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Collective excitations of a trapped boson-fermion mixture across demixing
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We calculate the spectrum of low-lying collective excitations in a mesoscopic cloud formed by a Bose-
Einstein condensate and a spin-polarized Fermi gas as a function of the boson-fermion repulsions. The cloud
is under isotropic harmonic confinement and its dynamics is treated in the collisional regime by using the
equations of generalized hydrodynamics with inclusion of surface effects. For large numbers of bosons, we find
that as the cloud moves towards spatial separdiiemixing with increasing boson-fermion coupling, the
frequencies of a set of collective modes show a softening followed by a sharp upturn. This behavior permits a
clear identification of the quantum phase transition. We propose a physical interpretation for the dynamical
transition point in a confined mixture, leading to a simple analytical expression for its location.
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[. INTRODUCTION dynamics in the collisional regime, which at high tempera-
ture has already been reached in some experinj&htand
After the achievement of the Bose-Einstein condensatiogan be attained at low temperature in the presence of impu-
in alkali-atom gases, advanced techniques are being deveities [17]. We solve the hydrodynamic equations beyond the
oped to cool gases of fermionic isotopes inside magnetid homas-Fermi approximation, including surface effects that
traps. Since the Pauli principle forbigavave collisions be- are crucial for a proper description of particle density fluc-
tween spin-polarized fermions, to reach the degeneracy rduations as the cloud approaches demixing.
gime in the fermionic case, one must resort to collisions The paper is organized as follows. In Sec. II, we introduce
against a distinguishable species, either bosonic or fermioni#e specific system that we study and the hydrodynamic

[1]. Boson-fermion mixtures are currently being producedequations that we use throughout the paper. Section IlI dis-
and studied in several experimefs-7]. cusses the equilibrium density profiles that are needed to

Starting from the work on Strong|y interactirﬁﬁe_“He evaluate the collective modes of the mixture in Sec. IV. Fi-

liquids, cold mixtures have played an important role in thenally, Sec. V presents a summary of our results and an out-
development and testing of the theory of quantum phas&0k towards future developments.

transitions. In this context, trapped mixtures of atomic gases
offer a unique opportunity due to their high diluteness. Mix-
tures of a Bose-Einstein condensate and a degenerate Fermi . THEORETICAL MODEL

gas are predicted to have a rich phase diagram. In the case of \we consider a dilute fluid composed of two species of
attractive boson-fermion interactions, where the bosong|kali atoms, one fermionic and the other bosonic in a Bose-
fermion overlap is largest, the boson-induced fermion-ginstein condensed state, confined inside a spherical trap at
fermion attraction may lead to the formation of a superfluidzero temperature. The interactions between the bosons and
state[8]. In the case of repulsive interactions, on the othehetween bosons and fermions are described by contact po-
hand, the system is expected to undergo spatial separati@gntials and are parametrized by the coupling constgggs
when the repulsions overcome the kinetic enefgly The —4rh2agg/mg and ggr=27h2age/m, in terms of the
conditions for demixing have been derived for a homoge yayve scattering lengthessz andage and of the massasg
neous mixturg10] and also in the experimentally relevant 5 me of each species, witm, =(1/mg+ 1/mg) ! being
case of a mixture under harmonic confinemigrt-13. The e reduced mass. The fermions are spin polarized and are
static equilibrium properties of such mixtures across phasgyken as noninteracting, since collisions in ta@ave chan-

separation and the topology of the particle density profiles ihe| are forbidden by the Pauli principle. In the following we
the demixed state have been studf@d]. Of course, the | ,ye chosegg>0 andgge>0, as for thebLi-7Li mixture

transition to the demixed state in a mesoscopic cloud undef; gied in the experiments of Schreekal. [2].

confinement is spread out as th_e overlap energy between its \we describe the dynamics of the system by starting from
two components reaches a maximum and then gradually depre equations of generalized hydrodynaniit8] for the par-

creases on further increase of the boson-fermion coupling. ic|e densitiesp, (r,t) and the current densitigs(r,t), with
In the mixed state, the dynamical properties of a bosonb:B'F_ These(r equations read as

fermion mixture have been investigated both for a homoge-

neous systeml5] and in a mesoscopic cloud under external

harmonic confinemerjtl6]. The purpose of the present paper Py )

is to follow the dynamics of a harmonically confined cloud 7+V-10=0 @

with increasing boson-fermion repulsion and to look for a

signature of the transition to spatial separation in the spec-

trum of collective modes. We focus here on the study of theand
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Ao ~ In these equations, we shall set(r,t)=p,(r)+ Sp,(r,t)
my—r + V- 117+p,VV,=0. (2 and proceed first to discuss the equilibrium profiiegr).
Here,V, are the effective mean-field potentials afd are . EQUILIBRIUM PROFILES AND SPATIAL
the kinetic stress tensors. In the dilute regime, we may adopt SEPARATION

the Hartree-Fock approximation for the effective potentials, _ . . . .
PP P The particle density profiles at equilibrium are obtained

vF:VEXt+gBFPB 3) by.imposing the steady—state conditien,/atzp in Eq.(7). _
This ensures the consistency between static and dynamical
and solutions as well as fulfilment of the generalized Kohn theo-
rem[22]. The above equilibrium condition is in fact equiva-
V=V ggpps+ Osrpr (4)  lent to the minimization of the mean-field energy functional,

whereVe*'=m_ w?2r?/2 are the(isotropio external trapping

potentials. E[PF,PB]ZJ dgr(VBPB"'%P%"'gB)
The above equations can be closed in the collisional re-

gime, where we assume a local dependence of the stress 3 3 o

tensors on the particle densities. In the dilute limit, the +J d°r Vepet gApE T+ Er

Thomas-Fermi approximation yields the fermionic stress ten-

sor as the local-density form of the tensor for the ideal Fermi N e

gas. However, we have added to this Thomas-Fermi form a 9sF | OTPrPB.

surface contribution in the form derived by von Weizsar

[19], in order to avoid spurious divergences in the densitywhere the quantum pressure or surface energy terms read as

fluctuations at the classical radius of the cloud. Thus, the

(10

form for I1|; reads as h?
! §B=H|V\/g|2 (13)
F 2 5/3 h2 ®
HijngPF 5ij_6_mF[\/EViVj\/E_Vi\/EVJ\/E]v and
5
2
whereA=72(672)%%2m . This choice is in agreement with £o= h IV Vpr 2 (12)
the general structure of the fermionic stress tensor under har- F6m i

monic confinement as demonstrated in R2€]. In the same
approximation, the bosonic stress tensor has only the surface As was found in previous studi¢9—12), on increasing
contribution the boson-fermion repulsion, the mixture undergoes spatial
52 separation. In a finite cloud, the transition is smooth and can
B_ be described by following the behavior of the boson-fermion
== Z_mB[\/gViVj\/g_vi\/gvj\@]’ ©  interaction energyE;.=dgrS d%r pgpe, Which for a given
coupling strength is determined by the overlap of the two
as can also be obtained from the Gross-Pitaevskii equatiogpecie§13,14). The onset of the transition is signaled first by
[21]. In Egs.(5) and(6), we have left out velocity-dependent 5 decrease oF;,, as a function of the boson-fermion cou-
terms that do not enter linear dynamics. . pling (partial separation until the valueE;,, becomes neg-
Using Egs.(3)—(6) for the effective potentials and the |igiple (full demixing). The maximum of the interaction en-
kinetic stress tensors, we can rewrite the equations for thgrgy as a function ofjgr has been estimated for harmonic
current densities as confinement at zero temperature within the Thomas-Fermi
approximation to lie at

s
m(r_:p(r(F(r_VV(r_gBFVp;)i (7) -~
ot grart N2 N5 1
BF F B
_ . = 0175+sz (13)
where o denotes the component different from and for ags Ng \F=
convenience we have introduced the forces
Here
Fg=-V i V*pe (8)
B _gBBPB 2ms \@ 153/5(m|:+m5)m|1:/2 agg| ¥
C1= i 312 o/
and 48 2m3 d
s h* Vpe 483 6 23mc+mg | agg) 2
| Mg \/E 1535\ 7 2mg d
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where d=(%/mgwg)*? is the bosonic harmonic-oscillator
length. The point of full demixing as given by the Thomas-
Fermi approximation occurs instead at

1/2

agp , (15

ake

full _
BF —

where ke=(48Np)Yd  and  a=[3Y4(2m)%|(me G
+mg)?/(4memg). As we shall see below, the analysis of the
mode frequencies as functions of the boson-fermion coupling
strength yields a dynamical condition for spatial separation
which is intermediate between the two static conditions laid
out in Egs.(13) and(15).

IV. COLLECTIVE EXCITATION SPECTRUM

We proceed to evaluate the dynamical behavior of the
cloud as it undergoes spatial separation. Under the assumy
tion of a weak external drive, we can neglect anharmonic
contributions. The spectrum of collective excitations is then
obtained by linearizing Ed.7) around the equilibrium state.

By taking the Fourier transform with respect to the time
variable, we thus obtain coupled eigenvalue equations for the 80
density fluctuationsip, of each species, a

moﬂzép(r:v'(poéFU)_gBFV'(pUV5p;)' (16)

The expressions for the linearized forcés, are given in
the Appendix.

We have solved Eq16) in the case of a spherically sym-
metric confinement, setting the values of the trapping fre-
quencies awr=wg=wy With wo=27x1000 s! and the
values of the boson-boson scattering length aig
=0.27 nm, which correspond to tH&.i-'Li mixture in the
Paris experimen{2,23]. We vary the mutual scattering
length agg and the number of particles of each species in
order to explore the transition from the mixed state to the
fully separated state. In particular, the chokg=10* and
Ng=2.4x 10" leads to bosonic and fermionic clouds having &
approximately the same size at zero coupling. a

The numerical procedure that we have used can be sum
marized as follows(i) we look for a spherically symmetric
steady-state solution of Eqé7)—(9) by a steepest-descent
method[24,25; (ii) we decompose the density fluctuations
into components of definite angular momentum, i.e., we fac- 1T
torize the amplitude of the fluctuations a$p,(r) 1 T,

=8p! (r)Y,m(r) with Y, the spherical harmonic functions; 0 2
and (iii ) we set up an eigenvalue problem for eadby dis-
cretizing Eq.(16) and solve it by means of standard routines

from theLaPACK library [26]. trap frequencywy) as functions of the boson-fermion scattering

The result_s for_ the_ frequenC|es_ of the monopdle Q) ._lengthagg (in nanometers The panels from top to bottom corre-
modes are given in Fig. 1 as functions of the boson-fermlo%pond toNg=2.4x 107, 10x 10F, and 10x 10° bosons. Each frame

coupling forNg= 104. and various values dfi. Asampling gjisplays the low-lying hydrodynamic modéermionic—dots and

of the eigenvectors is reported in Fig. 2. We have labeled thgosonic—open circlogrom the numerical solution of E¢16) with
modes as “fermionic”(dots or “bosonic” (circles accord-  N_=10* fermions and the other parameters as specified in the text.
ing to the nature of their eigenvalue in the limit of vanishing in each panel the small arrow indicates the onset of partial demix-
ggr. Of course, at finite values ofilgr the modes are ing from a static criterioffEq. (13)] and the large arrow indicates
coupled and the labels are just conventional, but can still béne point of vanishing fermionic density at the center of the trap
assigned by looking at the nodes of each density fluctuatiofEg. (17)]. The lines are a guide to the eye.

/®

6 8 10
age [nm]

s

FIG. 1. Frequencies df=0 collective modegin units of the
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FIG. 2. Monopolar density fluctuation profiléarbitrary unitg
as functions of the radial coordinat® units of the harmonic os- 0
cillator lengthd) for various values of the boson-fermion coupling
as indicated in the panels, witliz=2.4x 10" andN-=10*. Con-
tinuous and dashed lines display the fermionic and bosonic profiles, FIG. 3. Frequency of the lowest fermionic monopole mode after
respectively. The scale of each fluctuation has been changed to fit fmixing, as a function ofige (in nanometersfor Ng=2.4x 10’
the graph E/B indicates the ratio between the maximum value @nd Ng= 10" The circles are from the numerical solution of Eq.
attained by the fermionic and bosonic fluctuation profil@e dot-  (16), while the lines show the predictions of E(L8) taking as

ted lines show the equilibrium density profiles, again rescaled to fieffective density the maximum value of the equilibrium density
in the graph. (full line) or the density of a uniform shell witN=10* fermions

inside the Thomas-Fermi radidashed ling

fermionic (bosoni¢ modes keep a constant number of nodessond wave. The locations of the transition point according
in 6pg (dpg) with increasingggr. to the criterion in Eqs(13) and(17) are shown by the arrows

A common feature of our results in Fig. 1 is a nonmono-j, Fig. 1.
tonic behavior of the frequency of the fermionic modes as on further increasing the boson-fermion coupling in the
the cloud evolves from the mixed regime to the fully sepa-spatially separated regime, we observe that the frequency of
rated one. With increasinggr, a fermionic mode acquires the fermionic modes continues to increase. This can be un-
the character of an out-of-phase fluctuation of the two comgerstood by means of a simple model of sound-wave propa-
ponents(see Fig. 2 and we observe a softening of its fre- gation inside a uniform shell of given thickness The ve-
quency. This we interpret as a signal of the approachingcity ¢, of the wave is related to the compressibilityof the
spatial-separation transition. With increasing boson-fermiolgrmionic gas according to,= (mgprk) ~ Y2 and by impos-
repulsion, the out-of-phase oscillation requires less and quﬁg rigid boundary conditions at the edges of the shell, we

energy, until at the transition the mixture takes as its equilibxgn optain its frequency spectrum. Fbr0, the lowest
rium configuration a state that corresponds to a “frozen”g5,nd mode is given bj27]

out-of-phase oscillation. The nonzero value of the lowest
mode frequency at the transition point appears to be due to TCq
the presence of the confinement, since in a linearized theory Qsw=—+ (18)
it should tend to zero in the proper thermodynamic limit. g
The transition point as dynamically determined by theand the sound velocity can be estimated from the ideal-gas
sharp upturn in the fermionic mode frequencies does Nogxpression of the pressurp 2Ap2%) as
agree with the static criteriof13) or (15), but corresponds to
an intermediate point where the equilibrium density of the , 2 A g
fermionic cloud vanishes at the center of the t{ape the Cs=3  PF - (19
dotted lines in Fig. 2 In the limit of large number of bosons,

this point can be analytically estimated within the Thomas-smce we are assuming a constant-density shell for each
Fermi approximation to be value ofagg, to actually compare the predictions of Ef8)

with the numerical results in Fig. 1 we need a suitable choice
of the effective fermionic densityg . In Fig. 3, we show the
frequency of the lowest sound mode calculated from(E&§).

as a function oz using two choices for the effective den-
sity, one corresponding to the maximum value of the fermi-
onic equilibrium profile and the other evaluated for a uni-
where ug and ug are the chemical potentials for fermions form spherical shell with the same number of fermions and
and bosons, respectively. In a local-density picture, this corthe radii taken from the Thomas-Fermi equilibrium profile.
responds to a minimum in the velocity of the fermionic In view of the rough approximations that we are making, the

1 2
age [nm]

dyn
agr 2meg ME

ags Mg+Mg ug’

17
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. T . . T T , ,
0 3 6 9 12 0 0.4 0.8 1.2 1.6
age [nm] age [nm]
' ' : FIG. 5. Frequencies of the=1 modes(in units of the trap
5,M frequencyw,) as functions ofage (in nanometernsfor Ng=2.4
X 10" andNg=10%. The symbols and the system parameters are as
in Fig. 1.

modes show similar feature§ight panel. The behavior
found for the higher modes, e.g., those with frequencies
3 1 larger than~7wy, is instead similar to that shown in Fig. 1
and is therefore not reported in Fig. 4. These features can be
understood by considering the relative size of the two clouds;
the hole produced in the fermionic cloud by the bosons is, in
this case, so small that the low-lying fermionic fluctuations

cannot sense it.
Finally, we have solved the hydrodynamic equations for

7.7 . . the | =1 dipolar oscillations with a choice of particle num-
0 3 6 9 12 bers analogous to that made for the monopole modes in Fig.
aBF [nm] 1. As is shown in Fig. 5, in this case, the lowest fermionic-

mode frequency initially decreases monotonically and tends
FIG. 4. Frequencies of the=0 (upper panglandl=1 (lower 0 @ constant value for large values @i . In addition, we
pane) collective excitationgin units of the trap frequenci,) as  find the Kohn mode at the frequency of the trap for any value
functions ofagr (in nanometersfor the caseNg=Ng=10°. The  Of the boson-fermion coupling. The higher modes exhibit
symbols and the system parameters are as in Fig. 1. instead the same behavior as the monopole modes in Fig. 1.

agreement in Fig. 3 between the numerical calculation of the
lowest monopole frequency and this simple model is quite
satisfactory. Such a degree of quantitative agreement is not In summary, in this paper, we have studied how the mu-
found for the high-frequency modes, since the density fluctual repulsive interactions affect the spectrum of collective
tuation tails become more marked and are more sensitive texcitations in a trapped boson-fermion mixture in the colli-
the inhomogeneity of the fermionic shell. sional regime as the mixture undergoes spatial separation.
Returning to Fig. 1, it also shows that the frequencies of~or this purpose, we have derived and solved the equations
the bosonic monopole modes are essentially unaffected byf generalized hydrodynamics beyond the Thomas-Fermi ap-
the boson-fermion interaction. This is due to the fact thatproximation, by including surface density-gradient terms in
with our choice of system parameters the bosonic cloud hathe form first proposed by von Weizsdeer. When the two
a considerably higher density than the fermionic one, leadingomponent clouds have similar siz@splying Ng>Ng), we
to a weakly coupled dynamics. It is worth recalling that thishave found that the frequencies of the fermioicO modes
is at present a relevant experimental situation, with the ferdecrease as the boson-fermion scattering length is increased
mionic cloud containing a denser Bose-Einstein condensateand the mixture approaches demixing. This frequency soft-
We have also examined the case of comparable numbeening is directly related to the change in shape of the equi-
of bosons and fermionésee Fig. 4. In this case, the fre- librium density profiles, as the repulsive interactions become
quency of the low-lying bosonic monopole modes increasestronger, and reflects the tendency of the two components to
slowly with increasing boson-fermion coupling, while the spatially separate. At the point where the fermions are ex-
frequency of the fermionic ones is quite unchanged exceppelled from the center of the trap, although the two clouds
for level crossinggleft panel of Fig. 4. The dipolar (=1) still partially overlap, the fermionic mode frequencies start to

V. SUMMARY AND CONCLUDING REMARKS
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grow in a fashion that essentially agrees with a simple model APPENDIX: FULL EXPRESSIONS FOR FORCE
of sound wave propagation inside a fermionic spherical shell. FLUCTUATIONS
A similar trend is also found in the frequencies of the fermi-
onic =1 bulk modes, while the bosonic dipolar surface
mode displays the Kohn-theorem behavior and is therefor
unaffected by the interactions. All these features are verfS 6p.(")= 8po(r)Yim(F). Then, for each, we calculate
different from those that we observe fg=Ng, when the  0F,=F,[po(r)+ po()Yim(r)1—F,[p,(r)] to linear
bosonic modes are the most sensitive to the boson-fermioierms in the density fluctuations. This yields
coupling.
We have thus found a clear dynamical signature of the
onset of spatial demixing in the spectrum of collective modes  §Fg= —V|
in the caseNg>N¢g. This is expected to be helpful since the
formation of a symmetric “egg” configuration in the de-
mixed cloud is not easily detected from an analysis of col- i I(d+1)
umn density profile$13]. The dynamical condition for de- r2pe
mixing is given by the point where the topology of the
fermionic equilibrium density profile changes as the fermi- #2
ons start to arrange themselves in a shell around the bosons. - mb‘ﬂp’
This point does not coincide with the points of partial or full
demixing as obtained from the static study of the boson-
fermion energy functional. However, this is easily under-and
stood if one considers that in a finite system, the transition is
smooth and can be characterized by several different condi-
tions, which will coincide only in the thermodynamic limit. oFg=—
The present analysis can be extended to study the transi-

As was mentioned in the text, we decompose the particle
gensny fluctuations in their angular-momentum components

2
2Ape Pope+

hz(p’F PEPE
6melrpg 2% 29}

h? PF
— - 5 4
6me ( rpe 2p2 PF

Ylm} (A1)

Oeedpet 5—

tion towards “exotic” configurations of the demixed cloud, 2 ,
as predicted by the static study of the energy functiphdl. + Id+1) _ ﬁ_ i _Ps Sp!
A calculation of the spectrum of collective excitations of a r’pg ® 2mg | rpg 203 ®
boson-fermion mixture across spatial separation in the colli-
sionless regime is in progress and will be reported elsewhere. h? }
——— 80} Yim( - (A2)
4mg p
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