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Superfluidity in the interior-gap states
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We investigate superfluidity in the interior-gap states proposed by Liu and Wilczek. At weak coupling, we
find thegaplessinterior-gap state unstable in physically accessible regimes of the parameter space, where the
superfluid density is shown to be always negative. We therefore conclude that the spatially uniform interior-gap
phase is extremely unstable unless it is fully gapped; in this case, however, the state is rather similar to
conventional BCS states.
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[. INTRODUCTION traps. Instead of postulating pairing only around the smaller
Fermi surfacg 6], here we consider a short-range attractive

The advances of techniques in manipulating dilute coldnteraction arising from the low-energy scattering between
atoms in traps have opened up many fascinating possibilitieiermions of unlike species. We derive and solve the gap
to condensed matter physics in recent ydafs The Bose- equation, and then further examine the current response of
Einstein condensation of dilute alkali-metal atoms has prothe interior-gap state in the weak coupling limit. Surpris-
vided Bose-condensed systems previously known only foingly, we find the state unstable in all physically accessible
liquid “He. Experimentalists are now investigating the pos-regimes unless it is fully gapped.
sibility of realizing the Bardeen-Cooper-SchriefféBCS
states in trapped fermionic atofz-4]. In the simplest case Il. THE MODEL AND THE GAP EQUATION
of spin-singlet BCS states, as in ordinary superconductors
such as aluminum, “conventional” Cooper pairs are formed
from fermions with opposite spin$]. In atom traps, a cor-
responding realization could be two species of fermion
which pair via interspecies interaction. The two species o
fermions can be the same kind of atofsay, Li) in differ-
ent hyperfine states, or, in the most general case, differerﬁ
fermionic atoms.

Conventionally, the BCS state is a condensate of Coopey
pairs consisting of fermions with equal mass and opposit
spins from states with a single Fermi surface. In considerin
superconductivity in systems containing ferromagnetically
coupled paramagnetic impurities, Fulde and Ferrell, and in- = > §paapaapa+ 2 a ,haT 0@ piapn. (1)
dependently Larkin and OvchinnikoM’] (FFLO), studied pa=h,l
Cooper pairing in systems with mismatched Fermi surfaces.

They found that a spatiallponuniformphase can be more Herea,, andaj,, annihilate and create an species particle
favored than the BCS states in certain ranges of temperatuMth momentump For simplicity, we ignore the trapping
and Fermi-surface mismatches. Recently Liu and Wllczel&)Otentla| and take parabolic dispersions for the particles
(LW), motivated by recent developments in atomic physicsépa= (P*— PZ,)/2m, with pg, the Fermi momentum.

studied a system of interacting fermions consisting of two Since the gas is dilute, we shall make the mean-field ap-
species of particles with unequal masses and mismatchgaroximation and define the space-independent order param-
Fermi surface$6]. Assuming pairing only in the vicinity of eter A=—gZ(ap,a_p) which is chosen to be real. The
the smaller Fermi surface, they claimed that at weak coueuasiparticle dispersions are then obtained from the standard
pling there exists a superconducting state that is spatiallprocedurd5], yielding

uniform and could be energetically more favorable than the

FFLO state if the coupling strength is above a critical value. _ Eon&pi [[Entéa)® o,

This state is characterized by the coexistence of superfluid Bon =+ 2 + 2 +A% @

and normal componentst zero temperaturg¢hat are sepa-

rated by a momentum gap between the two Fermi surfacefhe gap equation is derived from the Hamiltonian upon
(thus the “interior-gap” state LW concluded that the critical minimizing the free energy with respect fa However, due
coupling strength for the interior-gap state could be vanishio the short-range nature of the pairing interaction, the result-
ingly small when the mass difference between the two fering formula has ultraviolet divergence. To resolve the prob-
mion species is large. lem, we eliminate the coupling constagtin favor of the

In this paper, we reexamine the possibility of an interior-scattering lengtla for two-particle scatteringbetweerh and
gap phase, having in mind cold dilute fermionic atoms inl) in vacuum. The regularized gap equation reggls

We consider an atom trap that contains two species of
fermions with massn,>m,. We assume that the gas is di-
gute with the fermions interacting via a short-range interac-
ion (i.e., both the scattering length and the range of the
Interaction between the two fermion species are much less
t[1an the interparticle distangesThis interaction can there-
ore be modeled by &-function-like coupling of strength
g>0, which ultimately causes pairing between the heavy
h) and light () particles. The system is thus described by
éhe Hamiltonian
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FIG. 1. The right hand side of the gap equatidm units of

27/ (peym;)] for m,=m;; (8 shows the three-dimensional plot

and (b) the profiles atpg /pgr=0.5 (dot-dashed ling 1.0 (full

line), and 1.5(dashed ling The ridges in(a) correspond to the

critical valuesA. in Eqg. (4), which appear as peaks (h).
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where m;=mym,/(my+m,;) is the reduced mass the

swave scattering lengthf the Fermi function, andgg
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FIG. 2. The quasiparticle dispersiors, and —E,; for m,
=7m, and pgp=2.0pg, ; the normal-state dispersiogy and — ¢
are also shown for the heavgotted ling and light (dashed ling
species. Heré\ =0.6 u,| <A =0.99 uy|. It is seen thag,, inter-
sects thep axis at the pointg, and p,, which correspond to the
regions of gapless excitations.

a function ofA) arises in the RHS of the gap equation at
finite A. In the three-dimensionaLpIots of Fig(al, these

peaks appear as ridges over tipg (A) plane. The existence

of these peakgridges implies that the system requires a
critical coupling strength for solutions to the gap equation
when there are Fermi-surface mismatches. Another signifi-
cance of these peaks and ridges is related to the quasiparticle
properties of the system, as we shall now explain.

An important feature of the interior-gap state as proposed
by LW is the coexistence of the superfluid and normal com-
ponentsat zero temperaturdn other words, there exist gap-
less excitations. However, as one can check from 2g.
this is possible only when the magnitude of the order param-
eter|A| is smaller than

_IPEn— PR

A —
¢ 4ymym,

4

=p?/2m,, the particle dispersion in vacuum. Here and below,

for brevity, we omit the subscripp when no confusion

would likely arise.

When|A|<A., depending on the relative magnitudepgf,
andpg,, eitherEy, or E; crosses zero at the pointsee Fig.

We solve the gap equation at zero temperature by plottin@)

the right hand sidéRHS) of Eq. (3) for different values of

m;/my, over the parameter spacepg,A), where pg

=pg/Pep andA=|A|/2| up| with up, the chemical potential P12
of the heavy particles. Sin@<0 for attractive interactions

(without formation ofh—| bound states in vacuunmwe seek

solutions ofA such that the RHS is positive. Figure 1 Shows | the eventA|>A., E;,, both stay positive for all values of
typical plots for the RHS of the gap equation with,  p There are then no gapless excitations and the interior-gap
=m,. The profile atpg /pep=1 in Fig. 1(b) thus corre-  state has only the superfluid component at zero temperature.
sponds to the usual BCS case. In this case the RHS divergghe peaks and ridges in the plots for the RHS turn out to be
asA—0, corresponding to the well-known fact that an in- |pcated exactly at the valyéd|= A of Eq. (4). Indeed, since
finitesimally small attractive interaction can lead to pairing.|A|=A. draws the boundary between the gapped and the
However, two differences from the usual BCS states ocCUfapless regions over the parameter space, one can expect a
here. First, the RHS becomes negative at laxgeéndicating  qualitative change when plotting the RHS across this line.
no solution for attractive interaction. Second, whpp,  We will be interested mainly in the gapless regions, namely,
#pg, as displayed in Fig. (b), a finite peakkmaximum as  where|A|<A..

_ pZn+ P& T V(pE,—PE)?—16mmA2 vz

5 5

053603-2



SUPERFLUIDITY IN THE INTERIOR-GAP STATES PHYSICAL REVIEW A&7, 053603 (2003

. CURRENT RESPONSE where for the heavy and light branches
When |A| <A, the interior-gap state has gapless excita-
tions from the quasiparticle branch whose dispersion crosses | Up ]t 1 _ h
zero. In the FFLO ground state, the quasiparticles produce a ba= vp and  7,=1 _ 1 for a= l. (13

flow which exactly cancels the current due to the finite-
momentum Cooper pairs. This lowers the free energy and o ] o
stabilizes the FFLO statdd]. In the interior-gap state, the [N arriving at the final expression in E¢12), we have used
Cooper pairs are stationary in the absence of any superflo/d: (11) for smallw. _ _ _
It is therefore of interest to investigate the current response 10 leading order in the superfluid velocity, the term in the
of the interior-gap state; in particular, the effects of the quaSduare brackets in E¢12) is proportional to the delta func-
siparticles in the current-carrying states. tion 5(Ep), which vanishes except at=p; andp=p,. Re-

In the static case the quasiparticle distributions of thePlacing the sum by an integral, one thus obtains
interior-gap phase are given by the expression

1 1
0 _ 2 2 -
N =Upf(Epa) +upf(—Epa), (6) pP=— — m—(p‘llqubilJr p3DLd2,), (14)
wherea is the species other thanand the coherence factors
are where D;=1/|dE,/dp|; and the subscripts=1,2 indicate
evaluating at the points,,p,. Note thatp® is always nega-
ul= = vi=1—u?. 7 tive, which means that the paramagnetic currghtalways
P E,+E, E,t+E’ P P ™ : Lo i
h™El h™El flows in the opposite direction tw.

. . . To leading order irw, the diamagnetic current is simpl
In the presence of a small superfluid veloaity the quasi- g g Py

particle energies are shifted by(p-w) so that the quasipar-
ticle distribution functions of Eq(6) become 3222 ngaW, (15)
P

Npa= U3 (Epat P W) +v3f(—Epatp-w). (8)

The number current can be decomposed as usual into twhich is always in the same direction a& When pgp

parts[5]: >pg the diamagnetic number densities can be expressed as
JpziZ No.p=pPw (9 g P 1 P1 ”
“om, e T Ph|:_'2+_2(_J’ dpp2u2+f dpp202>. (16)
6w 2w 0 P2
d_ _ d
Jo= Ep: MpaW=p W, (10 Note thatp‘i is always positive since the diamagnetic current

J9 is always in the same direction as

where the superscriptsandd indicate the paramagnetic and A similar analysis to that above can also be done for the
diamagnetic componentpg'd are the corresponding number case ofpg,<pg . As it turns out, we find that the total
densities. In the following we shall examine EqS) and  superfluid number densitigs,=pP + pi for the two species
(10) in the limit of smallw at zero temperature. are always identicalsee the Appendijx In other words, de-

Let us consider the case whemp,>pg and |A|<A.. spite the seemingly asymmetric properties of the two species,
Then, as can be checked from B®), E,<0 for p;<p  the superflow turns out to be quite conventional — the par-
<p, while E;>0 always. Therefore thk branch of quasi- ticles flow together in pairs. The superfluid mass density is
particles is always empty, i.ef(E;)=0 andf(—E;)=1, at  thus simplypy=mupp+mpi'=(m,+m)pyp.
zero temperature. In the presence of a small superfluid ve- As noted earlierpi is always positive while® is always

locity w, sinceE; never changes sign, one has negative; as a result, the sign pf, is determined from the
competition between the paramagnetic and the diamagnetic
f(=E+p-w)—f(£E)=0. (1) components. Quite unexpectedly, we find that the superfluid

] o ] mass density of the interior-gap phase stays negative in al-
Using the fact thatl, =0 whenw=0, we obtain for small mnost all regions of the parameter space. This can also be

superfluid velocity the paramagnetic currents confirmed analytically for small\. A negative superfluid
mass density implies that the interior-gap phase is unstable
Jp:i E p(n,,—nC ) toward a spontaneously generated superfluid velocity or a
“omg P Tpa phase gradient, since the kinetic energy js,w?<0. Our

1 results form,/m,=1, 1/7, and 1/100 are shown in Fig. 3.

- 2 _ From Fig. 3a) one observes that fom,=m, the regions
= > f(n En+p-w)—f(n,En], (12 ; h=—" )
P PEuLt(mEntp-w)=f(n.En)l, (12 where p\,>0 and the regions where the gap equation has

3
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FIG. 4. The RHS of the gap equati¢im units of 2a/(pgm;)]
for my=7m, at pr;=2pg,. The dashed line indicates the value of
A below which the superfluid mass density is positfeé. Fig.
3(b)]. To the right of the peak, the state becomes fully gapped, so
that the mass density is again positive trivially.

the profile of the RHS of the gap equation @&t =2pgy .
Disregarding the fact that there are two solutions to the gap
equation in this casésee the next section for a discusgion
we find the coupling strength necessary fq;>0 around
|prial ~1.9. At such strong couplings, however, the validity
of the present mean-field calculation is doubtful. For even
larger mass ratio ah,=100m,, the situation stays much the
same[see Fig. &)]; at pg,=2pg, We find |pgal~0.7 for

A2l

Pe/Pen

1.0 pwm to be positive. Even though the coupling strength does go
©) down with increasing mass ratio, it is unrealistic to consider
08 I even higher values ah,/m,. Note also that the regions of
pm=>0 occur forpg > pgy, instead ofpr < pgp as suggested
06 I by LW [6].
I ' From the sign of the superfluid density, our results show
N that in the interior-gap phase the paramagnetic component
Q047 overwhelms the diamagnetic component whenever there are
gapless excitations. It is only when the quasiparticles are
0.2 gapped that the number density in the interior-gap state
would stay positive at weak couplings.
0'00.0 1.0 2.0 3.0

Pe/Pen IV. SUMMARY AND DISCUSSION

FIG. 3. Summary of our results for the interior-gap states for  Within the range of validity of our calculation, we find the
m,/my= (a) 1, (b) 1/7, and(c) 1/100 over the ¢ ,A) plane. The interior-gap phase unstable in physically accessible regions
gray areas are regions where the gap equation has solutions fof the parameter space; the superfluid mass density is always
attractive interactions. The dark areas mark the regions where thgegative at weak couplings, rendering a uniform phase un-
superfluid mass density is positiirethe gapless regiondhe dash-  stable. Therefore, starting from the normal state, upon in-
dotted line depiCtS the critical line determined from E@., which Creasing Coup”ng Strength the System considered here
also corresponds to the ridges in the RHS of the gap eques&®  \yoy|d/may first enter an inhomogeneous FFLO state which
Fig. 1(@]. persists until the onset of a fully gapped “interior-gap” state;

a uniform gaplessinterior-gap state cannot occur in the in-
solutions are completely disjoint to each other in the gaplesgervening regimes. Indeed, this might have been expected
region; namely, fom,=m;, except in the fully gapped re- from continuity: As was noticed, due to the existence of the
gion, there is nowhere in the parameter spage,{) that peaks and ridges in the RHS, there can be two solutions to
the interior-gap state is stable. This is consistent with thehe gap equatiorisee Fig. 1 Since atpg,=pg the only
FFLO results[7]. For larger mass ratio an,=7m;, as solution is always in the gapped region, from continuity one
shown in Fig. 8b), there are regions in the gapless areaexpects the stable solutions wheg, # pg, to be those above
wherepy, stays positive and the gap equation has solutionsthe V shaped boundaries in Fig. 3. In other words, continuity
To estimate the coupling strength required, we plot in Fig. 4mplies that it is always the gapful solutions that are stable.
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This includes the larglpg,a| regimes discussed near the end 2 o m W@ m
of the last section. For this fully gapped phase, there are no —;< —h, —2 . (A3)
guasiparticles at zero temperature and the number densities vy Moowy; M
of the h and thel branches are always equdl0]. This state
thus behaves just like an ordinary BCS state. Therefore Eq(A2) becomes
1
ACKNOWLEDGMENT pP—pP=— F(pg_ p3). (A4)
This research was supported by NSC of Taiwan under
Grant No. NSC 91-2112-M-001-063. For the diamagnetic number densities, at small superfluid
velocity the difference between the two species is simply that
APPENDIX of their quasiparticle occupation numbers. As one can find

In this appendix we show that the superfluid number den:mVIaIIIy from Eq. (16),

sities for the heavy and the light species are identical at small 1
superfluid velocities. pg_ P|d: + _(pg_ pf)_ (A5)
Let us consider first the case pg,>pg - We note first 6

that from Eqs.(2) and (7)
g Combining Egs.(A4) and (A5), we conclude thapp— p|'

JE,  [(u? v? =0, namely, that the superfluid number densities of the two
ap P ' (A1) species are identical.
For pen,<pg Similar calculations as above lead to

my, m

Substituting the above expression into Ef4), we obtain

the difference between the paramagnetic number densities of o 1 5
the two specie$9]: ph—pr=+ @(pz— P1), (AB)
1 uz  p? uz o2
o ewz{pl Him, )P, " m i pi=— —5 (-}, (A7)
(A2) 6
Noting thatE(p; ) =0, one can derive from Ed7) Therefore, again, one fings,= p|' in this case.
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