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Dynamic structure factor of a Bose-Einstein condensate in a one-dimensional optical lattice
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We study the effect of a one-dimensional periodic potential on the dynamic structure factor of an interacting
Bose-Einstein condensate at zero temperature. We show that, due to phononic correlations, the excitation
strength toward the first band develops a typical oscillating behavior as a function of the momentum transfer,
and vanishes at even multiples of the Bragg momentum. The effects of interactions on the static structure factor
are found to be significantly amplified by the presence of the optical potential. Our predictions can be tested in
stimulated photon scattering experiments.
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When a Bose-Einstein condensate is loaded into an opti- B2 5 [ 7z )
cal lattice, its properties change in a very marked Whly ~5m a?JFSERS'nZ q +gnde(2)]?|e(2)=ne(2),

For deep potential wells, it even happens that the coherence )

of the sample is lost and one observes the transition to the ) .

Mott-insulator phas2,3). Interesting phenomena also occur Wheren s theaverage3D density andzthe order parameter
for low optical potential depth. For instance, Bloch oscilla- 'S norrgallze.d according t§=5,,/¢(2)|°dz=1. As usualg
tions[4], tunneling effect§5—7], and swallowtail features of =47h<a/m is the interaction coupling constant fixed by the

the band structurf8] can be investigated in this regime. In Scattering lengtia. L _
one-dimensional1D) optical lattices, the transition to the The elementary excitations correspond to solutions of the

insulator phase is expected to take place for very large inteliwsfg:)zegiSLnoev'oée%eaTi%igt GP equation and are described by
sities of the optical lattice, so that there is a very extende 9 a

range of parameters where the gas can be described as a fully #2 42 |7z ) )

coherent system. - %FJFSERSWZ F) — u+2gnd¢|”|ujq+gndeujq
In this paper, we study the elementary excitations of an

interacting Bose gas in the presence of a periodic potential =% ®;(Q)ujq, )

and discuss how these states can be excited via inelastic pro- _,

cesses using, for example, Bragg spectros¢®@0]. To this _ - J +SERSin2<7T—Z) — u+2gnd ¢|2|vi,+gnde* 2u;

purpose we develop the formalism of the dynamic structure 2m oz d H e % 1

factor, a quantity directly related to the linear response of the

system. =—h(dvjq, (%)
We will restrict ourselves to the case of a system in theyhere ¢ is the ground state solution of E(®) and the am-
presence of a one-dimensional optical potential plitudes u;, and vj, satisfy the normalization condition

JY2, 0 |uiq(2)|2—|v;q(2)|21dz=1. The solutionguj4(z) and

7-rz vjq(2) are Bloch wave_sujq(z)=exp@qz/h)ﬁjq(z) whereu;,
V(z)=sERsin2(—> (1) is periodic in space with per!od, and analogously fop .

d For each value of the quasimomentignEgs. (3) and (4)
provide an infinite set of solution®;(q), forming a band
structure labeled with (“Bogoliubov bands”. Due to the
created by two counterpropagating laser beams. INBgd  periodicity of the problem, the solutions of Ed8) and (4)
is the lattice spacing and is a dimensionless parameter with q restricted to the first Brillouin zone arjdrarying over
which denotes the intensity of the laser in units of the recoilall the bands exhaust the elementary excitations of the sys-
energyEg= qZB/Zm. Heregg=#Aw/d is the Bragg momen- tem. Still, it is often convenient to consider valuescodut-
tum denoting the boundary of the first Brillouin zone and side the first Brillouin zone and to treat the energy spectrum
is the atomic mass. The inclusion of an additional harmoniand the functionsi;, andvj, as periodic in quasimomentum
potential produced, for example, by magnetic trapping doespace with period @z (see Fig. 1L The intensitys of the
not modify the excitation spectrum in a profound way, unlessoptical potential and ratign/Eg between the interaction and
the wavelength of the excitation is comparable with the sizehe recoil energy are the relevant dimensionless parameters
of the sample. Along the tranverse directions we assume unin terms of which we will discuss the physical behavior of
form confinement, so that the 3D Gross-PitaeV&P) equa-  the system. Numerical solutions of Ed8) and (4) in the
tion for the ground state order parametgiz) takes the 1D  presence of a periodic potential were, for example, obtained
form in [11].
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12 ‘ ‘ ‘ ‘ ; hencek, can be obtained by solving the GP equati@
/ [12]. The compressibility is naturally expressed in terms of

107 1 the sound velocity, characterizing the lovg phononic be-

havior of the dispersion law in the lowest band«(=cq),

0.001 0.57
through the relation

il 1 1

g —/\»/\0_/\0- K= * ~2 ' (9)
e yf 0.24 0.10 013 | m*c

where the effective mags* differs from the bare mass be-
cause the Hamiltonian is not translationally invariant. The

G\Lﬁ_‘.‘_\o/lo“‘_\.o/m-”_ effective mass in the presence of the external potefiial
-3 -2 -1 0 1 2 3 has recently been calculated|ib3].
Py In a uniform Bose gas, the suf®) is exhausted by a

i i _ /o2 2
FIG. 1. Bogoliubov bands fog=10 andgn=0.5Ey; excitation lsmgrl]? mode Vlf]nth engrgﬁws(p)—f\/p /2m(g) /2m;]r2g'g:n).
strengthsZ; toward the states in the first three bands for N [NIS case the static structure factor obeys the Feynman

=—-1.2g, p=0.89, andp=2.8;.. relation

p2

Ss(p)=—2mﬁw8(

The capability of the system to respond to an excitation X
p

probe transferring momentumand energy: w is described

by the dynamic structure factor. In the presence of a periodic :
potential the dynamic structure factor takes the form Where we have used tifesum rule(7). Forp—0 the static

structure factof10) behaves likdp|/2mcg, while the com-

pressibility sum rule (8) becomes l/Qlcé, where cg

S(p, @)= 2 Zj(p) 80— wi(p)), (®  =.gn/mis the Bogoliubov sound velocity. The suppression
. of Sg(p) at small momenta is a direct consequence of the

whereZ;(p) are the excitation strengths relative to b phononic correlations. For large momenta, instead,_the _static
band[see Eq(11) below] and;(p) are the corresponding structure fapto(lO) a_pproaches unitysee the dotted Imes.m
excitation energies, defined by the solutions of Egsand  Fig. 2. Naotice that in the absence of two-body interactions
(4). Note thatp, here assumed to be along the optical latticeS(P) =1 for any value ofp. _ _
(z axis), is not restricted to the first Brillouin zone, being the  In the presence of the optical lattice the behavior of the
momentum transferred by the external probe. In this respecflynamic structure factor changes in a drastic way. In particu-
it is important to point out that, while the excitation energies!ar, for a given value of momentum transferit is possible
fiw;(p) are periodic as a function gf this is not true for the {0 excite several states, corresponding to different bpsets
excitation strengthg; . Eq. (5)_ and Flg._J]. An important consequence is that on one
The dynamic structure factor satisfies important sumhand it is possible to excite high energy states with small
rules. The integral of the dynamic structure factor provides/@lues ofp, and on the other hand one can excite low energy

the static structure factdnon-energy-weighted sum role  States, belonging to the lowest band, also with high momenta
p outside the first Brillouin zone. This behavior introduces

additional possibilities in Bragg spectroscopy experiments.
S(D):J S(p,w)dw. (6) In general, the dynamic structure factor has to be calcu-

lated numerically. Starting from the solution of E¢3) and

As we will see laterS(p) is strongly affected by the com- (4), the excitation strength&; can be evaluated using the

bined presence of two-body interactions and the optical latstandard prescriptiofsee, for exampld,14])

tice.

A second important sum rule obeyed by the dynamic ) — o * ipzit 2
structure factor is the model-independésum rule[18] Zi(p) Ud/z[ujq(ZHqu(z)]e o(2)dz . (1Y

(10

2 whereq belongs to the first Brillouin zone and is fixed by the

f hwS(p,w)dw= 7. (™ relation q=p+2€gg with ¢ integer. This equation shows
that, by solving Eqs(3) and (4) within the first Brillouin
Another important sum rule is the compressibility sumzone, one can calculate the strengifp) for values ofp

rule (inverse-energy-weighted sum rile outside the first Brillouin zone also. In Figs(a and Zb),
we show our results for two different choices of the interac-
f S(p, ) dol =X (g tionats=10.
how ' Let us first discuss the dynamic structure factor in the low

-0 : ; . ; .
P energy region and in particular the behavior of the contribu-

where k=[n(du/on)] ! is the thermodynamic compress- tion Z,(p) arising from the first banddashed ling We find
ibility. The density dependence of the chemical potential, andhat Z,(p) exhibits characteristic oscillations whose ampli-
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plq,

FIG. 2. Static structure factgfull line), Z,(p) (dashed lingfor
s=10, and static structure factor in the uniform gas-Q, dotted
line); for gn=0.0Z&R (a) andgn=0.5ER (b).

tude is suppressed at large The zeros ofZ,(p) at p
=2{qg({ integey directly reflect the phonon behavior of the
excitation spectrum, which vanishes at the same valses
Fig. 1).

The behavior ofZ,(p) can be studied analytically in the
large s limit where the tight binding approximation applies.
In this limit one can approximate the solutions of E¢R.
and(4) in the lowest band by

uq(z)=uq; glakdif(z—kd), (12)

and analogously far,(z), wheref(2) is a function localized
near the bottom of the optical potentisl at z=0, andk
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s(p)=25$inz(g—2). (14)

In the above equationg,(p) is the lowest Bloch band, de-
scribing the energy per particle of a condensate with quasi-
momentump, & being the tunneling rate of particles be-
tween two consecutive wells. The tunneling rate is related to
the effective mass entering the compressibility sum rule
(8),(9) by 6=2mEg/7?m* and decreases on increasing the
laser intensitys. The parametek is the compressibility of
the gas as emerges from the low momentum behavior of the
dispersion law(13): w=x~ /m*p. In the tight binding
limit, one findsx~*=gndf¥3,f*(z)dz [16].

By approximating the functiorf(z) with the Gaussian
f(2) =exd —Z/20?)/(7V*Jo), one finds, after some
straightforward algebra, the result

2 2.2
Zl(p)=%exp{ Tor )

2072 (15
for the strength relative to the first band, where the width
can be calculated numerically by minimization of the ground
state energy and behaves like-s~Y“d/# for s>1. Equa-
tion (15) reproduces with good accuracy the numerical re-
sults obtained by solving the Bogoliubov equations for rela-
tively large values of. It accounts for both the suppression
of the strength at largp through the Gaussian term, and the
oscillating behavior through the Feynman-like term
e(p)/hw(p). The strengthiz; has a maximum close to the
edge of the first Brillouin zone, where it takes approximately
the valueZ,(qg)~ V«x6/(kd+1). This simple expression
shows thatZ; is quenched both by increasing interactions
(k—0) and by increasing the optical potential-{0). In
the cases of Figs.(2) and Zb) one hasc6=0.95 and 0.056,
respectively. In the noninteracting case ¢=0) one has
e(p)=hw(p) and the strength(15) reduces toZ;(p)

= exp(— mo?p?2d%q3). The comparison then clearly shows
that the oscillating behavior &,(p) as well as its quench-
ing at larges are a direct consequence of two-body interac-
tions. On the other hand, two-body interactions scarcely af-
fect the strengths toward the higher bands, provided

< skR.

The quantityZ,(p) could be measured in Bragg spectros-
copy experiments by tuning the momentum and the energy
transferred by the scattering photon to the valuep aind
hw corresponding to the first Bogoliubov band. In order to
detect a sizable signal at largeand to point out the corre-
sponding oscillating behavior &,(p) (see Fig. 2 the in-
tensity s of the optical potential should be neither too small

labels the potential wells. Within this approximation the nor too large. In fact, fos—0 the strength to the lowest
function f also characterizes the ground state order paramband becomes weaker and weakepifs outside the first

eter, which readsg(z) =2 ,f(z—kd).

Brillouin zone. For larges the strength is instead quenched

In the tight binding approximation the dispersion law of for all values ofp because of the presence of two-body in-

the lowest band takes the Bogoliubov-like fofd®b]

fiw(p)=\e(p)[s(p)+2k ], 13

where

teractions.

In Fig. 2 we also report the results for the static structure
factor (full line) corresponding to the su(p)==;Z;(p).
One finds that for weak interaction§ig. 2@)] the static
structure factor also exhibits characteristic oscillations, re-
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flecting the contribution from the first band. This effect is sample. The amount of such fluctuations depends explicitly
less pronounced for larger valuesgnf [Fig. 2(b)] due to the  on the geometry of the system. For example, if the radial size
quenching oZ,(p). In both cases one observes an importanis much smaller than the axial one, the fluctuations are de-
difference with respect to the behavior §fp) in the uni-  termined by the 1D nature of the sample. In this casd, at
form gas(10) (dotted lines in Fig. 2 =0, the off-diagonal one-body density exhibits the power
The behavior of5(p) at small momenta can be described law decayn™(|r—r’|)—|r—r’| " at large distances. For a
exactly using sum-rule arguments. In fact, phonons exhausiuperfluid, the value of is fixed by the hydrodynamic fluc-
both the non-energy- and inverse-energy-weighted sum rulagations of the phase and is given by the expression
whenp—0, high energy bands giving rise to contributions =m*cd/(27%N,) [19], whereN, is the number of atoms
of orderp?. As a consequence, high energy bands contribut@er site. One can easily check that, unliigsis of the order
to thef-sum rule(7) but cannot affect the low behavior of  of unity or m* is extremely large, the value of always
the non-energy-weighted mome(®), which behaves like remains very small. Hence, coherence survives at large dis-
Ipl, nor the inverse-energy-weighted momésit which ap-  tances and the application of the Bogoliubov theory is justi-
proaches a constant value whpna-0. The result is that in  fied.

the presence of two-body interactions the Ipwehavior of Let us conclude by recalling that in Bragg scattering ex-
the static structure factor is entirely determined by phonorperiments one actually measures the imaginary part of the
correlations and behaves like response functioy rather than the dynamic structure factor.
The two quantities are related by the equation yin(
S(p)~ [Pl (16) =—a[S(p,w) —S(—p,—w)]. The subtraction between the
2m*c’ two terms can also be crucial at low temperatures. Actually,

) ) o . due to thermal excitation of phonons, the dynamic structure
for [p|—0, consistently with the phononic dispersion law ¢actor exhibits a strong temperature dependence when
and Eqgs.(8) and (9) for the compressibility sum rule. It is <kgT, even if T is much smaller than the critical tempera-
worth noticing that the resultl6) holds for any value 08 yre'tor Bose-Einstein condensation. However, the difference
andgn. In t_he_absence of an optlcal lattice one k_raé S(p,w)—S(—p,— w) cancels out most of this temperature
—m andc coincides with the Bogoliubov sound velocty.  jependence so that the measurement ofgrovides reli-

- - _ — _1 . . .
Since one can writen*c=ym*«" = and bothm* and«™~  gpje information on the zero-temperature behavior of the dy-
increase withs, one finds that the presence of the lattice namic structure factof20].

results in a suppression of the static structure factor at low

values ofp, as clearly shown in Fig. 2. We would like to thank A. Smerzi for useful discussions.
The presence of the optical potential may introduce phasg&his research was supported by the Ministero dell’lstruzione,

fluctuations which reduce the degree of coherence of theell'Universitae della RicercdMIUR).
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