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Band structure, elementary excitations, and stability of a Bose-Einstein condensate
in a periodic potential
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We investigate the band structure of a Bose-Einstein condensate in a one-dimensional periodic potential by
calculating stationary solutions of the Gross-Pitaevskii equation, which have the form of Bloch waves. We
demonstrate that loogéswallow tails”) in the band structure occur both at the Brillouin zone boundary and
at the center of the zone, and they are therefore a generic feature. A physical interpretation of the swallow tails
in terms of periodic solitons is given. The linear stability of the solutions is investigated as a function of the
strength of the mean-field interaction, the magnitude of the periodic potential, and the wave vector of the
condensate. The regions of energetic and dynamical stability are identified by considering the behavior of the
Gross-Pitaevskii energy functional for small deviations of the condensate wave function from a stationary state.
It is also shown how for long-wavelength disturbances the stability criteria may be obtained within a hydro-
dynamic approach.
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I. INTRODUCTION Niu found evidence for nonanalytic behavior at the zone
boundary[11]. Another unexpected discovery was that for
The possibility of studying experimentally the properties sufficiently strong particle interactions, there exists a simple
of quantum atomic gases in the periodic potential created bgxact solution to the Gross-Pitaevskii equation for a conden-
interference of two laser beams, a so-called optical latticeSate with a wave vectdt corresponding to the boundary of
has led to an explosion of activity, both experimental ancthe first Brillouin zone[12,13. More recently Diakonov
theoretical. One of the basic properties of an atom moving irt al. have carried out explicit numerical calculations of the
a periodic potential is that it undergoes Bloch oscillationsP@nd structure, and have demonstrated that the band has a
when subjected to a sufficiently weak external force. In a gaSWallow-tail feature at the zone boundgiy4l. They also
of thermal cesium atoms such oscillations were observed aa'°Wed that this behavior IS predicted by the simple two-
long ago as 19961]. Subsequently, a number of experimen- component model used previously by Wu and Rl

tal studies of Bose-Einstein condensates in optical lattices C_)ne purpose of this arnelg IS to calculate properties .Of
. ) . . Stationary states of a Bose-Einstein condensate in an optical
have been made. In one-dimensional lattices, interferen

has been observed between condensates initially trappedclgttlce' we carry out numem_:al calculations of the band
) o ) X ructure and investigate the size of the loop at the boundary
different local minima of the potentiP]. Also Bloch oscil- ¢ e first Brillouin zone. In addition, it is demonstrated that
lations [3] and Josephson oscillatiori] of a condensate  , gimilar swallow-tail structure can arise at the zone center. It
have been observed, and acceleration and collective behavil remarkable that the width of the swallow tails remains
of a condensate have been studigf In higher-dimensional  5nzero even in the absence of the lattice potential. We show
lattices, interference effects have been investigated and theyw this may be understood in terms of periodic solitons,
transition to an insulating state has been obsefgd which, for the Gross-Pitaevskii equation, were first investi-
On the theoretical side, Bloch oscillations have been ingated by Tsuzukj15].
vestigated 7], and states of uniform flow have been studied A second purpose of the paper is to explore elementary
[8,9]. For sufficiently weak interparticle interaction, the excitations and stability of states of uniform superflow. For
properties of a Bose-Einstein condensate resemble those ofelatively weak interparticle interactions, this has been done
single particle moving in a periodic potential. Properties of ain Refs.[9] and[10], and we shall in this paper devote most
condensate in this regime have been explored in R&].  attention to the range of parameters for which there are loops
One of the surprising discoveries is that the interaction bein the band structure. Quite generally, linear stability of
tween particles can influence the band structure dramaticallgtates may be investigated by expanding the Gross-Pitaevskii
In a two-state model, Wu and Niu found a loop in the bandenergy functional to second order in the deviation of the
structure at the boundary of the first Brillouin zof# and,  condensate wave function from the solution for a stationary
in detailed calculations of band structure, Wu, Diener, andstate. One may distinguish two types of stability. The first is
energetic stability, which is referred to in RgL0] as “Lan-
dau stability,” and the condition for this is that the changes in
*Also at Osted Laboratory, H. C./@ted Institute, Univer- the Gross-Pitaevskii energy functional due to the change in
sitetsparken 5, DK-2100 Copenhagén@enmark. Email address: the condensate wave function be positive definite. The other
machholm@nordita.dk form of stability is dynamical stability, and the criterion for
"Email address: pethick@nordita.dk this is that the linearized time-dependent Gross-Pitaevskii
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equation have no complex eigenvalues. To describe excita- A one-dimensional optical lattice gives rise to a potential
tions with wavelengths long compared with the period of theacting on an atom which has the form
lattice, a hydrodynamic approach may be applied. This work
represents a generalization to moving condensates of the cal- V(x)=2V,cog(mx/d)=Vycog 2mx/d) +V,, 3
culations of Ref.[16] for condensates at rest. It yields a
stability criterion for creation of long-wavelength phonons, whered is the period of the lattice. The coefficievig, which
which reduces for a translationally invariant system to themeasures the strength of the potential, depends on the polar-
Landau criterion. izability of the atom and the intensity of the radiation that
The results obtained in this work are derived from nu-generates the optical lattice. In future we shall generally ne-
merical solutions to the one-dimensional Gross-Pitaevskiglect the constant term, and take the potential to be simply
equation. The method we adopt is to expand the wave funcvycos(2mx/d) [25]. In addition, we shall not take the poten-
tion in a Fourier series. In order to elucidate the physicatial due to the trap into account. Such an approach should
meaning of our results, we have also carried out approximatgive a good approximation to the local properties of station-
analytic calculations that yield simple results in qualitativeary states of the condensate, provided the average density
agreement with those of the numerical calculations. and average wave number of the condensate vary slowly in
In this paper we shall consider only extended states hawspace on the scale of the period of the optical lattice. For
ing the form of Bloch waves. Due to the nonlinear nature ofstudying excitations, this approach will be valid provided the
the Gross-Pitaevskii equation there are also stationary stat@gvelength of the excitations is large compared to the lattice
corresponding to localized excitations such as isolated solispacing but small compared to the distance over which prop-
tons[17], as well as states in which the density varies peri-erties of the unperturbed condensate vary significantly. A fur-
odically with a period different from that of the optical po- ther assumption we shall make is that the states are uniform
tential. in they andz directions. The resulting Gross-Pitaevskii equa-
This paper is organized as follows. In Sec. Il the propertion has a variety of different sorts of stationary solution.
ties of stationary states are described. There we present ardeme of these are extended, while others, such as solitons,
lytical and numerical calculations, and describe howare localized in space. In this paper we shall focus on ex-
swallow-tail structures may be understood in terms of peritended solutions to Eq2). These are the analogs of Bloch
odic solitons. Section Il gives a general discussion of el-states for a single particle in a lattice. As remarked in the
ementary excitations of a condensate, and energetic and diatroduction, there are stationary solutions of the Gross-
namical stability. It describes the hydrodynamic approachPitaevskii equation for which the particle density does not
applicable at long wavelengths. Numerical results for the stahave the same period as the lattice. As will be explained
bility of a condensate in a one-dimensional optical lattice areelsewhere, they are related to the self-trapped states of a
given in Sec. IV. Section V contains a discussion of ourcondensate in a double-well poten{ia8—21. Here we shall
results and concluding remarks. confine our attention to solutions of the usual Bloch form,

II. BLOCH WAVES P(x)=e"*f(x), (4

The basic assumption that we shall make in this paper isvhere# k is the quasimomentum arfdx) has the same pe-
that fluctuation effects are so small that the state of the conrod as the latticef (x) = f(x+d).
densate may be calculated in the Gross-Pitaevskii approach, The energy per unit volume, is then given by
dy

in terms of the condensate wave functigfr). The energy
*vgcod 27 12+ Lo
e ax 0C0§ —4~ [yl > ol ¥l

of the state is then given by 1 (dr2 %2
E= —J dx
h? 1 d
eru= [ or| o VU VIOIUEE JUdl). @ ®

2m
We determine equilibrium solutiongs of the time-

Heremis the mass of an ator(r) is the external potential, independent Gross-Pitaevskii equation by expandingn
andU is the effective interaction between two atoms, whichpjane waves,

is given in terms of the scattering lengthfor two-body

collisions byU ,=4#2a/m. Viax
Stationary states of the condensate may be found in the de=ne> > a ez (6)
usual way by demanding that energy functiofiBl be sta- V=" Vmax

tionary under variations af(r), subject to the condition that . ]
the total number of particles remain unchanged. This yieldgvherev is an integer. Here
the time-independent Gross-Pitaevskii equation L
di2
? =3/ axr @
= o VAV g Ul gl g=ny, @
is the average particle density. From this it follows that the
where i is the chemical potential. coefficientsa, satisfy the normalization condition
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Ymax

E |a |2:1' (8) 15 0 () 1 15f
v=""Vmax v | V,=08E, | L

The stationary states of the system may be obtained by a
variational method, by requiring that the derivatives of the
energy functional(5) with respect toa, vanish. There are
2vmaxct1 complex variables, and one constra@@t In addi-
tion, the overall phase of the wave function is arbitrary, so
the energy functional depends o4, independent real
variables.

A considerable simplification of the computational effort
is possible because it turns out that for the stationary states of
interest for the range of parameters we have considered, the
phasesp, of the coefficients, may be taken to be the same,
or to differ by =r. It is easy to demonstrate that such states
are indeed stationary under variations of the phases because

the phases occur in the energy functional as terms of the tyqe . . )

costh, —b,) and cos, +b, —db, —, ). The derivatives owest bands. The results are obtained from numerical calculations
o v W Ty Tvg Tyt ) based on wave functio(6), as described in Sec. Il B.

of these functions with respect to the phases thus give terms . ) _ .

of the type sin(byl—(,byz) and sin@bvl+ ¢V2—¢V3—¢V4), which  Gross-Pitaevskii equation. However, o0 there is no ex-

vanish if the phases are zerosr We sought solutions with act solution of the Gross-Pitaevskii equation, and, conse-

other phases by allowing the coefficients to be complex, bu uently, the existence of swaIIo_w tails is not conngcted ".Vith
found none. Because the overall phase is arbitrary ,thi e existence of an exact solutibs we shall see in detail

S Below, the condition for the appearance of a loop at the zone
mheans that \I/ve may take, to be rea}I. V\(he? this is done, center can be much less restrictive than at the zone boundary.
there are only 2., independent real variables. Before discussing our numerical results further, we shall now
We shall present our results in terms of the energy pehnalyze a simple model for the band structure near the zone

particle, £/n, as a function of theone-dimensionalwave  center which exhibits the main qualitative features of the full
vectork. As a convenient unit of energy we employ the quan-numerical calculations.

tity Eq given by

&/ n [units of Kn*/l2md?]
=

£/ n [units of K n*2md?)
=

FIG. 1. Energy per particle as a function of wave number for the

A. An analytic model

2,2
_ h*m (9) In Ref. [14] the swallow-tail structure of the lowest en-
2md?’ ergy band at the boundary of the first Brillouin zone was
discussed in terms of a simple trial solution to the Gross-
which is the kinetic energy of a particle with wave vector Pitaevskii equation. In order to illustrate the generic nature
equal to that at the boundary of the first Brillouin zone. Forof the phenomenon we shall here consider the band structure
an optical lattice made by oppositely directed laser beamsat the center of the Brillouin zone, correspondingkte0.

Eo

the lattice spacing is half the wavelengthof the light, and We employ a trial function of the form
thereforeE, is equal to the kinetic energy given to an atom ) ) i
initially at rest when it absorbs a photon having the fre- y=\né*(ap+a;e?™+a_e 2™d) (10

guency of the laser.

An unusual feature of the resulting energy bands is th
appearance of loops in the form of swallow-tail structures, a
demonstrated in Refl14]. One noteworthy result of the . )
present work is that swallow tails can occur also at the zonQy t_he _smallest _r_eC|pro_caI lattice vectoes2ar/d. The nor-
center in higher-lying bands, as illustrated in Fig. 1, whichMalization condition8) is
shows results of numerical calculations of the band structure a2+al+a’,=1. (12)
that will be described in Sec. Il B. Thus the appearance of
swallow tails is a general feature. At the zone boundary, thdhis constraint is satisfied automatically by expressing the
swallow tail appears when the interaction energy per particleoefficients in terms of two anglesand ¢ according to the
nU, exceeds the amplitud¥, of the potential due to the equations
optical lattice. As the parameteiU, grows with respect to . . .
V,, the swallow tail increases in width and may extend deep 20~ €080, a1 =sinfcosé, and a_1=smes|n¢.(12)
into the zone. The conditionUy>V, is necessary for the
swallow-tail structure to appear at the zone boundéiry, Upon inserting trial functior{10) with coefficients given by
=q/d. Eqg. (12 into Eq. (5), we obtain

Had swallow tails appeared only at the zone boundary,
one might have suspected that their existence was related to——
the fact that fork=a/d there is an exact solution to the This conclusion also has been drawn by Muel28].

here the coefficientay, a;, anda_; are chosen to be real
or the reasons given above. The trial function thus mixes
into the free-particle wave function exkx) states that differ
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FIG. 2. Model calculations of the energy per particle as a func-
tion of wave number for the same parameters as were used in Fig. FIG. 3. Energy per particle in the first Brillouin zone as in Fig.
1. The results are obtained using the variational method with the. The results are obtained by a variational method with the trial

trial function (10).

&
n = €kint €pot™T €ints (13
where
2 ) 2w\ )
€kin= 50| K+ 2k| SirP0(cos ¢ — sirf )
2 2
+ FW sinza} (14)

is the kinetic energy,
€pot= VSiN 6 cosH(Cosp +sin ) (15
is the potential energy, and

€m=NUg[ 3+ cog o sirfd(cosp+sing)?+ :sin*gsinf2¢]
(16)

function given in Eq(10). (a) In the absence of interaction the band
structure(bold curve$ exhibits the usual band gapslat 0 andk
=/d. The band gap i¥, atk=7/d andVé/SEo atk=0 for small
V,. The thin curves show the energies fty—0, i.e., for the free
noninteracting systerr(b) In the presence of interaction the swal-
low tails appear folJ, larger than a critical value, which depends
onV, and is different for the two band gafisold curve$. The thin
curves illustrate the limiv/q—0.

gap atk=0 between the second and third bands is thus
VZ/8E,. The reason that it is of second order in the lattice
potential is that the potential is sinusoidal with peridd
Consequently, it couples directly only states with wave num-
bers differing by the smallest reciprocal lattice vectors,
+27/d. The coupling between states with wave vectors
+27/d andk—2/d is indirect, since it is brought about by
the coupling of these states to the state with wave véctior
the absence of interactions between particles, the stationary
points of the energy functional fdt=0 have|a;|=|a_,|,
that is, ¢ is an odd multiple ofr/4.

Figure 3a) shows results for noninteracting particles

is the interaction energy. The stationary points of this energyU,=0). The familiar band structure is seen. The band gap
function are obtained by equating to zero the derivatives ofs V, at k= 7/d andVZ/8E, atk=0 for smallV,, which is

the energy per particle with respect éioand ¢. The results

shown in Fig. 2 were found with this model.

In order to exhibit the nature of the solutions, we first

still a good approximation a/,=2E,. The lowest band is
pushed down in the presence of the periodic poteh?ié).
In the presence of interactiontl §# 0), the energy land-

consider the simple case in the absence of interactibiys ( scape in the9-¢ plane has a more complicated structure, and
=0), and withVy<E,, so the lattice potential is a small the number of points at which the energy functional is sta-

perturbation. Atk=0 one finds three stationary points with tionary can be greater than is the caseldge=0. Figure 3b)
different energies. The lowest state corresponds to the bogxhibits the resulting band structure. The band gdp=ad is

tom of the lowest band, and its wave function is a planeenhanced by the interaction, in contrast to the band gap at
wave withk=0 plus a small admixture of states wiki+ k= m/d, which is reduced.

+27/d. Its energy is given to second order Wy by E= Let us now examine the behavior of the band structure in
—(Vo)?/8E,. The two other states are comprised primarilythe limit of vanishing lattice potential\(;—0). As one

of plane waves wittk=*+27/d with a small admixture of would expect, the band gaps tend to zero while, in contrast,
thek=0 state. The energies of the two statesEredE, for  the widths of swallow tails increase with decreasifyg and

the state that corresponds to the top of the second band, atitey are nonzero fovy— 0. In this limit, states correspond-
E=4E,+ (Vo) ?/8E, for the state at the bottom of the third ing to the upper edge of a swallow tail become degenerate
band. Because of the simplicity of the trial function, there arewith states in the band above. As we shall discuss in Sec.
no higher bands in this model. The magnitude of the energyl C, the reason for this surprising behavior is that states on
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the upper edge of a swallow tail correspond to periodic soli- B. Numerical calculations of band structure
ton solutions of the Gross-Pitaevskii equation.

The appearance of a swallow tail requires that the inter
action energynU, be sufficiently large. In the calculations
for states near the zone boundary in R&#], it was shown
that the condition for existence of the swallow tailrig),
>Vy. We now carry out a similar calculation for the swallow

At the beginning of this section we described the general
method used to calculate stationary states of a moving con-
densate. Our numerical procedure is as follows. The trial
function (6) is inserted into the energy functionéd), and
stationary points of the resulting expression for the energy

tail at the zone center, using the three-state model describéi® found._ The normalization of fch_e wave function Is im-
above. We investigate the form of the energy funcip@—  POS€d as in Eq(8), or by generalizing Eq(12) to hyper-
(16) for k=0 near the pointy= /2, ¢=23x/4. This is a spherical coordmgtes. We dgtermme the §olut|on§ by using
stationary point both fot) ;=0 and forU,#0. If one imag- € MATHEMATICA ™ routine “FindRoot,” which requires as
ines thatU, increases gradually from zero while the other INPUt an_|n|t|al guess for _the solution. The_ latter is found l_)y
parameters remain fixed, one observes in the energy |andir'st solving the problem in a reduced basis. Once a solution
scape given by Eq$13)—(16) that two additional stationary has been found for a particular valuelofthis is used as the
points are split off from @, ¢) = (7/2,3w/4) whennU, ex-  initial guess for nearby values &f

ceeds a critical value. This value may be found by inserting In Fig. 1 two examples of numerical results for the band
6=m/2+ 6 and ¢=3m/4+ € into Egs. (13)—(16) and ex- Structure are presented. The results are calculated myjth
panding the energy to second ordersiande. The resulting =4 This corresponds to a number of basis functions equal to

expression for the change in the energy per particle relativ€ Vmaxt1. The results fowm,a=4 andvmq,=5 differ by less
to its value foré=e=0 is than the thickness of the lines. Arouke- 77/d the energy of

the second band calculated with, =2 differs by less than
1% from the full numerical result. Aroun&=0 and for
higher bands, more plane waves contribute, and typically
vmax=3 IS needed for 1% convergence. Compared to the
(17) simple model used in Fig. 2, the numerical results exhibit
smaller swallow tails. The higher-lying energy bands are
For nUy=0, _the p_oint5= e=_0 is a saddle ploint. AsUg ft:lelftsgn?jogg;iréjEggrn?etk:g:rgwelfwer lying ones, causing
Increases, this point trns |n_to a I_ocaI maximum, and two Rather than exhibiting the full band structure for different
saddle points move out to points with b‘m‘”df NONZETO. - cpoices of the parameters, we choose to illustrate how one
The cpndltlon for the sadd_le point to turn into a Iocal maxi- particular feature, the widths of the swallow tails at the zone
mum is that the symmetrlc maltrix weldmg quadratic form boundary and at the zone center, depends on the two dimen-
(17) has a2 zero eigenvalue, and this occurs fido(nUo sionless quantities in the problemUy/Ey and Vo /Eg. If
+8Eg)=Vj or the band structure is displayed in the reduced zone scheme, a
swallow tail may be split up into a number of segments. This
nUo=[(4E0)2+V§]1’2— 4E,. (18) is shown i_n F@g_s. 1—_3, where the swallow tail at the zone
boundary is divided into two halves. The full swallow tail
may be seen in an extended zone representation, and we
For values of the lattice potential small comparedBg  define the widthw of a swallow tail as being the magnitude
(Vo<<Ey), the critical value obtained from E(L8) becomes of the difference between the valueskodt the two tips of a
nUO:V(ZJ/BEO_ This is physically reasonable, since the mag_Swa"OW tail in this representation. Widths of swallow tails
nitude of the energy gap in the absence of interactions igre exhibited as contour plots in Figs. 4 and 5.
equal toVZ/8E,, as discussed above. At the zone boundary, !N Fig. 4 we show a contour plot of the width of the
however, the energy gap in the absence of interactions gwallow tail at the zone boundary in the first band as a func-
equal toV,, corresponding to the conditianJ,>V, for the  tion of the mean-field interactionU, and the potential pa-
appearance of the swallow-tail structure kat 7/d. Note —rameterVo. The full lines are obtained from numerical solu-
that result(18) is derived from an approximate trial function tions with vp,,=3, which is sufficiently large to ensure an
which becomes exact only in the limit,<E,. Even so, it ~accuracy better than the thickness of the lines. The dotted

yields a reasonable description of the dependence of the crifi€S are results forpa,=2.

& 3 nU
S —4Eo— ZnUg=—4Eg0%+ \2Vode~ 70(52+ 2€2).

cal value ofnU, on V, also for higher values o¥,, as The analytic model using trial functioil0) overestimates
shown by the numerical results for the width of the swallowthe width by less than 50% fanUy<8E, and Vo<8E,.
tail in Fig. 5. Table | shows examples of calculated widths for different

The swallow-tail structure illustrated in Figs. 13 is thus aPasis sizes. We denote the widths calculated for a particular

general phenomenon, in that it occurs both at the zon¥alue ofvmabyw, . Inall cases, inclusion of more plane
boundary and at the zone center, provided the interactiowaves improves the result. The precision is dependent
energynUy is sufficiently large. The phenomenon also oc-mainly on the width. Around= 7r/d, fewer plane waves are
curs at other points in the Brillouin zone for solutions thatneeded than arourid=0 to describe the wave function to a
have a periodicity different from that of the optical lattice, asgiven accuracy, and therefore the precision of the width es-
will be demonstrated in future work. timates decreases with increasing width for fixggl,. Cor-
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Blw Bl Blx Blw TABLE |. Dependence on basis size of the calculated width
> e o w, of the swallow tail at the zone boundary. The table shaws
16 in units of 7r/d, and the differencw,maxlws—l in percent.

o
)

2
=N

Difference forvyay
Vo nUg We 1 2 3

—
[\
<
~

Eo 2E,  0.185547 13.6 0.25 0.00
Eo 4E,  0.675781 27.1 1.05 0.02
Eo 8E,  1.56555 46.7 3.19 0.13
4E, 8E,  0.552031 35.0 3.50 0.20
6E, 8E,  0.182891 27.8 2.69 0.13

-
()
ala ala ala aa

o]

nUO [units of W 2md 1

~

critical value, which for small values of,/E is given by
VS/BEO. The analytic model using the trial functigh0) es-
timates the width within 25% fonUq/Eq<8 andV,/E,
<8. Table Il shows some examples of the precision within

| T ' PR (T I
4 ' 6 3 that parameter range. In this case, the calculated widths using

|

2

V [units of W22 om dz] Vmax=1 are clpser to the full numerical result_s '_[han are those
0 calculated usingpa,=2. For v,,,c>2 the precision system-

FIG. 4. Contour plot of the width of the swallow tail in the atically improves. The precision becomes worse bl and

lowest band aroun&= 7/d. The shaded area indicates the region Vo increase. . . N
where the swallow tail is absent, i.e., fotJy<V,. The asymptotic l_:)ehaVIor Of_ the Cor_‘to_urs in F'g' S Yy
—0 can be determined analytically within the simple model
) o ) ) described in Sec. Il A. The thin lines in Fig. 3 show an ex-
respondingly, the precision improves with decreasind,  ample of the band structure in this limit. For fixedJy, the

and increasing/o. o width of the swallow tail increases with decreasig and it
The width of the swallow tail in the second band aroundiS nonzero forVy=0. At the tip of the swallow tail these

k=0 is .showr) in Fig. 5. A_s we descrlped in the previouSgiationary points of energy functiofl3) merge at 6, )

subsection, this swallow tail exists provided), exceeds a =(w/2,0) forVy—0. The interaction energy, has a mini-

mum, while the Kkinetic energy,;, has a maximum at

Blw B Blw (7/2,0). Therefore the stationary points merge when the up-

= i o ward curvature ok;,; and the downward curvature ef;, in

the ¢ direction cancel at4/2,0):

16

—
[}
™

la

(72

-T2
0=ml2 &¢

(92

(9752 €kin (19

€int

ISEEY
o]

—
[\

(=]

~
ala xula | aa

0=ml2

o
)

From this criterion we obtain the asymptotic width of the
swallow tail at the zone centev=(7/4d)nUy/E, for V
—0. Compared to the numerical result in Fig. 5, this analytic
result underestimates the asymptotic valuenaf, for Vg
—0 by 7% forw=0.27/d and by 26% fow=_2/d.

]
<
)

nU0 [units of Wi 2md 1

~

TABLE Il. Dependence on basis size of the calculated width
w, _ of the swallow tail at the zone center. The table showysn
units of w/d, and the differencev, _/wes—1 in percent.

Difference forv,y

|
2
V. [units of A'n /2md’] Vo nU, W 1 2 3 4 5

FIG. 5. Contour plot of the width of the swallow tail in the Eo Eo 0.077969 —-0.95 436 005 0.00 0.00
second band arounki=0. If the condensate wave function is ap- Eo 4E, 0.373789 397 134 016 0.03 0.00
proximated by truncated expressig0), this swallow tail is absent Eg 8E, 0.726953 105 240 036 0.17 0.01
if the mean-field interaction is less than a critical value given by EQ4E, 8E, 0.432695 0.86 34.0 0.97 0.87 0.06

(18). The corresponding region in parameter space is indicated bge, 8E, 0.155234 —20.3 68.4 332 252 0.33
the shaded area.

m
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For the swallow tail at the zone boundary, Fig. 4, thepotential will make the spacings between neighboring soli-
analysis is further simplified by taking= /2, which is an  tons unequal, even-numbered solitons being displaced in one
exact solution ak=7/d [12,13. The valuef, at which the direction, and odd-numbered ones in the other direction. One
energy is stationary varies continuously around the loop. Thenay say that the lattice potential causes a dimerization of the
tip of the swallow tail is found by setting the derivativelof  soliton array. This picture gives another way of understand-
with respect to 6, equal to 0. This yields sir@=  ingthe conclusion arrived at earlier that the splitting between
—(Vo/nUp)*3, and a width a state on the upper edge of the swallow tail and that in the

o3 131302 next higher band is proportional ¥, for k= =/d and pro-
(n_UO _(&) } (20  Portional toV3 for k=0.
Eo Eo Let us now consider states witt#0, 7/d. In the ab-
sence of a lattice potential, there exist solutions of the Gross-
Compared to the numerical result in Fig. 4 the contours prepijtaevskii equation, which are periodic arrays of gray soli-
dicted by Eq.(20) are shifted towards lower values 0o, tons. For these, the density never vanishes, and the phase
i.e., the width is somewhat overestimated by E20). FOr  change across the soliton is less thanWith the boundary
nkL)JOZZEhO andVO:_Eol the Wl'dth %lvefn by Eq(20) 'Sd21% conditions that are usually imposed, such solitons move with
T s o T el ot e o Tl Wch v Gt . Hoveer b
SO oosting the velocity of the condensate by a constant value
widths. —Usoliton €VErywhere, the solution becomes a stationary one,
and the positions of the solitons will remain fixed. The lattice
C. Physical understanding of swallow tails potential will then lift the degeneracy of the energy with

A striking feature of the results above is that the width ofrespect to translation of the periodic soliton, just as it did in
the swallow tail is nonzero as the strength of the periodidhe earlier example of an array of dark solitons. The wave
potential tends to zero. As we shall now describe, the stategector of the condensate is then obtained by combining the
on the upper edge of the swallow tail then correspond tghase differences due to the solitons with the spatially de-
periodic soliton solutions of the Gross-Pitaevskii equationpendent phase due to the velocity shiftpggion. AS the
first discussed for a condensate in the absence of an externghve vector departs increasingly frdos=0 or 7/d, the ve-
potential by Tsuzuk[15]. For potentials having the form of |ocity vyi0n and the minimum density in the soliton in-
Jacobi elllptIC fUnCtionS, analytical results for periOdiC soli- crease. Eventua”y, the density modulation in the soliton
tons have been obtained in REL3]. drops to zero, and the periodic soliton branch merges with

The simplest case to think about is that at the zone boundpat for motion of a uniform condensate. If the coherence

ary, k= m/d. The solution is then an equally spaced array of|en _ ; . :
. ; . . . gthé=#4/y2mnU, is much less than the lattice spacing,
dark solitons(that is solitons for which the wave function that is,nUo>E,, solitons are generally well separated, and

vanishes on some surfg¢evith one soliton per lattice spac- the highest value o is equal to the sound velocit
ing of the periodic potential. That this solution has Wave(nU /?n)”z soliton g Y.
0 .

vector w/d may be seen from the fact that the phase differ- . . .
The physical picture of states corresponding to the swal-

ence across a dark soliton4s Since there is one soliton per - A
low tail gives insight into the convergence of the wave func-

lattice spacing, the wave vectkrwhich is the average phase ) e o
change per unit length, is thusd. For states with this value tions as the size of the basis is increased. The characteristic

of the wave vector, the energy of the highest state in the firsgimension of an isolated soliton is of o.rder three _tlmes the
band and the energy of the state in the second band af®herence length, and therefore the ratio of the width of the
degenerate if the lattice potential is absent, but the deger$oliton compared to the lattice spacing is of order
eracy is broken when a weak periodic potential is applied(Eo/nUo)*2 Thus to give a good account of the structure of
The state having dark solitons with centerscat=d, where ~ a soliton, one would expect to neegh.~(nUy/Eg)*. For
7 is an integer, has a lower energy, since the solitons, whickne parameter values that we have studied, this is consistent
are density rarefactions, are located at the maxima of thwith the fact that the numerical calculations were well con-
lattice potential. On the other hand, the state having solitonserged forv,,,,=3.
with centers ak=(7+ 1/2)d has a higher energy.

The situation ak=0 may be described in similar terms. . ELEMENTARY EXCITATIONS AND STABILITY
Here the solutions on the upper edge of the swallow tail
correspond to periodic solitons with two dark solitons for  In the preceding section we have explored the nature of
every lattice period. The phase change per lattice period iBloch waves throughout the Brillouin zone, for different val-
thus 2w, which corresponds to a wave vector=0 in the  ues of the mean-field interaction and the lattice potential. In
reduced zone scheme. When the lattice potential is appliedhe present section we investigate their stability to small per-
there is no change in the energy to first order in the latticdurbations. We shall treat both energetic and dynamical insta-
potential because neighboring dark solitons are separated Injlities, starting from the Gross-Pitaevskii energy functional.
d/2 and therefore the energy due to the lattice potential vanSubsequently, we shall examine the nature of the excitations
ishes, since the potential is purely sinusoidal. However, therat long wavelengths, and we shall derive stability criteria
will be a contribution to second order W, since the lattice  from hydrodynamic equations.

w

"= 2d
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A. Energetic stability B. Dynamical stability

To investigate energetic stability of Bloch states, we ex- To explore dynamical instability, we need to examine ei-
pand the Gross-Pitaevskii energy functiorid) to second genvalues of the time-dependent Gross-Pitaevskii equation
order in the deviationS¢s of the condensate wave function 42 ”
from the equilibrium solutiony,, subject to the condition oo 2, ., 9Y
that the total particle number be fixed. To satisfy the con- 2mV VDt Uolyl*y=if at
straint, it is convenient to work with the thermodynamic po-
tential G=E— uN, whereN is the particle number, and to and its complex conjugate. The pair of equations obtained by

(28)

allow the variations ofys to be arbitrary. Writingy= i
+ 8¢ and expandings to second order iy, one finds

G=G[ ¢y]+ 5G,+ 6Gs. (21)

The first-order term vanishes whef, satisfies the time-

independent Gross-Pitaevskii equati@ The second-order
term is

oy

hZ
&/,*(—ﬁv%vu)—ﬂ

5G2: J dr

1
+ 5 Ul (48)2(80) %+ g 89*) 2+ Al ol 20 5y* |
(22

This quadratic form can be written in a compact matrix no-

tation as

1 A
5GZ=§J dréVTAsY, (23
where we have introduced the column vector
oY
5\?—( 51#*) (24
and the matrix
R L uowé) 05
= , 25
Uo(¥§)? L

which is Hermitian. The operatdr occurring in Eq.(25) is
given by
L=T+V+2Ug|¢hol?>— 1, (26)

with T=—%2V?/2m being the kinetic energy operator.

The solutions to the Gross-Pitaevskii equation correspon

making the substitutiony= 4+ 5¢ in this equation and its
complex conjugate may, when linearized, be written in the
matrix form

2N RN
ih——=0,A"

ot 9

with o, being the Pauli matrix in the usual representation,

. 1 0
o=y _1]:

Note thatfrzA is non-Hermitian, and therefore can have both
real and complex eigenvalues. Complex eigenvalues always
occur in pairs, since, i6¥, is an eigenfunction of-,A with
eigenvalue\, then &Zé‘lf;‘ is an eigenfunction with eigen-
valuer*. Thus, if the matrix has complex eigenvalues, there
is always one eigenvalue with a positive imaginary part, and
therefore the corresponding mode will grow exponentially in
time. The system is then dynamically unstable.

(30

C. Hydrodynamic analysis

To study excitations that have wavelengths much greater
than the lattice spacing, it is possible to use a hydrodynamic

approach. One works with the average particle dengty

and an average phase to be defined below, where the aver-
ages are to be taken over a volume having linear dimensions
much greater than the lattice spacing but still much smaller
than the wavelength of the disturbance. Such an approach
has previously been employed for small condensate veloci-
ties in Ref.[16].

Consider a condensate subjected to a potential, which
consists of the sum of two contributions, one due to the
lattice potential and another one that varies slowly in space
on the scale of the spacing of the optical lattice. We denote
the latter contribution by/. If V is spatially uniform, the
phaseg(r,t) of the condensate wave function in a stationary

tate may be written as the sum of a spatially varying part
o(r) and a time-dependent pay(t):

to stationary values of the thermodynamic potential. In order

to investigate the stability of these solutions under small per-

turbations, we must look at the second-order te(28).
When this term is positive for albys the solution is energeti-
cally stable. The system is stable if the equation

ASY =\ 5T (27)

has only positive eigenvalues. Instability sets in when the

lowest eigenvalue vanishes.

G(r,1)=o(r) + x(1). (31)

Observe that in writing the phase in this form we have no-
where made any assumption about how fagthanges over

distances of the order of the lattice spacing. The phase
evolves in time according to the Josephson equation

d¢

ax
ho =

o (32

—p-V,
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where 4 is the chemical potential calculated fai=0, that EnndON+09E, - SK—fiw Sk= —qéV. (39
is, with only the lattice potential acting®7].

When the average particle density and the potential Here
vary slowly in space on length scales large compared to the
lattice spacing, one expects the time rate of change of the PE  du
phaseyx to be given by the same result, except that the n,n:ﬁ:é,_n- (40)

chemical potential and/ now both vary in space. In the

presence of inhomogeneity, the phase will evolve with timerne derivative

at different rates at different points in space, thereby “wind-

ing up” the phase difference between different spatial points. 92€
The wave vector of the condensate wave function is deter- & k=T =N
mined by the average rate at which the phase of the wave Y akiok

function advances in space. Thus the chaﬂ‘@ér) in the
wave vector of the condensate is given by

2

! 41

m “n
ij

is, apart from factors, a generalization of the usual effective

mass tensor for a single particle. Note that it depends on the

particle density and on the wave vector of the superfluid

Ok(r)=Vx(r). (33) flow. The final derivatives are

It therefore follows from Eq(32) that the equation for the 5 .
rate of change of the wave vector has the form PR € _on_ dii 42)
kT onok, ki on’

J _
h—r == VieK)+V(r,n]. (34 In the absence of the lattice potential, it follows from Gal-
ilean invariance that the contribution to the energy per par-
When spatial variations are slow, it is a good approximatiorticle that depends on the wave number is giverfiBl®/2m.
to assume that the energy density locally is given by théConsequently, derivativé42) reduces to the condensate ve-
expression for the energy density of a uniform system, butocity (times#). All derivatives are to be evaluated for the
with spatially varying local densities and wave vectors: unperturbed value of the densityand of the wave vectd.
The above discussion applies for arbitrary direction& of
andq. Let us now apply the results to the case where both
these vectors are in thedirection. The eigenfrequencies of

the system are found by solving Eg®8) and (39) with
Here&(n,k) is the energy density of the state of the uniform -

. ; . 6V=0, and they are given b
system having a wave vectérand particle densityr when y g y
V=0. In this approximation, the chemical potential is that of hw=0yEn = (En nk kq§)1/2_ (43)
a bulk system having a wave vector and average density ' o
equal to the values locally in the nonuniform system. Togquation(43) provides a generalization to current-carrying
simplify the notation we omit the bars in the following, butit states of results derived in R¢L6] for a condensate initially
should be remembered that the symboindk always refer  at rest. In order to elucidate the meaning of E4B), let us
to average values locally. At the same level of approximasirst consider the case &f—0. The energy per particle is

tion, the local current density, the flux of particle number pergyadratic for smalk, and therefores,,  tends to zero in this
unit area, is given by the result for a uniform system, limit and ’

E=J dr[&(n(r),k(r))+n(r)V]. (35)

1
=2 ViEn k), (36) hw=*(E kD)2 (44)

The modes are then sound waves, with the sound speed

Thus the equation of continuity is given by

on on

Livovemk—o. @7 S=(Ennii) 2 (45)

a T ViTg Ty

To find the elementary excitations, we now linearize E Swhere the derivatives are 1o be evaluated lier0. This
y ' 9Sesult agrees with that obtained in Rgt6]. For a transla-

(34) and(37). We denote changes in the local densitydny . ) ; 9 o
. . . tionally invariant systemg&(n,k)=£&(n,k=0)+n#°k</2m.
those in the wave vector b§k and t_hos_e in the potent|.al by Therefore, &, »=dulon=U, and & =nh2im, and the
6V. If one looks for solutions varying in space and time asgoyng velocity is thus given by the usual result for a homo-
exp(q-r — wt), one finds that geneous gas
(Enk-d—hw)on+q-& k- k=0 (39
and S“NVNm- (46)
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The mixed derivativef’n,kzﬁzk/mzﬁv, wherev=7%k/m is S= eikx[uq(x)eiqx+vg(x)e—iqx], (51)
the velocity of the fluid. Expressio3) for the frequency
then reduces to the familiar res(iz2] whereugy(x) andv4(x) have the periodicity of the lattice. As
a result, Eq(23) becomes
w=(-V*sq. (47)
Observe that for a condensate moving in an optical lattice, 5G2=%f dr 0B SD, (52

the quantitySn,k/hzhflﬁ;L/&kzaj/&n takes the place of
the mean flow velocityj/n that occurs in the analogous re-
sult for a translationally invariant system.

Let us now consider the stability of the system to long- Ug
wavelength perturbations of the local density and wave vec- 5d>=( ) (53

where

tor. The system is energetically unstable if such perturbations Uq
can lead to a reduction of the energy. In the absence of th
potential, the functional for the energy may be expande
about the original state, and one finds L U.f2
A + o'o (54)
co 1 5 Uo(f5)2 L. )’
E=Ey+ | dr ,u5n+ﬁ15k+§[8n,n(5n) +2&, xondk
with fy(x) =exp(=ikx)¢n(X) [cf. Eq. (4)]. The operators -
) are given by
+E k(KT (49
h?(d 2
R I _ 2
The first-order terms vanish if the total number of particles L= 2m dx+'(ik+q) +V(X) =t 2Uol ol
and the phase of the wave function at the boundaries are (55)

fixed. The latter condition implies that the change in the total . o _
particle current is unaltered. The conditions for the quadratic According to Eq. (29) the linearized time-dependent

form to be positive definite are that Gross-Pitaevskii equation becomes
> > 6P . .
Enn=0, =0 49 ih——=0,B50. (56)
and
As discussed above, the stability of solutions to the time-
Ennios> (Eni)?. (50 Y

independent Gross-Pitaevskii equation may be determined

Sufficient conditions for energetic stability are that conditionPy the study of the eigenvalues of the operarand o-,B.
(50) and one of condition$49) are satisfied, since the other Energetic instability sets in wheB first acquires a zero ei-
inequality is then satisfied automatically. Observe that whemgenvalue, while dynamical instability sets in when one of the
condition (50) becomes an equality, the system has a zerogjgenvalues ofr,B becomes complex. Before presenting nu-
frequency mode. merical results, we give two analytical examples of the use
The numerical calculations to be described in the follow-of the method. First, we consider the ca4e) =0, and then
ing section indicate that energetic instability sets in first aiwe derive an approximate condition for stability of states at
long wavelengthsqd—0). Consequently, Eq$49) and(50)  the zone boundary.
are the general conditions for energetic stability. As an ex-
ample, we shall use conditigd0) in Sec. IV to determine an
approximate criterion for the limit of stability at the zone
boundary. The problem of instability of a homogeneous Bose gas
The condition for onset of dynamical instability is that has previously been considered in R&0]. The calculations
eigenfrequencx43) becomes Comp|exy which occurs if ei- described in this subsection are similar to those of Rﬁﬂ,
ther &, , or &, become negative. The first condition corre- but we offer a somewhat different physical interpretation.
sponds to the compressibility being negative, the second cor- For a homogeneous g&¥(x)=0], the solutions to the
responds to the effective mass being negative. Gross-Pitaevskii equation take the form

Po=ne*, (57)

wheren is the density. The corresponding chemical potential
The stability considerations in the preceding section werdS #=nUp+#%k?*/2m. The changesy in the condensate

general in nature. In the following we apply them to a one-Wave function is written in the fornt61), and since the sys-

dimensional potentia¥(x) = Vocos(2m/d) with periodd. As ~ tem is uniform we look for Asolutloan and v, that are

in Ref. [11] we consider changes in the condensate waveonstant in space. The matrik given by Eq.(54) then be-

function of the form comes

A. The homogeneous Bose gas

IV. STABILITY OF BLOCH WAVES
IN A ONE-DIMENSIONAL LATTICE
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#2 whereko=mg7%. The momenta of the two phonons are op-
nUg+ ﬁ(q2+ 2kq) nUg posite to that of the flow. Conditiot63) is precisely the

B= 5 ) Landau condition for the creation of a pair of excitations
nu AU+ h_( 2_2kq) with total wave numbeG in a superfluid flowing with ve-
0 " 2m d q locity k/m. According to Eq.(63), the magnitude of the

(58)  wave number,|k|, for resonance decreases fronk3 (

o , o +G2%4)2 to (k3+ G?/16)*? asq increases from 0 t@&/2.
The stability limit is obtained from the condition that the With further increase irg, the magnitude of the resonant

determinant of the matrix vanish, corresponding to the exisyaye number increases, since it is symmetric with respect to
tence of a zero eigenvalue. This yields the interchange off andG —qg. When the lattice potential is
weak, dynamical instability therefore first appears wien
=G/2 at a wave numbek given by |k| = (k3+ G?/16)*2.

In the following section we show how the thresholds for
Fnergetic and dynamical instability are calculated for a non-
to the Landau criterion that the minimum velocity at which it vanishing periodic potential for different values of the wave

is energetically favorable to create excitations is given b)pumberk as functions ohU, andVo. The above prediction

€(q)/Aq. On division byg?, condition(59) becomes for t2he Oznsetlgf the dynamical instablilgty_ fofo—0, |k
=(k§+G“/16)"“=(w/d) (nUy/2Ey+ 1/4)"%, is an exact re-

(h%ka/m)?=(£2q%2m+nUg)?— (nUp)?=e;, (59)

wheree, is the Bogoliubov result for the energy of an exci-
tation in a dilute Bose gas. Thus the condition is equivalen

k2=q%/4+ (mg%)2, (60)  sult, first derived in Ref[10], and may be compared to the
asymptotic value of the numerical resuls®lid lines in Fig.
where the sound velocity is given by Eq.(46). 7 in the limit of Vo— 0. The numerical results agree with the

In addition to the energetic instability considered above analytical expression within the precision of the calculation.
the system may develop a dynamical instability. The dynami-

cal instab_ility exists _only Whe_n the periodi_c potential is B. Stability of states at the zone boundary
present, since otherwise there is no mechanism for transfer- . ) _ : .
fing momentum to the fluid. A second illustrative example is to consider the condition

In order to understand the origin of the dynamical insta-for long-wavelength instabilities to arise in a flow for which

bility for a weak periodic potential, let us first consider the K= 7/d. This may be done using the hydrodynamic formal-

eigenvalues ofr,B in the absence of a periodic potential. In :cs(;rrn dkiszrllgwtlr?e?eeci'sm; ijzr;?wsnollrl]tli?)?\ﬁi]) a?r?e[lcii]ﬁ\e-

sign of the matrix elements in the second row of Exj). Its

eigenvalues\ are given by = n€**(cosh+ sin ge~127/d), (64)
_hqu+ n2qz gt which is the same as E@L0) with ¢==/2. To investigate
T m T~ nUo m  am?) 61 the stability of the state witk= 7/d, we require the solution

also fork in the vicinity of #/d in order to evaluate the

As usual, the physical excitation energies of the system coderivatives with respect tiy and we shall assume that this is
respond to the plus sign in this equation. Note that this exgiven by Eq.(64), with 6 being treated as a variational pa-
pression becomes identical with E@¢43) in the long- rameter. . . _
wavelength limit ¢—0). Eigenvalues(61), which are We start frpm energy functlo_(ﬂ.3),. anq for trial function
obtained for the case when the periodic potential is absent64) the kinetic energy per particle is given by
are always real wheJ, is positive. Thus, as remarked . .
above, for repulsive interactions there is no dynamical insta- €xin=4Eo( K%+ i’ 6 —2ksint6), (65)
bility in the absence of a periodic potential.

Now, let us consider the case of a weak periodic potentialwhere x=kd/27. The potential energy per particle is
The appearance of a complex eigenvalue corresponds to a
resonance in which two phonons are created. The resonance €por= VSiN 6 coso, (66)
condition requires the total momentum of the phonons to be
G=2m/d (or —G), while their total energy must be zero. while the interaction energy is
This implies that

nU, .
N (@) N, (G—q)=0 (62) emt=7(1+2 cogdsirt o). (67)
or L .
The energy per particle is stationary when
1
k|= = (Vk2q2+q¥4+ JK3(G—q)%+(G—q)¥4), 1 v nuU
I G( o4 0 a a ) (K— —)sin20= —Ocos 219+—0c0520$in 260. (68
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Fork=7/d, the solution of Eq(68) is sin 20=—V,/nU,. On
inserting this result into Eqg65)—(67), we obtain the total
energy per particlé€/n, and fork=m/d we get

2

2 VO
E=nEy+ ?UO_‘]’_UQ (69)
and
e =U (70
oz

The other two derivatives are most easily evaluated by usin
the fact that&/ ok is A times the particle current densityee
Eq. (36)]. The current may be calculated directly from the

trial wave function. For definiteness we consider states with

positivek, and the result is

|

The derivatives of# with respect ton and with respect td
may be calculated by differentiating E@8), and one finds

_nh
=

27
k— TSII’IZG

(71)

0”25 ﬁz’ﬂ' nUo
= (72
andkmd [(nUg)?- V]2
and
PE  nh? AEQV3
— =1 =~ (73
gk> m nUe[(nUg)*—Vg]

These derivatives are then inserted into condi{i®), and
the boundary of the region of stability is given by

nUO_2E0

V§=(nU0)2m.

(74

As we shall see below, this curve deviates by no more tha
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FIG. 6. Contour plot of the maximum wave vectorfor ener-
getic stability. Contours fok<m/d correspond to states on the
lowest branch of the lowest band, and thosekforz/d to states on
the lower edge of the swallow tail at the zone boundary.

timized for modes with wavelengths less thétv ... The

operatorB in Eq. (54) is represented as a matrix of dimen-
sion 4l ,.+2 in terms of the plane-wave basis.

We now investigate the stability of states corresponding to
points on the swallow tail in the lowest band. In the reduced
zone representation used in Figs. 1-3, this swallow talil is
split into two or more pieces. However, by choosing the first
Brillouin zone as G=k=2m/d, this swallow tail will appear
in one piece fow<<2m/d. In the discussion below, we shall
use the latter representation, and all valuek will be taken
to lie in the interval[ 0,27/d]. We shall not consider swallow
ﬁails that have a width greater thanr&d.

9.5% from the one calculated numerically, i.e., the contour

for k=/d in Fig. 6.

C. Numerical calculations of stability limits

1. Energetic stability

At the boundary of the region of stability, the operaRor
has a vanishing eigenvalue and therefore its determinant van-

We now describe results of a stability analysis of the staishes. We evaluate the conditions under which the determi-

tionary state solutiong, found in Sec. Il. The amplitudes,
andvq in Eq. (51) are expanded in terms of plane waves:

|max

i27ix/d

o€ (75)

and

|max

>

~Imax

i2aix/d

Vg= V)4 (76)

In the sums, we takk, ., to be less than,,,. If this is not

nant ofB first vanishes by using theatHEMATICA © routine
“Det.” The calculation of the energetic stability limits pro-
ceeds as follows: we choose valueskaind V,, and deter-

mine the value ohU, at which the determinant B first
becomes positive definite for af]. We find that energetic
instability occurs first fog— 0, in agreement with Fig. 1 of
Ref.[10].

Figure 6 is a contour plot of the maximum wave vector
for energetic stability as a function ¥, andnU,. Values of
k less thamr/d correspond to the lowest energy states for a
given k, while higher values correspond to states on the
lower edge of the swallow tail. As the plot shows, the range

done, spurious instabilities can result. These merely express k values for which states are stable increases with increas-

the fact that the condensate wave function has not been o

;3ig nUgy and decreasiny,. The numerical calculations in
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Fig. 6 are converged to within the thickness of the contour
lines for v,,,=3 andl ,=3.

A number of insights into the behavior of the contours 147
may be obtained from analytical arguments. First, the inter- x
cepts on thenU, axis of the contours for the wave vector at 133
which energetic stability sets in may be determined from the _ 127
Landau criterion. For an interacting Bose gas with no lattice,y “d
energetic instability sets in when the velocity of the gas be- § 112
comes equal to the sound spegdEq. (46). The velocity of :g 4
the gas isik/m, and therefore the condition is Q‘; 7

fik nU, _(d|?, 2 09F

=S or B, (W) k. (77) 3 082

=~y x

The numerical results agree with this. = 074

A second general remark is that, for smd}l, one would 067
expect on the basis of perturbation theory that the contours
for energetic stability would behave a/% again in agree- o+ 0 vy 1
ment with the numerical results. However, for high values of 0 0.5 1 15 2
nU, the quadratic dependence holds only for a limited V, [units of #**/2md’]

range ofV,. The contours are approximately linear at higher
values ofV,, just as are those for the width of the swallow  FIG. 7. Contour plot of the maximum wave vectoior dynami-
tail at the zone boundarigee Fig. 4 The wave vector of the cal stability(solid lineg. The notation is the same as in Fig. 6. For
tip of the swallow tail sets a natural limit to the wave vector comparison the corresponding results for energetic stability are
at which instability sets in, and indeed this limit is ap- shown by dotted lines.
proached for largaU,.
A comparison of the width of the swallow tdfFig. 4 and  shows that the stability boundaries almost coincide for larger
the stability boundary(Fig. 6) allow us to conclude that, values ofV,,.
within the range of parameters investigated, states on the
lower edge of the swallow tail at_t_he zone boundary are V. DISCUSSION AND CONCLUSIONS
never stable for alk. For the conditions under which the
spectrum is given by Fig. (&), instability sets in around Our analytical and numerical calculations show that the
=1.7x/d and for the conditions appropriate for the spectrumband structure of a Bose condensate in a one-dimensional
shown in Fig. 1b), aroundk=1.17/d. optical lattice is affected dramatically by the presence of in-
teractions between particles. The appearance of swallow-tail-
2. Dynamical stability like loop structures is a rather general phenomenon. They
The boundary for dynamical stability is determined fol- occur in thg Iowt?st band ig thle vicinity o;_thegc_)nehpoundary,
lowing a numerical procedure similar to the one above for>> rephorte ear |e[r14],_ aﬂ. r?so, as predicted in this paper,
energetic stability. On one side of the boundary, the operatorr]eart € zone center in higher bands. Indeed, at band gaps at
PN i ) the zone boundary or at the zone center one expects such
o,B has only real eigenvalues for aj| while on the other  gictures to appear quite generally on the band with lower
side it has some eigenvalues that are complex. The eigenvalnergy if the effective interaction between particles is repul-
ues ofo,B are determined using theaTHEMATICA ® routine  sive, the case studied in this paper. For an attractive effective
“Eigenvalues.” With increasingk (at fixed nUy and V), interaction (negative scattering lengththe loop structures
energetic instability first occurs fay— 0, while dynamical would appear on the upper band at the gap. While macro-
instability first sets in ag=m/d. On the lowest branch of scopic condensates with negative scattering length are un-
the lowest band, dynamical instability exists only fkr stable to collapse if the transverse extent of the cloud is
>q/2d, in agreement with Fig. 1 of Ref10]. large, it might be possible to investigate phenomena associ-
Figure 7 shows a contour plot of the maximum wave vec-ated with swallow tails in such condensates if the condensate
tor for dynamical stability as a function &fy; andnUy as  is tightly confined in the transverse directions.
solid lines, and the corresponding contours for energetic sta- Analytic results were derived using an approximate wave
bility are shown as dotted lines. The numerical calculationgunction containing either two plane wavé®r states with
in Fig. 7 are converged to within the width of the contour wave vector close to the zone boundar three plane
lines for vn,=3 andl,,=3. For givenVy, and nUg, the  waves(for states with wave vectors close to zerbhe cou-
maximum wave vector for dynamical stability is always pling between plane wave components increases with the
greater than that for energetic stability. The contours of thestrengths of the interatomic interaction and of the potential
maximum wave vector for dynamical stability are nearly lin- V,, and, consequently, the approximate wave functions be-
ear for the ranges ofy andnU, investigated. A comparison come less accurate. The potential induces couplings between
of the contours for energetic and dynamical stability in Fig. 7plane waves whose wave vectors differ by only the smallest
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reciprocal lattice vectors27/d, while the interaction term  wavelength modes one may develop a hydrodynamic ap-
introduces couplings that are less restricted. The simple ang@roach. The detailed numerical calculations indicate that en-
lytic expressions for the energy spectra are in good qualitaergetic stability sets in at long wavelengths and therefore the
tive and, in some cases, quantitative agreement with the nygroperties of long-wavelength modes is of direct relevance
merical results. At the zone boundary the approximate wavéor determining the limit of stability of a condensate. Using
function coincides with the exact one, which accounts for thehe hydrodynamic formalism, we derived a simple analytic
good agreement with the numerical results. expression for the stability limit of the states at the zone
For swallow tails to appear, the interparticle interactionboundary, Eq(74).
must exceed a critical value, which depends on the band in We have restricted our present study to stationary states in
question. We have derived a simple analytic expression, Eqvhich the particle density is periodic with a period equal to
(20), for the width of the swallow tail around the zone the spacingd of the lattice. However, as will be discussed
boundary as a function of the interactinol, and the poten- elsewhere, stationary states with longer period, e.d.of
tial Vo. According to the analytical models we have used, in3d, exist. An example of a state with a particle density,
the limit of a vanishing potential\(;,—0) the width of the  which has a period of two lattice spacings, is a periodic
swallow tail at the zone center behavesvas nUyw/4E,d  soliton state, with one dark soliton for every two lattice cells.
and that at the zone boundarywas- nUq7/2Ed. The difference in phase between two points separated by two
The physical interpretation of states on the upper edge dfttice spacingsg(x+2d) — ¢(x) ==, and therefore the
swallow tails is that they are periodic solitons. These statewave vector is* 7/2d.
exist even in the absence of the lattice potential, and this In order to observe states corresponding to the lower edge
accounts for the fact that the width of the swallow tails doesof the swallow tall, it is desirable that the states be stable. To
not vanish when the lattice potential is absent. achieve this would require the mean-field enendy, to be
With respect to experimental observability, an importantabout an order of magnitude larger than in current experi-
guestion is whether or not the stationary states are stable. Farents. The criterion for energetic stability &t /d is
conditions under which one does not expect swallow-taihUy,>2E,, corresponding to a chemical potentjalk 2E,
structures in the lowest band, the stability of states has been the lowest band at the zone center, while in the experiment
explored previously by Wu and Nid0], and for large inter- of Cataliotti et al. [4] the chemical potential wasu
actions but only at the zone boundary in Refl]. In the  ~0.2E,.
present work we have explored the stability of states on the Throughout our calculations we have assumed that the
swallow tail. States associated with the upper edge of theystem is homogeneous in the directions transverse to the
swallow tail are always energetically unstable, since theyoptical lattice. However, in actual experiments there is usu-
correspond to a saddle point in the energy landscape. Thaly a confining potential in these directions. With suffi-
energetic and dynamical stability of the states correspondingiently tight confinement in the transverse directions, a con-
to the lower edge of the swallow tail have been studied nudensate is expected to behave quasi-one-dimensionally, as
merically, and we found that they become more stable as theéescribed in Refd.23,24]. Such condensates could provide
strength of the interatomic interaction increases. We have nauitable systems for observing some of the nonlinear effects
calculated growth times for unstable modes, but the calculapredicted in this paper.
tions in Ref.[10] indicate that these are short compared to
typical experimental times except under conditions very
close to the threshold for instability. Thus we expect growth
of instabilities to be an important effect in limiting the con-  Itis a pleasure to thank Lars Melwyn Jensen for a number
ditions under which states corresponding to the swallow taibf useful discussions. The work of M.M. was supported by
may be investigated experimentally. the Carlsberg Foundation. We are grateful to Georg Bruun
The general formalism for studying stability is rather and Lincoln Carr for helpful discussions that led to the pic-
cumbersome, but we showed in Sec. Ill C that for long-ture presented in Sec. Il C.
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