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Collective excitations of a trapped boson-fermion mixture across demixing

P. Capuzzi, A. Minguzzi, and M. P. Tosi
NEST-INFM and Classe di Scienze, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

~Received 27 January 2003; published 23 May 2003!

We calculate the spectrum of low-lying collective excitations in a mesoscopic cloud formed by a Bose-
Einstein condensate and a spin-polarized Fermi gas as a function of the boson-fermion repulsions. The cloud
is under isotropic harmonic confinement and its dynamics is treated in the collisional regime by using the
equations of generalized hydrodynamics with inclusion of surface effects. For large numbers of bosons, we find
that as the cloud moves towards spatial separation~demixing! with increasing boson-fermion coupling, the
frequencies of a set of collective modes show a softening followed by a sharp upturn. This behavior permits a
clear identification of the quantum phase transition. We propose a physical interpretation for the dynamical
transition point in a confined mixture, leading to a simple analytical expression for its location.
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I. INTRODUCTION

After the achievement of the Bose-Einstein condensa
in alkali-atom gases, advanced techniques are being de
oped to cool gases of fermionic isotopes inside magn
traps. Since the Pauli principle forbidss-wave collisions be-
tween spin-polarized fermions, to reach the degeneracy
gime in the fermionic case, one must resort to collisio
against a distinguishable species, either bosonic or fermi
@1#. Boson-fermion mixtures are currently being produc
and studied in several experiments@2–7#.

Starting from the work on strongly interacting3He-4He
liquids, cold mixtures have played an important role in t
development and testing of the theory of quantum ph
transitions. In this context, trapped mixtures of atomic ga
offer a unique opportunity due to their high diluteness. M
tures of a Bose-Einstein condensate and a degenerate F
gas are predicted to have a rich phase diagram. In the ca
attractive boson-fermion interactions, where the bos
fermion overlap is largest, the boson-induced fermio
fermion attraction may lead to the formation of a superflu
state@8#. In the case of repulsive interactions, on the oth
hand, the system is expected to undergo spatial separ
when the repulsions overcome the kinetic energy@9#. The
conditions for demixing have been derived for a homo
neous mixture@10# and also in the experimentally releva
case of a mixture under harmonic confinement@11–13#. The
static equilibrium properties of such mixtures across ph
separation and the topology of the particle density profile
the demixed state have been studied@14#. Of course, the
transition to the demixed state in a mesoscopic cloud un
confinement is spread out as the overlap energy betwee
two components reaches a maximum and then gradually
creases on further increase of the boson-fermion couplin

In the mixed state, the dynamical properties of a bos
fermion mixture have been investigated both for a homo
neous system@15# and in a mesoscopic cloud under extern
harmonic confinement@16#. The purpose of the present pap
is to follow the dynamics of a harmonically confined clou
with increasing boson-fermion repulsion and to look for
signature of the transition to spatial separation in the sp
trum of collective modes. We focus here on the study of
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dynamics in the collisional regime, which at high tempe
ture has already been reached in some experiments@7# and
can be attained at low temperature in the presence of im
rities @17#. We solve the hydrodynamic equations beyond
Thomas-Fermi approximation, including surface effects t
are crucial for a proper description of particle density flu
tuations as the cloud approaches demixing.

The paper is organized as follows. In Sec. II, we introdu
the specific system that we study and the hydrodyna
equations that we use throughout the paper. Section III
cusses the equilibrium density profiles that are needed
evaluate the collective modes of the mixture in Sec. IV.
nally, Sec. V presents a summary of our results and an
look towards future developments.

II. THEORETICAL MODEL

We consider a dilute fluid composed of two species
alkali atoms, one fermionic and the other bosonic in a Bo
Einstein condensed state, confined inside a spherical tra
zero temperature. The interactions between the bosons
between bosons and fermions are described by contact
tentials and are parametrized by the coupling constantsgBB
54p\2aBB /mB and gBF52p\2aBF /mr in terms of the
s-wave scattering lengthsaBB andaBF and of the massesmB
and mF of each species, withmr5(1/mB11/mF)21 being
the reduced mass. The fermions are spin polarized and
taken as noninteracting, since collisions in thes-wave chan-
nel are forbidden by the Pauli principle. In the following w
have chosengBB.0 andgBF.0, as for the6Li- 7Li mixture
studied in the experiments of Schrecket al. @2#.

We describe the dynamics of the system by starting fr
the equations of generalized hydrodynamics@18# for the par-
ticle densitiesrs(r ,t) and the current densitiesjs(r ,t), with
s5B,F. These equations read as

]rs

]t
1¹• js50 ~1!

and
©2003 The American Physical Society05-1
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ms

] js

]t
1“•Ps1rs“Ṽs50. ~2!

Here,Ṽs are the effective mean-field potentials andPs are
the kinetic stress tensors. In the dilute regime, we may ad
the Hartree-Fock approximation for the effective potentia

ṼF5VF
ext1gBF rB ~3!

and

ṼB5VB
ext1gBBrB1gBFrF , ~4!

whereVs
ext5msvs

2r 2/2 are the~isotropic! external trapping
potentials.

The above equations can be closed in the collisional
gime, where we assume a local dependence of the s
tensors on the particle densities. In the dilute limit, t
Thomas-Fermi approximation yields the fermionic stress t
sor as the local-density form of the tensor for the ideal Fe
gas. However, we have added to this Thomas-Fermi for
surface contribution in the form derived by von Weizsa¨cker
@19#, in order to avoid spurious divergences in the dens
fluctuations at the classical radius of the cloud. Thus,
form for P i j

F reads as

P i j
F 5

2

5
ArF

5/3d i j 2
\2

6mF
@ArF“ i“ jArF2¹iArF“ jArF#,

~5!

whereA5\2(6p2)2/3/2mF . This choice is in agreement wit
the general structure of the fermionic stress tensor under
monic confinement as demonstrated in Ref.@20#. In the same
approximation, the bosonic stress tensor has only the sur
contribution

P i j
B52

\2

2mB
@ArB“ i“ jArB2“ iArB“ jArB#, ~6!

as can also be obtained from the Gross-Pitaevskii equa
@21#. In Eqs.~5! and~6!, we have left out velocity-dependen
terms that do not enter linear dynamics.

Using Eqs.~3!–~6! for the effective potentials and th
kinetic stress tensors, we can rewrite the equations for
current densities as

ms

] js

]t
5rs~Fs2“Vs2gBF“rs̄!, ~7!

where s̄ denotes the component different froms, and for
convenience we have introduced the forces

FB52“FgBBrB2
\2

2mB

“

2ArB

ArB
G ~8!

and

FF52“FArF
2/32

\2

6mF

“

2ArF

ArF
G . ~9!
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In these equations, we shall setrs(r ,t)5rs(r )1drs(r ,t)
and proceed first to discuss the equilibrium profilesrs(r ).

III. EQUILIBRIUM PROFILES AND SPATIAL
SEPARATION

The particle density profiles at equilibrium are obtain
by imposing the steady-state condition] js /]t50 in Eq. ~7!.
This ensures the consistency between static and dynam
solutions as well as fulfilment of the generalized Kohn the
rem @22#. The above equilibrium condition is in fact equiva
lent to the minimization of the mean-field energy function

E@rF ,rB#5E d3r S VBrB1
gBB

2
rB

21jBD
1E d3r S VFrF1

3

5
ArF

5/31jFD
1gBFE d3rrFrB , ~10!

where the quantum pressure or surface energy terms rea

jB5
\2

2mB
u“ArBu2 ~11!

and

jF5
\2

6mF
u“ArFu2. ~12!

As was found in previous studies@9–12#, on increasing
the boson-fermion repulsion, the mixture undergoes spa
separation. In a finite cloud, the transition is smooth and
be described by following the behavior of the boson-ferm
interaction energyEint5gBF*d3rrBrF , which for a given
coupling strength is determined by the overlap of the t
species@13,14#. The onset of the transition is signaled first b
a decrease ofEint as a function of the boson-fermion cou
pling ~partial separation!, until the valueEint becomes neg-
ligible ~full demixing!. The maximum of the interaction en
ergy as a function ofgBF has been estimated for harmon
confinement at zero temperature within the Thomas-Fe
approximation to lie at

aBF
part

aBB
5S c1

NF
1/2

NB
2/5

1c2

NB
2/5

NF
1/3D 21

. ~13!

Here

c15
153/5

481/2

~mF1mB!mF
1/2

2mB
3/2 S aBB

d D 3/5

,

c25
481/3

153/5S 6

p D 2/3mF1mB

2mF
S aBB

d D 2/5

, ~14!
5-2
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where d5(\/mBvB)1/2 is the bosonic harmonic-oscillato
length. The point of full demixing as given by the Thoma
Fermi approximation occurs instead at

aBF
f ull5S aBB

akF
D 1/2

, ~15!

where kF5(48NF)1/6/d and a5@31/3/(2p)2/3#(mF
1mB)2/(4mFmB). As we shall see below, the analysis of t
mode frequencies as functions of the boson-fermion coup
strength yields a dynamical condition for spatial separat
which is intermediate between the two static conditions l
out in Eqs.~13! and ~15!.

IV. COLLECTIVE EXCITATION SPECTRUM

We proceed to evaluate the dynamical behavior of
cloud as it undergoes spatial separation. Under the assu
tion of a weak external drive, we can neglect anharmo
contributions. The spectrum of collective excitations is th
obtained by linearizing Eq.~7! around the equilibrium state
By taking the Fourier transform with respect to the tim
variable, we thus obtain coupled eigenvalue equations for
density fluctuationsdrs of each species,

msV2drs5“•~rsdFs!2gBF“•~rs“drs̄!. ~16!

The expressions for the linearized forcesdFs are given in
the Appendix.

We have solved Eq.~16! in the case of a spherically sym
metric confinement, setting the values of the trapping f
quencies atvF5vB5v0 with v052p31000 s21 and the
values of the boson-boson scattering length ataBB
50.27 nm, which correspond to the6Li- 7Li mixture in the
Paris experiment@2,23#. We vary the mutual scatterin
length aBF and the number of particles of each species
order to explore the transition from the mixed state to
fully separated state. In particular, the choiceNF5104 and
NB52.43107 leads to bosonic and fermionic clouds havi
approximately the same size at zero coupling.

The numerical procedure that we have used can be s
marized as follows:~i! we look for a spherically symmetric
steady-state solution of Eqs.~7!–~9! by a steepest-descen
method@24,25#; ~ii ! we decompose the density fluctuatio
into components of definite angular momentum, i.e., we f
torize the amplitude of the fluctuations asdrs(r )
5drs

l (r )Ylm( r̂ ) with Ylm the spherical harmonic functions
and ~iii ! we set up an eigenvalue problem for eachl by dis-
cretizing Eq.~16! and solve it by means of standard routin
from theLAPACK library @26#.

The results for the frequencies of the monopole (l 50)
modes are given in Fig. 1 as functions of the boson-ferm
coupling forNF5104 and various values ofNB . A sampling
of the eigenvectors is reported in Fig. 2. We have labeled
modes as ‘‘fermionic’’~dots! or ‘‘bosonic’’ ~circles! accord-
ing to the nature of their eigenvalue in the limit of vanishi
gBF . Of course, at finite values ofgBF the modes are
coupled and the labels are just conventional, but can stil
assigned by looking at the nodes of each density fluctuat
05360
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FIG. 1. Frequencies ofl 50 collective modes~in units of the
trap frequencyv0) as functions of the boson-fermion scatterin
length aBF ~in nanometers!. The panels from top to bottom corre
spond toNB52.43107, 103106, and 103105 bosons. Each frame
displays the low-lying hydrodynamic modes~fermionic—dots and
bosonic—open circles! from the numerical solution of Eq.~16! with
NF5104 fermions and the other parameters as specified in the t
In each panel the small arrow indicates the onset of partial dem
ing from a static criterion@Eq. ~13!# and the large arrow indicate
the point of vanishing fermionic density at the center of the tr
@Eq. ~17!#. The lines are a guide to the eye.
5-3
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fermionic ~bosonic! modes keep a constant number of nod
in drF (drB) with increasinggBF .

A common feature of our results in Fig. 1 is a nonmon
tonic behavior of the frequency of the fermionic modes
the cloud evolves from the mixed regime to the fully sep
rated one. With increasinggBF , a fermionic mode acquire
the character of an out-of-phase fluctuation of the two co
ponents~see Fig. 2! and we observe a softening of its fre
quency. This we interpret as a signal of the approach
spatial-separation transition. With increasing boson-ferm
repulsion, the out-of-phase oscillation requires less and
energy, until at the transition the mixture takes as its equi
rium configuration a state that corresponds to a ‘‘froze
out-of-phase oscillation. The nonzero value of the low
mode frequency at the transition point appears to be du
the presence of the confinement, since in a linearized the
it should tend to zero in the proper thermodynamic limit.

The transition point as dynamically determined by t
sharp upturn in the fermionic mode frequencies does
agree with the static criterion~13! or ~15!, but corresponds to
an intermediate point where the equilibrium density of t
fermionic cloud vanishes at the center of the trap~see the
dotted lines in Fig. 2!. In the limit of large number of bosons
this point can be analytically estimated within the Thom
Fermi approximation to be

aBF
dyn

aBB
5

2mF

mB1mF

mF

mB
, ~17!

wheremF and mB are the chemical potentials for fermion
and bosons, respectively. In a local-density picture, this c
responds to a minimum in the velocity of the fermion

FIG. 2. Monopolar density fluctuation profiles~arbitrary units!
as functions of the radial coordinate~in units of the harmonic os-
cillator lengthd) for various values of the boson-fermion couplin
as indicated in the panels, withNB52.43107 andNF5104. Con-
tinuous and dashed lines display the fermionic and bosonic profi
respectively. The scale of each fluctuation has been changed to
the graph (F/B indicates the ratio between the maximum val
attained by the fermionic and bosonic fluctuation profiles!. The dot-
ted lines show the equilibrium density profiles, again rescaled t
in the graph.
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sound wave. The locations of the transition point accord
to the criterion in Eqs.~13! and~17! are shown by the arrows
in Fig. 1.

On further increasing the boson-fermion coupling in t
spatially separated regime, we observe that the frequenc
the fermionic modes continues to increase. This can be
derstood by means of a simple model of sound-wave pro
gation inside a uniform shell of given thicknessh. The ve-
locity cs of the wave is related to the compressibilityk of the
fermionic gas according tocs5(mFrFk)21/2 and by impos-
ing rigid boundary conditions at the edges of the shell,
can obtain its frequency spectrum. Forl 50, the lowest
sound mode is given by@27#

VSW5
pcs

h
~18!

and the sound velocity can be estimated from the ideal-
expression of the pressure (p5 2

5 ArF
5/3) as

cs
25

2

3

A

mF
rF

2/3. ~19!

Since we are assuming a constant-density shell for e
value ofaBF , to actually compare the predictions of Eq.~18!
with the numerical results in Fig. 1 we need a suitable cho
of the effective fermionic densityrF . In Fig. 3, we show the
frequency of the lowest sound mode calculated from Eq.~18!
as a function ofaBF using two choices for the effective den
sity, one corresponding to the maximum value of the ferm
onic equilibrium profile and the other evaluated for a u
form spherical shell with the same number of fermions a
the radii taken from the Thomas-Fermi equilibrium profil
In view of the rough approximations that we are making, t

s,
in

t

FIG. 3. Frequency of the lowest fermionic monopole mode a
demixing, as a function ofaBF ~in nanometers! for NB52.43107

and NF5104. The circles are from the numerical solution of E
~16!, while the lines show the predictions of Eq.~18! taking as
effective density the maximum value of the equilibrium dens
~full line! or the density of a uniform shell withNF5104 fermions
inside the Thomas-Fermi radii~dashed line!.
5-4
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agreement in Fig. 3 between the numerical calculation of
lowest monopole frequency and this simple model is qu
satisfactory. Such a degree of quantitative agreement is
found for the high-frequency modes, since the density fl
tuation tails become more marked and are more sensitiv
the inhomogeneity of the fermionic shell.

Returning to Fig. 1, it also shows that the frequencies
the bosonic monopole modes are essentially unaffected
the boson-fermion interaction. This is due to the fact t
with our choice of system parameters the bosonic cloud
a considerably higher density than the fermionic one, lead
to a weakly coupled dynamics. It is worth recalling that th
is at present a relevant experimental situation, with the
mionic cloud containing a denser Bose-Einstein condens

We have also examined the case of comparable num
of bosons and fermions~see Fig. 4!. In this case, the fre-
quency of the low-lying bosonic monopole modes increa
slowly with increasing boson-fermion coupling, while th
frequency of the fermionic ones is quite unchanged exc
for level crossings~left panel of Fig. 4!. The dipolar (l 51)

FIG. 4. Frequencies of thel 50 ~upper panel! and l 51 ~lower
panel! collective excitations~in units of the trap frequencyv0) as
functions ofaBF ~in nanometers! for the caseNB5NF5105. The
symbols and the system parameters are as in Fig. 1.
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modes show similar features~right panel!. The behavior
found for the higher modes, e.g., those with frequenc
larger than'7v0, is instead similar to that shown in Fig.
and is therefore not reported in Fig. 4. These features ca
understood by considering the relative size of the two clou
the hole produced in the fermionic cloud by the bosons is
this case, so small that the low-lying fermionic fluctuatio
cannot sense it.

Finally, we have solved the hydrodynamic equations
the l 51 dipolar oscillations with a choice of particle num
bers analogous to that made for the monopole modes in
1. As is shown in Fig. 5, in this case, the lowest fermion
mode frequency initially decreases monotonically and te
to a constant value for large values ofgBF . In addition, we
find the Kohn mode at the frequency of the trap for any va
of the boson-fermion coupling. The higher modes exhi
instead the same behavior as the monopole modes in Fi

V. SUMMARY AND CONCLUDING REMARKS

In summary, in this paper, we have studied how the m
tual repulsive interactions affect the spectrum of collect
excitations in a trapped boson-fermion mixture in the co
sional regime as the mixture undergoes spatial separa
For this purpose, we have derived and solved the equat
of generalized hydrodynamics beyond the Thomas-Fermi
proximation, by including surface density-gradient terms
the form first proposed by von Weizsa¨cker. When the two
component clouds have similar sizes~implying NB@NF), we
have found that the frequencies of the fermionicl 50 modes
decrease as the boson-fermion scattering length is incre
and the mixture approaches demixing. This frequency s
ening is directly related to the change in shape of the eq
librium density profiles, as the repulsive interactions beco
stronger, and reflects the tendency of the two componen
spatially separate. At the point where the fermions are
pelled from the center of the trap, although the two clou
still partially overlap, the fermionic mode frequencies start

FIG. 5. Frequencies of thel 51 modes~in units of the trap
frequencyv0) as functions ofaBF ~in nanometers! for NB52.4
3107 andNF5104. The symbols and the system parameters are
in Fig. 1.
5-5
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grow in a fashion that essentially agrees with a simple mo
of sound wave propagation inside a fermionic spherical sh
A similar trend is also found in the frequencies of the ferm
onic l 51 bulk modes, while the bosonic dipolar surfa
mode displays the Kohn-theorem behavior and is there
unaffected by the interactions. All these features are v
different from those that we observe forNB.NF , when the
bosonic modes are the most sensitive to the boson-ferm
coupling.

We have thus found a clear dynamical signature of
onset of spatial demixing in the spectrum of collective mod
in the caseNB@NF . This is expected to be helpful since th
formation of a symmetric ‘‘egg’’ configuration in the de
mixed cloud is not easily detected from an analysis of c
umn density profiles@13#. The dynamical condition for de
mixing is given by the point where the topology of th
fermionic equilibrium density profile changes as the ferm
ons start to arrange themselves in a shell around the bos
This point does not coincide with the points of partial or fu
demixing as obtained from the static study of the bos
fermion energy functional. However, this is easily und
stood if one considers that in a finite system, the transitio
smooth and can be characterized by several different co
tions, which will coincide only in the thermodynamic limit

The present analysis can be extended to study the tra
tion towards ‘‘exotic’’ configurations of the demixed cloud
as predicted by the static study of the energy functional@14#.
A calculation of the spectrum of collective excitations of
boson-fermion mixture across spatial separation in the c
sionless regime is in progress and will be reported elsewh
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APPENDIX: FULL EXPRESSIONS FOR FORCE
FLUCTUATIONS

As was mentioned in the text, we decompose the part
density fluctuations in their angular-momentum compone
as drs(r )5drs(r )Ylm( r̂ ). Then, for eachl, we calculate
dFs5Fs@rs(r )1drs(r )Ylm( r̂ )#2Fs@rs(r )# to linear
terms in the density fluctuations. This yields

dFF52“H F2

3
ArF

21/3drF1
\2

6mF
S rF8

rrF
2

1
rF9

2rF
2

2
rF8

2

2rF
3

1
l ~ l 11!

r 2rF
D drF2

\2

6mF
S 1

rrF
2

rF8

2rF
2 D drF8

2
\2

12mFrF
drF9 GYlmJ ~A1!

and

dFB52“H FgBBdrB1
\2

2mB
S rB8

rrB
2

1
rB9

2rB
2

2
rB8

2

2rB
3

1
l ~ l 11!

r 2rB
D drB2

\2

2mB
S 1

rrB
2

rB8

2rB
2 D drB8

2
\2

4 mB

1

rB
drB9 GYlmJ . ~A2!

In these equations, a prime means a derivative with res
to r.
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