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Superfluidity in the interior-gap states
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Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan

~Received 31 December 2002; published 20 May 2003!

We investigate superfluidity in the interior-gap states proposed by Liu and Wilczek. At weak coupling, we
find thegaplessinterior-gap state unstable in physically accessible regimes of the parameter space, where the
superfluid density is shown to be always negative. We therefore conclude that the spatially uniform interior-gap
phase is extremely unstable unless it is fully gapped; in this case, however, the state is rather similar to
conventional BCS states.
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I. INTRODUCTION

The advances of techniques in manipulating dilute c
atoms in traps have opened up many fascinating possibil
to condensed matter physics in recent years@1#. The Bose-
Einstein condensation of dilute alkali-metal atoms has p
vided Bose-condensed systems previously known only
liquid 4He. Experimentalists are now investigating the po
sibility of realizing the Bardeen-Cooper-Schrieffer~BCS!
states in trapped fermionic atoms@2–4#. In the simplest case
of spin-singlet BCS states, as in ordinary superconduc
such as aluminum, ‘‘conventional’’ Cooper pairs are form
from fermions with opposite spins@5#. In atom traps, a cor-
responding realization could be two species of fermio
which pair via interspecies interaction. The two species
fermions can be the same kind of atoms~say, 6Li) in differ-
ent hyperfine states, or, in the most general case, diffe
fermionic atoms.

Conventionally, the BCS state is a condensate of Coo
pairs consisting of fermions with equal mass and oppo
spins from states with a single Fermi surface. In consider
superconductivity in systems containing ferromagnetica
coupled paramagnetic impurities, Fulde and Ferrell, and
dependently Larkin and Ovchinnikov@7# ~FFLO!, studied
Cooper pairing in systems with mismatched Fermi surfac
They found that a spatiallynonuniformphase can be mor
favored than the BCS states in certain ranges of tempera
and Fermi-surface mismatches. Recently Liu and Wilcz
~LW!, motivated by recent developments in atomic phys
studied a system of interacting fermions consisting of t
species of particles with unequal masses and mismatc
Fermi surfaces@6#. Assuming pairing only in the vicinity of
the smaller Fermi surface, they claimed that at weak c
pling there exists a superconducting state that is spat
uniform and could be energetically more favorable than
FFLO state if the coupling strength is above a critical val
This state is characterized by the coexistence of super
and normal componentsat zero temperaturethat are sepa-
rated by a momentum gap between the two Fermi surfa
~thus the ‘‘interior-gap’’ state!. LW concluded that the critica
coupling strength for the interior-gap state could be vani
ingly small when the mass difference between the two
mion species is large.

In this paper, we reexamine the possibility of an interi
gap phase, having in mind cold dilute fermionic atoms
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traps. Instead of postulating pairing only around the sma
Fermi surface@6#, here we consider a short-range attracti
interaction arising from the low-energy scattering betwe
fermions of unlike species. We derive and solve the g
equation, and then further examine the current respons
the interior-gap state in the weak coupling limit. Surpr
ingly, we find the state unstable in all physically accessi
regimes unless it is fully gapped.

II. THE MODEL AND THE GAP EQUATION

We consider an atom trap that contains two species
fermions with massmh.ml . We assume that the gas is d
lute, with the fermions interacting via a short-range intera
tion ~i.e., both the scattering length and the range of
interaction between the two fermion species are much
than the interparticle distances!. This interaction can there
fore be modeled by ad-function-like coupling of strength
2g.0, which ultimately causes pairing between the hea
(h) and light (l ) particles. The system is thus described
the Hamiltonian

H5 (
pa5h,l

jpaapa
† apa1

g

2 (
p,p8

ap8h
† a2p8 l

† a2plaph . ~1!

Hereapa andapa
† annihilate and create ana species particle

with momentump. For simplicity, we ignore the trapping
potential and take parabolic dispersions for the partic
jpa5(p22pFa

2 )/2ma with pFa the Fermi momentum.
Since the gas is dilute, we shall make the mean-field

proximation and define the space-independent order par
eter D52g(p^apha2pl& which is chosen to be real. Th
quasiparticle dispersions are then obtained from the stan
procedure@5#, yielding

Eph,l56
jph2jpl

2
1AS jph1jpl

2 D 2

1D2. ~2!

The gap equation is derived from the Hamiltonian up
minimizing the free energy with respect toD. However, due
to the short-range nature of the pairing interaction, the res
ing formula has ultraviolet divergence. To resolve the pro
lem, we eliminate the coupling constantg in favor of the
scattering lengtha for two-particle scattering~betweenh and
l ) in vacuum. The regularized gap equation reads@8#
©2003 The American Physical Society03-1
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2
mr

2pa
5(

p
F 1

Eh1El
@12 f ~Eh!2 f ~El !#2

1

jh
01j l

0G ,

~3!

where mr5mhml /(mh1ml) is the reduced mass,a the
s-wave scattering length,f the Fermi function, andja

0

5p2/2ma the particle dispersion in vacuum. Here and belo
for brevity, we omit the subscriptp when no confusion
would likely arise.

We solve the gap equation at zero temperature by plot
the right hand side~RHS! of Eq. ~3! for different values of
ml /mh over the parameter space (p̄F ,D̄), where p̄F

[pFl /pFh andD̄[uDu/2umhu with mh the chemical potentia
of the heavy particles. Sincea,0 for attractive interactions
~without formation ofh–l bound states in vacuum!, we seek
solutions ofD such that the RHS is positive. Figure 1 show
typical plots for the RHS of the gap equation withmh
5ml . The profile atpFl /pFh51 in Fig. 1~b! thus corre-
sponds to the usual BCS case. In this case the RHS dive
as D→0, corresponding to the well-known fact that an i
finitesimally small attractive interaction can lead to pairin
However, two differences from the usual BCS states oc
here. First, the RHS becomes negative at largeD̄, indicating
no solution for attractive interaction. Second, whenpFh
ÞpFl , as displayed in Fig. 1~b!, a finite peak~maximum as

FIG. 1. The right hand side of the gap equation@in units of
2p/(pFhmr)] for mh5ml ; ~a! shows the three-dimensional plo
and ~b! the profiles atpFl /pFh50.5 ~dot-dashed line!, 1.0 ~full
line!, and 1.5~dashed line!. The ridges in~a! correspond to the
critical valuesDc in Eq. ~4!, which appear as peaks in~b!.
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a function ofD) arises in the RHS of the gap equation
finite D. In the three-dimensional plots of Fig. 1~a!, these
peaks appear as ridges over the (p̄F ,D̄) plane. The existence
of these peaks~ridges! implies that the system requires
critical coupling strength for solutions to the gap equati
when there are Fermi-surface mismatches. Another sig
cance of these peaks and ridges is related to the quasipa
properties of the system, as we shall now explain.

An important feature of the interior-gap state as propo
by LW is the coexistence of the superfluid and normal co
ponentsat zero temperature; in other words, there exist gap
less excitations. However, as one can check from Eq.~2!,
this is possible only when the magnitude of the order para
eter uDu is smaller than

Dc5
upFh

2 2pFl
2 u

4Amhml

. ~4!

WhenuDu,Dc , depending on the relative magnitude ofpFh
andpFl , eitherEh or El crosses zero at the points~see Fig.
2!

p1,25S pFh
2 1pFl

2 7A~pFh
2 2pFl

2 !2216mhmlD
2

2
D 1/2

. ~5!

In the eventuDu.Dc , Eh,l both stay positive for all values o
p. There are then no gapless excitations and the interior-
state has only the superfluid component at zero tempera
The peaks and ridges in the plots for the RHS turn out to
located exactly at the valueuDu5Dc of Eq. ~4!. Indeed, since
uDu5Dc draws the boundary between the gapped and
gapless regions over the parameter space, one can exp
qualitative change when plotting the RHS across this li
We will be interested mainly in the gapless regions, nam
whereuDu,Dc .

FIG. 2. The quasiparticle dispersionsEh and 2El for mh

57ml and pFh52.0pFl ; the normal-state dispersionsjh and 2j l

are also shown for the heavy~dotted line! and light ~dashed line!
species. HereD50.6umhu,Dc50.99umhu. It is seen thatEh inter-
sects thep axis at the pointsp1 and p2, which correspond to the
regions of gapless excitations.
3-2
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III. CURRENT RESPONSE

When uDu,Dc the interior-gap state has gapless exci
tions from the quasiparticle branch whose dispersion cro
zero. In the FFLO ground state, the quasiparticles produ
flow which exactly cancels the current due to the fini
momentum Cooper pairs. This lowers the free energy
stabilizes the FFLO states@7#. In the interior-gap state, th
Cooper pairs are stationary in the absence of any super
It is therefore of interest to investigate the current respo
of the interior-gap state; in particular, the effects of the q
siparticles in the current-carrying states.

In the static case the quasiparticle distributions of
interior-gap phase are given by the expression

npa
0 5up

2f ~Epa!1vp
2f ~2Epā!, ~6!

whereā is the species other thana and the coherence factor
are

up
25

Eh1j l

Eh1El
5

El1jh

Eh1El
, vp

2512up
2 . ~7!

In the presence of a small superfluid velocityw, the quasi-
particle energies are shifted by1(p•w) so that the quasipar
ticle distribution functions of Eq.~6! become

npa5up
2f ~Epa1p•w!1vp

2f ~2Epā1p•w!. ~8!

The number current can be decomposed as usual into
parts@5#:

Ja
p5

1

ma
(

p
npap[ra

pw, ~9!

Ja
d5(

p
npaw[ra

dw, ~10!

where the superscriptsp andd indicate the paramagnetic an
diamagnetic components;ra

p,d are the corresponding numbe
densities. In the following we shall examine Eqs.~9! and
~10! in the limit of smallw at zero temperature.

Let us consider the case whenpFh.pFl and uDu,Dc .
Then, as can be checked from Eq.~2!, Eh,0 for p1,p
,p2 while El.0 always. Therefore thel branch of quasi-
particles is always empty, i.e.,f (El)50 and f (2El)51, at
zero temperature. In the presence of a small superfluid
locity w, sinceEl never changes sign, one has

f ~6El1p•w!2 f ~6El !50. ~11!

Using the fact thatJa
p50 whenw50, we obtain for small

superfluid velocity the paramagnetic currents

Ja
p5

1

ma
(

p
p~npa2npa

0 !

.
1

ma
(

p
pfa

2@ f ~haEh1p•w!2 f ~haEh!#, ~12!
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where for the heavy and light branches

fa5H up

vp
and ha5H 11

21
for a5H h

l .
~13!

In arriving at the final expression in Eq.~12!, we have used
Eq. ~11! for small w.

To leading order in the superfluid velocity, the term in t
square brackets in Eq.~12! is proportional to the delta func
tion d(Eh), which vanishes except atp5p1 andp5p2. Re-
placing the sum by an integral, one thus obtains

ra
p52

1

6p2

1

ma
~p1

4D1fa1
2 1p2

4D2fa2
2 !, ~14!

where Di[1/u]Eh /]pu i and the subscriptsi 51,2 indicate
evaluating at the pointsp1 ,p2. Note thatra

p is always nega-
tive, which means that the paramagnetic currentJa

p always
flows in the opposite direction tow.

To leading order inw, the diamagnetic current is simply

Ja
d5(

p
npa

0 w, ~15!

which is always in the same direction asw. When pFh
.pFl the diamagnetic number densities can be expresse

rh,l
d 5

p2,1
3

6p2
1

1

2p2 S 2E
0

p1
dpp2u21E

p2

`

dpp2v2D . ~16!

Note thatra
d is always positive since the diamagnetic curre

Ja
d is always in the same direction asw.

A similar analysis to that above can also be done for
case ofpFh,pFl . As it turns out, we find that the tota
superfluid number densitiesra

n[ra
p1ra

d for the two species
are always identical~see the Appendix!. In other words, de-
spite the seemingly asymmetric properties of the two spec
the superflow turns out to be quite conventional — the p
ticles flow together in pairs. The superfluid mass density
thus simplyrM[mhrh

n1mlr l
n5(mh1ml)rh

n .
As noted earlier,ra

d is always positive whilera
p is always

negative; as a result, the sign ofrM is determined from the
competition between the paramagnetic and the diamagn
components. Quite unexpectedly, we find that the superfl
mass density of the interior-gap phase stays negative in
most all regions of the parameter space. This can also
confirmed analytically for smallD. A negative superfluid
mass density implies that the interior-gap phase is unst
toward a spontaneously generated superfluid velocity o
phase gradient, since the kinetic energy is1

2 rMw2,0. Our
results forml /mh51, 1/7, and 1/100 are shown in Fig. 3
From Fig. 3~a! one observes that formh5ml the regions
where rM.0 and the regions where the gap equation h
3-3
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solutions are completely disjoint to each other in the gap
region; namely, formh5ml , except in the fully gapped re
gion, there is nowhere in the parameter space (p̄F ,D̄) that
the interior-gap state is stable. This is consistent with
FFLO results@7#. For larger mass ratio atmh57ml , as
shown in Fig. 3~b!, there are regions in the gapless ar
whererM stays positive and the gap equation has solutio
To estimate the coupling strength required, we plot in Fig

FIG. 3. Summary of our results for the interior-gap states

ml /mh5 ~a! 1, ~b! 1/7, and~c! 1/100 over the (p̄F ,D̄) plane. The
gray areas are regions where the gap equation has solution
attractive interactions. The dark areas mark the regions where
superfluid mass density is positivein the gapless regions. The dash-
dotted line depicts the critical line determined from Eq.~4!, which
also corresponds to the ridges in the RHS of the gap equation@see
Fig. 1~a!#.
05360
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the profile of the RHS of the gap equation atpFl52pFh .
Disregarding the fact that there are two solutions to the
equation in this case~see the next section for a discussion!,
we find the coupling strength necessary forrM.0 around
upFlau;1.9. At such strong couplings, however, the valid
of the present mean-field calculation is doubtful. For ev
larger mass ratio atmh5100ml , the situation stays much th
same@see Fig. 3~c!#; at pFl52pFh we find upFlau;0.7 for
rM to be positive. Even though the coupling strength does
down with increasing mass ratio, it is unrealistic to consid
even higher values ofmh /ml . Note also that the regions o
rM.0 occur forpFl.pFh , instead ofpFl,pFh as suggested
by LW @6#.

From the sign of the superfluid density, our results sh
that in the interior-gap phase the paramagnetic compon
overwhelms the diamagnetic component whenever there
gapless excitations. It is only when the quasiparticles
gapped that the number density in the interior-gap s
would stay positive at weak couplings.

IV. SUMMARY AND DISCUSSION

Within the range of validity of our calculation, we find th
interior-gap phase unstable in physically accessible reg
of the parameter space; the superfluid mass density is alw
negative at weak couplings, rendering a uniform phase
stable. Therefore, starting from the normal state, upon
creasing coupling strength the system considered h
would/may first enter an inhomogeneous FFLO state wh
persists until the onset of a fully gapped ‘‘interior-gap’’ stat
a uniform gaplessinterior-gap state cannot occur in the in
tervening regimes. Indeed, this might have been expe
from continuity: As was noticed, due to the existence of t
peaks and ridges in the RHS, there can be two solution
the gap equation~see Fig. 1!. Since atpFh5pFl the only
solution is always in the gapped region, from continuity o
expects the stable solutions whenpFhÞpFl to be those above
the V shaped boundaries in Fig. 3. In other words, continu
implies that it is always the gapful solutions that are stab

r

for
he

FIG. 4. The RHS of the gap equation@in units of 2p/(pFlmr)]
for mh57ml at pFl52pFh . The dashed line indicates the value

D̄ below which the superfluid mass density is positive@cf. Fig.
3~b!#. To the right of the peak, the state becomes fully gapped
that the mass density is again positive trivially.
3-4
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SUPERFLUIDITY IN THE INTERIOR-GAP STATES PHYSICAL REVIEW A67, 053603 ~2003!
This includes the largeupFlau regimes discussed near the e
of the last section. For this fully gapped phase, there are
quasiparticles at zero temperature and the number dens
of the h and thel branches are always equal@10#. This state
thus behaves just like an ordinary BCS state.
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APPENDIX

In this appendix we show that the superfluid number d
sities for the heavy and the light species are identical at sm
superfluid velocities.

Let us consider first the case ofpFh.pFl . We note first
that from Eqs.~2! and ~7!

]Eh

]p
5pS u2

mh
2

v2

ml
D . ~A1!

Substituting the above expression into Eq.~14!, we obtain
the difference between the paramagnetic number densitie
the two species@9#:

rh
p2r l

p52
1

6p2 Fp1
3sgnS u1

2

mh
2

v1
2

ml
D 1p2

3sgnS u2
2

mh
2

v2
2

ml
D G .
~A2!

Noting thatEh(p1,2)50, one can derive from Eq.~7!
ys

,

r-

i-

.

-
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u1
2

v1
2

,
mh

ml
,

u2
2

v2
2

.
mh

ml
. ~A3!

Therefore Eq.~A2! becomes

rh
p2r l

p52
1

6p2
~p2

32p1
3!. ~A4!

For the diamagnetic number densities, at small superfl
velocity the difference between the two species is simply t
of their quasiparticle occupation numbers. As one can fi
trivially from Eq. ~16!,

rh
d2r l

d51
1

6p2
~p2

32p1
3!. ~A5!

Combining Eqs.~A4! and ~A5!, we conclude thatrh
n2r l

n

50, namely, that the superfluid number densities of the t
species are identical.

For pFh,pFl similar calculations as above lead to

rh
p2r l

p51
1

6p2
~p2

32p1
3!, ~A6!

rh
d2r l

d52
1

6p2
~p2

32p1
3!. ~A7!

Therefore, again, one findsrh
n5r l

n in this case.
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