS

A. Equation of state

What is referred to as theequation of stateof the gas is
the expression of the chemical potential as a function of
mean total number of particlesN and the temperatureT. It is
useful in particular to predict properties of an inhomog
neous gas within the local density approximation.

We therefore now have to calculatem for the quasicon-
densate. This is equivalent to a calculation ofN0 as m and
N0 are by definition related through Eq.~43!. To lowest order
of the theory one assumes a pure quasicondensate w
density profiler(r )5r0(r ), whereAr0 solves the Gross-
Pitaevskii equation~41!. One therefore getsN5N0 so that
m5m0(N).

The first nonvanishing correction to the density profile
given by Eq.~95!. By integrating Eq.~95! over space we ge
the corresponding correction for the mean total number
particles:

N[N01dN, ~96!

dN.dNGC1 l D(
r

2f0~r !x~r !1 l D(
r

^L̂†~r !L̂~r !&2 .

~97!

The contribution todN due to our use of the grand canonic
ensemble can be calculated exactly from a spatial integra
of Eq. ~79!, using the same technique as in Eq.~68!:

dNGC52kBT
m09

2m08
2

. ~98!

The contribution of the term involvingx can also be made
explicit by multiplication of Eq.~94! by fa(r ) defined in Eq.
~53! and by spatial integration. The functionfa(r ) is indeed
known @27# to solve the partial differential equation
5-10
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EXTENSION OF BOGOLIUBOV THEORY TO . . . PHYSICAL REVIEW A67, 053615 ~2003!
F2
\2

2m
D1U13g0r02mGfa5N0m08f0~r !, ~99!

which can be checked easily, just by taking the derivative
Eq. ~41! with respect toN0. This leads to

l D(
r

2f0~r !x~r !52
1

N0m08
(

r
l Dfa~r !S~r !, ~100!

where the source termS is known explicitly @see Eq.~93!#.
We now just have to replaceN0 by N2dN in Eq. ~43! and
expand to first order indN:

m5m0~N2dN!.m0~N!2dNm08~N0!. ~101!

We obtain the following expression form:

m.m0~N!1kBT
m09

2m08
2m08~N0!(

r
l D^L̂†~r !L̂~r !&2

1
1

N0
(

r
l Dfa~r !S~r !. ~102!

Equivalently, we can replace the source term by its expl
expression to get

m.m0~N!1kBT
m09

2m08
2m08~N0!S 1

2
1(

r
l D^L̂†~r !L̂~r !&2D

1(
r

l Dg0@]N0
r0~r !#~2^L̂†L̂&21Rê L̂2&2!

2(
r

l Dg0f0
3~r !^$L̂~r !1L̂†~r !,ĝ%&2 , ~103!

where we have introduced the operator

ĝ5(
r

l Dfa~r !L̂~r !, ~104!

and we have used the identity

m085(
r

l Dg0f0
2~r !]N0

r0~r ;N0! ~105!

obtained by performing the scalar product of both sides
Eq. ~99! with f0. The application to spatially homogeneo
systems will be given in Sec. IV; in this case both the ope
tor ĝ andm09 vanish.

B. Ground state energy

We now show that the ground state energy of a quasic
densate can be calculated with exactly the same Bogoliu
formula as for the ground state energy of a condensate.

We have to determine the ground state energy ofH2. We
write it as the expectation value of Eq.~51! at zero tempera-
ture, that is here in the vacuum of theb̂s and of P̂:
05361
f

it

f

-

n-
ov

Eground~H2!5 l D(
r

K B̂†S 2
\2

2m
D1U1g0r02m D B̂L

2

1g0r0K F B̂†B̂1
1

2
~B̂21B̂†2!G L

2

. ~106!

We reproduce the transformation of Sec. II D. We splitB̂ into
an anomalous part involvingP̂,Q̂, plus the contributions of
the anti-Hermitian operatorâ and ofL̂, the orthogonal com-
ponent of the normal part. In the first expectation value
the right-hand side of Eq.~106! the operatorsQ̂ and â dis-
appear as they come with the factorf0(r ) in B̂, and f0
solves the Gross-Pitaevskii equation~41!. The expectation
value of P̂2 in the ground state ofH2 also vanishes, so tha

K B̂†S 2
\2

2m
D1U1g0r02m D B̂L

2

5 K L̂†S 2
\2

2m
D1U1g0r02m D L̂ L

2

. ~107!

The same transformation is applied to the last expecta
value in Eq.~106!. Remarkably, the terms involvingâ ex-
actly cancel when one uses the relations~63!, ~64!, ~90!, and
~D5!. This leads to

K F B̂†B̂1
1

2
~B̂21B̂†2!G L

2

52
1

2
f0

21 K F L̂†L̂1
1

2
~L̂21L̂†2!G L

2

.

~108!

The expectation values involvingL̂ are readily calculated
from the modal expansion~87!:

Eground~H2!52
1

2 (
r

l Dg0r0f0
2

1(
s

^vs'uF S 2
\2

2m
D1U12g0r02m D uvs'&

1g0r0uus'&G . ~109!

As (us ,vs) is an eigenvector ofLGP,(us' ,vs') is an eigen-
vector of the operatorL defined in@15# and this expression
can be further simplified to

Eground~H2!52
1

2 (
r

l Dg0r0f0
22(

s
es^vs'uvs'&.

~110!
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The last step is to include the contribution ofH0 and to
remove the2mN̂ term from the grand canonical Hami
tonian. The ground state energy of the canonical Hamilton
for N particles is therefore

Eground~N!.mN1E0~N0!2mN01Eground~H2!, ~111!

whereE0 is the Gross-Pitaevskii energy~70!. As we did in
Sec. III A we replaceN0 by N2dN, wheredN is calculated
from H3, and we expandE0(N2dN) to first order indN:

mN1E0~N0!2mN0.E0~N!2dN„m0~N!2m….E0~N!.
~112!

We recall that by definitionm5m0(N0). The first term in the
right-hand side of Eq.~110! amounts to performing a sma
change in the Gross-Pitaevskii energy functional, expres
the fact that a given particle interacts in the gas withN21
particles so that the mean field term should be proportio
to N21 rather than toN. The final expression for the groun
state energy is

Eground~N!.N(
r

l DF2
\2

2m
f0~r ;N!Df0~r ;N!

1U~r !f0
2~r ;N!1

1

2
g0~N21!f0

4~r ;N!G
2(

s
es^vs'uvs'&. ~113!

This exactly coincides with the Bogoliubov result; see, e
Eq. ~71! of @15#.

C. Second order correlation function

The second order correlation function of the atomic fie
is defined as

g2~r ![^ĉ†~r !ĉ†~0!ĉ~0!ĉ~r !&, ~114!

where we have taken for simplicity one of the two points
the origin of the coordinates. To calculateg2 with the for-
malism of this paper we have to expressg2 in terms of the
operator r̂ giving the density. This is achieved using th
commutation relation~4! of the bosonic fieldĉ:

g2~r !5^r̂~r !r̂~0!&2
d r ,0

l D
^r̂~0!&. ~115!

We then insert the splitting~32! of r̂ in terms of the quasi-
condensate densityr0 and the fluctuationsdr̂:

g2~r !5r0~r !r0~0!1r0~0!^dr̂~r !&1r0~r !^dr̂~0!&

1^dr̂~r !dr̂~0!&2
d r ,0

l D
@r0~0!1^dr̂~0!&#.

~116!
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This expression forg2 is still exact. We now perform
approximations consistent with an expansion ofg2 up to sec-
ond order in the small parameterse1,2. The expectation
value of the term quadratic indr̂ is calculated within the
thermal equilibrium for the quadratic HamiltonianH2. The
expectation value ofdr̂ is evaluated in Sec. II D by inclusion
of the cubic perturbationH3. The contribution ofdr̂ in the
last term of Eq.~116! is negligible as it ise1

4 times smaller
than the leading term ing2. We therefore obtain the explici
expression

g2~r !.r0~r !r0~0!1r0~0!^dr̂~r !&31r0~r !^dr̂~0!&3

1^dr̂~r !dr̂~0!&22
d r ,0

l D
r0~0!. ~117!

This formulation, however, is not the optimal one as t
last term in 1/l D gives the wrong impression thatg2(0)
strongly depends on the discretization lengthl in the continu-
ous limit l→0. In fact, this strong dependence exactly co
pensates a term in 1/l D in the density fluctuationŝdr̂2(0)&
coming from the fact thatdr̂2(0) is a product of field opera-
tors not in normal order. To reveal this fact we expressdr̂ in
terms of the operatorL̂ of Eq. ~87!:

dr̂~r !5Ar0~r !@L̂~r !1L̂†~r !#1 P̂]N0
r0~r ;N0!,

~118!

and we put the resulting expression in normal order w
respect to the fieldL̂ using the bosonic commutation relatio
~89!:

dr̂~r !dr̂~0!5:dr̂~r !dr̂~0!:1
d r ,0

l D
r0~0!2N0f0

2~r !f0
2~0!,

~119!

where : : is the standard notation to represent normal or
The spurious term in 1/l D is then exactly canceled:

g2~r !5N0~N021!f0
2~r !f0

2~0!1r0~0!^dr̂~r !&3

1r0~r !^dr̂~0!&31^:dr̂~r !dr̂~0!:&2 . ~120!

This expression allows a proof of the equivalence with
prediction for g2 in the Bogoliubov theory. We do no
present the calculations here, as they are a straightforw
application of Appendix E. Finally, we give a last alternati
expression forg2 equivalent to Eq.~120! at the present or-
der:

g2~r !5~121/N!r~0!r~r !1^:dr̂~r !dr̂~0!:&2 , ~121!

whereN is the mean total number of particles andr is the
mean total density:

r~r !5r0~r !1^dr̂~r !&3 . ~122!
5-12
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D. First order correlation function

The first order correlation function of the field is define
as

g1~r ![^ĉ†~r !ĉ~0!&5^Ar̂~r !ei [ û(0)2 û(r )]Ar̂~0!&.
~123!

As previously done we perform the calculation up to seco

order in the small parameterse1,2. We therefore expandAr̂

up to second order indr̂ using Eq.~34!. Note that we do not
expand the exponential inû(0)2 û(r ), contrary to what we
did in the Hamiltonian: asr and0 are not neighboring points
of the lattice anymore, the phase difference of the field
be arbitrarily large. The expansion indr̂ gives rise to six
terms:

g1~r !5r0
1/2~r !r0

1/2~0!F ^eiDu&1
1

2
^dr̃~r !eiDu1eiDudr̃~0!&

2
1

8
^dr̃2~r !eiDu1eiDudr̃2~0!

22dr̃~r !eiDudr̃~0!&G , ~124!

where we have introduced the following notation to simpl
the writing:

Du[û~0!2 û~r ! ~125!

dr̃~r ![
dr̂~r !

r0~r !
. ~126!

We calculate the expectation values in this expression in
steps, first using the thermal equilibrium distribution forH2,
and then including the corrections due toH3.

The thermal expectation values corresponding to the q
dratic HamiltonianH2 are evaluated using Wick’s theorem
One first expands the exponential in powers ofDu, one cal-
culates the expectation value of each term, and then
performs an exact resummation of the resulting series. T
leads to the simple identities

^eiDu&25e2^(Du)2&2/2, ~127!

^dr̃~r !eiDu&25e2^(Du)2&2/2^dr̃~r !iDu&2 , ~128!

^dr̃2~r !eiDu&25e2^(Du)2&2/2

3@^dr̃2~r !&21„^dr̃~r !iDu&2…
2#,

~129!

^dr̃~r !eiDudr̃~0!&25e2^(Du)2&2/2@^dr̃~r !dr̃~0!&2

1^dr̃~r !iDu&2^ iDudr̃~0!&2#.

~130!
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The expectation value of a product of the density fluctuat
dr̂ and of the phase variationiDu is particularly simple. In
classical field theory this expectation value would obviou
vanish, as there is no crossed term inH2 between the density
fluctuations and the phase. In the present quantum fi
theory this is not exactly the case asr̂ and û do not com-
mute. To show that, we use the fact that the Bogoliub
mode functionsus(r ) andvs(r ) can be chosen to be real, s
that dr̂ and iDu are linear combinations ofb̂s ,b̂s

† ,P̂ with
real coefficients. As a consequence,

^dr̃~r !iDu&25^dr̃~r !iDu&2* 52^ iDudr̃~r !&. ~131!

This leads to

^dr̃~r !iDu&25
i

2
^@dr̃~r !,Du#&25

12d r ,0

2r0~r !l D
. ~132!

The same reasoning can be applied for the other expecta
value:

^ iDudr̃~0!&25
12d r ,0

2r0~0!l D
. ~133!

These expressions are second order ine1,2. An important
consequence is that the product of such crossed ph
density expectation values in Eqs.~129! and~130! is actually
negligible at the present order of the calculation. The res
ing form for g1, at the level ofH2, is quite simple:

g1~r !uH2
5r0

1/2~r !r0
1/2~0!e2^(Du)2&2/2F12

1

8
^~Ddr̃!2&2

1
1

4
Escoria~r !G . ~134!

The notationDdr̃ is similar to the one for the phase:

Ddr̃[dr̃~0!2dr̃~r ! ~135!

andEscoria comes from the crossed expectation value ofDu

anddr̃:

Escoria~r ![~12d r ,0!S 1

r0~r !l D
1

1

r0~0!l DD . ~136!

At this point we face the same apparent problem as in
calculation ofg2: Escoria scales as 1/l D and gives the wrong
impression that our expression forg1 will depend dramati-
cally on l in the continuous limitl→0. As in the case ofg2,
we solve this problem by expressingdr̂ andû in terms of the
field L̂ and putting the operatorsL̂ andL̂† in normal order.
We use Eq.~118! for the expression fordr̂. For the differ-
ence of two phase operators,Q̂ and the anti-Hermitian op-
eratorâ cancel so that
5-13
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Du5
1

2i
~DL̃2DL̃†!, ~137!

where we have introduced the notation

L̃~r ![
L̂~r !

r0
1/2~r !

, ~138!

DL̃[L̃~0!2L̃~r !. ~139!

After some calculations we arrive at

^~Ddr̃!2&25^:~Ddr̃!2:&21Escoria~r !, ~140!

^~Du!2&25^:~Du!2:&21
1

4
Escoria~r !. ~141!

As Escoriais second order ine1,2, its exponential function can
be expanded to first order. We then find as expected tha
the 1/l D terms exactly cancel:

g1~r !uH2
5r0

1/2~r !r0
1/2~0!e2^:(Du)2:&2/2F12

1

8
^:~Ddr̃!2:&2G .

~142!

The last step is to include the first order correction tog1
coming from the cubic HamiltonianH3. One then has to
calculate expectation values with the thermal equilibriu
density operator exp@2b(H21H3)# to first order inH3. This
thermal density operator can be viewed as the evolution
erator during the imaginary time2 i\b so that one can us
first order time dependent perturbation theory to get

^Ô&3.^Ô&22E
0

b

dt^etH2H3e2tH2Ô&2 , ~143!

where Ô is an arbitrary operator of the gas and where
have used the fact thatH3 has a vanishing expectation valu
in the thermal equilibrium state forH2. One is back to the
calculation of expectation values of some operators in
thermal state corresponding toH2. Wick’s theorem can be
applied. The resulting calculations are very similar to t
ones leading to Eq.~142!, but more involved, and are de
tailed in Appendix F. The same phenomenon occurs,
terms of a higher order than the present calculation can
neglected. One then gets

^eiDu&3.e2^(Du)2&2/2@11^ iDu&3#, ~144!

^dr̃~r !eiDu&3.e2^(Du)2&2/2@^dr̃~r !iDu&21^dr̃~r !&3#.
~145!

The first terms in the right-hand sides of Eqs.~144! and
~145! already appeared at the level ofH2, and the second
terms are corrections due toH3 that we now take into ac
count. There is no need to includeH3 corrections to the othe
terms of Eq.~124! since they are quadratic indr̂ and are
therefore already of second order. The expectation value
05361
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the phaseû and of the density fluctuationsdr̂ have been
calculated in Sec. II D. It was found that the expectati
value of the phase operator is space independent so
^Du&3 vanishes. The expectation value of the density flu
tuations including the effect ofH3 was given in Eq.~95! and
is in general different from zero. Remarkably, the whole
fect on the correlation functiong1 of the first order correc-
tion in H3 is to replacer0(r ) by the total mean densityr(r )
defined in Eq.~122!.

We write our final expression for the first order correlati
function of the field, calculated consistently up toe1,2

2 :

g1~r !5Ar~r !r~0!expF2
1

2
^:~Du!2:&22

1

8
^:~Ddr̃!2:&2G .

~146!

Note that we have inserted the contribution of the dens
fluctuations inside the exponential factor, which is allowed
the order of the present calculation since this contribution
of ordere1,2

2 .
What happens in the regime where a true condensa

present? Both phase and density fluctuations are smal
that the exponential function in Eq.~146! can be expanded to
first order. We then expressDu andDr̃ in terms of the op-
eratorL̂ and the operatorP̂. Since the Bogoliubov theory is
usually considered in the canonical ensemble we remove
terms corresponding to the grand canonical fluctuations
the particle number. We then recover exactly the Bogoliub
prediction:

g1
Bog~r !5Cc~r !Cc~0!1^L̂†~r !L̂~0!&, ~147!

where Cc(r )5AN0f0(r )1x(r )/AN0 is the condensate
field. Amazingly, the general formula~146! for quasiconden-
sates can be related to the Bogoliubov formula in the follo
ing very simple way:

g1~r !5Ar~r !r~0!expF g1
Bog~r !

Ar~r !r~0!
21G . ~148!

IV. EXPLICIT RESULTS FOR THE SPATIALLY
HOMOGENEOUS CASE

In this section we apply our approach to a spatially h
mogeneous Bose gas. The quasicondensate density is
uniform:

r0~r !5
N0

LD
5

m

g0
. ~149!

The Bogoliubov equations~50! can then be exactly solve
for any dimension of space and lead touk(r )5ūke

ikr /LD/2

andvk(r )5 v̄ke
ikr /LD/2 with

ūk2 v̄k5F\2k2/2m12m

\2k2/2m
G 1/4
5-14
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and

ūk1 v̄k5F \2k2/2m

\2k2/2m12m
G 1/4

. ~150!

The corresponding eigenenergies are given by

ek5F\2k2

2m S \2k2

2m
12m D G1/2

. ~151!

A. Equation of state

From the general expression~103! for the chemical poten-
tial of the gas we arrive in the thermodynamic limit at

m5rg01g0ED

dk

~2p!D
@~ ūk1 v̄k!

2nk1 v̄k~ ūk1 v̄k!#,

~152!

wherenk51/@exp(bek)21# is the mean occupation numbe
of the Bogoliubov modek. D5@2p/ l ,p/ l #D is the square
domain of integration in thek space. The integral over th
wave vectork does not contain any infrared divergence f
any dimension of space. However, the long wave vector
havior given by

v̄k~ ūk1 v̄k!.2
mm

\2k2
~153!

gives rise to an integral convergent in 1D and divergen
2D and 3D in thel→0 limit. This gives the impression tha
the result depends strongly onl. The solution of this paradox
comes from the link between the bare coupling constang0
of the model potential in the discretized space and the l
energy two-body scattering properties of the exact poten
in the continuous space. This gives tog0 in two and three
dimensions a dependence inl so that our expression form
does not depend onl anymore in thel→0 limit. In one
dimension, the bare couplingg0 is simply equal to the actua
coupling strengthg for l→0 and there is no divergence. A
T50, Eq. ~152! leads to

m5grS 12
1

prj D , ~154!

wherej is the healing length defined in Eq.~23!. This agrees
with the result of Lieb and Liniger in the weak interactio
limit @28#. In three dimensions, we refer to the Appendix
@26# where the calculation has been done. One finds

g05
g

12gE
D

@dk/~2p!3#~m/\2k2!

. ~155!

g is the usual 3D coupling strength given by

g5
4p\2a

m
, ~156!
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e-

n

-
al

wherea is the exact potential scattering length. A more e
plicit form of Eq. ~155! is

g05
g

12Ka/ l
, ~157!

whereK52.442 . . . . It has to benoted that the difference
betweeng0 andg is still small in the validity domain of our
approach since it is a second order correction ine1,2: taking
l;j one findsa/ l;1/r l 3. Replacing the first factorg0 in
Eq. ~152! with the formula ~155! expanded up to secon
order ine1,2 gives

m5rg1g0ED

dk

~2p!3 S ~ ūk1 v̄k!
2nk1 v̄k~ ūk1 v̄k!1

mm

\2k2D .

~158!

One can then safely take thel→0 limit. At T50, the inte-
gration gives:

m5grS 11
32Ap

3
Ara3D ~159!

which is the same result as Lee and Yang’s@33#. In two
dimensions, the low-energy two-body scattering of a gene
short range potential is described by a single lengtha also
named the scattering length. In a continuous space, thT
matrix can be calculated in the low-energy limit:

^kuT~E1 ih!uk8&.2
2p\2

m@ ln~ak0/2!1C2 ip/2#
,

~160!

whereC50.57721 . . . is theEuler constant,a is the scatter-
ing length,E5\2k0

2/m, andh→01. We can also calculate
the T matrix for the discreted potential defined by Eq.~27!,
which can also be expressed as

V5
g0

l 2
ur50&^r50u. ~161!

The general scattering theory gives the relations between
T matrix, the propagatorG, and the free propagatorG0:

T5V1VGV, ~162!

G5G01G0VG. ~163!

Using these relations and Eq.~161! for the potential, we find

^kuTgrid~E1 ih!uk8&5
g0

12g0^r50uG0~E1 ih!ur50&
.

~164!

The only term we need to calculate is the free propaga
taken at the origin, which is conveniently performed with
Fourier transform:
5-15
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^r50uG0~E1 ih!ur50&5E
D

dk

~2p!2

1

E1 ih2\2k2/m
.

~165!

We split the squareD into a disk of radiusp/ l and the
complementary domain. Integration over the complemen
domain gives simply a constant term in the low-energy lim
E!\2/ml2:

J[
2p\2

m E
D2disk

dk

~2p!2

1

E1 ih2\2k2/m

.2
1

2pED2disk

dk

k2
5

2G

p
2 ln~2!, ~166!

whereG50.91596 . . . is theCatalan constant. The disk in
tegration is straightforward and leads to the following e
pression for theT matrix:

^kuTgrid~E1 ih!uk8&

5
1

1/g02~m/2p\2!ln~ lk0 /p!1 im/4\22~m/2p\2!J
.

~167!

We now takeTgrid5T, where T is approximated by Eq
~160!, in order to reproduce the low-energy scattering pro
erties of the exact potential. This leads to

1

g0
5

m

2p\2 F lnS l

paD2C1
2G

p G . ~168!

Note that the condition~26! has to be satisfied in our ap
proach. In two dimensions, this gives\2/mg0@1, or using
Eq. ~168!

1

2p
lnS l

aD@1. ~169!

We now show that the logarithmic dependence onl appear-
ing in g0, Eq. ~168!, exactly cancels the one appearing in t
equation of state. Equation~152! can be rewritten as

r5
m

g0
2E

D

dk

~2p!2
@~ ūk1 v̄k!

2nk1 v̄k~ ūk1 v̄k!#.

~170!

In the thermal part, one can immediately take thel→0 limit.
In order to calculate the integral corresponding to theT50
case, we use the same technique as for the calculation og0:
the integration is done on a disk domain of radiusp/ l and
we keep as a correction the integration over the complem
tary domain. The complementary domain integration is do
by using the high-wave-vector behavior ofv̄k(ūk1 v̄k), Eq.
~153!. This leads to
05361
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2E
D

dk

~2p!2
v̄k~ ūk1 v̄k!5

mm

4p\2 F lnS p2\2

ml2m
D 2122JG .

~171!

Using Eqs.~168! and ~171! in Eq. ~170!, we arrive at an
implicit equation of state:

r5
mm

4p\2
lnS 4\2

a2mme2C11D 2E dk

~2p!2
~ ūk1 v̄k!

2nk .

~172!

Remarkably, this is identical to the result~20.45! obtained by
the functional integral method in@7#. At T50, one can show
from the conditionrj2@1 @see Eq.~26!# that the validity
condition of our approach is ln(1/ra2)@4p. If one approxi-
mately inverts Eq.~172!, neglecting constant terms an
ln@ln(1/ra2)# with respect to ln(1/ra2), one recovers Schick’s
formula @34#.

B. Are density and gradient-of-phase fluctuations small?

As mentioned in Sec. II B, our approach relies in partic
lar on two assumptions: the assumption that the relative d
sity fluctuatione1 is small, and the assumption that the pha
variation e2 between two neighboring points of the grid
small.

Let us consider first the relative density fluctuations. B
cause of Eq.~119!, their mean square value can be separa
into two parts:

e1
25

^dr̂2~0!&2

r0
2

5
1

r0l D
1

^:dr̂2~0!:&2

r0
2

, ~173!

where we have neglected 1/LD with respect to 1/l D in the
thermodynamic limit. The second term in Eq.~173!, involv-
ing the normal order, is expressed in terms of theūk ,v̄k in
the thermodynamic limit as

^:dr̂2~0!:&2

r0
2

5
2

r0
E

D

dk

~2p!D
@~ ūk1 v̄k!

2nk1 v̄k~ ūk1 v̄k!#,

~174!

where the integration domain isD5@2p/ l ,p/ l #D. At zero
temperature one introduces the change of variableq5kj in
the integral: one finds that Eq.~174! is of the order of 1/r0j
in 1D, of the order of ln(j/l)/r0j

2 in 2D, and of the order of
1/r0j2l in 3D. Sincel ,j the second term in Eq.~173! is
dominated by the first term, and one has indeed

e1
2.

1

r0l D
. ~175!

At finite temperature we have to calculate the thermal c
tribution to Eq.~174! involving the occupation numbernk .

At a temperaturekBT,m we use the low-momentum ex
pansion ofūk1 v̄k , andek and we find that the thermal con
tribution is (kBT/m)D11( l /j)D times smaller than 1/r0l D.
5-16
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At a temperaturekBT.m, that is, l,j, the treatment
depends on the dimension of space. In 1D the main con
bution to the integral comes from the domainek;m, over
which one can approximate the Bose formula by its lo
energy limitkBT/ek . This leads to a normal ordered fluctu
tion ~174! of the order ofkBT/(mr0j). This is larger than
1/r0l so that the conditionl ,l then no longer implies tha
the first term 1/r0l in Eq. ~173! is the dominant one. Fo
convenience, one can however adjustl to a value such that

1

r0l
;

kBT

m

1

r0j
. ~176!

The condition for weak density fluctuations then become

e1
2;

kBT

m

1

r0j
!1. ~177!

Using r0.r and m.gr we recover the condition alread
obtained in@5# with a pure classical field approach. Note th
this condition can be rewritten asj! l c where the coherenc
length of the field will be defined in Eq.~187!. In 2D both
the low-energy domainek,kBT and the high-energy domai
ek.kBT have important contributions. In the low-energy d
main we approximate the Bose law by its low-energy lim
In the high-energy domain we keep the full Bose law but,ek

being then larger thanm, we approximateūk1 v̄k by unity
andek by \2k2/2m. This leads to a normal ordered fluctu
tion ~174! of the order of ln(kBT/m)kBT/(mr0j

2), a quantity
that is larger than 1/r0l2. As in 1D we therefore adjustl so
that

e1
2;

1

r0l 2
;

kBT

m
lnS kBT

m D 1

r0j2
. ~178!

In 3D the high-energy domainek.kBT gives the dominant
contribution so that the normal ordered expectation va
~174! scales as 1/r0l3. This is dominated by the first term i
Eq. ~173! so that the estimate~175! applies as soon asl
,l,j.

Let us consider now the condition that the mean squa
phase change over a grid cell,

e2
25^~ l¹û!2&25

l 2

2r0
E

D

dk

~2p!D
k2~ ūk2 v̄k!

2~nk11/2!,

~179!

is much smaller than unity. The presence of the factork2

inside the integral, coming from the action of“, has the
consequence that the contribution to the integral is do
nated by the high energy domain. At zero temperature
can replaceūk2 v̄k by unity since the integral is dominate
by wave vectorsk;1/l .1/j. This leads to

e2
2;

1

r0l D
~180!

whatever the dimensionD.
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At a temperaturekBT,m we estimate the thermal contr
bution by replacingūk2 v̄k and ek by their low-momentum
approximations: the thermal contribution is the
( l /l)21D(j/l)D times smaller than the zero-temperature
sult ~180! and is therefore negligible sincel ,j,l.

At a temperaturekBT.m we use the high-energy ap
proximation, replacingūk2 v̄k by unity andek by \2k2/2m.
Note that this works even in 1D because of the presenc
the k2 factor in the integral~179!. This leads to a therma
contribution which is (l /l)21D times smaller than the zero
temperature contribution~180!, and which is negligible since
l ,l.

We conclude that the small parametere2 of the theory,
ensuring that there is a weak phase variation over a grid c
is always given by Eq.~180! provided that the conditions
~22!, ~25!, and~26! are satisfied.

One may wonder if the corrections of the mean dens
due to the interactionH3 between the Bogoliubov mode
lead to an extra validity condition of our treatment. For t
considered case of a spatially homogeneous gas it turns
that the answer to this question is no. One has indeed
remarkable identity in the thermodynamic limit

1

r0
^dr̂~r !&352

1

2r0
2 ^:dr̂~r !2:&2 . ~181!

If the relative density fluctuations are weak, the relative c
rection to the density will also be weak.

To end this subsection we discuss briefly the second o
correlation function of the fieldg2(r ). Restricting the gen-
eral formula~121! to the spatially homogeneous case in t
thermodynamic limit, we obtain

g2~r !5r212rE
D

dk

~2p!D
@~ ūk1 v̄k!

2nk

1 v̄k~ ūk1 v̄k!#cos~k•r !. ~182!

Limiting cases of this general formula can be compared
existing results in the literature. At zero temperature for a
Bose gas one gets forr 50,

g2~0!5r2S 12
2

prj D . ~183!

This formula can be checked from@28#: the mean interaction
energy per particlev is equal tog2(0) multiplied by g/2r,
andv can be calculated in the weakly interacting regime
combining~3.29! of @28# ~relatingv to the derivative of the
ground state energy with respect tog) and ~4.2! of @28#
~giving the ground state energy in the Bogoliubov appro
mation!. This exactly leads to Eq.~183!. This prediction for
g2(0) also appears in@35#.
5-17
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C. First order correlation function

Because of the general formula~148! the first order cor-
relation function of the field for the quasicondensate is i
mediately related to that of the Bogoliubov theory, here
the thermodynamic limit

ln@g1~r !/r#5
g1

Bog~r !

r
21

52
1

rE dDk

~2p!D
@~ ūk

21 v̄k
2!nk1 v̄k

2#

3~12cosk•r !. ~184!

We have also taken here the continuous limitl→0, which
does not lead to any divergence.

We concentrate our analysis on the 1D case and we m
the link with existing results in the literature. These existi
results deal with the asymptotic behavior ofg1 for large r,
where r is the absolute value of the spatial coordinate.
zero temperature, we find forr @j:

g1~r !.rS r 1

r D 1/2prj

, ~185!

with r 15e22Cj/4.1.037j where C50.577 21 . . . is Eul-
er’s constant@36#. This reproduces a result obtained in
nonexplicit way in@37#. At a finite temperature,g1 /r is the
exponential of an integral of the form

E
0

1`A~k!

k2
@12cos~kr !#, ~186!

where the functionA(k) is a regular and even function ofk,
therefore behaving quadratically withk aroundk50 @38#.
Writing A(k) as@A(k)2A(0)#1A(0) and splitting the inte-
gral, accordingly one obtains forr much larger than bothj
andl,

ln@g1~r !/r#5
r

l c
1K1o~1/r n!, ~187!

where the coherence lengthl c5rl2/p coincides with the
one of @39# and the constantK is given by

K5E
0

1` A~k!2A~0!

k2
. ~188!

SinceA(k) is even one can show by repeated integration
parts that the remainder in Eq.~187! tends to 0 faster than
any power law, contrary to what is stated in@39#.

Of course our formula gives access tog1 for any value of
the distance. This is illustrated in Fig. 1 where we have p
ted the logarithm ofg1 as function ofr /j for various tem-
peratures.

As a consequence, we can, for example, calculate the
mentum distribution of the atoms:
05361
-

ke

t

y

t-

o-

P~p!52E
0

1`

drg1~r !cos~pr/\! ~189!

normalized here as*dpP(p)52p\r so thatP(p) is di-
mensionless. This is illustrated in Fig. 2 where we have p
ted the momentum distribution for various temperatures
for rj510. Using integration by parts we can show that t
behavior ofP for largep is related to the fact that the thir
order derivative ofg1 in r 501 does not vanish:

P~p!;
2\4g1

(3)~01!

p4
with g1

(3)~01!5m2m2/~2\4!.

~190!

FIG. 1. First order correlation function of the fieldg1(z) for a
repulsive 1D Bose gas in the thermodynamic limit. The differe
curves correspond to various ratios of the temperature to the ch
cal potential:kBT/m50 ~solid line!, 1/15 ~dot-dashed line!, 1/8
~dashed line!, 1/4 ~dotted line!. We plot the logarithm ofg1(z)
multiplied by the parameterrj, wherer is the 1D spatial density
andj5\/Amm is the healing length, so that we obtain a quant
depending only onz/j andkBT/m in the weakly interacting limit.

FIG. 2. Momentum distribution of a repulsive 1D Bose gas
the thermodynamic limit.P(p) is normalized as*dpP(p)
52p\r wherer is the 1D spatial density so thatP(p) is dimen-
sionless. We plotP(p) as a function ofpj/\ for various ratios of
the temperature to the chemical potential:kBT/m51/3 ~dot-dashed
lines!, 1 ~dashed lines!, 10/7 ~dotted lines!. We have takenrj
510@1 wherej5\/Amm is the healing length. The solid line i
the largep limit: ( \/pj)4. The inset is a magnification.
5-18
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This prediction, valid at zero or finite temperature, agre
with the weak interaction limit of a recently obtained exa
result based on the Bethe ansatz@40#. At zero temperature we
find that the momentum distribution diverges atp50 as

P~p!;
\rpn

p
~r 1p/\!n, ~191!

wheren51/(2prj)!1.

CONCLUSION

We have studied the thermal equilibrium of weakly inte
acting degenerate Bose gases in the regime of weak de
fluctuations, the so-called quasicondensate regime.
method can be considered as a Bogoliubov method in
density-phase representation of the field operator.

In the first step one discretizes the real space in cells
size l: l is small enough that the macroscopic properties
the gas are not affected by the discretization, andl large
enough that each cell contains on the average a large nu
of particles. The macroscopic occupation of each cell allo
one to give a precise definition of the phase operator, follo
ing the method of Girardeau and Arnowitt@18#.

In a second step one performs a systematic expansio
the full Hamiltonian in terms of two small parameters, t
relative density fluctuations inside a cell and the ph
change over a grid cell. This procedure leads to an ex
expansion of the observables of the gas in the regime
weak interactions and low density fluctuations, in 1D, 2
and 3D. In particular, it is free of any ultraviolet or infrare
divergences and exactly matches the usual Bogoliubov
dictions when the gas contains a true Bose-Einstein con
sate.

As a first application of the general formalism, we ha
given in this paper formulas for the equation of state of
gas, the ground state energy, and the first order and se
order correlation functions of the field. We have appli
these formulas to the spatially homogeneous case in 1D,
and 3D, recovering in this way known results, but obtain
also other results, like the full position dependence of
first order correlation function of the field.
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APPENDIX A: EXPANSION OF THE HAMILTONIAN

As explained in Sec. II B we expand the Hamiltonian~28!
up to third order in powers of the small parameterse1 ande2
defined in Eqs.~33! and ~35!. This will produce terms
H (n1 ,n2) of order e1

n1e2
n2 with n11n2<3. The expansion of

the potential energy partHpot defined in Eq.~30! is very
simple as it involves only the operator giving the dens
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The only point is to realize that the term 1/l D is e1
2 times

smaller than the zeroth order densityr0. This leads to

Hpot
(0,0)5(

r
l Dr0FU~r !2m1

g0

2
r0G , ~A1!

Hpot
(1,0)5(

r
l Ddr̂@U~r !2m1g0r0#, ~A2!

Hpot
(2,0)5(

r
l D

g0

2 Fdr̂22
r0

l DG , ~A3!

Hpot
(3,0)52(

r

g0

2
dr̂. ~A4!

The expansion of the kinetic energy part~31! is more
complicated as it involves also the phase operatorû, which,
furthermore, does not commute withdr̂. An expression
slightly more convenient than Eq.~31! can be given for the
kinetic energy. Because of the periodic boundary conditio
one can freely shift the summation variable in the term
Eq. ~31! involving r̂2 j , so that

Hkin52
\2

2ml2
(
r , j

l D $@Ar̂ei ( û1 j 2 û)Ar̂1 j1H.c.#22r̂%.

~A5!

The calculation to zeroth order ine2 can be done first easily
using the expansion~37! to zeroth order, we get from Eq
~31! to all orders ine1,

Hkin
(<1`,0)52

\2

2m (
r

l D Ar̂DAr̂. ~A6!

This involves a function ofr̂ only that it is easily expanded
in powers ofe1 using Eq.~34!. A simplification occurs after
summation over the lattice, as the matrixD is symmetric for
the considered periodic boundary conditions:

(
r

uDv5(
r

~Du!v, ~A7!

where u and v are arbitrary functions on the lattice. Th
leads to

Hkin
(0,0)52

\2

2m
l D(

r
Ar0DAr0, ~A8!

Hkin
(1,0)52

\2

2m
l D(

r

dr̂

Ar0

DAr0, ~A9!

Hkin
(2,0)52

\2

2m
l D(

r
F dr̂

4Ar0

D
dr̂

Ar0

2
dr̂2

4r0
3/2

DAr0G ,

~A10!
5-19
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Hkin
(3,0)52

\2

2m
l D(

r
F1

8

dr̂3

r0
5/2

DAr02
1

8

dr̂2

r0
3/2

D
dr̂

r0
1/2G .

~A11!

The second order term of vanishing order ine1 is also im-
mediately obtained:

Hkin
(0,2)5

\2

2ml2
l D(

r , j
Ar0r0,1 j~ û1 j2 û !2. ~A12!

The last second order quantity to calculate isHkin
(1,1) , which is

first order ine1 and first order ine2. There are four terms
two involving û1 j and two being their Hermitian conjugate
One can then collect the terms to form commutators:

Hkin
(1,1)52

\2

2ml2
l D(

r , j

i

2 S r0

r0,1 j
D 1/2

@ û1 j2 û,dr̂1 j #

2
i

2 S r0,1 j

r0
D 1/2

@ û1 j2 û,dr̂#. ~A13!

52
\2

4ml2
(
r , j

F S r0,1 j

r0
D 1/2

1S r0

r0,1 j
D 1/2G ,

~A14!

where we have used the commutation relation ofr̂ and û
@see Eq.~20!#.

We collect all the second orderc-number contributions to
the HamiltonianH in a single energy functional of the den
sity profile of the quasicondensate,

E2@r0#52
g0

2 (
r

r02
\2

4ml2
(
r , j

F S r0,1 j

r0
D 1/2

1S r0

r0,1 j
D 1/2G .
~A15!

The technique used to calculateHkin
(1,1) can be extended to

the calculation ofHkin
(2,1) . There are now three terms and the

Hermitian conjugates. Two of these terms, when combi
with their Hermitian conjugates, form a commutator that
calculated according to Eq.~20!. The third term and its Her-
mitian conjugate involve the expression

dr̂~ û12 û !dr̂12dr̂1~ û12 û !dr̂

5dr̂@ û1 ,dr̂1#2@dr̂,û #dr̂1 , ~A16!

which is a sum of two commutators, easy to evaluate. T
leads to

Hkin
(2,1)5

\2

8m (
r

dr̂

r0
~r0

21/2Dr0
1/22r0

1/2Dr0
21/2!. ~A17!

To calculateHkin
(1,2) we first evaluate

Hkin
(<1`,2)5

\2

4ml2
(
r , j

l D@Ar̂~ û1 j2 û !2Ar̂1 j1H.c.#

~A18!
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and we expand to first order indr̂, which leads to a sum o
terms that are not individually Hermitian. We then use t
commutation relation~20! to produce Hermitian terms, e.g

dr̂~ û1 j2 û !25~ û1 j2 û !dr̂~ û1 j2 û !2
i

l D
~ û1 j2 û !.

~A19!

The last term of the right-hand side of this expression
anti-Hermitian and does not contribute to the final result

Hkin
(1,2)5

\2

4ml2
(
r , j

l D~ û1 j2 û !S r0,1 j
1/2

r0
1/2

dr̂1
r0

1/2

r0,1 j
1/2

dr̂1 j D
3~ û1 j2 û !. ~A20!

Finally, Hkin
(0,1) and Hkin

(0,3) vanish as the odd order expan

sion of exp@i(û1j2û)# is anti-Hermitian.

APPENDIX B: CORRECTIONS TO THE EQUATIONS
OF MOTION DUE TO H 3

The HamiltonianH3 gives rise to quadratic corrections t
the equations of motion fordr̂ andû. In this appendix, these
corrections are calculated explicitly and the thermal aver
is taken over the equations of motion with the Hamiltoni
H21H3 for the linear part and the HamiltonianH2 for the
quadratic corrections. This allows us to calculate the fi
correction to the mean density due toH3.

The corrections to the equation of motion for the dens
fluctuations are given by

\] tdr̂uH3
5

\2

4ml2
(

j
F H û2 û1 j ,S r0,1 j

r0
D 1/2

dr̂

1S r0

r0,1 j
D 1/2

dr̂1 j J 1~1 j↔2 j !G , ~B1!

where$A,B% stands for the anticommutatorAB1BA of two
operators. When we take the average with the Hamilton
H2, we use the explicit modal expansion ofdr̂ and û given
by Eq. ~56!. The operatorQ̂ disappears since Eq.~B1! in-
volves only differences ofû. Terms with P̂ also disappear
since ^P̂&250. The expectation value of the produ
û(r )dr̂(r 8), whereû is written withoutQ̂ anddr̂ is written
without P̂, is actually purely imaginary: asus andvs can be
chosen to be real,us* 52us @see Eq.~57!#. Since] t^dr̂& is
real, all imaginary contributions to it have to cancel so th
the corrections to the motion of^dr̂& due toH3 finally van-
ish when we take the thermal average:

\] t^dr̂&uH3
50. ~B2!

The corrections to the equation of motion forû are more
involved:
5-20
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\] tûuH3
5

1

2Ar0
F2

\2

4mr0
dr̂DS dr̂

Ar0
D 1

3\2

8mr0
2
dr̂2D~Ar0!

2
\2

8m
DS dr̂2

r0
3/2D 2

\2

2ml2

3(
j

@Ar0,1 j~ û1 j2 û !2

1Ar0,2 j~ û2 j2 û !2#1
g0Ar0

l D

2
\2

4mlDAr0

~r0
21/2Dr0

1/22r0
1/2Dr0

21/2!G . ~B3!

Fortunately, we can use the linear equations of mot
~46!,~47! to significantly simplify the above equation of mo
tion. We rewrite the first term in square brackets of Eq.~B3!
as

2
\2

4mr0
dr̂DS dr̂

Ar0
D

52
dr̂

2r0
F ~U2m13g0r0!S dr̂

Ar0
D 12Ar0\] tûG .

~B4!

The second term in square brackets of Eq.~B3! gives, asAr0
solves the Gross-Pitaevskii equation,

3\2

8mr0
2
dr̂2D~Ar0!5

3dr̂2

4r0
3/2 ~U2m1g0r0!. ~B5!

The sum of Eqs.~B4! and ~B5! and the third term in squar
brackets of Eq.~B3! leads to

1

4 S 2
\2D

2m
1U2m1g0r0D S dr̂2

r0
3/2D 2g0

dr̂2

Ar0

2\~] tû !
dr̂

Ar0

.

~B6!

To rewrite the fourth term in square brackets of Eq.~B3!, it is
convenient to use the following identity:

(
j

Ar0,1 j~ û1 j2 û !21Ar0,2 j~ û2 j2 û !2

12û@Ar0,1 j~ û1 j2 û !1Ar0,2 j~ û2 j2 û !#

5(
j

Ar0,1 j~ û1 j
2 2 û2!1Ar0,2 j~ û2 j

2 2 û2!

5 l 2@D~Ar0û2!2 û2D~Ar0!#, ~B7!

leading to
05361
n

(
j

Ar0,1 j~ û1 j2 û !21Ar0,2 j~ û2 j2 û !2

5 l 2@ û2DAr022ûD~Ar0û !1D~Ar0û2!#. ~B8!

Using this equality, the Gross-Pitaevskii equation~41!, and
the equation of motion~47!, the fourth term in square brack
ets of Eq.~B3! can be written as

2
\2

2ml2
(

j
@Ar0,1 j~ û1 j2 û !21Ar0,2 j~ û2 j2 û !2#

5S 2
\2

2m
D1U2m1g0r0D ~Ar0û2!2\û

] tdr̂

Ar0

.

~B9!

The sixth~and last! term in square brackets of Eq.~B3! can
also be transformed using the Gross-Pitaevskii equation~41!:

2
\2

4mlDAr0

~r0
21/2Dr0

1/22r0
1/2Dr0

21/2!

52S 2
\2

2m
D1U2m1g0r0D S 1

2l DAr0
D . ~B10!

This leads finally to a rewriting of the thermal average of E
~B3! as

2Ar0\^] tû&uH3
5S 2

\2

2m
D1U2m1g0r0D

3S ^dr̂2&2

4r0
3/2

1Ar0^û
2&22

1

2l DAr0
D

2g0

^dr̂2&22r0 / l D

Ar0

2
\] t^ûdr̂&2

Ar0

.

~B11!

The last term of this expression can be calculated using
~56!. The harmonic modes do not contribute since the exp
tation value of products ofb̂s andb̂s

† is time independent. We
are left with

] t^Q̂P̂&25] tK Q̂~0!P̂1t
m08

\
P̂2L

2

5
m08

\
^P̂2&2 , ~B12!

which gives

2
\] t^ûdr̂&2

Ar0

52m08^P̂2&2]N0
Ar0. ~B13!

As a conclusion, the quadratic correction to the first equat
of motion can be written as in Eq.~60! if one uses the iden-
tities

B̂†B̂5
dr̂2

4r0
1r0û22

1

2l D
,

5-21
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dr̂2

Ar0

5Ar0~B̂1B̂†!2

5Ar0S 2B̂†B̂1B̂21B̂†21
1

l DD . ~B14!

APPENDIX C: THE MEAN VALUE OF  tû VANISHES
AT EQUILIBRIUM

As the field degree of freedomQ̂, that is, the global phas
of the field, is not subject to a restoring force inH2, it is not
totally obvious that the perturbationH3 cannot set it into
permanent motion. We therefore check this point explic
here.

The first step is to calculate the mean value ofP̂ to first
order in H3. We approximate the unnormalized density o
erator of the gas at thermal equilibrium to first order inH3
using perturbation theory:

s5e2b(H21H3)5e2bH22E
0

b

dte2(b2t)H2H3e2tH21•••.

~C1!

P̂ commutes withH2 and has a vanishing mean value in t
thermal state corresponding toH2 so that, to first order in
H3,

^P̂&352^b P̂H3&2 . ~C2!

The HamiltonianH3 is a polynomial of degree 3 inP̂:

H35A01A1P̂1A2P̂21A3P̂3, ~C3!

where theAi are still operators with respect to the harmon
oscillator variablesbs . This leads to

^P̂&352b@^A1&2^P̂2&21^A3&2^P̂4&2#. ~C4!

From Wick’s theorem,̂ P̂4&253^P̂2&2
2.

In the second step we calculate^dQ̂/dt& to first order in
H3:

^dQ̂/dt&.^] P̂~H21H3!&3.m08^P̂&31^A1&2

13^A3&2^P̂2&2 , ~C5!

where the terms coming from] P̂H3 are calculated in the
thermal state forH2 since they are already first order in th
perturbation. From the value of^P̂&3 obtained from Eq.~C4!
and from Eq.~61! we obtain the desired result:

^dQ̂/dt&350 ~C6!

to first order inH3.
05361
-

APPENDIX D: AN EQUATION FOR ˆâ,L̂‰

In this appendix, we derive the partial differential equ
tion ~91!. We first note thatB̂n , being a sum of eigenmode
of the operatorLGP, obeys the differential equation for th
evolution governed byH2:

i\] tS B̂n

B̂n
†D 5LGPS B̂n

B̂n
†D . ~D1!

We project this equation orthogonally tof0 and alongf0, so
that we get the quantum analog of Eqs.~E9! and ~E10! of
@26#, with the simplification thatf0(r ) is real:

i\] tS L̂

L̂†D 5S Q 0

0 QDLGPS L̂

L̂†D 1~ â1â†!S Qg0r0f0

2Qg0r0f0
D ,

~D2!

i\
dâ

dt
5 l D(

r
g0r0f0~B̂n1B̂n

†!

5 l D(
r

g0r0f0~L̂1L̂†!. ~D3!

We have introduced the projection matrix

^r uQur 8&5d r ,r82 l Df0~r !f0~r 8!. ~D4!

As â is anti-Hermitian, the source term in Eq.~D2! vanishes
and one can replaceB̂n by L̂ in Eq. ~D3!.

We use these two equations of motion to calculate the
order time derivative ofA(r )[^$â,L̂(r )%&2. We do not give
the intermediate result. AsA is real here, we have the prop
erty

^$â,L̂†~r !%&252^$â,L̂~r !%&2 . ~D5!

As L̂ is orthogonal tof0 one has

QA5A. ~D6!

All this leads to Eq.~91!.

APPENDIX E: INTERPRETATION OF x IN THE NUMBER
CONSERVING BOGOLIUBOV APPROACH

We assume here that the gas is a quasipure condensa
that f0 is now the condensate wave function in the Gro
Pitaevskii approximation. We then show thatx(r )/N0, where
x is defined in Eq.~94!, essentially coincides with the lowes
order deviation of the exact condensate wave function fr
the Gross-Pitaevskii predictionf0. This deviation was cal-
culated in@15#.

We splitx into a component orthogonal tof0 and a com-
ponent collinear tof0:

x~r !5gf0~r !1x'~r !. ~E1!
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The componentg has a simple physical interpretation: w
sum Eq.~95! overr after multiplication byl D. If we omit the
grand canonical term~absent in the canonical treatment
@15#! we obtain

N5N012g1dN, ~E2!

where

dN[ l D(
r

^L̂†L̂&2 ~E3!

exactly coincides with the mean number of nonconden
particles predicted in@15#. The physical interpretation of 2g
is then simple:

dN0[2g ~E4!

is the correction to apply to the pure condensate predic
for the number of condensate particles in order to recover
correct Bogoliubov prediction. Applying to Eq.~94! the ma-
trix Q ~D4! projecting orthogonally tof0 we obtain

F2
\2

2m
D1U1g0r02mGx'12Qg0r0x'

1QS 2g0r0gf01
1

2
SD

50. ~E5!

We modify slightly the form of the source termS, eliminat-
ing the anticommutator:

$L̂†~r 8!,L̂~r !%52L̂†~r 8!L̂~r !1
1

l D
^r uQur 8&. ~E6!

This leads to the system

S Q 0

0 QDLGPS x'

x'
D 1S QSeff

2QSeff
D 50 ~E7!

with the effective source term

Seff~r !5g0r0~r !f0~r !~dN021!1g0N0f0~r !

3@2^L̂†~r !L̂~r !&21^L̂2~r !&2#

2 l D(
r8

g0r0~r 8!f0~r 8!^@L̂~r 8!1L̂†~r 8!#L̂~r !&2 ,

~E8!

where we used the fact that here^L̂2&25^L̂†2&2 since the
condensate wave function is real. Equation~E7! is the steady
version of Eq.~95! of @15#, which givesN times the correc-
tion to the condensate wave function, and the source t
~E8! exactly coincides with the one of Eq.~96! of @15# if one
realizes thatN5N0, so thatdN052dN, in the systematic
expansion used in@15#.
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APPENDIX F: CORRECTIONS TO g1 DUE
TO THE CUBIC HAMILTONIAN

We calculate the corrections to the first order correlat
function due toH3 using the perturbative formula~143!. A
first remark is that

H3~t![etH2H3e2tH2 ~F1!

is still cubic in the operatorsb̂s , since one has

etH2b̂se
2tH25e2tesb̂s , ~F2!

etH2b̂s
†e2tH25etesb̂s

† , ~F3!

wherees is the energy of the Bogoliubov modes. The second
step is to use Wick’s theorem to calculate the expecta
values in the thermal state corresponding to the Hamilton
H2. One can derive the general formulas

^A1A2A3eiDu&25@^A1A2A3iDu&2

1^A1iDu&2^A2iDu&2^A3iDu&2#

3e2^(Du)2&2/2, ~F4!

^A1A2A3A4eiDu&25H ^A1A2A3A4&2F11
1

2
^~Du!2&2G

2
1

2
^A1A2A3A4~Du!2&2

1^A1iDu&2^A2iDu&2^A3iDu&2

3^A4iDu&2J e2^(Du)2&2/2, ~F5!

where theAi are linear indr̂ and û and have a vanishing
mean value. A last point is to realize that some of the ter
obtained contain a larger number of factors equal toDu than
other ones. SinceDu scales as 1/Ar0 @see, e.g., the expres
sion of û in terms of the mode functionsus ,vs in Eq. ~57!#,
the terms with an excess ofDu factors are higher order in th
expansion and are therefore negligible. Note that, stric
speaking, this argument is correct provided that each fa
^AiDu&2 remains bounded whatever the distance from0 to r .
This can be checked to be indeed the case: from the form
H3 one sees thatAi is either dr̂ or the phase difference
between two neighboring points of the grid. One can the
fore use the approximate identities

^A1A2A3eiDu&2.^A1A2A3iDu&2e2^(Du)2&2/2, ~F6!

^A1A2A3A4eiDu&2.^A1A2A3A4&2e2^(Du)2&2/2.
~F7!

This immediately leads to the identities~144! and ~145!.
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