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Dynamic structure factor of a Bose-Einstein condensate in a one-dimensional optical lattice
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We study the effect of a one-dimensional periodic potential on the dynamic structure factor of an interacting
Bose-Einstein condensate at zero temperature. We show that, due to phononic correlations, the excitation
strength toward the first band develops a typical oscillating behavior as a function of the momentum transfer,
and vanishes at even multiples of the Bragg momentum. The effects of interactions on the static structure factor
are found to be significantly amplified by the presence of the optical potential. Our predictions can be tested in
stimulated photon scattering experiments.
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When a Bose-Einstein condensate is loaded into an o
cal lattice, its properties change in a very marked way@1#.
For deep potential wells, it even happens that the cohere
of the sample is lost and one observes the transition to
Mott-insulator phase@2,3#. Interesting phenomena also occ
for low optical potential depth. For instance, Bloch oscil
tions @4#, tunneling effects@5–7#, and swallowtail features o
the band structure@8# can be investigated in this regime. I
one-dimensional~1D! optical lattices, the transition to th
insulator phase is expected to take place for very large in
sities of the optical lattice, so that there is a very extend
range of parameters where the gas can be described as a
coherent system.

In this paper, we study the elementary excitations of
interacting Bose gas in the presence of a periodic poten
and discuss how these states can be excited via inelastic
cesses using, for example, Bragg spectroscopy@9,10#. To this
purpose we develop the formalism of the dynamic struct
factor, a quantity directly related to the linear response of
system.

We will restrict ourselves to the case of a system in
presence of a one-dimensional optical potential

V~z!5sER sin2S pz

d D ~1!

created by two counterpropagating laser beams. In Eq.~1!, d
is the lattice spacing ands is a dimensionless paramet
which denotes the intensity of the laser in units of the rec
energyER5qB

2/2m. Here qB5\p/d is the Bragg momen-
tum denoting the boundary of the first Brillouin zone andm
is the atomic mass. The inclusion of an additional harmo
potential produced, for example, by magnetic trapping d
not modify the excitation spectrum in a profound way, unle
the wavelength of the excitation is comparable with the s
of the sample. Along the tranverse directions we assume
form confinement, so that the 3D Gross-Pitaevkii~GP! equa-
tion for the ground state order parameterw(z) takes the 1D
form
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F2
\2

2m

]2

]z21sER sin2S pz

d D1gnduw~z!u2Gw~z!5mw~z!,

~2!

wheren is theaverage3D density and the order parameterw
is normalized according to*2d/2

d/2 uw(z)u2dz51. As usual,g
54p\2a/m is the interaction coupling constant fixed by th
scattering lengtha.

The elementary excitations correspond to solutions of
linearized time-dependent GP equation and are describe
the Bogoliubov equations

F2
\2

2m

]2

]z21sER sin2S pz

d D2m12gnduwu2Gujq1gndw2v jq

5\v j~q!ujq , ~3!

F2
\2

2m

]2

]z21sER sin2S pz

d D2m12gnduwu2Gv jq1gndw* 2ujq

52\v j~q!v jq , ~4!

wherew is the ground state solution of Eq.~2! and the am-
plitudes ujq and v jq satisfy the normalization condition
*2d/2

d/2 @ uujq(z)u22uv jq(z)u2#dz51. The solutionsujq(z) and

v jq(z) are Bloch waves:ujq(z)5exp(iqz/\)ũjq(z) whereũ jq
is periodic in space with periodd, and analogously forv jq .
For each value of the quasimomentumq, Eqs. ~3! and ~4!
provide an infinite set of solutionsv j (q), forming a band
structure labeled withj ~‘‘Bogoliubov bands’’!. Due to the
periodicity of the problem, the solutions of Eqs.~3! and ~4!
with q restricted to the first Brillouin zone andj varying over
all the bands exhaust the elementary excitations of the
tem. Still, it is often convenient to consider values ofq out-
side the first Brillouin zone and to treat the energy spectr
and the functionsujq andv jq as periodic in quasimomentum
space with period 2qB ~see Fig. 1!. The intensitys of the
optical potential and ratiogn/ER between the interaction an
the recoil energy are the relevant dimensionless parame
in terms of which we will discuss the physical behavior
the system. Numerical solutions of Eqs.~3! and ~4! in the
presence of a periodic potential were, for example, obtai
in @11#.
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The capability of the system to respond to an excitat
probe transferring momentump and energy\v is described
by the dynamic structure factor. In the presence of a perio
potential the dynamic structure factor takes the form

S~p,v!5(
j

Zj~p!d„v2v j~p!…, ~5!

whereZj (p) are the excitation strengths relative to thej th
band@see Eq.~11! below# and\v j (p) are the corresponding
excitation energies, defined by the solutions of Eqs.~3! and
~4!. Note thatp, here assumed to be along the optical latt
(z axis!, is not restricted to the first Brillouin zone, being th
momentum transferred by the external probe. In this resp
it is important to point out that, while the excitation energi
\v j (p) are periodic as a function ofp, this is not true for the
excitation strengthsZj .

The dynamic structure factor satisfies important s
rules. The integral of the dynamic structure factor provid
the static structure factor~non-energy-weighted sum rule!

S~p!5E S~p,v!dv. ~6!

As we will see later,S(p) is strongly affected by the com
bined presence of two-body interactions and the optical
tice.

A second important sum rule obeyed by the dynam
structure factor is the model-independentf-sum rule@18#

E \vS~p,v!dv5
p2

2m
. ~7!

Another important sum rule is the compressibility su
rule ~inverse-energy-weighted sum rule!

E S~p,v!

\v
dvU

p→0

5
k

2
, ~8!

where k5@n(]m/]n)#21 is the thermodynamic compres
ibility. The density dependence of the chemical potential, a

FIG. 1. Bogoliubov bands fors510 andgn50.5ER ; excitation
strengthsZj toward the states in the first three bands forp
521.2qB , p50.8qB , andp52.8qB .
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hencek, can be obtained by solving the GP equation~2!
@12#. The compressibilityk is naturally expressed in terms o
the sound velocityc, characterizing the lowq phononic be-
havior of the dispersion law in the lowest band (\v5cq),
through the relation

k5
1

m* c2
, ~9!

where the effective massm* differs from the bare mass be
cause the Hamiltonian is not translationally invariant. T
effective mass in the presence of the external potential~1!
has recently been calculated in@13#.

In a uniform Bose gas, the sum~5! is exhausted by a
single mode with energy\vB(p)5Ap2/2m(p2/2m12gn).
In this case the static structure factor obeys the Feynm
relation

SB~p!5
p2

2m\vB~p!
, ~10!

where we have used thef-sum rule~7!. For p→0 the static
structure factor~10! behaves likeupu/2mcB , while the com-
pressibility sum rule ~8! becomes 1/2mcB

2 , where cB

5Agn/m is the Bogoliubov sound velocity. The suppressi
of SB(p) at small momenta is a direct consequence of
phononic correlations. For large momenta, instead, the s
structure factor~10! approaches unity~see the dotted lines in
Fig. 2!. Notice that in the absence of two-body interactio
S(p)51 for any value ofp.

In the presence of the optical lattice the behavior of
dynamic structure factor changes in a drastic way. In parti
lar, for a given value of momentum transferp, it is possible
to excite several states, corresponding to different bands@see
Eq. ~5! and Fig. 1#. An important consequence is that on o
hand it is possible to excite high energy states with sm
values ofp, and on the other hand one can excite low ene
states, belonging to the lowest band, also with high mome
p outside the first Brillouin zone. This behavior introduc
additional possibilities in Bragg spectroscopy experiment

In general, the dynamic structure factor has to be cal
lated numerically. Starting from the solution of Eqs.~3! and
~4!, the excitation strengthsZj can be evaluated using th
standard prescription~see, for example,@14#!

Zj~p!5U E
2d/2

d/2

@ujq* ~z!1v jq* ~z!#eipz/\w~z!dzU2

, ~11!

whereq belongs to the first Brillouin zone and is fixed by th
relation q5p12,qB with , integer. This equation show
that, by solving Eqs.~3! and ~4! within the first Brillouin
zone, one can calculate the strengthZj (p) for values ofp
outside the first Brillouin zone also. In Figs. 2~a! and 2~b!,
we show our results for two different choices of the intera
tion at s510.

Let us first discuss the dynamic structure factor in the l
energy region and in particular the behavior of the contrib
tion Z1(p) arising from the first band~dashed line!. We find
that Z1(p) exhibits characteristic oscillations whose amp
9-2
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tude is suppressed at largep. The zeros ofZ1(p) at p
52,qB(, integer! directly reflect the phonon behavior of th
excitation spectrum, which vanishes at the same values~see
Fig. 1!.

The behavior ofZ1(p) can be studied analytically in th
larges limit where the tight binding approximation applie
In this limit one can approximate the solutions of Eqs.~3!
and ~4! in the lowest band by

uq~z!5Uq(
k

eiqkd/\ f ~z2kd!, ~12!

and analogously forvq(z), wheref (z) is a function localized
near the bottom of the optical potentialV at z50, and k
labels the potential wells. Within this approximation th
function f also characterizes the ground state order par
eter, which readsw(z)5(kf (z2kd).

In the tight binding approximation the dispersion law
the lowest band takes the Bogoliubov-like form@15#

\v~p!5A«~p!@«~p!12k21#, ~13!

where

FIG. 2. Static structure factor~full line!, Z1(p) ~dashed line! for
s510, and static structure factor in the uniform gas (s50, dotted
line!; for gn50.02ER ~a! andgn50.5ER ~b!.
05360
-

«~p!52d sin2S pd

2\ D . ~14!

In the above equations,«(p) is the lowest Bloch band, de
scribing the energy per particle of a condensate with qu
momentump, d being the tunneling rate of particles be
tween two consecutive wells. The tunneling rate is related
the effective mass entering the compressibility sum r
~8!,~9! by d52mER /p2m* and decreases on increasing t
laser intensitys. The parameterk is the compressibility of
the gas as emerges from the low momentum behavior of
dispersion law~13!: \v5Ak21/m* p. In the tight binding
limit, one findsk215gnd*2d/2

d/2 f 4(z)dz @16#.
By approximating the functionf (z) with the Gaussian

f (z)5exp@2z2/2s2#/(p1/4As), one finds, after some
straightforward algebra, the result

Z1~p!5
«~p!

\v~p!
expS 2

p2s2p2

2d2qB
2 D ~15!

for the strength relative to the first band, where the widths
can be calculated numerically by minimization of the grou
state energy and behaves likes;s21/4d/p for s@1. Equa-
tion ~15! reproduces with good accuracy the numerical
sults obtained by solving the Bogoliubov equations for re
tively large values ofs. It accounts for both the suppressio
of the strength at largep through the Gaussian term, and th
oscillating behavior through the Feynman-like ter
«(p)/\v(p). The strengthZ1 has a maximum close to th
edge of the first Brillouin zone, where it takes approximate
the valueZ1(qB)'Akd/(kd11). This simple expression
shows thatZ1 is quenched both by increasing interactio
(k→0) and by increasing the optical potential (d→0). In
the cases of Figs. 2~a! and 2~b! one haskd50.95 and 0.056,
respectively. In the noninteracting case (k2150) one has
«(p)5\v(p) and the strength~15! reduces to Z1(p)
5exp(2p2s2p2/2d2qB

2). The comparison then clearly show
that the oscillating behavior ofZ1(p) as well as its quench
ing at larges are a direct consequence of two-body intera
tions. On the other hand, two-body interactions scarcely
fect the strengths toward the higher bands, providedgn
!AsER .

The quantityZ1(p) could be measured in Bragg spectro
copy experiments by tuning the momentum and the ene
transferred by the scattering photon to the values ofp and
\v corresponding to the first Bogoliubov band. In order
detect a sizable signal at largep and to point out the corre
sponding oscillating behavior ofZ1(p) ~see Fig. 2!, the in-
tensitys of the optical potential should be neither too sm
nor too large. In fact, fors→0 the strength to the lowes
band becomes weaker and weaker ifp is outside the first
Brillouin zone. For larges the strength is instead quenche
for all values ofp because of the presence of two-body i
teractions.

In Fig. 2 we also report the results for the static structu
factor ~full line! corresponding to the sumS(p)5( jZj (p).
One finds that for weak interactions@Fig. 2~a!# the static
structure factor also exhibits characteristic oscillations,
9-3
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flecting the contribution from the first band. This effect
less pronounced for larger values ofgn @Fig. 2~b!# due to the
quenching ofZ1(p). In both cases one observes an import
difference with respect to the behavior ofS(p) in the uni-
form gas~10! ~dotted lines in Fig. 2!.

The behavior ofS(p) at small momenta can be describ
exactly using sum-rule arguments. In fact, phonons exh
both the non-energy- and inverse-energy-weighted sum r
when p→0, high energy bands giving rise to contributio
of orderp2. As a consequence, high energy bands contrib
to the f-sum rule~7! but cannot affect the lowp behavior of
the non-energy-weighted moment~6!, which behaves like
upu, nor the inverse-energy-weighted moment~8!, which ap-
proaches a constant value whenp→0. The result is that in
the presence of two-body interactions the lowp behavior of
the static structure factor is entirely determined by phon
correlations and behaves like

S~p!;
upu

2m* c
, ~16!

for upu→0, consistently with the phononic dispersion la
and Eqs.~8! and ~9! for the compressibility sum rule. It is
worth noticing that the result~16! holds for any value ofs
and gn. In the absence of an optical lattice one hasm*
5m andc coincides with the Bogoliubov sound velocitycB .
Since one can writem* c5Am* k21 and bothm* andk21

increase withs, one finds that the presence of the latti
results in a suppression of the static structure factor at
values ofp, as clearly shown in Fig. 2.

The presence of the optical potential may introduce ph
fluctuations which reduce the degree of coherence of
A
D
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sample. The amount of such fluctuations depends explic
on the geometry of the system. For example, if the radial s
is much smaller than the axial one, the fluctuations are
termined by the 1D nature of the sample. In this case, aT
50, the off-diagonal one-body density exhibits the pow
law decayn(1)(ur2r 8u)→ur2r 8u2n at large distances. For
superfluid, the value ofn is fixed by the hydrodynamic fluc
tuations of the phase and is given by the expressionn
5m* cd/(2p\N0) @19#, whereN0 is the number of atoms
per site. One can easily check that, unlessN0 is of the order
of unity or m* is extremely large, the value ofn always
remains very small. Hence, coherence survives at large
tances and the application of the Bogoliubov theory is ju
fied.

Let us conclude by recalling that in Bragg scattering e
periments one actually measures the imaginary part of
response functionx rather than the dynamic structure facto
The two quantities are related by the equation Im(x)
52p@S(p,v)2S(2p,2v)#. The subtraction between th
two terms can also be crucial at low temperatures. Actua
due to thermal excitation of phonons, the dynamic struct
factor exhibits a strong temperature dependence when\v
,kBT, even if T is much smaller than the critical temper
ture for Bose-Einstein condensation. However, the differe
S(p,v)2S(2p,2v) cancels out most of this temperatu
dependence so that the measurement of Im(x) provides reli-
able information on the zero-temperature behavior of the
namic structure factor@20#.
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