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Band structure, elementary excitations, and stability of a Bose-Einstein condensate
in a periodic potential

M. Machholm,1,* C. J. Pethick,1,† and H. Smith2
1NORDITA, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark

2O” rsted Laboratory, H. C. O” rsted Institute, Universitetsparken 5, DK-2100 Copenhagen O” , Denmark
~Received 19 December 2002; published 28 May 2003!

We investigate the band structure of a Bose-Einstein condensate in a one-dimensional periodic potential by
calculating stationary solutions of the Gross-Pitaevskii equation, which have the form of Bloch waves. We
demonstrate that loops~‘‘swallow tails’’ ! in the band structure occur both at the Brillouin zone boundary and
at the center of the zone, and they are therefore a generic feature. A physical interpretation of the swallow tails
in terms of periodic solitons is given. The linear stability of the solutions is investigated as a function of the
strength of the mean-field interaction, the magnitude of the periodic potential, and the wave vector of the
condensate. The regions of energetic and dynamical stability are identified by considering the behavior of the
Gross-Pitaevskii energy functional for small deviations of the condensate wave function from a stationary state.
It is also shown how for long-wavelength disturbances the stability criteria may be obtained within a hydro-
dynamic approach.
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I. INTRODUCTION

The possibility of studying experimentally the properti
of quantum atomic gases in the periodic potential created
interference of two laser beams, a so-called optical latt
has led to an explosion of activity, both experimental a
theoretical. One of the basic properties of an atom moving
a periodic potential is that it undergoes Bloch oscillatio
when subjected to a sufficiently weak external force. In a
of thermal cesium atoms such oscillations were observe
long ago as 1996@1#. Subsequently, a number of experime
tal studies of Bose-Einstein condensates in optical latt
have been made. In one-dimensional lattices, interfere
has been observed between condensates initially trappe
different local minima of the potential@2#. Also Bloch oscil-
lations @3# and Josephson oscillations@4# of a condensate
have been observed, and acceleration and collective beh
of a condensate have been studied@5#. In higher-dimensional
lattices, interference effects have been investigated and
transition to an insulating state has been observed@6#.

On the theoretical side, Bloch oscillations have been
vestigated@7#, and states of uniform flow have been studi
@8,9#. For sufficiently weak interparticle interaction, th
properties of a Bose-Einstein condensate resemble those
single particle moving in a periodic potential. Properties o
condensate in this regime have been explored in Ref.@10#.
One of the surprising discoveries is that the interaction
tween particles can influence the band structure dramatic
In a two-state model, Wu and Niu found a loop in the ba
structure at the boundary of the first Brillouin zone@9# and,
in detailed calculations of band structure, Wu, Diener, a
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Niu found evidence for nonanalytic behavior at the zo
boundary@11#. Another unexpected discovery was that f
sufficiently strong particle interactions, there exists a sim
exact solution to the Gross-Pitaevskii equation for a cond
sate with a wave vectork corresponding to the boundary o
the first Brillouin zone@12,13#. More recently Diakonov
et al. have carried out explicit numerical calculations of t
band structure, and have demonstrated that the band h
swallow-tail feature at the zone boundary@14#. They also
showed that this behavior is predicted by the simple tw
component model used previously by Wu and Niu@9#.

One purpose of this article is to calculate properties
stationary states of a Bose-Einstein condensate in an op
lattice. We carry out numerical calculations of the ba
structure and investigate the size of the loop at the bound
of the first Brillouin zone. In addition, it is demonstrated th
a similar swallow-tail structure can arise at the zone cente
is remarkable that the width of the swallow tails remai
nonzero even in the absence of the lattice potential. We s
how this may be understood in terms of periodic solito
which, for the Gross-Pitaevskii equation, were first inves
gated by Tsuzuki@15#.

A second purpose of the paper is to explore elemen
excitations and stability of states of uniform superflow. F
relatively weak interparticle interactions, this has been do
in Refs.@9# and@10#, and we shall in this paper devote mo
attention to the range of parameters for which there are lo
in the band structure. Quite generally, linear stability
states may be investigated by expanding the Gross-Pitae
energy functional to second order in the deviation of t
condensate wave function from the solution for a station
state. One may distinguish two types of stability. The first
energetic stability, which is referred to in Ref.@10# as ‘‘Lan-
dau stability,’’ and the condition for this is that the changes
the Gross-Pitaevskii energy functional due to the change
the condensate wave function be positive definite. The o
form of stability is dynamical stability, and the criterion fo
this is that the linearized time-dependent Gross-Pitaev
©2003 The American Physical Society13-1
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equation have no complex eigenvalues. To describe ex
tions with wavelengths long compared with the period of
lattice, a hydrodynamic approach may be applied. This w
represents a generalization to moving condensates of the
culations of Ref.@16# for condensates at rest. It yields
stability criterion for creation of long-wavelength phonon
which reduces for a translationally invariant system to
Landau criterion.

The results obtained in this work are derived from n
merical solutions to the one-dimensional Gross-Pitaev
equation. The method we adopt is to expand the wave fu
tion in a Fourier series. In order to elucidate the physi
meaning of our results, we have also carried out approxim
analytic calculations that yield simple results in qualitati
agreement with those of the numerical calculations.

In this paper we shall consider only extended states h
ing the form of Bloch waves. Due to the nonlinear nature
the Gross-Pitaevskii equation there are also stationary s
corresponding to localized excitations such as isolated s
tons @17#, as well as states in which the density varies pe
odically with a period different from that of the optical po
tential.

This paper is organized as follows. In Sec. II the prop
ties of stationary states are described. There we present
lytical and numerical calculations, and describe h
swallow-tail structures may be understood in terms of p
odic solitons. Section III gives a general discussion of
ementary excitations of a condensate, and energetic and
namical stability. It describes the hydrodynamic approa
applicable at long wavelengths. Numerical results for the
bility of a condensate in a one-dimensional optical lattice
given in Sec. IV. Section V contains a discussion of o
results and concluding remarks.

II. BLOCH WAVES

The basic assumption that we shall make in this pape
that fluctuation effects are so small that the state of the c
densate may be calculated in the Gross-Pitaevskii appro
in terms of the condensate wave functionc(r ). The energy
of the state is then given by

E@c#5E dr S \2

2m
u“cu21V~r !ucu21

1

2
U0ucu4D . ~1!

Herem is the mass of an atom,V(r ) is the external potential
andU0 is the effective interaction between two atoms, whi
is given in terms of the scattering lengtha for two-body
collisions byU054p\2a/m.

Stationary states of the condensate may be found in
usual way by demanding that energy functional~1! be sta-
tionary under variations ofc(r ), subject to the condition tha
the total number of particles remain unchanged. This yie
the time-independent Gross-Pitaevskii equation

2
\2

2m
¹2c1V~r !c1U0ucu2c5mc, ~2!

wherem is the chemical potential.
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A one-dimensional optical lattice gives rise to a potent
acting on an atom which has the form

V~x!52V0cos2~px/d!5V0cos~2px/d!1V0 , ~3!

whered is the period of the lattice. The coefficientV0, which
measures the strength of the potential, depends on the p
izability of the atom and the intensity of the radiation th
generates the optical lattice. In future we shall generally
glect the constant term, and take the potential to be sim
V0cos(2px/d) @25#. In addition, we shall not take the poten
tial due to the trap into account. Such an approach sho
give a good approximation to the local properties of statio
ary states of the condensate, provided the average de
and average wave number of the condensate vary slowl
space on the scale of the period of the optical lattice.
studying excitations, this approach will be valid provided t
wavelength of the excitations is large compared to the lat
spacing but small compared to the distance over which pr
erties of the unperturbed condensate vary significantly. A
ther assumption we shall make is that the states are unif
in they andz directions. The resulting Gross-Pitaevskii equ
tion has a variety of different sorts of stationary solutio
Some of these are extended, while others, such as solit
are localized in space. In this paper we shall focus on
tended solutions to Eq.~2!. These are the analogs of Bloc
states for a single particle in a lattice. As remarked in
Introduction, there are stationary solutions of the Gro
Pitaevskii equation for which the particle density does n
have the same period as the lattice. As will be explain
elsewhere, they are related to the self-trapped states
condensate in a double-well potential@18–21#. Here we shall
confine our attention to solutions of the usual Bloch form

c~x!5eikxf ~x!, ~4!

where\k is the quasimomentum andf (x) has the same pe
riod as the lattice,f (x)5 f (x1d).

The energy per unit volume,E, is then given by

E5
1

dE2d/2

d/2

dxF \2

2mUdc

dxU
2

1V0cosS 2px

d D ucu21
1

2
U0ucu4G .

~5!

We determine equilibrium solutionsc of the time-
independent Gross-Pitaevskii equation by expandingc in
plane waves,

ck5Aneikx (
n52nmax

nmax

anei2pnx/d, ~6!

wheren is an integer. Here

n5
1

dE2d/2

d/2

dxucu2 ~7!

is the average particle density. From this it follows that t
coefficientsan satisfy the normalization condition
3-2
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(
n52nmax

nmax

uanu251. ~8!

The stationary states of the system may be obtained
variational method, by requiring that the derivatives of t
energy functional~5! with respect toan vanish. There are
2nmax11 complex variables, and one constraint~8!. In addi-
tion, the overall phase of the wave function is arbitrary,
the energy functional depends on 4nmax independent rea
variables.

A considerable simplification of the computational effo
is possible because it turns out that for the stationary state
interest for the range of parameters we have considered
phasesfn of the coefficientsan may be taken to be the sam
or to differ by p. It is easy to demonstrate that such sta
are indeed stationary under variations of the phases bec
the phases occur in the energy functional as terms of the
cos(fn1

2fn2
) and cos(fn1

1fn2
2fn3

2fn4
). The derivatives

of these functions with respect to the phases thus give te
of the type sin(fn1

2fn2
) and sin(fn1

1fn2
2fn3

2fn4
), which

vanish if the phases are zero orp. We sought solutions with
other phases by allowing the coefficients to be complex,
found none. Because the overall phase is arbitrary,
means that we may takean to be real. When this is done
there are only 2nmax independent real variables.

We shall present our results in terms of the energy
particle, E/n, as a function of the~one-dimensional! wave
vectork. As a convenient unit of energy we employ the qua
tity E0 given by

E05
\2p2

2md2
, ~9!

which is the kinetic energy of a particle with wave vect
equal to that at the boundary of the first Brillouin zone. F
an optical lattice made by oppositely directed laser bea
the lattice spacing is half the wavelengthl of the light, and
thereforeE0 is equal to the kinetic energy given to an ato
initially at rest when it absorbs a photon having the f
quency of the laser.

An unusual feature of the resulting energy bands is
appearance of loops in the form of swallow-tail structures
demonstrated in Ref.@14#. One noteworthy result of the
present work is that swallow tails can occur also at the z
center in higher-lying bands, as illustrated in Fig. 1, whi
shows results of numerical calculations of the band struc
that will be described in Sec. II B. Thus the appearance
swallow tails is a general feature. At the zone boundary,
swallow tail appears when the interaction energy per part
nU0 exceeds the amplitudeV0 of the potential due to the
optical lattice. As the parameternU0 grows with respect to
V0, the swallow tail increases in width and may extend de
into the zone. The conditionnU0.V0 is necessary for the
swallow-tail structure to appear at the zone boundaryk
5p/d.

Had swallow tails appeared only at the zone bound
one might have suspected that their existence was relate
the fact that fork5p/d there is an exact solution to th
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Gross-Pitaevskii equation. However, fork50 there is no ex-
act solution of the Gross-Pitaevskii equation, and, con
quently, the existence of swallow tails is not connected w
the existence of an exact solution.1 As we shall see in detai
below, the condition for the appearance of a loop at the z
center can be much less restrictive than at the zone boun
Before discussing our numerical results further, we shall n
analyze a simple model for the band structure near the z
center which exhibits the main qualitative features of the f
numerical calculations.

A. An analytic model

In Ref. @14# the swallow-tail structure of the lowest en
ergy band at the boundary of the first Brillouin zone w
discussed in terms of a simple trial solution to the Gro
Pitaevskii equation. In order to illustrate the generic nat
of the phenomenon we shall here consider the band struc
at the center of the Brillouin zone, corresponding tok50.

We employ a trial function of the form

c5Aneikx~a01a1ei2px/d1a21e2 i2px/d!, ~10!

where the coefficientsa0 , a1, anda21 are chosen to be rea
for the reasons given above. The trial function thus mix
into the free-particle wave function exp(ikx) states that differ
by the smallest reciprocal lattice vectors,62p/d. The nor-
malization condition~8! is

a0
21a1

21a21
2 51. ~11!

This constraint is satisfied automatically by expressing
coefficients in terms of two anglesu andf according to the
equations

a05cosu, a15sinu cosf, and a215sinu sinf.
~12!

Upon inserting trial function~10! with coefficients given by
Eq. ~12! into Eq. ~5!, we obtain

1This conclusion also has been drawn by Mueller@28#.

FIG. 1. Energy per particle as a function of wave number for
lowest bands. The results are obtained from numerical calculat
based on wave function~6!, as described in Sec. II B.
3-3
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E
n

5ekin1epot1e int , ~13!

where

ekin5
\2

2m Fk212kS 2p

d D sin2u~cos2f2sin2f!

1S 2p

d D 2

sin2uG ~14!

is the kinetic energy,

epot5V0sinu cosu~cosf1sinf! ~15!

is the potential energy, and

e int5nU0@ 1
2 1cos2u sin2u~cosf1sinf!21 1

4 sin4u sin22f#
~16!

is the interaction energy. The stationary points of this ene
function are obtained by equating to zero the derivatives
the energy per particle with respect tou andf. The results
shown in Fig. 2 were found with this model.

In order to exhibit the nature of the solutions, we fir
consider the simple case in the absence of interactionsU0
50), and withV0!E0, so the lattice potential is a sma
perturbation. Atk50 one finds three stationary points wi
different energies. The lowest state corresponds to the
tom of the lowest band, and its wave function is a pla
wave with k50 plus a small admixture of states withk5
62p/d. Its energy is given to second order inV0 by E5
2(V0)2/8E0. The two other states are comprised primar
of plane waves withk562p/d with a small admixture of
thek50 state. The energies of the two states areE54E0 for
the state that corresponds to the top of the second band
E54E01(V0)2/8E0 for the state at the bottom of the thir
band. Because of the simplicity of the trial function, there
no higher bands in this model. The magnitude of the ene

FIG. 2. Model calculations of the energy per particle as a fu
tion of wave number for the same parameters as were used in
1. The results are obtained using the variational method with
trial function ~10!.
05361
y
f

t

t-
e

nd

e
y

gap at k50 between the second and third bands is th
V0

2/8E0. The reason that it is of second order in the latti
potential is that the potential is sinusoidal with periodd.
Consequently, it couples directly only states with wave nu
bers differing by the smallest reciprocal lattice vecto
62p/d. The coupling between states with wave vectorsk
12p/d andk22p/d is indirect, since it is brought about b
the coupling of these states to the state with wave vectork. In
the absence of interactions between particles, the statio
points of the energy functional fork50 haveua1u5ua21u,
that is,f is an odd multiple ofp/4.

Figure 3~a! shows results for noninteracting particle
(U050). The familiar band structure is seen. The band g
is V0 at k5p/d andV0

2/8E0 at k50 for smallV0, which is
still a good approximation atV052E0. The lowest band is
pushed down in the presence of the periodic potential@26#.

In the presence of interactions (U0Þ0), the energy land-
scape in theu-f plane has a more complicated structure, a
the number of points at which the energy functional is s
tionary can be greater than is the case forU050. Figure 3~b!
exhibits the resulting band structure. The band gap atk50 is
enhanced by the interaction, in contrast to the band ga
k5p/d, which is reduced.

Let us now examine the behavior of the band structure
the limit of vanishing lattice potential (V0→0). As one
would expect, the band gaps tend to zero while, in contr
the widths of swallow tails increase with decreasingV0, and
they are nonzero forV0→0. In this limit, states correspond
ing to the upper edge of a swallow tail become degene
with states in the band above. As we shall discuss in S
II C, the reason for this surprising behavior is that states

-
ig.
e

FIG. 3. Energy per particle in the first Brillouin zone as in Fi
2. The results are obtained by a variational method with the t
function given in Eq.~10!. ~a! In the absence of interaction the ban
structure~bold curves! exhibits the usual band gaps atk50 andk
5p/d. The band gap isV0 at k5p/d andV0

2/8E0 at k50 for small
V0. The thin curves show the energies forV0→0, i.e., for the free
noninteracting system.~b! In the presence of interaction the swa
low tails appear forU0 larger than a critical value, which depend
on V0 and is different for the two band gaps~bold curves!. The thin
curves illustrate the limitV0→0.
3-4
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the upper edge of a swallow tail correspond to periodic s
ton solutions of the Gross-Pitaevskii equation.

The appearance of a swallow tail requires that the in
action energynU0 be sufficiently large. In the calculation
for states near the zone boundary in Ref.@14#, it was shown
that the condition for existence of the swallow tail isnU0
.V0. We now carry out a similar calculation for the swallo
tail at the zone center, using the three-state model descr
above. We investigate the form of the energy function~13!–
~16! for k50 near the pointu5p/2, f53p/4. This is a
stationary point both forU050 and forU0Þ0. If one imag-
ines thatU0 increases gradually from zero while the oth
parameters remain fixed, one observes in the energy l
scape given by Eqs.~13!–~16! that two additional stationary
points are split off from (u,f)5(p/2,3p/4) whennU0 ex-
ceeds a critical value. This value may be found by insert
u5p/21d and f53p/41e into Eqs. ~13!–~16! and ex-
panding the energy to second order ind ande. The resulting
expression for the change in the energy per particle rela
to its value ford5e50 is

E
n

24E02
3

4
nU0.24E0d21A2V0de2

nU0

2
~d212e2!.

~17!

For nU050, the pointd5e50 is a saddle point. AsnU0
increases, this point turns into a local maximum, and t
saddle points move out to points with bothd ande nonzero.
The condition for the saddle point to turn into a local ma
mum is that the symmetric matrix yielding quadratic for
~17! has a zero eigenvalue, and this occurs fornU0(nU0

18E0)5V0
2 or

nU05@~4E0!21V0
2#1/224E0 . ~18!

For values of the lattice potential small compared toE0
(V0!E0), the critical value obtained from Eq.~18! becomes
nU05V0

2/8E0. This is physically reasonable, since the ma
nitude of the energy gap in the absence of interaction
equal toV0

2/8E0, as discussed above. At the zone bounda
however, the energy gap in the absence of interaction
equal toV0, corresponding to the conditionnU0.V0 for the
appearance of the swallow-tail structure atk5p/d. Note
that result~18! is derived from an approximate trial functio
which becomes exact only in the limitV0!E0. Even so, it
yields a reasonable description of the dependence of the
cal value ofnU0 on V0 also for higher values ofV0, as
shown by the numerical results for the width of the swallo
tail in Fig. 5.

The swallow-tail structure illustrated in Figs. 1–3 is thus
general phenomenon, in that it occurs both at the z
boundary and at the zone center, provided the interac
energynU0 is sufficiently large. The phenomenon also o
curs at other points in the Brillouin zone for solutions th
have a periodicity different from that of the optical lattice,
will be demonstrated in future work.
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B. Numerical calculations of band structure

At the beginning of this section we described the gene
method used to calculate stationary states of a moving c
densate. Our numerical procedure is as follows. The t
function ~6! is inserted into the energy functional~5!, and
stationary points of the resulting expression for the ene
are found. The normalization of the wave function is im
posed as in Eq.~8!, or by generalizing Eq.~12! to hyper-
spherical coordinates. We determine the solutions by us
the MATHEMATICA ® routine ‘‘FindRoot,’’ which requires as
input an initial guess for the solution. The latter is found
first solving the problem in a reduced basis. Once a solu
has been found for a particular value ofk, this is used as the
initial guess for nearby values ofk.

In Fig. 1 two examples of numerical results for the ba
structure are presented. The results are calculated withnmax
54. This corresponds to a number of basis functions equa
2nmax11. The results fornmax54 andnmax55 differ by less
than the thickness of the lines. Aroundk5p/d the energy of
the second band calculated withnmax52 differs by less than
1% from the full numerical result. Aroundk50 and for
higher bands, more plane waves contribute, and typic
nmax53 is needed for 1% convergence. Compared to
simple model used in Fig. 2, the numerical results exh
smaller swallow tails. The higher-lying energy bands a
shifted downwards more than the lower-lying ones, caus
the band gaps to become narrower.

Rather than exhibiting the full band structure for differe
choices of the parameters, we choose to illustrate how
particular feature, the widths of the swallow tails at the zo
boundary and at the zone center, depends on the two dim
sionless quantities in the problem,nU0 /E0 and V0 /E0. If
the band structure is displayed in the reduced zone schem
swallow tail may be split up into a number of segments. T
is shown in Figs. 1–3, where the swallow tail at the zo
boundary is divided into two halves. The full swallow ta
may be seen in an extended zone representation, and
define the widthw of a swallow tail as being the magnitud
of the difference between the values ofk at the two tips of a
swallow tail in this representation. Widths of swallow tai
are exhibited as contour plots in Figs. 4 and 5.

In Fig. 4 we show a contour plot of the width of th
swallow tail at the zone boundary in the first band as a fu
tion of the mean-field interactionnU0 and the potential pa-
rameterV0. The full lines are obtained from numerical solu
tions with nmax53, which is sufficiently large to ensure a
accuracy better than the thickness of the lines. The do
lines are results fornmax52.

The analytic model using trial function~10! overestimates
the width by less than 50% fornU0,8E0 and V0,8E0.
Table I shows examples of calculated widths for differe
basis sizes. We denote the widths calculated for a partic
value ofnmax by wnmax

. In all cases, inclusion of more plan
waves improves the result. The precision is depend
mainly on the width. Aroundk5p/d, fewer plane waves are
needed than aroundk50 to describe the wave function to
given accuracy, and therefore the precision of the width
timates decreases with increasing width for fixednmax. Cor-
3-5
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respondingly, the precision improves with decreasingnU0
and increasingV0.

The width of the swallow tail in the second band arou
k50 is shown in Fig. 5. As we described in the previo
subsection, this swallow tail exists providednU0 exceeds a

FIG. 4. Contour plot of the width of the swallow tail in th
lowest band aroundk5p/d. The shaded area indicates the regi
where the swallow tail is absent, i.e., fornU0,V0.

FIG. 5. Contour plot of the width of the swallow tail in th
second band aroundk50. If the condensate wave function is a
proximated by truncated expression~10!, this swallow tail is absent
if the mean-field interaction is less than a critical value given by
~18!. The corresponding region in parameter space is indicated
the shaded area.
05361
critical value, which for small values ofV0 /E0 is given by
V0

2/8E0. The analytic model using the trial function~10! es-
timates the width within 25% fornU0 /E0,8 and V0 /E0
,8. Table II shows some examples of the precision with
that parameter range. In this case, the calculated widths u
nmax51 are closer to the full numerical results than are tho
calculated usingnmax52. For nmax.2 the precision system
atically improves. The precision becomes worse asnU0 and
V0 increase.

The asymptotic behavior of the contours in Fig. 5 forV0
→0 can be determined analytically within the simple mod
described in Sec. II A. The thin lines in Fig. 3 show an e
ample of the band structure in this limit. For fixednU0, the
width of the swallow tail increases with decreasingV0, and it
is nonzero forV050. At the tip of the swallow tail these
stationary points of energy function~13! merge at (u,f)
5(p/2,0) for V0→0. The interaction energye int has a mini-
mum, while the kinetic energyekin has a maximum at
(p/2,0). Therefore the stationary points merge when the
ward curvature ofe int and the downward curvature ofekin in
the f direction cancel at (p/2,0):

]2

]f2
ekinU

u5p/2

52
]2

]f2
e intU

u5p/2

. ~19!

From this criterion we obtain the asymptotic width of th
swallow tail at the zone centerw5(p/4d)nU0 /E0 for V0
→0. Compared to the numerical result in Fig. 5, this analy
result underestimates the asymptotic value ofnU0 for V0
→0 by 7% forw50.2p/d and by 26% forw52p/d.

.
y

TABLE I. Dependence on basis size of the calculated wid
wnmax

of the swallow tail at the zone boundary. The table showsw6

in units of p/d, and the differencewnmax
/w621 in percent.

Difference fornmax

V0 nU0 w6 1 2 3

E0 2E0 0.185547 13.6 0.25 0.00
E0 4E0 0.675781 27.1 1.05 0.02
E0 8E0 1.56555 46.7 3.19 0.13
4E0 8E0 0.552031 35.0 3.50 0.20
6E0 8E0 0.182891 27.8 2.69 0.13

TABLE II. Dependence on basis size of the calculated wid
wnmax

of the swallow tail at the zone center. The table showsw6 in
units of p/d, and the differencewnmax

/w621 in percent.

Difference fornmax

V0 nU0 w6 1 2 3 4 5

E0 E0 0.077969 20.95 4.36 0.05 0.00 0.00
E0 4E0 0.373789 3.97 13.4 0.16 0.03 0.00
E0 8E0 0.726953 10.5 24.0 0.36 0.17 0.01
4E0 8E0 0.432695 0.86 34.0 0.97 0.87 0.06
8E0 8E0 0.155234 220.3 68.4 3.32 2.52 0.33
3-6
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For the swallow tail at the zone boundary, Fig. 4, t
analysis is further simplified by takingf5p/2, which is an
exact solution atk5p/d @12,13#. The valueu0 at which the
energy is stationary varies continuously around the loop.
tip of the swallow tail is found by setting the derivative ofk
with respect to u0 equal to 0. This yields sin2u05
2(V0 /nU0)

1/3, and a width

w5
p

2d F S nU0

E0
D 2/3

2S V0

E0
D 2/3G3/2

. ~20!

Compared to the numerical result in Fig. 4 the contours p
dicted by Eq.~20! are shifted towards lower values ofnU0,
i.e., the width is somewhat overestimated by Eq.~20!. For
nU052E0 andV05E0 the width given by Eq.~20! is 21%
above the numerical result and, fornU054E0 and V0
52E0, 38% above. The model is thus most precise for sm
widths.

C. Physical understanding of swallow tails

A striking feature of the results above is that the width
the swallow tail is nonzero as the strength of the perio
potential tends to zero. As we shall now describe, the st
on the upper edge of the swallow tail then correspond
periodic soliton solutions of the Gross-Pitaevskii equat
first discussed for a condensate in the absence of an ext
potential by Tsuzuki@15#. For potentials having the form o
Jacobi elliptic functions, analytical results for periodic so
tons have been obtained in Ref.@13#.

The simplest case to think about is that at the zone bou
ary, k5p/d. The solution is then an equally spaced array
dark solitons~that is solitons for which the wave functio
vanishes on some surface!, with one soliton per lattice spac
ing of the periodic potential. That this solution has wa
vectorp/d may be seen from the fact that the phase diff
ence across a dark soliton isp. Since there is one soliton pe
lattice spacing, the wave vectork, which is the average phas
change per unit length, is thusp/d. For states with this value
of the wave vector, the energy of the highest state in the
band and the energy of the state in the second band
degenerate if the lattice potential is absent, but the deg
eracy is broken when a weak periodic potential is appli
The state having dark solitons with centers atx5td, where
t is an integer, has a lower energy, since the solitons, wh
are density rarefactions, are located at the maxima of
lattice potential. On the other hand, the state having solit
with centers atx5(t11/2)d has a higher energy.

The situation atk50 may be described in similar term
Here the solutions on the upper edge of the swallow
correspond to periodic solitons with two dark solitons f
every lattice period. The phase change per lattice perio
thus 2p, which corresponds to a wave vectork50 in the
reduced zone scheme. When the lattice potential is app
there is no change in the energy to first order in the lat
potential because neighboring dark solitons are separate
d/2 and therefore the energy due to the lattice potential v
ishes, since the potential is purely sinusoidal. However, th
will be a contribution to second order inV0 since the lattice
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potential will make the spacings between neighboring s
tons unequal, even-numbered solitons being displaced in
direction, and odd-numbered ones in the other direction. O
may say that the lattice potential causes a dimerization of
soliton array. This picture gives another way of understa
ing the conclusion arrived at earlier that the splitting betwe
a state on the upper edge of the swallow tail and that in
next higher band is proportional toV0 for k5p/d and pro-
portional toV0

2 for k50.
Let us now consider states withkÞ0, p/d. In the ab-

sence of a lattice potential, there exist solutions of the Gro
Pitaevskii equation, which are periodic arrays of gray so
tons. For these, the density never vanishes, and the p
change across the soliton is less thanp. With the boundary
conditions that are usually imposed, such solitons move w
a uniform velocity, which we denote byvsoliton. However, by
boosting the velocity of the condensate by a constant va
2vsoliton everywhere, the solution becomes a stationary o
and the positions of the solitons will remain fixed. The latti
potential will then lift the degeneracy of the energy wi
respect to translation of the periodic soliton, just as it did
the earlier example of an array of dark solitons. The wa
vector of the condensate is then obtained by combining
phase differences due to the solitons with the spatially
pendent phase due to the velocity shift,2vsoliton. As the
wave vector departs increasingly fromk50 or p/d, the ve-
locity vsoliton and the minimum density in the soliton in
crease. Eventually, the density modulation in the soli
drops to zero, and the periodic soliton branch merges w
that for motion of a uniform condensate. If the coheren
lengthj5\/A2mnU0 is much less than the lattice spacin
that is,nU0@E0, solitons are generally well separated, a
the highest value ofvsoliton is equal to the sound velocity
(nU0 /m)1/2.

The physical picture of states corresponding to the sw
low tail gives insight into the convergence of the wave fun
tions as the size of the basis is increased. The characte
dimension of an isolated soliton is of order three times
coherence length, and therefore the ratio of the width of
soliton compared to the lattice spacing is of ord
(E0 /nU0)1/2. Thus to give a good account of the structure
a soliton, one would expect to neednmax;(nU0 /E0)

1/2. For
the parameter values that we have studied, this is consis
with the fact that the numerical calculations were well co
verged fornmax53.

III. ELEMENTARY EXCITATIONS AND STABILITY

In the preceding section we have explored the nature
Bloch waves throughout the Brillouin zone, for different va
ues of the mean-field interaction and the lattice potential
the present section we investigate their stability to small p
turbations. We shall treat both energetic and dynamical in
bilities, starting from the Gross-Pitaevskii energy function
Subsequently, we shall examine the nature of the excitat
at long wavelengths, and we shall derive stability crite
from hydrodynamic equations.
3-7
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MACHHOLM, PETHICK, AND SMITH PHYSICAL REVIEW A 67, 053613 ~2003!
A. Energetic stability

To investigate energetic stability of Bloch states, we e
pand the Gross-Pitaevskii energy functional~1! to second
order in the deviationdc of the condensate wave functio
from the equilibrium solutionc0, subject to the condition
that the total particle number be fixed. To satisfy the co
straint, it is convenient to work with the thermodynamic p
tential G5E2mN, whereN is the particle number, and t
allow the variations ofc to be arbitrary. Writingc5c0
1dc and expandingG to second order indc, one finds

G5G@c0#1dG11dG2 . ~21!

The first-order term vanishes whenc0 satisfies the time-
independent Gross-Pitaevskii equation~2!. The second-orde
term is

dG25E dr Fdc* S 2
\2

2m
¹21V~r !2m D dc

1
1

2
U0@~c0* !2~dc!21c0

2~dc* !214uc0u2dcdc* #G .
~22!

This quadratic form can be written in a compact matrix n
tation as

dG25
1

2E drdC†ÂdC, ~23!

where we have introduced the column vector

dC5S dc

dc* D ~24!

and the matrix

Â5S L U0c0
2

U0~c0* !2 L
D , ~25!

which is Hermitian. The operatorL occurring in Eq.~25! is
given by

L5T1V12U0uc0u22m, ~26!

with T52\2¹2/2m being the kinetic energy operator.
The solutions to the Gross-Pitaevskii equation corresp

to stationary values of the thermodynamic potential. In or
to investigate the stability of these solutions under small p
turbations, we must look at the second-order term~23!.
When this term is positive for alldc the solution is energeti
cally stable. The system is stable if the equation

ÂdC5ldC ~27!

has only positive eigenvalues. Instability sets in when
lowest eigenvalue vanishes.
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B. Dynamical stability

To explore dynamical instability, we need to examine
genvalues of the time-dependent Gross-Pitaevskii equati

2
\2

2m
¹2c1V~r !c1U0ucu2c5 i\

]c

]t
~28!

and its complex conjugate. The pair of equations obtained
making the substitutionc5c01dc in this equation and its
complex conjugate may, when linearized, be written in
matrix form

i\
]dC

]t
5ŝzÂdC ~29!

with ŝz being the Pauli matrix in the usual representation

ŝz5S 1 0

0 21D . ~30!

Note thatŝzÂ is non-Hermitian, and therefore can have bo
real and complex eigenvalues. Complex eigenvalues alw
occur in pairs, since, ifdCl is an eigenfunction ofŝzÂ with
eigenvaluel, then ŝzdCl* is an eigenfunction with eigen
valuel* . Thus, if the matrix has complex eigenvalues, the
is always one eigenvalue with a positive imaginary part, a
therefore the corresponding mode will grow exponentially
time. The system is then dynamically unstable.

C. Hydrodynamic analysis

To study excitations that have wavelengths much gre
than the lattice spacing, it is possible to use a hydrodyna
approach. One works with the average particle densityn̄(r )
and an average phase to be defined below, where the a
ages are to be taken over a volume having linear dimens
much greater than the lattice spacing but still much sma
than the wavelength of the disturbance. Such an appro
has previously been employed for small condensate vel
ties in Ref.@16#.

Consider a condensate subjected to a potential, wh
consists of the sum of two contributions, one due to
lattice potential and another one that varies slowly in sp
on the scale of the spacing of the optical lattice. We den
the latter contribution byV̄. If V̄ is spatially uniform, the
phasef(r ,t) of the condensate wave function in a stationa
state may be written as the sum of a spatially varying p
f0(r ) and a time-dependent partx(t):

f~r ,t !5f0~r !1x~ t !. ~31!

Observe that in writing the phase in this form we have n
where made any assumption about how fastf0 changes over
distances of the order of the lattice spacing. The ph
evolves in time according to the Josephson equation

\
]f

]t
5\

]x

]t
52m2V̄, ~32!
3-8
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BAND STRUCTURE, ELEMENTARY EXCITATIONS, AND . . . PHYSICAL REVIEW A67, 053613 ~2003!
wherem is the chemical potential calculated forV̄50, that
is, with only the lattice potential acting@27#.

When the average particle density and the potentiaV̄
vary slowly in space on length scales large compared to
lattice spacing, one expects the time rate of change of
phasex to be given by the same result, except that
chemical potential andV̄ now both vary in space. In the
presence of inhomogeneity, the phase will evolve with ti
at different rates at different points in space, thereby ‘‘win
ing up’’ the phase difference between different spatial poin
The wave vector of the condensate wave function is de
mined by the average rate at which the phase of the w
function advances in space. Thus the changed k̄(r ) in the
wave vector of the condensate is given by

d k̄~r !5“x~r !. ~33!

It therefore follows from Eq.~32! that the equation for the
rate of change of the wave vector has the form

\
] k̄

]t
52“@m~n,k!1V̄~r ,t !#. ~34!

When spatial variations are slow, it is a good approximat
to assume that the energy density locally is given by
expression for the energy density of a uniform system,
with spatially varying local densities and wave vectors:

E5E dr @E~ n̄~r ! ,̄k~r !!1n̄~r !V̄#. ~35!

HereE(n,k) is the energy density of the state of the unifor
system having a wave vectork and particle densityn when
V̄50. In this approximation, the chemical potential is that
a bulk system having a wave vector and average den
equal to the values locally in the nonuniform system.
simplify the notation we omit the bars in the following, but
should be remembered that the symbolsn andk always refer
to average values locally. At the same level of approxim
tion, the local current density, the flux of particle number p
unit area, is given by the result for a uniform system,

j5
1

\
“kE~n,k!. ~36!

Thus the equation of continuity is

]n

]t
1“• j5

]n

]t
1

1

\
“•“kE~n,k!50. ~37!

To find the elementary excitations, we now linearize E
~34! and~37!. We denote changes in the local density bydn,
those in the wave vector bydk, and those in the potential b
dV̄. If one looks for solutions varying in space and time
expi(q•r2vt), one finds that

~En,k•q2\v!dn1q•Ek,k•dk50 ~38!

and
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En,nqdn1qEn,k•dk2\vdk52qdV̄. ~39!

Here

En,n5
]2E
]n2

5
]m

]n
. ~40!

The derivative

Eki ,kj
5

]2E
]ki]kj

[n\2S 1

mD
i j

~41!

is, apart from factors, a generalization of the usual effect
mass tensor for a single particle. Note that it depends on
particle density and on the wave vector of the superfl
flow. The final derivatives are

En,ki
5

]2E
]n]ki

5
]m

]ki
5\

] j i

]n
. ~42!

In the absence of the lattice potential, it follows from Ga
ilean invariance that the contribution to the energy per p
ticle that depends on the wave number is given by\2k2/2m.
Consequently, derivative~42! reduces to the condensate v
locity ~times \). All derivatives are to be evaluated for th
unperturbed value of the densityn and of the wave vectork.

The above discussion applies for arbitrary directions ok
andq. Let us now apply the results to the case where b
these vectors are in thex direction. The eigenfrequencies o
the system are found by solving Eqs.~38! and ~39! with
dV̄50, and they are given by

\v5qxEn,k6~En,nEk,kqx
2!1/2. ~43!

Equation~43! provides a generalization to current-carryin
states of results derived in Ref.@16# for a condensate initially
at rest. In order to elucidate the meaning of Eq.~43!, let us
first consider the case ofk→0. The energy per particle is
quadratic for smallk, and thereforeEn,k tends to zero in this
limit and

\v56~En,nEk,kqx
2!1/2. ~44!

The modes are then sound waves, with the sound sp
given by

s5~En,nEk,k!
1/2, ~45!

where the derivatives are to be evaluated fork→0. This
result agrees with that obtained in Ref.@16#. For a transla-
tionally invariant system,E(n,k)5E(n,k50)1n\2k2/2m.
Therefore, En,n5]m/]n5U0 and Ek,k5n\2/m, and the
sound velocity is thus given by the usual result for a hom
geneous gas

s5AnU0

m
. ~46!
3-9
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MACHHOLM, PETHICK, AND SMITH PHYSICAL REVIEW A 67, 053613 ~2003!
The mixed derivativeEn,k5\2k/m5\v, wherev5\k/m is
the velocity of the fluid. Expression~43! for the frequency
then reduces to the familiar result@22#

v5q•v6sq. ~47!

Observe that for a condensate moving in an optical latt
the quantityEn,k /\5\21]m/]k5] j /]n takes the place o
the mean flow velocityj /n that occurs in the analogous re
sult for a translationally invariant system.

Let us now consider the stability of the system to lon
wavelength perturbations of the local density and wave v
tor. The system is energetically unstable if such perturbati
can lead to a reduction of the energy. In the absence of
potential, the functional for the energy may be expand
about the original state, and one finds

E5E01E dr H mdn1\ j dk1
1

2
@En,n~dn!212En,kdndk

1Ek,k~dk!2#J . ~48!

The first-order terms vanish if the total number of partic
and the phase of the wave function at the boundaries
fixed. The latter condition implies that the change in the to
particle current is unaltered. The conditions for the quadr
form to be positive definite are that

En,n.0, Ek,k.0 ~49!

and

En,nEk,k.~En,k!
2. ~50!

Sufficient conditions for energetic stability are that conditi
~50! and one of conditions~49! are satisfied, since the othe
inequality is then satisfied automatically. Observe that wh
condition ~50! becomes an equality, the system has a ze
frequency mode.

The numerical calculations to be described in the follo
ing section indicate that energetic instability sets in first
long wavelengths (q→0). Consequently, Eqs.~49! and~50!
are the general conditions for energetic stability. As an
ample, we shall use condition~50! in Sec. IV to determine an
approximate criterion for the limit of stability at the zon
boundary.

The condition for onset of dynamical instability is th
eigenfrequency~43! becomes complex, which occurs if e
ther En,n or Ek,k become negative. The first condition corr
sponds to the compressibility being negative, the second
responds to the effective mass being negative.

IV. STABILITY OF BLOCH WAVES
IN A ONE-DIMENSIONAL LATTICE

The stability considerations in the preceding section w
general in nature. In the following we apply them to a on
dimensional potentialV(x)5V0cos(2px/d) with periodd. As
in Ref. @11# we consider changes in the condensate w
function of the form
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dc5eikx@uq~x!eiqx1vq* ~x!e2 iqx#, ~51!

whereuq(x) andvq(x) have the periodicity of the lattice. As
a result, Eq.~23! becomes

dG25
1

2E drdF†B̂dF, ~52!

where

dF5S uq

vq
D ~53!

and

B̂5S L1 U0f 0
2

U0~ f 0* !2 L2
D , ~54!

with f 0(x)5exp(2ikx)c0(x) @cf. Eq. ~4!#. The operatorsL6

are given by

L652
\2

2m S d

dx
1 i ~6k1q! D 2

1V~x!2m12U0uc0u2.

~55!

According to Eq. ~29! the linearized time-dependen
Gross-Pitaevskii equation becomes

i\
]dF

]t
5ŝzB̂dF. ~56!

As discussed above, the stability of solutions to the tim
independent Gross-Pitaevskii equation may be determ
by the study of the eigenvalues of the operatorsB̂ and ŝzB̂.
Energetic instability sets in whenB̂ first acquires a zero ei
genvalue, while dynamical instability sets in when one of t
eigenvalues ofŝzB̂ becomes complex. Before presenting n
merical results, we give two analytical examples of the u
of the method. First, we consider the caseV(x)50, and then
we derive an approximate condition for stability of states
the zone boundary.

A. The homogeneous Bose gas

The problem of instability of a homogeneous Bose g
has previously been considered in Ref.@10#. The calculations
described in this subsection are similar to those of Ref.@10#,
but we offer a somewhat different physical interpretation.

For a homogeneous gas@V(x)50#, the solutions to the
Gross-Pitaevskii equation take the form

c05Aneikx, ~57!

wheren is the density. The corresponding chemical poten
is m5nU01\2k2/2m. The changedc in the condensate
wave function is written in the form~51!, and since the sys
tem is uniform we look for solutionsuq and vq that are
constant in space. The matrixB̂ given by Eq.~54! then be-
comes
3-10
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BAND STRUCTURE, ELEMENTARY EXCITATIONS, AND . . . PHYSICAL REVIEW A67, 053613 ~2003!
B̂5S nU01
\2

2m
~q212kq! nU0

nU0 nU01
\2

2m
~q222kq!

D .

~58!

The stability limit is obtained from the condition that th
determinant of the matrix vanish, corresponding to the e
tence of a zero eigenvalue. This yields

~\2kq/m!25~\2q2/2m1nU0!22~nU0!2[eq
2 , ~59!

whereeq is the Bogoliubov result for the energy of an exc
tation in a dilute Bose gas. Thus the condition is equival
to the Landau criterion that the minimum velocity at which
is energetically favorable to create excitations is given
e(q)/\q. On division byq2, condition~59! becomes

k25q2/41~ms/\!2, ~60!

where the sound velocitys is given by Eq.~46!.
In addition to the energetic instability considered abo

the system may develop a dynamical instability. The dyna
cal instability exists only when the periodic potential
present, since otherwise there is no mechanism for tran
ring momentum to the fluid.

In order to understand the origin of the dynamical ins
bility for a weak periodic potential, let us first consider th
eigenvalues ofŝzB̂ in the absence of a periodic potential.
this case the matrixŝzB̂ is obtained fromB̂ by changing the
sign of the matrix elements in the second row of Eq.~58!. Its
eigenvaluesl are given by

l65
\2kq

m
6S nU0

\2q2

m
1

\4q4

4m2 D 1/2

. ~61!

As usual, the physical excitation energies of the system
respond to the plus sign in this equation. Note that this
pression becomes identical with Eq.~43! in the long-
wavelength limit (q→0). Eigenvalues~61!, which are
obtained for the case when the periodic potential is abs
are always real whenU0 is positive. Thus, as remarke
above, for repulsive interactions there is no dynamical ins
bility in the absence of a periodic potential.

Now, let us consider the case of a weak periodic poten
The appearance of a complex eigenvalue corresponds
resonance in which two phonons are created. The reson
condition requires the total momentum of the phonons to
G52p/d ~or 2G), while their total energy must be zero
This implies that

l1~q!1l1~G2q!50 ~62!

or

uku5
1

G
~Ak0

2q21q4/41Ak0
2~G2q!21~G2q!4/4 !,

~63!
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wherek05ms/\. The momenta of the two phonons are o
posite to that of the flow. Condition~63! is precisely the
Landau condition for the creation of a pair of excitatio
with total wave numberG in a superfluid flowing with ve-
locity \k/m. According to Eq.~63!, the magnitude of the
wave number, uku, for resonance decreases from (k0

2

1G2/4)1/2 to (k0
21G2/16)1/2 as q increases from 0 toG/2.

With further increase inq, the magnitude of the resonan
wave number increases, since it is symmetric with respec
the interchange ofq andG2q. When the lattice potential is
weak, dynamical instability therefore first appears whenq
5G/2 at a wave numberk given by uku5(k0

21G2/16)1/2.
In the following section we show how the thresholds f

energetic and dynamical instability are calculated for a n
vanishing periodic potential for different values of the wa
numberk as functions ofnU0 andV0. The above prediction
for the onset of the dynamical instability forV0→0, uku
5(k0

21G2/16)1/25(p/d)(nU0/2E011/4)1/2, is an exact re-
sult, first derived in Ref.@10#, and may be compared to th
asymptotic value of the numerical results~solid lines! in Fig.
7 in the limit of V0→0. The numerical results agree with th
analytical expression within the precision of the calculatio

B. Stability of states at the zone boundary

A second illustrative example is to consider the conditi
for long-wavelength instabilities to arise in a flow for whic
k5p/d. This may be done using the hydrodynamic form
ism described in Sec. III C. As shown in Refs.@12# and@13#,
for k5p/d, there is an exact solution to the time
independent Gross-Pitaevskii equation of the form

c5Aneikx~cosu1sinue2 i2px/d!, ~64!

which is the same as Eq.~10! with f5p/2. To investigate
the stability of the state withk5p/d, we require the solution
also for k in the vicinity of p/d in order to evaluate the
derivatives with respect tok, and we shall assume that this
given by Eq.~64!, with u being treated as a variational pa
rameter.

We start from energy function~13!, and for trial function
~64! the kinetic energy per particle is given by

ekin54E0~k21sin2u22ksin2u!, ~65!

wherek5kd/2p. The potential energy per particle is

epot5V0sinu cosu, ~66!

while the interaction energy is

e int5
nU0

2
~112 cos2u sin2u!. ~67!

The energy per particle is stationary when

S k2
1

2D sin2u5
V0

8E0
cos 2u1

nU0

8E0
cos 2u sin 2u. ~68!
3-11
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For k5p/d, the solution of Eq.~68! is sin 2u52V0 /nU0. On
inserting this result into Eqs.~65!–~67!, we obtain the total
energy per particleE/n, and fork5p/d we get

E5nE01
n2

2
U02

V0
2

4U0
~69!

and

]2E
]n2

5U0 . ~70!

The other two derivatives are most easily evaluated by us
the fact that]E/]k is \ times the particle current density@see
Eq. ~36!#. The current may be calculated directly from th
trial wave function. For definiteness we consider states w
positivek, and the result is

j 5
n\

m S k2
2p

d
sin2u D . ~71!

The derivatives ofu with respect ton and with respect tok
may be calculated by differentiating Eq.~68!, and one finds

]2E
]n]k

5
\2p

md

nU0

@~nU0!22V0
2#1/2

~72!

and

]2E
]k2

5
n\2

m S 12
4E0V0

2

nU0@~nU0!22V0
2#
D . ~73!

These derivatives are then inserted into condition~50!, and
the boundary of the region of stability is given by

V0
25~nU0!2

nU022E0

nU014E0
. ~74!

As we shall see below, this curve deviates by no more t
9.5% from the one calculated numerically, i.e., the cont
for k5p/d in Fig. 6.

C. Numerical calculations of stability limits

We now describe results of a stability analysis of the s
tionary state solutionsc0 found in Sec. II. The amplitudesuq
andvq in Eq. ~51! are expanded in terms of plane waves

uq5 (
l 52 l max

l max

ul ,qei2p lx/d ~75!

and

vq5 (
l 52 l max

l max

v l ,qei2p lx/d. ~76!

In the sums, we takel max to be less thannmax. If this is not
done, spurious instabilities can result. These merely exp
the fact that the condensate wave function has not been
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timized for modes with wavelengths less thand/nmax. The
operatorB̂ in Eq. ~54! is represented as a matrix of dime
sion 4l max12 in terms of the plane-wave basis.

We now investigate the stability of states corresponding
points on the swallow tail in the lowest band. In the reduc
zone representation used in Figs. 1–3, this swallow tai
split into two or more pieces. However, by choosing the fi
Brillouin zone as 0<k<2p/d, this swallow tail will appear
in one piece forw,2p/d. In the discussion below, we sha
use the latter representation, and all values ofk will be taken
to lie in the interval@0,2p/d#. We shall not consider swallow
tails that have a width greater than 2p/d.

1. Energetic stability

At the boundary of the region of stability, the operatorB̂
has a vanishing eigenvalue and therefore its determinant
ishes. We evaluate the conditions under which the deter
nant ofB̂ first vanishes by using theMATHEMATICA ® routine
‘‘Det.’’ The calculation of the energetic stability limits pro
ceeds as follows: we choose values ofk andV0, and deter-
mine the value ofnU0 at which the determinant ofB̂ first
becomes positive definite for allq. We find that energetic
instability occurs first forq→0, in agreement with Fig. 1 o
Ref. @10#.

Figure 6 is a contour plot of the maximum wave vect
for energetic stability as a function ofV0 andnU0. Values of
k less thanp/d correspond to the lowest energy states fo
given k, while higher values correspond to states on
lower edge of the swallow tail. As the plot shows, the ran
of k values for which states are stable increases with incre
ing nU0 and decreasingV0. The numerical calculations in

FIG. 6. Contour plot of the maximum wave vectork for ener-
getic stability. Contours fork<p/d correspond to states on th
lowest branch of the lowest band, and those fork.p/d to states on
the lower edge of the swallow tail at the zone boundary.
3-12
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Fig. 6 are converged to within the thickness of the cont
lines for nmax53 andl max53.

A number of insights into the behavior of the contou
may be obtained from analytical arguments. First, the in
cepts on thenU0 axis of the contours for the wave vector
which energetic stability sets in may be determined from
Landau criterion. For an interacting Bose gas with no latti
energetic instability sets in when the velocity of the gas
comes equal to the sound speeds, Eq. ~46!. The velocity of
the gas is\k/m, and therefore the condition is

\k

m
5s or

nU0

E0
52S d

p D 2

k2. ~77!

The numerical results agree with this.
A second general remark is that, for smallV0, one would

expect on the basis of perturbation theory that the conto
for energetic stability would behave asV0

2, again in agree-
ment with the numerical results. However, for high values
nU0, the quadratic dependence holds only for a limit
range ofV0. The contours are approximately linear at high
values ofV0, just as are those for the width of the swallo
tail at the zone boundary~see Fig. 4!. The wave vector of the
tip of the swallow tail sets a natural limit to the wave vect
at which instability sets in, and indeed this limit is a
proached for largenU0.

A comparison of the width of the swallow tail~Fig. 4! and
the stability boundary~Fig. 6! allow us to conclude that
within the range of parameters investigated, states on
lower edge of the swallow tail at the zone boundary
never stable for allk. For the conditions under which th
spectrum is given by Fig. 1~a!, instability sets in aroundk
51.7p/d and for the conditions appropriate for the spectru
shown in Fig. 1~b!, aroundk51.1p/d.

2. Dynamical stability

The boundary for dynamical stability is determined fo
lowing a numerical procedure similar to the one above
energetic stability. On one side of the boundary, the oper
ŝzB̂ has only real eigenvalues for allq, while on the other
side it has some eigenvalues that are complex. The eigen
ues ofŝzB̂ are determined using theMATHEMATICA ® routine
‘‘Eigenvalues.’’ With increasingk ~at fixed nU0 and V0),
energetic instability first occurs forq→0, while dynamical
instability first sets in atq5p/d. On the lowest branch o
the lowest band, dynamical instability exists only fork
.p/2d, in agreement with Fig. 1 of Ref.@10#.

Figure 7 shows a contour plot of the maximum wave v
tor for dynamical stability as a function ofV0 and nU0 as
solid lines, and the corresponding contours for energetic
bility are shown as dotted lines. The numerical calculatio
in Fig. 7 are converged to within the width of the conto
lines for nmax53 and l max53. For givenV0 and nU0, the
maximum wave vector for dynamical stability is alwa
greater than that for energetic stability. The contours of
maximum wave vector for dynamical stability are nearly li
ear for the ranges ofV0 andnU0 investigated. A comparison
of the contours for energetic and dynamical stability in Fig
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shows that the stability boundaries almost coincide for lar
values ofV0.

V. DISCUSSION AND CONCLUSIONS

Our analytical and numerical calculations show that
band structure of a Bose condensate in a one-dimensi
optical lattice is affected dramatically by the presence of
teractions between particles. The appearance of swallow-
like loop structures is a rather general phenomenon. T
occur in the lowest band in the vicinity of the zone bounda
as reported earlier@14#, and also, as predicted in this pape
near the zone center in higher bands. Indeed, at band ga
the zone boundary or at the zone center one expects
structures to appear quite generally on the band with lo
energy if the effective interaction between particles is rep
sive, the case studied in this paper. For an attractive effec
interaction ~negative scattering length!, the loop structures
would appear on the upper band at the gap. While mac
scopic condensates with negative scattering length are
stable to collapse if the transverse extent of the cloud
large, it might be possible to investigate phenomena ass
ated with swallow tails in such condensates if the conden
is tightly confined in the transverse directions.

Analytic results were derived using an approximate wa
function containing either two plane waves~for states with
wave vector close to the zone boundary! or three plane
waves~for states with wave vectors close to zero!. The cou-
pling between plane wave components increases with
strengths of the interatomic interaction and of the poten
V0, and, consequently, the approximate wave functions
come less accurate. The potential induces couplings betw
plane waves whose wave vectors differ by only the smal

FIG. 7. Contour plot of the maximum wave vectork for dynami-
cal stability~solid lines!. The notation is the same as in Fig. 6. F
comparison the corresponding results for energetic stability
shown by dotted lines.
3-13
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reciprocal lattice vectors62p/d, while the interaction term
introduces couplings that are less restricted. The simple
lytic expressions for the energy spectra are in good qua
tive and, in some cases, quantitative agreement with the
merical results. At the zone boundary the approximate w
function coincides with the exact one, which accounts for
good agreement with the numerical results.

For swallow tails to appear, the interparticle interacti
must exceed a critical value, which depends on the ban
question. We have derived a simple analytic expression,
~20!, for the width of the swallow tail around the zon
boundary as a function of the interactionnU0 and the poten-
tial V0. According to the analytical models we have used,
the limit of a vanishing potential (V0→0) the width of the
swallow tail at the zone center behaves asw5nU0p/4E0d
and that at the zone boundary asw5nU0p/2E0d.

The physical interpretation of states on the upper edg
swallow tails is that they are periodic solitons. These sta
exist even in the absence of the lattice potential, and
accounts for the fact that the width of the swallow tails do
not vanish when the lattice potential is absent.

With respect to experimental observability, an importa
question is whether or not the stationary states are stable
conditions under which one does not expect swallow-
structures in the lowest band, the stability of states has b
explored previously by Wu and Niu@10#, and for large inter-
actions but only at the zone boundary in Ref.@11#. In the
present work we have explored the stability of states on
swallow tail. States associated with the upper edge of
swallow tail are always energetically unstable, since th
correspond to a saddle point in the energy landscape.
energetic and dynamical stability of the states correspond
to the lower edge of the swallow tail have been studied
merically, and we found that they become more stable as
strength of the interatomic interaction increases. We have
calculated growth times for unstable modes, but the calc
tions in Ref.@10# indicate that these are short compared
typical experimental times except under conditions v
close to the threshold for instability. Thus we expect grow
of instabilities to be an important effect in limiting the co
ditions under which states corresponding to the swallow
may be investigated experimentally.

The general formalism for studying stability is rath
cumbersome, but we showed in Sec. III C that for lon
on

o,

A.
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wavelength modes one may develop a hydrodynamic
proach. The detailed numerical calculations indicate that
ergetic stability sets in at long wavelengths and therefore
properties of long-wavelength modes is of direct relevan
for determining the limit of stability of a condensate. Usin
the hydrodynamic formalism, we derived a simple analy
expression for the stability limit of the states at the zo
boundary, Eq.~74!.

We have restricted our present study to stationary state
which the particle density is periodic with a period equal
the spacingd of the lattice. However, as will be discusse
elsewhere, stationary states with longer period, e.g., 2d or
3d, exist. An example of a state with a particle densi
which has a period of two lattice spacings, is a perio
soliton state, with one dark soliton for every two lattice cel
The difference in phase between two points separated by
lattice spacings,f(x12d)2f(x)56p, and therefore the
wave vector is6p/2d.

In order to observe states corresponding to the lower e
of the swallow tail, it is desirable that the states be stable.
achieve this would require the mean-field energynU0 to be
about an order of magnitude larger than in current exp
ments. The criterion for energetic stability atk5p/d is
nU0.2E0, corresponding to a chemical potentialm52E0
in the lowest band at the zone center, while in the experim
of Cataliotti et al. @4# the chemical potential wasm
'0.2E0.

Throughout our calculations we have assumed that
system is homogeneous in the directions transverse to
optical lattice. However, in actual experiments there is u
ally a confining potential in these directions. With suf
ciently tight confinement in the transverse directions, a c
densate is expected to behave quasi-one-dimensionally
described in Refs.@23,24#. Such condensates could provid
suitable systems for observing some of the nonlinear effe
predicted in this paper.
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